
DEMONSTRATIO MATHEMATICA 
Vol. XXXVII No 1 2004 

Patrice P. Ntumba 

SMOOTHLY PARACOMPACT SIKORSKI CW COMPLEXES 

0. Introduction 
In this paper, we continue our investigations of the DW complex concept. 

Since DW complexes are closely related to ordinary CW complexes in many 
respects, we have found the denomination Sikorski CW complexes or S-CW 
complexes for short to be rather suggestive and appropriate. See [10] for 
Sikorski (differential) spaces. For easy reference, let's define the notion of 
Sikorski space and map between Sikorski spaces. 

DEFINITION 0 .1 . Let X be a set, T a family of real-valued functions on X, 
and T the weakest topology on X for which all functions in T are continuous. 
The pair (X, F ) is called a Sikorski space if: 

(i) For each open covering {Ui}iei of X and function g : X —> E, if for 
each i G I, g\i/i = fi\iii for some fa G J7, then g G T. 

(ii) If / i , . . . , fn is a collection of functions in T and w : 1™ i is a 
smooth real-valued function, then u> o ( / l 5 . . . , /„) is again in T. 

(X, F) is said to be Hausdorff if the induced topology T is Hausdorff. 
It is easy to show that (X, F ) is Hausdorff if and only if for given points 
x, y € X, there is a function / G T such that f(x) ^ /(y). 

A map <f) : (X, !F) —• (Y, Q) of Sikorski spaces is a set map <j> : X —>Y 
such that given / G G, then / o <f> G T. Sikorski spaces and maps between 
them form a category, which we denote DIFF. Maps between Sikorski spaces 
are called (Sikorski ) smooth maps. 

Let (X, !F) be a Sikorski space and let </>: X —• Y be a set mapping. The 
collection <f>*(!F) := { / : Y —> R| fo<f> g T ) is a differential structure. See [6]. 
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<j>*(T) is called the differential structure coinduced from T by cf>. Next, given 
a Sikorski space (X, T), we say that T is the differential structure generated 
by a family To if the following property holds: / —• R is in T if and only 
if, given a point p € X, there are functions / i , . . . , /„ € To, uj G C°°(Rn, R) 
and a neighbourhood U e T of p (T is the topology induced by To) such 
that 

f\u = w°(fi,---,fn)\v-
T is assumed to be the smallest differential structure, containing To- Let 
A be a subset of X; the pair (A, TA), where TA is the structure generated 
by T\AI is called a Sikorski subspace of (X, T). The pair (Rn, e(Rn)), where 
e(Rn) is the set of (usual) smooth functions R™ —• R, is a Sikorski space, 
and is called the n-dimensional Sikorski euclidean space. As an exception 
to the subspace differential structure notation, we will use e(Dn) to denote 
the differential structure induced on Dn by the inclusion Dn w (Rn ,e(Rn)) 

o n 
instead of the more accurate e(Rn)£>n. Likewise, e(D ) and s(Sn~) will 

o n 
denote the differential structures induced by D Mn and Sn~ > Rn 

respectively. 

LEMMA 0.1. The category D I F F has the following properties: 

(1) Complete and cocomplete. 
• (2) The underlying topological space of a coproduct is a coproduct of un-

derlying topological spaces of cofactors. 

P r o o f . Easy proof. 

LEMMA 0.2. Let (X,T) be a Sikorski space, and let p be any point in X. 
For any open neighbourhood U of p, there is a nonnegative function h € T 
such that p € h_1(0, oo) C U and / i_ 1(0, oo) C U. 

This is a slightly modified version of Lemma 3 in our paper [7]. We omit 
the proof thereof. 

For easy reference, we now define the notion of Sikorski CW complex. A 
cell e of dimension k in a Sikorski space (X, T) is a diffeomorphic copy of 

ok 
the open ball D via a (Sikorski) smooth map 3>e : D —> X. We proved in 
[7] that $e(Dk) = e, that is the closure of e with respect to the topology T. 
We let T(e) be the differential structure coinduced by on e. 

DEFINITION 0.2. A Hausdorff differential space ( X , T ) is a Sikorski-CW 
complex (or S-CW complex for short) with respect to a family E of cells 
and a family $ of smooth maps provided: 

(1) X is a disjoint union of its cells. 
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(2) If e is a k-cell in X, one assigns a quotient map 

<!>e:(Dk,e(Dk))-+(e,F(e)) 

such that 

$ e | o k - . { D ,e(b ) ) - > ( e , . F ( e ) ) 
D 

is a diffeomorphism. T(e) is the structure induced by the inclusion 
e ^ ( e , J F ( e ) ) . 

(3) If e is a /c-cell in X, then e is contained in a finite union of some cells 
of dimension < k. 

(4) The differential structure T is the coinduced structure corresponding 
to the inclusions (e, ^"(e)) X. 

EXAMPLES. (1) Let (I, E(I)) denote the unit interval as a Sikorski subspace 
of the usual Sikorski euclidean space (R, e(R)). We call ( I ,e ( I ) ) the Sikorski 
unit interval. (I, £(I)) is an S-CW complex with as collection of cells the 
family { { 0 } , {1 } , (0 ,1 ) } . The characetristic map 3»1 of the 1-cell (0,1) is 
the map S»1 : [—1, l j —> [0,1] = e1 , defined by = is obviously 
smooth, in the sense of Sikorski spaces, and a diffeomorphism on (—1,1). 

(2) Let T{Sn) be the quotient differential structure on the n-sphere Sn 

induced by the map $ : (Dn,e(Dn)) S n , defined by 

$ ( z i , . . . , x n ) = ( 2 ^ 1 - | M I 2 * i , . . . , 2yjl — ||x||2xn, 2||x||2 - 1). 

We give Sn an S-CW complex structure by considering Sn — p = en and 
p = e°, where p = ( 0 , . . . , 0 ,1) as its cells. It is obvious that e" = Sn, and 
^•(e55") = J^(5n) . It is clear that F(e°) = M. Let / e ^ ( e " ) and c € R. If / Vc 
denotes the map obtained by patching together / and c, then / V c is well 
defined only if f(p) = c. Notice that !F(Sn) is not the differential structure 
induced on Sn by the inclusion Sn ^ ( R n + 1 , e ( R n + 1 ) ) . In fact, the map 
g(xi,..., x n + i ) = xi + . . . + x n + i is not smooth in the sense of Sikorski on the 
S-CW complex ( S n , F ( S n ) ) , because given a point q € S™"1 = dDn, there 
is no differentiable map h : Rn —> R that equals g o $ in any neighbourhood 
U C Rn of q. 

(3) The decomposition of the n-sphere Sn into two cells of each dimension 
from 0 to n makes Sn into an S-CW complex with a differential structure 
different from the one that makes Sn into a subspace of (Rn + 1 ,e(M r i + 1 ) ) . In 
fact, for n = 1, the function defined by 

{1 — x 2 for (x, y) 6 S1 with y = + V l — x1 

- 1 + x 2 for (x, y) € S1 with y -- -\/l - x 2 

0 for (x, y) € S1 with y = 0 
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is a structure map on the S-CW complex S1, since given the characteristic 
map $+ : D 1 —> S1, defined by 

the pullback / o$+(:r) = 1—a;2 is smooth on D1. Similarly, let : D1 S1 

be the characteristic map defined by 

3>_(a;) = (x, — \ / l — x2); 
the pullback / o (x) = — 1 + x2 is smooth on D1. But / is clearly not 
differentiate in points (1,0) and (—1,0), therefore / is not a map for the 
subspace structure s(S1). 

On the other hand, there axe maps in 
e(S'1) that do not belong to the 

S-CW structure ^(S1). For instance, consider the differentiate map g : 
S1 —• R, defined by g(x, y) = y. There is no differentiate map h : R —> R 
that coincides with g o near 1. Therefore the map g is not a structure 
map of the S-CW complex S1. 

§1 discusses the situation regarding quotient S-CW complexes. In fact, 
X/Y is an S-CW complex provided the S-CW complex X is smoothly para-
compact and regular, and the subcomplex Y is compact. 

§2 presents the underlying topology of an adjunction of two Sikorski 
spaces. This leads to an alternative description of S-CW complexes. Much 
of the importance of Lemma 0.2 is seen in this section. 
1. Quotient S-CW Complexes 

For the purpose of the paper, we want that every S-CW complex X 
satisfies the following property: every open covering of the Sikorski space 
X has a smooth partition of unity. A Sikorski space (X, T) that has this 
property is called smoothly paracompact with respect to the differential 
structure T. See [1] for smoothly paracompact spaces. 
THEOREM 1.1. Let (X, !F) be a smoothly paracompact S-CW complex whose 
underlying topological space X is regular, let Y be a compact S-CW subcom-
plex, and let u : X —• X/Y be the natural map. If v*(T) is the coinduced 
differential structure on X/Y, corresponding to v, then (X/Y, u*(J-)) is a 
S-CW complex. 

P r o o f . Let us first prove that the restriction 
u\X-y:X-Y^X/Y-{*} 

is a diffeomorphism. By Q and H, we will mean the structures on X — Y 
and X/Y - {*} induced by inclusions X - Y ^ (X, JF) and X/Y - {*} w 
(X/Y, v*(F) respectively. It is clear that v\x~Y : (X - Y, G) (X/Y, H) is 
smooth. 
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Conversely, let p be any point in X—Y. Since X is Hausdorff and regular 
and Y is compact by hypothesis, there exists an open set O containing p 
and such that O fl Y = 0. Using regularity of X again, one can assume 
that for each q € Y there exist open neighbourhoods Vq and Uq of p and q 
respectively such that O C Vq and Vq fl Uq = 0. Since Y is compact, there 
are finitely many points qi, ..., qn € Y such that Y C U™=1£/gi. But every 
Uqi fl Vqi = 0, with Vqi an open neighbourhood of O. Therefore, if we put 
U = U?=1Uqi and V = n"=1V^, then U and V are open sets such that Y C U, 
p & O C V and U fl V = 0. Since X is Hausdorff, it follows that the subset 
X — Y — O is open in X and so the family C = {U, V, X — Y — O} is an 
open covering of X. Since X is smoothly paracompact, C admits a locally 
finite open refinement, say VV = {Wj}j e j . There exist only finitely many 
j i , . . . , jn 6 J such that p 6 W^, i = 1 , . . . , n. It is clear that Wu c V for 
i = 1,..., n. 

Now let Ji = { j € J : Wj C V } and J2 - J - J\. Let / = h \ X - Y , where 
h & T. For each j € J , let gj : X —• R be a function given as follows: 

f ( x ) if x E V 

0 if x V 

( 1 ) H j e J u 

9j ( x ) = 

(2) If j e J2, 
9j = 0. 

Let {Aj} j e j be a smooth partition of unity subordinate to W, and let 

jeJ 

We claim that f* is smooth. Indeed, let us write f* this way 

f* = Xi9j + Y1 Xi9j-
Ji Ji 

For each j 6 J2, A j g j = 0. Let j € J\. To see that Xjgj is smooth, one 
need only look at points on the boundary FrV of V. But first, observe that 
Y n FrV = 0. Let r € FrV. As Y is closed and Y D FrF = 0, there exists an 
open neighbourhood R C X — Y of r such that for all j € J\ 

\ o if t e R - V . 

Since X j ( t ) f ( t ) = 0 for all t € R - V, 

so Xjgj — Xjf on R and hence Xjgj 
is smooth on R. Thus, f* is a smooth function. Since Y C X — Wj, it 
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follows that /*\Y = 0. Now, let W* = n ^ n O . It is evident that W* is 
an open neighbourhood of p and is contained in X — Y. Consider, 

f*\w* - ^j\w9j\w + ^j\w*9j\w-
jeJi jeJ2 

Let / G J2. Consequently, Wi is either contained in U or in X — Y — O, but 
not in V. Thus A;|o = 0 and hence A/|iy* = 0. Thus 

f*\w* = f\w-

It follows that 

f*\w 0 V~\(W) = f\w* ° 

We claim that /* o v~l : X/Y —• R is smooth. Indeed, in the diagram 

X i-R 

X/Y 

the smooth map /* : X —> R is constant on every fiber where 
u € X/Y. Therefore, one applies Corollary 3.1 at once to show that /*oi/-1 : 
X/Y —• R is smooth. 

Now, since W* is an open neighbourhood of p then by Lemma 0.2, it 
follows that there exists a nonnegative function h* £ T such that p 6 
/i*-1(0,00) C r , and thus Y C (/i*)_1(0). Since h* : X R is constant on 
every i/-1(u), where u G X/Y, Corollary 3.1 applies to show that h* o u~l : 

X/Y —• R is smooth. It is clear that 1/(p) G (h* o 1 ) _ 1 (0,0 0 ) C u(W*). 

But p is arbitrary in W*, therefore u(W*) is an open subset of X/Y. So we 
have an open subset v(W*), a smooth map f* o : X/Y —• R such that 

= (/oi/-1 ) !^^. ) . Thus, fou-1 -.X/Y - { * } - > R is locally 
smooth, and consequently / o i/-1|x/Y-{*} is smooth. Hence, the mapping 
v~l\x/Y-{*} '• X/Y — {*} —> X — Y is smooth. Thus, X — Y is diffeomorphic 
to X/Y - {*}. 

Finally, let us prove that {X/Y, v*(T)) is an S-CW complex. 
First let us show that X/Y is Hausdorff. Let f (x ) , v(z) be distinct points 

in X/Y. Assume that u(x) / * and v(z) ^ *. Therefore x $ Y and z £Y; 
since X is Hausdorff and X — Y is open, there are disjoint open subsets U' 
and V in X — Y such that x G U' and z G V'. But X — Y is diffeomorphic 
to X/Y — { * } , therefore u(U') and v(V') are open neighbourhoods of u{x) 
and v(z) respectively and such that v{U') fl v(y') = 0. 
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Now assume that u(z) = *. Therefore x $ Y; there are disjoint open 
subsets U" and V" in X such that x € U" and Y C V". Let 

11= {U",V",X-Y} 

be an open covering of X. Let W = {W/}jej be a locally finite open refine-
ment of Tl. Let h = {i G I: W[ D Y = 0} and let J2 = I ~h- Next, for each 
i € J, let hi : X K be a function defined by 

h i = ( ° i f i e i l 

\ l if i e l 2 . 

Let {/ii}ie/ be a smooth partition of unity subordinate to W', and let r = 
Yliel M»- ^ is easy to see that the map r : X —> R is smooth on X. Put 

A = frhi a n d B = ^ mhi. 
ieh i€h 

Clearly, one has 

A\v = 0 a n d B\y = ^ Hi\v"-

Thus, 

Note that 

and 

ieh 

t\v" = B\yn. 

r\Y - 1 

Y C r - ' ( 0 , oo) C V". 

Since r is constant on each v~l{u), u 6 X / Y , Corollary 3.1 says that r 
induces a smooth map r' : X/Y —> M such that * € (r')_1(0, oo). Finally, 
since v\x-Y '• X — Y —> X/Y — {*} is a diffeomorphism, it follows that v(U") 
is an open neighbourhood of v(x). Moreover since U" fl r - 1 (0 , oo) = 0, it 
follows that v(U") n (r ') - 1(0,oo) = 0. Hence, X/Y is Hausdorff. 

Let E(X) and E(Y) be the families of cells of X and Y respectively. We 
define cells in X/Y as follows. The 0-cells are given by 

(X/Y)° = (i/(e) : e 6 E(X) - E(Y) and dim(e) = 0} U {*}; 
for A; > 0, define 

(.X/Y)k = {i/(e) : e G E(X) - E(Y) and dim(e) = k}. 

Let e be a cell in X — Y\ we define (as usual) the characteristic map of v{e) 
as the composite i/$»e- The characteristic map of the cell * is defined to be 
the map : D° —• *. 

It is easy to show that X/Y satisfies all the 4 axioms defining S-CW 
complexes. • 
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2. Attaching of Cells 
Let X be a smoothly paracompact Sikorski space, let Y be any Sikorski 

space, and let / : A —> Y be a smooth map from a non-empty closed 
subspace A of X. Consider the coproduct X UY and form a quotient space 
by identifying each set {y} U f~1(y), for y € Y, to a point. We denote this 
quotient space by X Uf Y and call it an adjunction space of X and Y, 
determined by / . 

We have said it above: If X Uf Y is an adjunction space in DIFF, X is 
assumed to be smoothly paracompact. We will also assume that u : XUY —> 
X Uf Y is the quotient map identifying a € A with its image / (a) . It is clear 
that v\y : Y v(Y) ( resp. v\X-A '• X — A —• v(X — A)) maps the set Y 
(resp. X — A) bijectively onto v(Y) ( resp. v{X — A)). There is more to this. 
In fact, we now show that v\y and v\x-A are diffeomorphisms. 
LEMMA 2 .1 . Let (X UF Y, C) be an adjunction of spaces (X,F) and (Y,Q). 

(i) Any function a : v(Y) —> R such that a o u\y € Q is a structure map 
for the induced differential structure Cu(Y) • 

(ii) Given a function a : f(Y) —» R, a is smooth on v(Y) if and only if 
a o u\y Y —• R is smooth and a o V\A • A —> R is smooth. 

P r o o f , (i) First note that aov\a = a o i / | y o i y o / , where ty : Y —* XuY is an 
inclusion map. Since aoi/\y 6 Q, it follows that aoi>\y oiy of e and thus 

V\A 6 TA- As X is smoothly paracompact and A is a closed subspace of X, 
one applies Theorem 1.1 in [4], which says that every smooth function on a 
closed subspace A is a restriction of some smooth function on X. Thus, there 
exists g € J7 such that <7|A = a o i / ^ . Now, let /x = v\X~A '• X — A XUfY 
and let /? : v{X — A) —* R be a function given by 

HOI/\X-A = G\x-A-

Since g is a smooth extension of aou\A, it follows that hou\x — g; therefore 
h E C. Hence a = h\u(y) £ 

(ii) For each point p 6 v(Y) choose a neighbourhood Up of p in the 
topology of C and a structure function g 6 C such that a | u p r \ U ( Y ) = 9\uPCW(Y)-

Pip) = HP ) 
Define a map h : X UfY —>Rby setting 

peu(X-A). 

Readily, one has 
h o v\y = a o v\y, 
h oi/\A = aoi/\A, 
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Since 
v~l{Up D u(Y)) = (y~l(Up) n Y ) U (u-\Up) n A), 

and Y n A = ®, it follows that 

« 0 Hi/-i(t/p)ny = 9 ° ^U-i(t/p)ny 
and 

a ° ^L-M^nA = 5 0 Hi/-i(t/p)nA-
As go v\x € F, go v\y € £/ and u~1(Up) is open i n X u F , it turns out that 
" ° "l-Hup)nY • v~l{UP) n Y - > R a n d a o v\v-1[Up)nA : u~\Up) n A ^ R 

are smooth. But p is arbitrary, therefore a o v\y and a o V\A are smooth. 
Conversely, since a o u\y € Q it follows that a : v{Y) —* R is smooth. • 

LEMMA 2 . 2 . Let ( X U f Y , C ) be an adjunction of spaces ( X , ^ ) and (Y,Q). 
Then the composite 

Y ^ XUY -> XUfY 

is a diffeomorphism from Y to a subspace of X U / Y . 

Proo f . Since i/|y is smooth and bijective, we need only show that (i/ |y)_1 is 
smooth. To this end let ¡3 G Q\ in light of Lemma 2.1 j3o{u\Y)~l : u(Y) -> R 
is smooth if and only if /3o(i/|y)_1oi/|y : Y —> R and ^O{V\Y)~1OV\A : A —• R 
are smooth. Clearly, if U is any open set in u(Y), then 

P 0 M r ) - 1 0 "\v-HU\nY = P\v-HU)r\Y-
But v~l(U)r\Y is an open set in Y, therefore /3o(i/|y)-1oj/|y is smooth on V. 
On the other hand, for all a 6 v~l(JJ)C\A, one has /9o(i/|y)_1oj/(a) = /3o/(a). 
Therefore, 
(!) P 0 M y ) - 1 ° v\v~HU)nA = P° f\u-HU)nA 

Since i/-1(£/) fl A is an open set in A and ¡3 o f is smooth on A, it follows 
that (3 o (i^|y)_1 o i/\A : A —• R is smooth. Thus, (Hy) - 1 is smooth. • 

The next lemma is of pivotal importance when it is necessary to show 
that the underlying topological space of an adjunction of differential spaces 
is in fact an adjunction of the corresponding underlying topological spaces. 
LEMMA 2 . 3 . Let (X UY Y,C) be an adjunction space of ( X , J-) and (Y,Q), 
obtained via the attaching map f : A —• Y , where A is closed in X . Then 
the composite 

X - A - > X L i Y ^ X U f Y 

maps X — A diffeomorphically onto an open subset of X Uy Y . 

Proo f . To show that where /z := ( V X - A ) , is smooth we need to prove 
that for every smooth g : X — A —• R, the composite gofx~l : v(X — A) —» R 
is smooth. For every point p & X — A, there is, by virtue of Lemma 0.2 , an 
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open neighbourhood U of p contained in X — A such that U = a _ 1 (0, oo), 
where a € J7 is nonnegative for all x e X, and g\u = h\u for some h e T. 
Suppose that a(p) = k > 0; choose a nonnegative smooth increasing function 
/3 : R —• R such that 

f 0 for t < 0 

[1 for k - e < t < k + e, 

where e > 0 is chosen in such a way that p 6 a - 1 (A; — e, k + e) C U. The 
composite (3 o a is smooth and, on another hand, the open neighbourhood 
V := a_1(k — s, k + e) of p is such that o = 1. It follows that g\v — 
h • ((3 o a)|y. Define a smooth map H : X U Y —> R by setting 

H ( x ] = {h(x)-^oa)(x) ifxeX 

\ o \ixeY. 

Since (/? o a) (a) = 0 for all a € A, it follows that H is identically 0 on A. 
By its definition, H induces a smooth map H : X U/ Y —> R such that 

= ifw 
( 0 if x € Y. 

It is evident that H G C. In turn, since V is an open set containing p, it 
follows that there is an open interval (a, b) such that p € H~1(a,b) C V. 

But V is contained in X — A, so u(p) G H~1(a, b) C v{V). Therefore, u(V) 

is an open neighbourhood of v(p), and it is easily seen that g o /¿-1|„(y) = 

HUvy • 

Lemmas 2.2 and 2.3 lead to a theorem of particular importance, with 
the help of which one may prove that the underlying topological of a fi-
nite smoothly paracompact S-CW complex is a CW complex. This attempt 
is restrictive because it only works for finite smoothy paracompact S-CW 
complexes. 

THEOREM 2.1. Let X be a Hausdorff smoothly paracompact differential 
space, let A be a compact closed subspace of X, and let f : A —• Y be 
a smooth map from A into a Hausdorff differential space Y. If C is the 
structure on the adjunction X Uf Y, determined by the quotient map v : 
XuY XUfY, then the underlying topology of C is the quotient topology 
corresponding to the map v. 

In other words, every subset U of X Uf Y such that v~l(U) is open in 
Y is open in the topology of C. 
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P r o o f . Let U be a subset of X U f Y such that v~l{U) is open in X U Y. 
v~l(U) is open in XuY if and only if i / - 1( i7)nX is open in X and v~l{U)P\Y 
is open in Y. Let p be a point in UC\v{Y)\ there is q G i/_1({7) n Y" such that 
v(q) = p. Suppose that q G v~\U) n (Y - f(A)). Since v~\U) n (Y - f(A)) 
is an open subset of V, there is a nonnegative structure map g\ : Y —» R 
such that q € ^ fH 0 ) C v~l{U) n (Y - f(A)). Thus, gi\f(A) = We now 

let <72 : X —• R be the identically zero map, and define h : X U Y —• R by 
h = gi U 52- Let / i M U / Y - t R be such that 

h* o v\Y = gi 
h* o u\x = 0; 

h* is well defined since h* o v\f(A)- Thus, h* G C; and since q G 1(0, oo) C 
v~\U) fl Y, it follows that p G (/i*)_1(0, oo) C U n v(Y). 

Now suppose that the point p is such that there is q G f(A) with p = v(q). 
Since q G v~l(U) fl Y and v^iJJ) fl Y is open in Y, by Lemma 0.2 there 
exists a nonnegative smooth map F : Y —• R such that q G i7,—1(0, oo) C 
i / - 1 (E0 n Y and F " 1 ^ , oo) C v~\U) n Y. It follows that F o / : A R is 
smooth and if q is a point in A such that f(q) - q then q G (Fo / ) _ 1 (0 , oo) C 
v~l{U) H A. But / is smooth, so q G (F o f ) - 1 ^ , oo) C ^(U) n A. Since 
(F o / ) - 1 ( 0 , oo) and X — v~l(U) are disjoint closed subsets of X, and X is 
smoothly paracompact, it follows from [1], pages 165, 166 that there exists 
a function g : X —• R in T with 

Sl (Fo / ) - i (0 ,oo ) " 1 

and 
9\x-v~HU) = 

Now, as A is a closed subset of the smoothly paracompact differential space 
X, let h : X —> R be a smooth extension of F o / , (ft, exists by virtue of 
Theorem 1.1 [4]). Next, we define H : X -> R by H(x) = g(x)h(x). It is clear 
that H is smooth on account that J7 is an algebra. Moreover H\a = F o f\A 
and H\x-v-i(u) = 0; so H'1^, oo) = (F o f ) ' 1 ^ , oo) C u~\U) n X. Now 
consider the function H* : X Lif Y —> R such that H* o v = H U F, where 
HUF : XUY —>Risa smooth map defined by 

v 7 \F(X) \ixeY. 

It is clear that H* is smooth and p G (H*)~1(0, oo) C U. 
Now suppose that p is a point in U fl v{X — A) and suppose that its 

preimage by v is a point r in v~l(U)D(X—A). Since u~l(U)n(X—A) is open, 
there is a nonnegative smooth function I G T such that r G Z—1 (0, oo) C 
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v~l n (X - A). Therefore, A C Z-1(0)- Define d : X U Y R by setting 

Since l(x) = 0 for all x £ A, it follows that d induces a map d : X U/ Y —> R 
such that 

Clearly <2 € C and p £ d 1(0,oo)cUn v{X - A). 
We conclude that for all p € U there is a smooth map h £ C such that 

p £ /i_1(0, oo) C U. Therefore U is open for the underlying topology of C. • 

Now, suppose n £ N is fixed; let (Dn,e(D™)) be the finite coproduct of 
the Sikorski spaces e(D2))] a € An}, where D™ is the a-th copy of the 
euclidean ball Next, let (S n _ 1 , e (S n _ 1 ) ) be the coproduct of the finite 
family { (S^ - 1 , e(<Sa-1)); a € An}, where S™'1 is the boundary of D™. For 
each a e An, let : S^"1 —* Y be a smooth map carrying S^ - 1 i n t o a 

Hausdorff Sikorski space Y and let / : S " - 1 —> Y be the map / = Ua€A„^S-
The space D n Uy Y is called the space obatined by attaching finitely many 
cells DJJ to Y. 

LEMMA 2 .4 . D n U ¡ Y is Hausdorff. 

Proof . D n as a coproduct of smoothly paracompact spaces D™, n £ An, is 
also smoothly paracompact. In light of Lemma 0.1, the underlying topolog-
ical space of D n U/ Y is an adjunction of the underlying topological spaces. 
Since S n _ 1 is a compact subset of D n , Theorem 8.5 in [2] implies that 
T>nUfY is Hausdorff. • 

One more useful lemma is 

LEMMA 2 .5 . Let Y be an S-CW complex of dimension n, and whose collec-
tion of cells is finite. Then 

(i) D n Uy y ( n _ 1 ) is an S-CW complex, diffeomorphic to Y. 
(ii) X := D n + 1 Uf Y is an S-CW complex, and Y is its n-skeleton. 

The proof of the analogue results in the category of CW complexes can be 
easily adapted. An easy reference is [2]. 

By mimicking the proof that every CW complex is a cellular space, and 
every cellular space is a CW complex [3], we now prove that every S-CW 
complex is a cellular space (in the sense of Sikorski) and every cellular space 
(in the sense of Sikorski) is an S-CW complex. 
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THEOREM 2 .2 . A space X is an S-CW complex with finitely many ceiis 
if and only if there is a sequence XQ C Xi C . . . C X m = X such that 
X — U™=0X„ and the following properties hold: 

(1) Xo is a discrete space. 
(2) For each n > 0, there is an indexing set An and a family of smooth 

maps : S—> Xn-\\ a € An} so that 
XN = D n

 UF XN-U 

where f = U<i>™. 
(3) If T is the differential structure on X and Tn is the structure induced 

on Xn by the inclusion Xn <—> X, then a function a.: X —> R is in T 
if and only if cr\xn G Fn for each n > 0. 

P roo f . Suppose that X is an S-CW complex with finitely many cells and 
Xn — where X^> is the n-skeleton. We showed in [7] that skeletons 

are S-CW subcomplexes of X, so all real-valued functions a 
are .^-structure functions. It follows that each subset of X^ is open in 
Thus is discrete, and hence (1) holds. 

Conditions (2) and (3) are immediate. 
Assume the condition. XQ is clearly an S-CW complex. By means of 

Lemma 2.5(ii), each Xn is an S-CW complex. If vn : D n U Xn-i -> D n Uf 
Xn_i = Xn is the quotient map defining the adjunction Xn, and in : Xn > 
X is an inclusion carrying Xn into X, we let 

in o vn\Du : D l -> D n D" U Z n _ i —> D n U/ X n_i = X n X 
be the characteristic map of an n-cell ea. Now suppose that En is the family 
of cells of the S-CW complex Xn, n > 0. Define E = Li{En : n > 0} and 

$ = {constant maps to Xo} U Un>i{£n o vn\r>n : a G A„}. 
The pair (E, $) defines an S-CW structure on X. • 

Theorem 2.2 serves as a stepping stone to proving 
THEOREM 2 .3 . The underlying topological space of a finite S-CW complex 
is an S-CW complex. 

Proof . Let X be a finite S-CW complex. Its skeletons X^k\ k = 0 ,1 , . . . ,n 
are closed subspaces of X (see [7]) such that X — and satisfy 
conditions (1), (2) and (3) of Theorem 2.2. Under the notation of Theorem 
2.2, we have 

X = i W = D n U/n D " - 1 Ufn-i ...Up 

where fk = UaSAfc$a> ^ — 1 , . . . , n. Since every Dfc is smoothly paracompact 
and X(°) is Hausdorff, it follows from Theorem 2.2 that X has the quotient 
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topology determined by 
v : D n U ( D n - 1 Ufn-i ...Ufi X(0)) X. 

But the topology coinduced by v defines a CW complex structure on X (see 
[8]), therefore X, as a topological space, is a CW complex. • 

3. Appendix 
In this section, we elaborate on quotient maps and quotient spaces in the 

category DIFF of Sikorski spaces; quotient maps and quotient spaces are 
very useful tools that one needs when dealing with adjunctions of Sikorski 
spaces. 
DEFINITION 3 . 1 . " L e t X and Y be Sikorski spaces. A smooth surjection 
q : X —> Y is called a quotient map provided, given a real-valued function 
/ : y —> R, then / is smooth on Y if and only if / o q is smooth on X. 
LEMMA 3.1. Let X, Y, Z be Sikorski spaces, and let q : X —* Y be a 
quotient map. Then every set map $ : Y —> Z such that $ o q : X —> Z is 
smooth is a smooth map. 

Proo f . Easy to see. 
LEMMA 3.2 . Let X, Y be Sikorski spaces and let q : X —> Y be a smooth 
surjective map. Then q is a quotient map if and only i f , for all Sikorski 
spaces Z, and all functions g :Y —> Z, one has g smooth if and only if goq 
is smooth. 

Proo f . Assume that q is a quotient map. If g is smooth, then goq is smooth. 
Conversely let g o q be smooth and let h : Z —» R be a smooth map. Then 
hogoq:X—*Ris smooth; since q is a quotient map, it follows that 
h o g : Y —• R is smoot. Hence g is smooth. 

Now assume that it is true that for all Sikorski spaces Z, and all functions 
g :Y —> Z, one has g smooth if and only if g o q is smooth. We claim that 
this condition implies that q is a quotient map. Let Kerq be the equivalence 
relation on X, defined by x ~ x' if q(x) = q(x'). See [8]. Let IKerg denote 
the quotient set of X by K e r W e let abusively -^Ixerg ^ e n o t e the quotient 
Sikorski space, determined by v = Ker<7. It is easy to see that the map 
<f> : -X^Kerg ~~1' defined by </>([x]) = q(x) is one-to-one. But since q is 
onto, it follows that (f> is also onto; therefore (j> is a bijection. Consider the 
commutative diagram 

erg• 
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Since (j>~1 o q = v is smooth, it follows by hypothesis that <f>~1 is smooth. 
Moreover, since v is a quotient and (f>o v = q is a smooth function, it follows 
that (f> is smooth. Thus, <f> is a diffeomorphism, and hence q is a quotient 
map. • 

COROLLARY 3.1. Let q : X —*Y be a quotient map of Sikorski spaces and, 
for some Sikorski space Z let h : X Z be a smooth map that is constant 
on every q~l{y), where y 6 7 . Then h o g - 1 : Y —> Z is smooth. 

P r o o f . That h is constant on each g - 1 (y) , where y €Y, implies that hoq~l : 
Y —> Z is a well defined function; h o q~l is smooth because (h o g - 1 ) o q = h 
is smooth, and Lemma 3.2 applies. • 

COROLLARY 3.2. Let X and Y be Sikorski spaces, and let q : X —*Y be a 
quotient map. Then the map <f> : X\ j(erq —• Y, defined by [x] i—• q(x), is a 
diffeomorphism. 

P r o o f . That <f> : -X l̂Kerg ~̂ y ^ a bijection is clear. Let u : X —> 
be the natural map. It is easily seen that the smooth map q : X —» Y is 
constant on every i>-1([a;]), where x € X. Since <p = q o v~l, Corollary 3.1 
applies to show that <j> is smooth. Now, by Lemma 3.2, since q is a quotient 
map and v is smooth, it follows that <f>~1 is smooth. • 

By means of Corollary 3.2, one can easily prove 

COROLLARY 3.3. Let W be a Sikorski space for which there exists a smooth 
surjective map h : X U Y —> W such that, for u, v 6 X U Y, one has 
v(u) = u{v) if and only ifh{u) = h(v). Then [it] i—> h(u) is a diffeomorphism 
X Uf Y —* W. Thus, X UfY is unique up to a diffeomorphism. 
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