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SOME PROPERTIES OF ORTHOCENTRIC SIMPLEXES

1. Introduction

It is known that any triangle is orthocentric. For a tetrahedron to be
orthocentric an additional condition must be satisfied. The question arises:
what is the necessary and sufficient condition for an n-simplex (n > 4) to be
orthocentric, and next, which properties of triangles and tetrahedrons can
be extended to higher dimensions? Some answers are given in this paper.

2. Conditions for the orthocentrity of a simplex

Let A;,...,An4+1 be vertices of a nondegenerate simplex S in the n-
dimensional Euclidean space E™. By H;, ;. we denote the join of points
Aipirse 1Ay, Where (41,...,ip41) is a permutation of numbers 1,2,...,
n+1.

THEOREM 1. Simplex S is orthocentric if and only if line A;A; is perpen-
dicular to subspace H;; for alli,j=1,... ,n+1i#j.

Proof. Suppose A;A; is perpendicular to H;; for all distinct i,j. Let P be
the orthogonal projection of A; onto H;. Since Ay P is perpendicular to H;
and A;Ap1 Hyg, the plane A; A2 P is normal (see [2]) to Hia. This implies
A2P1 Hipo. It means that P lies on the line projecting orthogonally point A,
onto Hyy in H;. Taking into account the fact A; A3 L Hy3 we see that plane
A A3P is normal to Hiz and, consequently, P lies on the line projecting
As onto Hy3 in Hq, and so on. Hence P is orthocenter of H;. Denoting by
Q the orthogonal projection of As onto Hj, we state that @ is the ortho-
center of Hy. Analogously, since PAs L Hio and A;QL N Hys we infer that
the intersection point of As P and Hy, is the orthocenter of His, as well as
the point A4;Q_L N H;, is the orthocenter of the same subspace H;2. Hence
AP1L N Hyy = A1QL N Hya. Thus every two lines [;, I; projecting orthog-
onally A;,A; onto H;,Hj, respectively, ¢, = 1,...,n 4+ 1, have a common
point. Suppose there is, among the lines {;, a line, say I3, not passing through
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point A, PL N Hyy. Since I3 cuts Iy and Iy, lines {1,ls,l3 are coplanar, and
since each of lines l;, i = 4,...,n+1, cuts [y, I3 and [3, all of them are copla-
nar. This contradicts the assumption that S is nondegenerate. Assume now
that S is orthocentric. Then its faces of arbitrary dimension are orhocentric
too. In particular, it concerns 3-dimensional faces. It is known in such a case
that A;A; L Ag Ay, distinct 4, j, k, I. It implies that A;A; L H;; for distinct
i, j.

REMARK 1. It is known that in the 3-dimensional space if AB1CD and
ACL1BD in the tetrahedron ABCD, then AD1BC and the tetrahedron is

orthocentric. An analogous property holds in higher dimensions.
LEMMA 1. If AjAs 1 Hy;,i=2,...,n+ 1, then AlAj_LHij for alli # 3.

Proof. Obviously, we may assume that ¢, j # 1. From A; Ay L Hyy, it follows
that A;A; L Ay Ay, k=2,...,n+1, k # 4, 5. This implies that A;A; 1 Ax A, for
distinct i, j, k, m. Hence A;A; 1 H;;.

REMARK 2. In an identical way we prove that if for fixed k, AxA; L Hy;
i=1,...,n+1, ¢ # k, then AiAjJ_Hij, all 7 # j.

LEMMA 2. If AlAi..LHli, 1=2,... , I, then AlAn+1J_H1n+1.

Proof. From the assumption we obtain the relations A;A; LA, A, 4, for
i=2,...,n-1. This is equivalent to the condition A, A, ;L H,,41. Taking
also into account relation A; A, 1 Hy,, we infer that the plane A; A, A, is
normal to Hi,,41. Hence AjApp1 L Hiny:- =

REMARK 3. The above remains true in the more genéra.l version: if
AjALH;;i=2,...,n+ 1,14 95 k, then A; A LHyy (k €2,...,n+ 1).

LEMMA 3. If A;Ai111Hiip1 (adding of indices modulo n + 1) for i =
1,...,n+landke€l,...,n+1,i#k, k+1, then

ArAke1 L Hiky1,  Akt1Ar+2lHipikqo
and next AyA; LHy; fori=2,...,n+1.

Proof. We have, from the assumption, A;A;;1 LAxAkyr for @ # k — 1,
k,k+1,ie AxAry1LHgkyi- In a similar way we state that

App1Ar+2l Hgp1k42.
Notice that we have, by the assumption,
(1) A1A; LA Amy form #1,i—1,4.
Take into account the tetrahedron A3 A; 1 A;A;;;. We have
AiAip1LA1A; 1 and Ay 1A LAA;.
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Hence AjA;LA; 1A;;;. From the last relation and (1) it follows that
A1A; LHy; for 3 <7< n. Since also AjApt1LHint1, the thesis holds. =

As a corollary from the above lemmas we obtain

THEOREM 2. If, for fized k and m, AxA; LHy; fori# k,m or A;A;41 1 H;iq
(adding of indices modulo n + 1) i # mym+ 1,4 = 1,...,n+ 1, then
ApA,LHpg all p # q, i.e. S is orthocentric.

Thus we see that only n-1 perpendicularities of type A; A; L H;; are suffi-
cient to S be orthocentric. In particular, when n=3 we obtain the well-known
property quoted above. However it should be noticed that these n-1 perpen-
dicularities cannot be assumed arbitrarily. The following counterexample
shows it:

Let A;(0,0,0,0), 45(1,0,0,0), A3(2,-2,0,0), A4(2,1,2,0), A5(3,2,-3,1) be
five points in the four- dimensional space. It is easy to check that A; A3 1 Hs,
AzA4LHgy and Az As L Hos, but A; As is not perpendicular to AsAs.

3. The orthocentric structure of simplexes

In this section let S™*2 be an orthocentric, nondegenerate simplex with
the vertices Ay, ..., Ant+1 and the orthocenter A,42 in the space E™. Then
by Theorem 1 we get the following

LEMMA 4. The point A; is the orthocenter of the simplex S* with the vertices
A,y Aic1, Aigty ey Apge, t=1, 00,0+ 2.
The above suggests us to introduce a definition.

DEFINITION 1. Let A, 12 be the orthocenter of the simplex S™*2. The n + 2
points A,, ..., Apy1, Anso are such that the 1-dimensional edge joining any
two of them is perpendicular to the (n-1)- dimensional subspace determined
by the remaining n points. n+2 such points will be said to form an orthocen-
tric structure. Each point of it is the orthocenter of the simplex determined
by the remaining n+1 points. Hence the n+2 points determine also an or-
thocentric structure of n+2 simplexes.

Using some properties of the Euler line of an orthocentric simplex (see
[1] and [3]) we prove

THEOREM 3. The n+2 Euler lines of an orthocentric structure of simplezes
are concurrent.

Proof. Let 1. ,, be the Euler line of the (n-1) - dimensional face A4; ... A,.
Obviously A4; ... A, is the common face of the simplexes S™*! and S™12. Let
G™*+? be the centroid and O™*2 the circumcenter of $™+2 (Fig. 1). The point
A, 2 is the orthocenter of S™**2 hence the line A, 2,G™20"12? is the Euler
line of S™*2. By some theorems from [3], we know that Q1 .G’ : G'G;. , =
n : 1, where Q.. is the orthocenter, G; .. ,, the centroid of the face A; ... A,
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and G’ is the projection of G®*2 onto ;... Let A,4+2G1.. ., be the median of
S™+1 This line meets G'G,, 42 in some point. It must be the centroid G™*1
of §™*! because the projection of this point cuts €;._,, at the same ratio n:1.
The line A,11G*1O™*! is the Euler line of S"*!. Let N be the point of
intersection of the two lines A,,2G"+20™*+2 and A4, 1G"*10"+1. Apply-
ing Menelaus’ theorem to the triangle A,,,2G"*2G;_,, and the transversal
Ay 1GPH1O™ we find that

0n+2 |
An+l

A‘

Ql..n €l.n (el Gin |O1an

{nﬂ
Fig. 1
(An42G™ : G"HGy 1) - (Gr.nAnt1 : An1G™F2) - (G™2N : NA o) = 1.
The first two ratios (by the Area Principle, see [4]) aren : 1 and (n+1) :
n, respectively then
G™"IN:NAp 2 =1:(n+1).

Certainly G**!N : NA,.; = 1: (n+ 1). Thus the Euler line of S™*2 is
met by the Euler line of another simplex of the orthocentric structure in N,
hence the proposition. =

DEeFINITION 2. The point N is called the orthic point of the orthocentric
structure of simplexes.

As the corollaries from Theorem 3 we get

THEOREM 4. (a) The centroids of an orthocentric structure of simplezes
form an orthocentric structure of points.

(b) The circumcenters of an orthocentric structure of simplezes form an
orthocentric structure of points.
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The (n+2) centroids form a figure homothetic to the points of the given
orthocentric structure, the homothetic center being the orthic point N, and
the homothetic ratio being —1 : (n + 1). The (n + 2) circumcenters also
form a figure homothetic to the points of the given orthocentric structure,
the homothetic center being the orthic point N, and the homothetic ratio
being —n:2. m
REMARK 4. The preceding theorems are analogous to the corresponding
propositions dealing with the orthocentric structure of four points in the
plane. The orthic point corresponds to the nine- point center in the plane.
But the analogy can not be pursued much further. Contrary to what happens
on the plane, on the Euler line of a simplex in n-dimensional Euclidean space
we have

GO':0Q=(n-1):(n+1)
where G is the centroid, Q is the orthocenter and O’ the center of the
3(n+1)-points sphere of an orthocentric simplex (see [3]). Thus accordingly
to Theorem 3
GN:NQ=1:(n+1).

Hence (n—1) : (n+1) = 1: (n+1) (i.e. the orthic point N equals the 3(n+1)-
points center) only for n = 2. Similarly, the simplexes of an orthocentric
structure do not have the same orthic simplex as it is in E? (see [1] for this
and others examples for E? and E?).
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