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SMOOTHLY PARACOMPACT SIKORSKI CW COMPLEXES

0. Introduction

In this paper, we continue our investigations of the DW complex concept.
Since DW complexes are closely related to ordinary CW complexes in many
respects, we have found the denomination Sikorski CW complexes or S-CW
complexes for short to be rather suggestive and appropriate. See [10] for
Sikorski (differential) spaces. For easy reference, let’s define the notion of
Sikorski space and map between Sikorski spaces.

DEeFINITION 0.1. Let X be a set, F a family of real-valued functions on X,
and 7 the weakest topology on X for which all functions in F are continuous.
The pair (X, F) is called a Sikorski space if:

(i) For each open covering {U;}icr of X and function g : X — R, if for
each i € I, gy, = fi|u, for some f; € F, then g € F.

(ii) If fi1,..., fa is a collection of functions in F and w : R® — R is a
smooth real-valued function, then wo (fi,..., f») is again in F.

(X, F) is said to be Hausdorff if the induced topology 7 is Hausdorff.
It is easy to show that (X, F) is Hausdorff if and only if for given points
z,y € X, there is a function f € F such that f(z) # f(y).

A map ¢ : (X, F) — (Y,G) of Sikorski spacesis aset map ¢ : X —» Y
such that given f € G, then f o ¢ € F. Sikorski spaces and maps between
them form a category, which we denote DIFF. Maps between Sikorski spaces
are called (Sikorski ) smooth maps.

Let (X, F) be a Sikorski space and let ¢ : X — Y be a set mapping. The
collection ¢.(F) := {f : Y — R| fo¢ € F} is a differential structure. See [6].
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¢«(F) is called the differential structure coinduced from F by ¢. Next, given
a Sikorski space (X, F), we say that F is the differential structure generated
by a family Fy if the following property holds: f — R is in F if and only
if, given a point p € X, there are functions f1,..., fn € Fo, w € C°(R™,R)
and a neighbourhood U € T of p (T is the topology induced by Fp) such
that

f|U=w°(f1a"'vfn)lU-

F is assumed to be the smallest differential structure, containing Jp. Let
A be a subset of X; the pair (A, F4), where F4 is the structure generated
by F|a4, is called a Sikorski subspace of (X, F). The pair (R", £(R™)), where
e(R™) is the set of (usual) smooth functions R* — R, is a Sikorski space,
and is called the n-dimensional Sikorski euclidean space. As an exception
to the subspace differential structure notation, we will use €(D™) to denote
the differential structure induced on D™ by the 1nclus10n D™ — (R*, e(R™))

instead of the more accurate e(R™)pn. L1kew1se, g( D ) and ¢(S™ 1) will

denote the differential structures induced by D — R" and S*! — R"
respectively.

LEMMA 0.1. The category DIFF has the following properties:

(1) Complete and cocomplete.
- (2) The underlying topological space of a coproduct is a coproduct of un-
derlying topological spaces of cofactors.

Proof. Easy proof.

LEMMA 0.2. Let (X,F) be a Sikorski space, and let p be any point in X.

For any open neighbourhood U of p, there is a nonnegative function h € F
such that p € h=1(0,00) C U and h=1(0,00) C U.

This is a slightly modified version of Lemma 3 in our paper [7]. We omit
the proof thereof.

For easy reference, we now define the notion of Sikorski CW complex. A
cell e of dimension k in a Sikorski space (X, F) is a diffeomorphic copy of

ok
the open ball D via a (Sikorski) smooth map &, : D¥ — X. We proved in
[7] that ®.(D*) =&, that is the closure of e with respect to the topology 7.
We let F(€) be the differential structure coinduced by &, on e.

DEFINITION 0.2. A Hausdorff differential space (X,F) is a Sikorski-CW
complex (or S-CW complex for short) with respect to a family E of cells
and a family ® of smooth maps provided:

(1) X is a disjoint union of its cells.
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(2) If e is a k-cell in X, one assigns a quotient map
®. : (D*,¢(D") — (&, F(e))
such that . .
Beloi (D 16(D ) = (e F(e))

is a diffeomorphism. F(e) is the structure induced by the inclusion
e — (g, F(e)).

(3) If e is a k-cell in X, then € is contained in a finite union of some cells
of dimension < k.

(4) The differential structure F is the coinduced structure corresponding
to the inclusions (g, F(€)) — X.

ExaMPLES. (1) Let (I,e(I)) denote the unit interval as a Sikorski subspace
of the usual Sikorski euclidean space (R, e(R)). We call (I,&(I)) the Sikorski
unit interval. (I,e(I)) is an S-CW complex with as collection of cells the
family {{0}, {1}, (0,1)}. The characetristic map ®! of the 1-cell (0,1) is
the map ®! : [-1,1] — [0,1] = eI, defined by ®!(z) = ZEL. ®! is obviously
smooth, in the sense of Sikorski spaces, and a diffeomorphism on (—1,1).

(2) Let F(S™) be the quotient differential structure on the n-sphere S™
induced by the map & : (D", e(D")) — S™, defined by

®(z1,...,Tn) = (24/1 — ||z]|221, . . ., 24/1 — ||2|]22s, 2||2||* — 1).

We give ™ an S-CW complex structure by considering S™ — p = €™ and
p = €°, where p = (0,...,0,1) as its cells. It is obvious that e® = S™, and
F(e®) = F(S™). It is clear that F(e’) =R. Let f € F(e") andc € R. If fVec
denotes the map obtained by patching together f and ¢, then fV ¢ is well
defined only if f(p) = c. Notice that F(S™) is not the differential structure
induced on S™ by the inclusion S” — (R"t1 ¢(R"*1)). In fact, the map
g9{z1,...,Znt+1) = T1+. ..+ Tn+1 is not smooth in the sense of Sikorski on the
S-CW complex (S™, F(S™)), because given a point ¢ € S"~! = D", there
is no differentiable map h : R® — R that equals g o ® in any neighbourhood
UCR"of q.

(3) The decomposition of the n-sphere S™ into two cells of each dimension
from 0 to n makes S™ into an S-CW complex with a differential structure
different from the one that makes S™ into a subspace of (R™*!,¢(R"*1)). In
fact, for n = 1, the function defined by

1—-22 for (z,y) € S! with y = +v1 — 22
f(z,y) =4 =1+ 22 for (z,y) € §! withy = -1 — 22
0 for (z,y) € S* with y =0
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is a structure map on the S-CW complex S, since given the characteristic
map &, : D1 — S, defined by

¢+(1") = (:ZI,+ v1-— $2)a

the pullback fo®, (x) = 1—x2 is smooth on D. Similarly, let &_ : D' — S!
be the characteristic map defined by

&_(z) = (z,~VI—2?);
the pullback f o ®_(z) = —1 + z? is smooth on D!. But f is clearly not
differentiable in points (1,0) and (—1,0), therefore f is not a map for the
subspace structure £(S?).

On the other hand, there are maps in £(S!) that do not belong to the
S-CW structure F(S!). For instance, consider the differentiable map g :
S! — R, defined by g(z,y) = y. There is no differentiable map h : R — R
that coincides with g o @, near 1. Therefore the map ¢ is not a structure
map of the S-CW complex S!.

81 discusses the situation regarding quotient S-CW complexes. In fact,
X/Y is an S-CW complex provided the S-CW complex X is smoothly para-
compact and regular, and the subcomplex Y is compact.

§2 presents the underlying topology of an adjunction of two Sikorski
spaces. This leads to an alternative description of S-CW complexes. Much
of the importance of Lemma 0.2 is seen in this section.

1. Quotient S-CW Complexes

For the purpose of the paper, we want that every S-CW complex X
satisfies the following property: every open covering of the Sikorski space
X has a smooth partition of unity. A Sikorski space (X,F) that has this
property is called smoothly paracompact with respect to the differential
structure F. See [1] for smoothly paracompact spaces.

THEOREM 1.1. Let (X, F) be a smoothly paracompact S-CW complez whose
underlying topological space X is regular, let Y be a compact S-CW subcom-
plez, and let v : X — X/Y be the natural map. If v*(F) is the coinduced
differential structure on X/Y, corresponding to v, then (X/Y,v*(F)) is a
S-CW complex.
Proof. Let us first prove that the restriction

l/|x_y X-Y - X/Y— {*}
is a diffeomorphism. By G and H, we will mean the structures on X — Y
and X/Y — {} induced by inclusions X — Y — (X, F) and X/Y — {*} —
(X/Y,v*(F) respectively. It is clear that v|x_y : (X - Y,G) — (X/Y,H) is
smooth.
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Conversely, let p be any point in X —Y. Since X is Hausdorff and regular
and Y is compact by hypothesis, there exists an open set O containing p
and such that O NY = (. Using regularity of X again, one can assume
that for each ¢ € Y there exist open neighbourhoods V; and U, of p and ¢
respectively such that O C V,; and VgNUg = (. Since Y is compact, there
are finitely many points q;,4,...,q9, € Y such that Y C UjL,U,,. But every
Ug NV, = 0, with V,, an open neighbourhood of O. Therefore, if we put
U=UrU;andV =N, V,,, then U and V are open sets such that Y C U,
peOCVand UNV = 0. Since X is Hausdorff, it follows that the subset
X —Y — O is open in X and so the family C = {U,V,X —Y — O} is an
open covering of X. Since X is smoothly paracompact, C admits a locally
finite open refinement, say W = {W,};es. There exist only finitely many
J1,...,Jn € J such that pe W, i =1,...,n. It is clear that W, C V for
i=1,...,n.

Nowlet J ={jeJ: W; CV}and Jo =J—J;. Let f = h|x_y, where
h € F. For each j € J, let g; : X — R be a function given as follows:

(1) If j € Ju,
fz) fzeV
g(z) = (=) .
0 ifzgV
(2) If] € J2a
gj = 0.
Let {);};es be a smooth partition of unity subordinate to W), and let
f* = Z Ajgj-
jeJ

We claim that f* is smooth. Indeed, let us write f* this way
£ =2 Xgi + > Xigj-
J1 Ja

For each j € J5, Ajg; = 0. Let j € J;. To see that A;g; is smooth, one
need only look at points on the boundary FrV of V. But first, observe that
YNFV =0.Let r € FrV. As Y is closed and Y NFrV = 0, there exists an
open neighbourhood R C X — Y of r such that for all j € J;

ouaie = { YOO HeRY

Since A;j(t)f(t) =0 for allt € R—V, s0 A\jg; = A;f on R and hence );g;
is smooth on R. Thus, f* is a smooth function. Since Y C X — U;ej, Wj, it
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follows that f*|y = 0. Now, let W* = N[L.,W;; N O. It is evident that W* is
an open neighbourhood of p and is contained in X — Y. Consider,

Frlwe =D Njlwegjlwe + Y Xjlwgjlw-.
j€N JjeJ2

Let [ € J;. Consequently, W] is either contained in U or in X — Y — O, but
not in V. Thus A;jo = 0 and hence Aj|y+ = 0. Thus

flwe = flw~.

It follows that
w0 V—IIV(W‘) = flw+o V_llu(W‘)'

We claim that f*ov~1: X/Y — R is smooth. Indeed, in the diagram

X LR
\ A—l

X/Y

the smooth map f* : X — R is constant on every fiber v~!(u), where
u € X/Y. Therefore, one applies Corollary 3.1 at once to show that f*or~!:
X/Y — R is smooth.

Now, since W* is an open neighbourhood of p then by Lemma 0.2, it
follows that there exists a nonnegative function h* € F such that p €
h*~1(0,00) € W*, and thus Y ¢ (h*)~1(0). Since h* : X — R is constant on
every v~1(u), where v € X/Y, Corollary 3.1 applies to show that h*ov~1 :
X/Y — R is smooth. It is clear that v(p) € (h* o v1)71(0,00) C V(W*).
But p is arbitrary in W*, therefore v(W*) is an open subset of X/Y . So we
have an open subset v(W*), a smooth map f* ov~! : X/Y — R such that
(F*ov luwey = (for ™ H|,wn- Thus, for~: X/Y — {x} — R s locally
smooth, and consequently f o v71| X/Y—{+} is smooth. Hence, the mapping
vy X/Y —{3} > X-Yis smooth. Thus, X —Y is diffeomorphic
to X/Y — {x}.

Finally, let us prove that (X/Y,v*(F)) is an S-CW complex.

First let us show that X/Y is Hausdorff. Let v(x), v(z) be distinct points
in X/Y. Assume that v(z) # * and v(z) # *. Therefore t ¢ Y and 2 ¢ Y
since X is Hausdorff and X — Y is open, there are disjoint open subsets U’
and V'’ in X —Y such that £ € U’ and 2 € V'. But X —Y is diffeomorphic
to X/Y — {x}, therefore »(U’) and v(V’) are open neighbourhoods of v(z)
and v(z) respectively and such that v(U') Nv(V') = 0.
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Now assume that v(z) = . Therefore z ¢ Y; there are disjoint open
subsets U” and V” in X such that z € U” and Y C V”. Let

R={U"V"'X-Y}
be an open covering of X. Let W' = {W/};¢s be a locally finite open refine-
ment of R. Let Iy = {¢ € [ : W/NY = 0} and let Iy = I — I;. Next, for each
1€ 1,let h; : X — R be a function defined by
hy = 0 ifiel
1 ifiels,.

Let {u:}icr be a smooth partition of unity subordinate to W', and let r =
2 iel Mihi. It is easy to see that the map r : X — R is smooth on X. Put

A= Z #ihi and B= Z Nihi-
i€l i€ly
Clearly, one has

A|V” =0 and BIV” = Z /J'iIV”-

i€ly
Thus,
rlys = Blys.
Note that
rly =1
and

Y cr71(0,00) c V".

Since r is constant on each v~1(u), u € X/Y, Corollary 3.1 says that r
induces a smooth map 7' : X/Y — R such that * € (r')~1(0, 00). Finally,
since v|x_y : X =Y — X/Y —{«} is a diffeomorphism, it follows that v(U")
is an open neighbourhood of v(z). Moreover since U” N r~1(0,00) = @, it
follows that »(U”) N (r')~1(0, 00) = @. Hence, X/Y is Hausdorff.

Let E(X) and E(Y') be the families of cells of X and Y respectively. We
define cells in X/Y as follows. The 0-cells are given by

(X/Y)° = {v(e) : e € E(X) — E(Y) and dim(e) = 0} U {x};
for k > 0, define
(X)Y)* = {v(e) : e € E(X) — E(Y) and dim(e) = k}.

Let e be a cell in X —Y'; we define (as usual ) the characteristic map of v(e)
as the composite v®.. The characteristic map of the cell x is defined to be
the map ®, : D% — .

It is easy to show that X/Y satisfies all the 4 axioms defining S-CW
complexes. a
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2. Attaching of Cells

Let X be a smoothly paracompact Sikorski space, let Y be any Sikorski
space, and let f : A — Y be a smooth map from a non-empty closed
subspace A of X. Consider the coproduct X LIY and form a quotient space
by identifying each set {y} U f~1(y), for y € Y, to a point. We denote this
quotient space by X Uy Y and call it an adjunction space of X and Y,
determined by f.

We have said it above: If X U; Y is an adjunction space in DIFF, X is
assumed to be smoothly paracompact. We will also assume that v : X1UY —
X UzY is the quotient map identifying a € A with its image f(a). It is clear
that v|ly : Y — v(Y) (resp. v|x-4: X — A —> v(X — A)) maps theset Y
(resp. X — A) bijectively onto v(Y) ( resp. v(X — A)). There is more to this.
In fact, we now show that v|y and v|x—_4 are diffeomorphisms.

LEMMA 2.1. Let (X U; Y,C) be an adjunction of spaces (X,F) and (Y,G).

(i) Any function a : v(Y) — R such that cov|y € G is a structure map
for the induced differential structure C,(y.
(if) Given a function a : v(Y) — R, « is smooth on v(Y) if and only if
aovly : Y — R is smooth and aov|s : A — R is smooth.
Proof. (i) First note that aov|4 = aov|yotyof, wherety : Y — XY isan
inclusion map. Since aov|y € G, it follows that aov|yotyof € F4; and thus
aov|yg € Fa. As X is smoothly paracompact and A is a closed subspace of X,
one applies Theorem 1.1 in [4], which says that every smooth function on a
closed subspace A is a restriction of some smooth function on X. Thus, there
exists g € F such that g|s = aov|s. Now,let p=v|x_4: X -A— XU;Y
and let §: v(X — A) — R be a function given by
Bp) =gou(p) peV(X - A).
Define a map h: X LIy Y — R by setting

hp) = {a(p) ifpeu(y)
Blp) ifpev(X - A).
Readily, one has
hovly =aovly,
hov|g=aov|a,
hov|x-a=glx-a-
Since g is a smooth extension of aov|4, it follows that hov|x = g; therefore
h € C. Hence a = hj,(y) € Cpy).
(i) For each point p € v(Y) choose a neighbourhood U, of p in the
topology of C and a structure function g € C such that a|y,~.(v) = 9lv,nu(y)-
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Since
v Up Ni(Y)) = (7 (Up) NY) U (7 (Up) N A),

and Y N A = 0, it follows that

aoV|,~1w,)ny = g0 V],-1u,)ny
and
aov|,~1u,)na = 9° Vl-1u,)na-
Asgov|x € F,gov|y € G and v~1(U,) is open in X UY, it turns out that
ao v,y u,)ny : v} (Up)NY - R and ao Y|-1u,)na ¢ v I (U,)NA - R
are smooth. But p is arbitrary, therefore a o v|y and a o v|4 are smooth.
Conversely, since a o v|y € G it follows that a : v(Y) — R is smooth. O

LEMMA 2.2. Let (X Uy Y,C) be an adjunction of spaces (X,F) and (Y,G).
Then the composite
Y > XUY > XU Y

is a diffeomorphism fromY to a subspace of X L; Y.
Proof. Since v|y is smooth and bijective, we need only show that (v|y)~! is
smooth. To this end let 8 € G; in light of Lemma 2.1 o (v|y) ! : v(Y) = R
is smooth if and only if Bo(v|y)lov|y : Y — Rand Bo(v|y) lov|a: A = R
are smooth. Clearly, if U is any open set in v(Y’), then

BoWly) L ovly-1wyny = Bl )y

But v~}(U)NY is an open set in Y, therefore fo(v|y) lov|y issmoothon Y.
On the other hand, for all a € v=1(U)NA, one has Bo(v|y)ov(a) = Bof(a).
Therefore,

(1) Bo (vly) ™' o vly-1yna = Bo flu-1w)na
Since v~1(U) N A is an open set in A and B o f is smooth on A, it follows
that Bo (v|ly)lov|s: A — R is smooth. Thus, (v|y)~! is smooth. O

The next lemma is of pivotal importance when it is necessary to show
that the underlying topological space of an adjunction of differential spaces
is in fact an adjunction of the corresponding underlying topological spaces.

LEMMA 2.3. Let (X Uy Y,C) be an adjunction space of (X,F) and (Y,G),
obtained via the attaching map f : A — Y, where A is closed in X. Then
the composite

X-A-XUY ->X1Y
maps X — A diffeomorphically onto an open subset of X U; Y.

Proof. To show that u~1, where u := (vx_4), is smooth we need to prove
that for every smooth g : X — A — R, the composite gou~! : v(X —A) - R
is smooth. For every point p € X — A, there is, by virtue of Lemma 0.2 , an
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open neighbourhood U of p contained in X — A such that U = a~1(0, 00),
where a € F is nonnegative for all z € X, and g|y = h|y for some h € F.
Suppose that a(p) = k > 0; choose a nonnegative smooth increasing function
8 : R — R such that

0 fort<oO
1 fork—e<t<k+s,

0|

where € > 0 is chosen in such a way that p € a7 1(k — ¢,k +¢) C U. The
composite B o « is smooth and, on another hand, the open neighbourhood
V := a7}k — ¢,k +¢) of p is such that 8o aly = 1. It follows that g|y =
h-(Boa)|y. Define a smooth map H : X UY — R by setting

H(z) = {h(x) (Boa)(z) ifzeX
0 ifreY.

Since (B o a)(a) = 0 for all a € A, it follows that H is identically 0 on A.
By its definition, H induces a smooth map H : X U Y — R such that

H(z) ifzeX

Hu(=) = {0 freY.

It is evident that H € C. In turn, since V is an open set containing p, it
follows that there is an open interval (a,b) such that p € H !(a,b) C V.
But V is contained in X — A, so v(p) € H-I(a, b) C v(V). Therefore, v(V)
is an open neighbourhood of v(p), and it is easily seen that g o p—1|,,(v) =
Hl, ). 0

Lemmas 2.2 and 2.3 lead to a theorem of particular importance, with
the help of which one may prove that the underlying topological of a fi-
nite smoothly paracompact S-CW complex is a CW complex. This attempt
is restrictive because it only works for finite smoothy paracompact S-CW
complexes.

THEOREM 2.1. Let X be a Hausdorff smoothly paracompact differential
space, let A be a compact closed subspace of X, and let f : A - Y be
a smooth map from A into a Hausdorff differential space Y. If C is the
structure on the adjunction X U; Y, determined by the quotient map v :
XUY — X UfY, then the underlying topology of C is the quotient topology
corresponding to the map v.

In other words, every subset U of X U; Y such that v~1(U) is open in
'Y is open in the topology of C.
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Proof. Let U be a subset of X Us Y such that »~*(U) is open in X UY.
v~}(U) is open in XLIY if and only if v~} (U)NX is open in X and v~} (U)NY
is open in Y. Let p be a point in U Nv(Y); there is ¢ € v~1(U)NY such that
v(q) = p. Suppose that g € v=1({U)N(Y — f(A)). Since v 1(U)N(Y — f(A))
is an open subset of Y, there is a nonnegative structure map g1 : ¥ —» R
such that ¢ € g71(0,00) € v~} (U)N (Y — f(A)). Thus, g1lga) = 0. We now
let g2 : X — R be the identically zero map, and define h : X 1Y — R by
h =g1Ugs. Let h* : X Lif Y — R be such that

R*ovly =g
h*ov|x =0;

h* is well defined since h* o v|¢(4y. Thus, h* € C; and since g € g7 1(0,00) C
v H{U)NY, it follows that p € (h*)~1(0,00) C U Nuv(Y).

Now suppose that the point p is such that there is ¢ € f(A) with p = v(q).
Since ¢ € v Y ({U)NY and v~1(U) NY is open in Y, by Lemma 0.2 there
exists a nonnegative smooth map F : Y — R such that ¢ € F~1(0,00) C
v Y U)NY and F-1(0,00) C v~ }({U)NY. It follows that Fo f: A — R is
smooth and if G is a point in A such that f(g) = g then g € (Fof)~1(0,00) C
v~ HU) N A. But f is smooth, so § € (F o f)~1(0,00) C »~}(U) N A. Since
(F o £)~1(0,00) and X — v~1(U) are disjoint closed subsets of X, and X is
smoothly paracompact, it follows from [1], pages 165, 166 that there exists
a function g : X — R in F with

Il = 1

and
9lx—v-1v) =0.

Now, as A is a closed subset of the smoothly paracompact differential space
X, let h: X — R be a smooth extension of F o f, (h exists by virtue of
Theorem 1.1 [4]). Next, we define H : X — R by H(z) = g(z)h(z). It is clear
that H is smooth on account that F is an algebra. Moreover H|4 = Fo f|4
and H|x_,~1yy = 0; so H=1(0,00) = (F o f)71(0,00) c v }({U) N X. Now
consider the function H* : X LIy Y — R such that H* ov = H U F, where
HUF : XUY — R is a smooth map defined by

H(z) ifzeX
F(z) ifzeY.
It is clear that H* is smooth and p € (H*)~1(0,00) C U.

Now suppose that p is a point in U N v(X — A) and suppose that its
preimage by v is a point r in v~ 1(U)N(X —A). Since v~ }(U)N(X —A) is open,
there is a nonnegative smooth function ! € F such that r € [71(0,00) C

HUF(.’E)={
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v~1 N (X ~ A). Therefore, A C I"1(0). Defined: X UY — R by setting

d(z) = l(z) fzeX
0 ifzxeY.

Since I(x) = 0 for all z € A, it follows that d inducesamapd: XU;Y - R
such that
d(z) ifzeX

dv(@) = {0 ifreY.

Clearly de C and pe d '(0,00) C UNw(X — A).
We conclude that for all p € U there is a smooth map h € C such that
p € h™1(0,00) C U. Therefore U is open for the underlying topology of C. O

Now, suppose n € N is fixed; let (D", £(D™)) be the finite coproduct of
the Sikorski spaces {(D3,e(D%)); a € A}, where D7 is the a-th copy of the
euclidean ball D?. Next, let (S"~1,¢(S"!)) be the coproduct of the finite
family {(S2~1,e(S?1)); @ € A,}, where S?~! is the boundary of D?. For
each @ € Ay, let ®* : S*~1 — Y be a smooth map carrying S?~! into a
Hausdorff Sikorski space Y and let f : S*~! — Y be the map f = Uqea, ®7.
The space D™ U; Y is called the space obatined by attaching finitely many
cells D2 to Y.

LEMMA 2.4. D" Uy Y is Hausdorff.

Proof. D" as a coproduct of smoothly paracompact spaces D2, n € Ay, is
also smoothly paracompact. In light of Lemma 0.1, the underlying topolog-
ical space of D™ LIy Y is an adjunction of the underlying topological spaces.
Since S™~1 is a compact subset of D", Theorem 8.5 in [2] implies that
D™ Uy Y is Hausdorff. a

One more useful lemma is

LEMMA 2.5. LetY be an S-CW complex of dimension n, and whose collec-
tion of cells is finite. Then

i) D*U; Y1) is an S-CW complez, diffeomorphic to Y.
f
(ii) X :=D"1 U Y is an S-CW complez, and Y is its n-skeleton.

The proof of the analogue results in the category of CW complexes can be
easily adapted. An easy reference is [2].

By mimicking the proof that every CW complex is a cellular space, and
every cellular space is a CW complex [3], we now prove that every S-CW
complex is a cellular space (in the sense of Sikorski) and every cellular space
(in the sense of Sikorski) is an S-CW complex.
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THEOREM 2.2. A space X is an S-CW complex with finitely many ceRs
if and only if there is a sequence Xo C X1 C ... C X, = X such that
X = U o Xn and the following properties hold:

(1) Xo is a discrete space.

(2) For each n > 0, there is an indexing set A, and a family of smooth
maps {®7 : S*71 - X,,_1| a € Ay} so that
where f = U®7.

(3) If F is the differential structure on X and F, is the structure induced

on X, by the inclusion X, — X, then a functiono: X - R isin F
if and only if o|x, € Fy, for each n > 0.

Proof. Suppose that X is an S-CW complex with finitely many cells and
X, = X, where X is the n-skeleton. We showed in [7] that skeletons
X ™) are S-CW subcomplexes of X, so all real-valued functions o : X(© — R
are Fo-structure functions. It follows that each subset of X (%) is open in X(®.
Thus X© is discrete, and hence (1) holds.

Conditions (2) and (3) are immediate.

Assume the condition. Xy is clearly an S-CW complex. By means of
Lemma 2.5(ii), each X, is an S-CW complex. If v” : D" U X,,_; — D" Ly
Xn-1= X, is the quotient map defining the adjunction X,,, and ¢, : X, —
X is an inclusion carrying X, into X, we let

tnovpn: DG —= D" - D"UX, 1 D" Xp1=Xn > X

be the characteristic map of an n-cell e,. Now suppose that E, is the family
of cells of the S-CW complex X,, n > 0. Define £ = U{E, : n >0} and

® = {constant maps to Xo} UUp>1{tn 0 V"|pn : a € Az}
The pair (E, ®) defines an S-CW structure on X. O

Theorem 2.2 serves as a stepping stone to proving

THEOREM 2.3. The underlying topological space of a finite S-CW complex
is an S-CW complez.

Proof. Let X be a finite S-CW complex. Its skeletons X*®), £ =0,1,...,n
are closed subspaces of X (see [7]) such that X = U?_oX*) and satisfy
conditions (1), (2) and (3) of Theorem 2.2. Under the notation of Theorem
2.2, we have

X=X™=D"Up D" Upns...up XO

where fk = Uaen, &k k=1,...,n. Since every D* is smoothly paracompact
and X(© is Hausdorff, it follows from Theorem 2.2 that X has the quotient
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topology determined by
v:D"U (D"'_1 Upn-1...Upn X(O)) - X.

But the topology coinduced by v defines a CW complex structure on X (see
[8]), therefore X, as a topological space, is a CW complex. O

3. Appendix

In this section, we elaborate on quotient maps and quotient spaces in the
category DIFF of Sikorski spaces; quotient maps and quotient spaces are
very useful tools that one needs when dealing with adjunctions of Sikorski
spaces.

DEFINITION 3.1. Let X and Y be Sikorski spaces. A smooth surjection
q: X — Y is called a quotient map provided, given a real-valued function
f:Y >R, then f is smooth on Y if and only if f o ¢ is smooth on X.

LEMMA 3.1. Let X, Y, Z be Sikorski spaces, and let ¢ : X — Y be a
quotient map. Then every set map ® : Y — Z such that doq: X — Z is
smooth is a smooth map.

Proof. Easy to see.

LEMMA 3.2. Let X, Y be Sikorski spaces and let ¢ : X — Y be a smooth
surjective map. Then q is a quotient map if and only if, for all Sikorski
spaces Z, and all functions g : Y — Z, one has g smooth if and only if gogq
is smooth.

Proof. Assume that q is a quotient map. If g is smooth, then gogq is smooth.
Conversely let g o ¢ be smooth and let h : Z — R be a smooth map. Then
hogogq : X — R is smooth; since ¢ is a quotient map, it follows that
hog:Y — R is smoot. Hence g is smooth.

Now assume that it is true that for all Sikorski spaces Z, and all functions
g:Y — Z, one has g smooth if and only if g o g is smooth. We claim that
this condition implies that ¢ is a quotient map. Let Kerg be the equivalence
relation on X, defined by z ~ 2’ if g(z) = g(z’). See [8]. Let X |Kerq denote
the quotient set of X by Kerq. We let abusively X |Kerq denote the quotient
Sikorski space, determined by v = Kerg. It is easy to see that the map
¢: X |Kerq — Y, defined by ¢([z]) = ¢(z) is one-to-one. But since q is
onto, it follows that ¢ is also onto; therefore ¢ is a bijection. Consider the
commutative diagram

X = X/ Kerg

\‘N‘ ¢—1
Y
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Since ¢! 0 ¢ = v is smooth, it follows by hypothesis that ¢~! is smooth.
Moreover, since v is a quotient and ¢ ov = q is a smooth function, it follows
that ¢ is smooth. Thus, ¢ is a diffeomorphism, and hence ¢ is a quotient
map. O

COROLLARY 3.1. Letq: X —Y be a quotient map of Sikorski spaces and,
for some Sikorski space Z let h : X — Z be a smooth map that is constant
on every ¢ '(y), wherey €Y. Then hoq™!:Y — Z is smooth.

Proof. That h is constant on each ¢~ 1(y), where y € Y, implies that hog™! :
Y — Z is a well defined function; hog~! is smooth because (hog=})og=h

is smooth, and Lemma 3.2 applies. O

COROLLARY 3.2. Let X and Y be Sikorski spaces, andlet ¢: X — Y be a
quotient map. Then the map ¢ : XlKerq — Y, defined by [z] — g(z), is a
diffeomorphism.

Proof. That ¢ : XIKerq — Y is a bijection is clear. Let v : X — X'Kerq

be the natural map. It is easily seen that the smooth map ¢ : X — Y is
constant on every v~ !([z]), where € X. Since ¢ = q o v~!, Corollary 3.1
applies to show that ¢ is smooth. Now, by Lemma 3.2, since ¢ is a quotient
map and v is smooth, it follows that ¢! is smooth. a

By means of Corollary 3.2, one can easily prove

COROLLARY 3.3. Let W be a Sikorski space for which there ezists a smooth
surjective map h : X UY — W such that, for u, v € X UY, one has
v(u) = v(v) if and only if h(u) = h(v). Then [u] — h(u) is a diffeomorphism
XUy Y —» W. Thus, X LI; Y is unique up to a diffeomorphism.
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