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SOME PROPERTIES OF ORTHOCENTRIC SIMPLEXES 

1. Introduction 
It is known that any triangle is orthocentric. For a tetrahedron to be 

orthocentric an additional condition must be satisfied. The question arises: 
what is the necessary and sufficient condition for an n-simplex (n > 4) to be 
orthocentric, and next, which properties of triangles and tetrahedrons can 
be extended to higher dimensions? Some answers are given in this paper. 

2. Conditions for the orthocentrity of a simplex 
Let Ai,... ,An+\ be vertices of a nondegenerate simplex S in the n-

dimensional Euclidean space En. By we denote the join of points 
Aik+1,... ,Ain+1, where (¿i , . . . , in+i) is a permutation of numbers 1 ,2 , . . . , 
n + 1. 

THEOREM 1. Simplex S is orthocentric if and only if line AiAj is perpen-
dicular to subspace Hij for all i,j = 1,... ,n+l,i ^ j. 

P r o o f . Suppose AiAj is perpendicular to H^ for all distinct i,j. Let P be 
the orthogonal projection of Ai onto Hi. Since A\P is perpendicular to H\ 
and A1A2I-H12, the plane AiA^P is normal (see [2]) to H\2- This implies 
A2P±H12. It means that P lies on the line projecting orthogonally point A2 
onto H\2 in Hi. Taking into account the fact AiAzLH^ we see that plane 
AiAzP is normal to and, consequently, P lies on the line projecting 
A3 onto His in Hi, and so on. Hence P is orthocenter of Hi. Denoting by 
Q the orthogonal projection of A2 onto H2, we state that Q is the ortho-
center of if2• Analogously, since PA2-LH12 and A\Q± fl H\2 we infer that 
the intersection point of A2P and H\2 is the orthocenter of i/12, as well as 
the point AiQl. fl Hi2 is the orthocenter of the same subspace H\2- Hence 
A2P1 fl H12 = A\Q± fl H12. Thus every two lines lj projecting orthog-
onally Ai,Aj onto H , H j , respectively, i,j = 1 , . . . , n + 1, have a common 
point. Suppose there is, among the lines /¿, a line, say I3, not passing through 
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point A2P-L H Hi2- Since ¿3 cuts and I2, lines are coplanar, and 
since each of lines k, i — 4,... ,n + l, cuts and I3, all of them are copla-
nar. This contradicts the assumption that S is nondegenerate. Assume now 
that S is orthocentric. Then its faces of arbitrary dimension are orhocentric 
too. In particular, it concerns 3-dimensional faces. It is known in such a case 
that AiAjLAkAi, distinct i, j, k, I. It implies that AiAjJ-Hij for distinct 
hj-
REMARK 1. It is known that in the 3-dimensional space if AB1.CD and 
ACA.BD in the tetrahedron ABCD, then ADA.BC and the tetrahedron is 
orthocentric. An analogous property holds in higher dimensions. 

LEMMA 1. If A1A2A-HU, i = 2 , . . . , n + 1, then A\AjLHij for all i ± j. 

Proof . Obviously, we may assume that From A\Ak-Li/ifc, it follows 
that AiAjLA\Ak, k=2,... ,n+l, k ^ i,j. This implies that AiAjLAkAm for 
distinct i, j, k, m. Hence AiAjA-Hij. 

REMARK 2. In an identical way we prove that if for fixed k, AkAi±Hki 
i=l , . . . ,n+l, i ± k, then AiAj±Hij, all i ^ j. 

LEMMA 2. If AxAiA.Hu, i = 2,... ,n, then AiAn+i±Hin+i. 

Proof . Prom the assumption we obtain the relations AiAi±AnAn+i for 
i=2,...,n-l. This is equivalent to the condition AnAn+i±Hnn+i. Taking 
also into account relation AiAnLH\n, we infer that the plane AiAnAn+i is 
normal to Hinn+i. Hence AiAn+i±Hin+i. m 
REMARK 3. The above remains true in the more general version: if 
AiAilHu i = 2,...,n + l,ijik, then Ai Ak±Hik (k 6 2 , . . . , n + 1). 

LEMMA 3. If AiAi+\A.Ha+i (adding of indices modulo n + 1) for i = 
1,..., n + 1 and k G 1,..., n + 1, i ^ k, k + 1, then 

AkAk+i-LHkk+i, Ak+iAk+2-LHk+ik+2 
and next AiAiA.Hu for i = 2 , . . . , n + 1. 

Proof . We have, from the assumption, AiAi+\A.AkAk+i for i ± k — 1, 
k,k + 1, i.e. AkAk+iA-Hkk+i• In a similar way we state that 

Ak+1 Ak+2 -LHk+1 fc+2 • 
Notice that we have, by the assumption, 

(1) ^¿¿-LAnAn+i for m ^ 1, i - 1, i. 
Take into account the tetrahedron A\Ai_iAiA i+i. We have 

AiAi+ilAiAi-i and A ^ A i l A i A i + i . 
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Hence AiAi±Ai-iA i +x. Prom the last relation and (1) it follows that 
AiAi±Hu for 3 < i < n. Since also AiAn+i±Hin+i, the thesis holds. • 

As a corollary from the above lemmas we obtain 
THEOREM 2. If for fixed k and m, AkAi±Hki fori ^ k,m or AiAi+i±Hu+i 
(adding of indices modulo n + 1) i ^ m , m + 1, i = 1, . . . ,n + 1, then 
ApAqA-Hpq all p ^ q, i.e. S is orthocentric. 

Thus we see that only n-1 perpendicularities of type AiAjLHij are suffi-
cient to S be orthocentric. In particular, when n=3 we obtain the well-known 
property quoted above. However it should be noticed that these n-1 perpen-
dicularities cannot be assumed arbitrarily. The following counterexample 
shows it: 

Let Ai(0,0,0,0), ¿2(1,0,0,0), ¿3(2,-2,0,0), ¿4(2,1,2,0), ¿5(3,2,-3,l) be 
five points in the four- dimensional space. It is easy to check that AiAz^His, 
A3A4A.H34 and A2A5LH25, but ¿1^2 is not perpendicular to ¿3^5. 

3. The orthocentric structure of simplexes 
In this section let 5 n + 2 be an orthocentric, nondegenerate simplex with 

the vertices ¿ 1 , . . . , An+1 and the orthocenter ¿„+2 in the space En. Then 
by Theorem 1 we get the following 
LEMMA 4 . The point Ai is the orthocenter of the simplex Sl with the vertices 
Ai,...,Ai-i,Ai+i,...,An+2, i = l , . . . , n + 2. 

The above suggests us to introduce a definition. 
DEFINITION 1. Let An+2 be the orthocenter of the simplex Sn+2. The n + 2 
points ¿ 1 , . . . , ¿ n + i , ¿ n + 2 are such that the 1-dimensional edge joining any 
two of them is perpendicular to the (n-1)- dimensional subspace determined 
by the remaining n points, n+2 such points will be said to form an orthocen-
tric structure. Each point of it is the orthocenter of the simplex determined 
by the remaining n+1 points. Hence the n+2 points determine also an or-
thocentric structure of n+2 simplexes. 

Using some properties of the Euler line of an orthocentric simplex (see 
[1] and [3]) we prove 
THEOREM 3. The n+2 Euler lines of an orthocentric structure of simplexes 
are concurrent. 
P r o o f . Let £i...n be the Euler line of the (n-1) - dimensional face ¿ 1 . . . An. 
Obviously ¿ 1 . . . ¿ n is the common face of the simplexes Sn+1 and Sn+2. Let 
Gn+2 be the centroid and On+2 the circumcenter of Sn+2 (Fig. 1). The point 
¿ n + 2 is the orthocenter of Sn+2 hence the line An+2Gn+2On+2 is the Euler 
line of Sn+2. By some theorems from [3], we know that Qi...nG' : G'G l n = 
n : 1, where Qi...n is the orthocenter, G\„,n the centroid of the face ¿ 1 . . . An 
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and G' is the projection of Gn+2 onto ei...n. Let An+2G\^n be the median of 
£-n+i. This line meets G'Gn+2 in some point. It must be the centroid Gn+l 

of 5 n + 1 because the projection of this point cuts £\...n at the same ratio n:l. 
The line An+iGn+1 On+1 is the Euler line of Sn+1. Let N be the point of 
intersection of the two lines An+2Gn+2On+2 and An+lGn+lOn+l. Apply-
ing Menelaus' theorem to the triangle An+<zGn+2Gi...n and the transversal 
An+lGn+1On+1 we find that 

Fig. 1 

{An+2Gn^ : Gn+1G1...n) • (Gi . . . „4, + i : An+1Gn+2) • (Gn+2N : NAn+2) = 1. 

The first two ratios (by the Area Principle, see [4]) are n : 1 and (n +1) : 

n, respectively then 

Gn+2N : NAn+2 = 1 : (n + 1). 

Certainly Gn+1N : NAn+i = 1 : (n + 1). Thus the Euler line of Sn+2 is 
met by the Euler line of another simplex of the orthocentric structure in N, 
hence the proposition. • 

DEFINITION 2. The point N is called the orthic point of the orthocentric 
structure of simplexes. 

As the corollaries from Theorem 3 we get 

THEOREM 4. (a) The centroids of an orthocentric structure of simplexes 

form, an orthocentric structure of points. 

(b) The circumcenters of an orthocentric structure of simplexes form an 

orthocentric structure of points. 
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The (n + 2) centroids form a figure homothetic to the points of the given 
orthocentric structure, the homothetic center being the orthic point N, and 
the homothetic ratio being —1 : (n + 1). The (n -f 2) circumcenters also 
form a figure homothetic to the points of the given orthocentric structure, 
the homothetic center being the orthic point N, and the homothetic ratio 
being —n : 2. • 
R E M A R K 4. The preceding theorems are analogous to the corresponding 
propositions dealing with the orthocentric structure of four points in the 
plane. The orthic point corresponds to the nine- point center in the plane. 
But the analogy can not be pursued much further. Contrary to what happens 
on the plane, on the Euler line of a simplex in n-dimensional Euclidean space 
we have 

GO' : O'Q = (n - 1) : (n + 1) 
where G is the centroid, Q is the orthocenter and O' the center of the 
3(n + l)-points sphere of an orthocentric simplex (see [3]). Thus accordingly 
to Theorem 3 

GN :NQ = 1 : (n + 1). 
Hence (n—1) : (n+1) = 1 : (n+1) (i.e. the orthic point N equals the 3(n+l)-
points center) only for n = 2. Similarly, the simplexes of an orthocentric 
structure do not have the same orthic simplex as it is in E2 (see [1] for this 
and others examples for E2 and E3). 
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