

Małgorzata Buba-Brzozowa, Krzysztof Witczyński

SOME PROPERTIES OF ORTHOCENTRIC SIMPLEXES

1. Introduction

It is known that any triangle is orthocentric. For a tetrahedron to be orthocentric an additional condition must be satisfied. The question arises: what is the necessary and sufficient condition for an n -simplex ($n \geq 4$) to be orthocentric, and next, which properties of triangles and tetrahedrons can be extended to higher dimensions? Some answers are given in this paper.

2. Conditions for the orthocentrality of a simplex

Let A_1, \dots, A_{n+1} be vertices of a nondegenerate simplex S in the n -dimensional Euclidean space E^n . By $H_{i_1 \dots i_k}$ we denote the join of points $A_{i_{k+1}}, \dots, A_{i_{n+1}}$, where (i_1, \dots, i_{n+1}) is a permutation of numbers $1, 2, \dots, n+1$.

THEOREM 1. *Simplex S is orthocentric if and only if line $A_i A_j$ is perpendicular to subspace H_{ij} for all $i, j = 1, \dots, n+1, i \neq j$.*

P r o o f. Suppose $A_i A_j$ is perpendicular to H_{ij} for all distinct i, j . Let P be the orthogonal projection of A_1 onto H_1 . Since $A_1 P$ is perpendicular to H_1 and $A_1 A_2 \perp H_{12}$, the plane $A_1 A_2 P$ is normal (see [2]) to H_{12} . This implies $A_2 P \perp H_{12}$. It means that P lies on the line projecting orthogonally point A_2 onto H_{12} in H_1 . Taking into account the fact $A_1 A_3 \perp H_{13}$ we see that plane $A_1 A_3 P$ is normal to H_{13} and, consequently, P lies on the line projecting A_3 onto H_{13} in H_1 , and so on. Hence P is orthocenter of H_1 . Denoting by Q the orthogonal projection of A_2 onto H_2 , we state that Q is the orthocenter of H_2 . Analogously, since $P A_2 \perp H_{12}$ and $A_1 Q \perp H_{12}$ we infer that the intersection point of $A_2 P$ and H_{12} is the orthocenter of H_{12} , as well as the point $A_1 Q \perp H_{12}$ is the orthocenter of the same subspace H_{12} . Hence $A_2 P \perp H_{12} = A_1 Q \perp H_{12}$. Thus every two lines l_i, l_j projecting orthogonally A_i, A_j onto H_i, H_j , respectively, $i, j = 1, \dots, n+1$, have a common point. Suppose there is, among the lines l_i , a line, say l_3 , not passing through

point $A_2P \perp \cap H_{12}$. Since l_3 cuts l_1 and l_2 , lines l_1, l_2, l_3 are coplanar, and since each of lines l_i , $i = 4, \dots, n+1$, cuts l_1, l_2 and l_3 , all of them are coplanar. This contradicts the assumption that S is nondegenerate. Assume now that S is orthocentric. Then its faces of arbitrary dimension are orthocentric too. In particular, it concerns 3-dimensional faces. It is known in such a case that $A_i A_j \perp A_k A_l$, distinct i, j, k, l . It implies that $A_i A_j \perp H_{ij}$ for distinct i, j .

REMARK 1. It is known that in the 3-dimensional space if $AB \perp CD$ and $AC \perp BD$ in the tetrahedron $ABCD$, then $AD \perp BC$ and the tetrahedron is orthocentric. An analogous property holds in higher dimensions.

LEMMA 1. *If $A_1 A_2 \perp H_{1i}$, $i = 2, \dots, n+1$, then $A_1 A_j \perp H_{ij}$ for all $i \neq j$.*

Proof. Obviously, we may assume that $i, j \neq 1$. From $A_1 A_k \perp H_{1k}$, it follows that $A_i A_j \perp A_1 A_k$, $k=2, \dots, n+1$, $k \neq i, j$. This implies that $A_i A_j \perp A_k A_m$ for distinct i, j, k, m . Hence $A_i A_j \perp H_{ij}$.

REMARK 2. In an identical way we prove that if for fixed k , $A_k A_i \perp H_{ki}$ $i=1, \dots, n+1$, $i \neq k$, then $A_i A_j \perp H_{ij}$, all $i \neq j$.

LEMMA 2. *If $A_1 A_i \perp H_{1i}$, $i = 2, \dots, n$, then $A_1 A_{n+1} \perp H_{1n+1}$.*

Proof. From the assumption we obtain the relations $A_1 A_i \perp A_n A_{n+1}$ for $i=2, \dots, n-1$. This is equivalent to the condition $A_n A_{n+1} \perp H_{nn+1}$. Taking also into account relation $A_1 A_n \perp H_{1n}$, we infer that the plane $A_1 A_n A_{n+1}$ is normal to H_{nn+1} . Hence $A_1 A_{n+1} \perp H_{1n+1}$. ■

REMARK 3. The above remains true in the more general version: if $A_1 A_i \perp H_{1i}$, $i = 2, \dots, n+1$, $i \neq k$, then $A_1 A_k \perp H_{1k}$ ($k \in 2, \dots, n+1$).

LEMMA 3. *If $A_i A_{i+1} \perp H_{ii+1}$ (adding of indices modulo $n+1$) for $i = 1, \dots, n+1$ and $k \in 1, \dots, n+1$, $i \neq k, k+1$, then*

$$A_k A_{k+1} \perp H_{kk+1}, \quad A_{k+1} A_{k+2} \perp H_{k+1k+2}$$

and next $A_1 A_i \perp H_{1i}$ for $i = 2, \dots, n+1$.

Proof. We have, from the assumption, $A_i A_{i+1} \perp A_k A_{k+1}$ for $i \neq k-1, k, k+1$, i.e. $A_k A_{k+1} \perp H_{kk+1}$. In a similar way we state that

$$A_{k+1} A_{k+2} \perp H_{k+1k+2}.$$

Notice that we have, by the assumption,

$$(1) \quad A_1 A_i \perp A_m A_{m+1} \quad \text{for } m \neq 1, i-1, i.$$

Take into account the tetrahedron $A_1 A_{i-1} A_i A_{i+1}$. We have

$$A_i A_{i+1} \perp A_1 A_{i-1} \quad \text{and} \quad A_{i-1} A_i \perp A_1 A_{i+1}.$$

Hence $A_1A_i \perp A_{i-1}A_{i+1}$. From the last relation and (1) it follows that $A_1A_i \perp H_{1i}$ for $3 \leq i \leq n$. Since also $A_1A_{n+1} \perp H_{1n+1}$, the thesis holds. ■

As a corollary from the above lemmas we obtain

THEOREM 2. *If, for fixed k and m , $A_kA_i \perp H_{ki}$ for $i \neq k, m$ or $A_iA_{i+1} \perp H_{ii+1}$ (adding of indices modulo $n+1$) $i \neq m, m+1$, $i = 1, \dots, n+1$, then $A_pA_q \perp H_{pq}$ all $p \neq q$, i.e. S is orthocentric.*

Thus we see that only $n-1$ perpendicularities of type $A_iA_j \perp H_{ij}$ are sufficient to S be orthocentric. In particular, when $n=3$ we obtain the well-known property quoted above. However it should be noticed that these $n-1$ perpendicularities cannot be assumed arbitrarily. The following counterexample shows it:

Let $A_1(0,0,0,0)$, $A_2(1,0,0,0)$, $A_3(2,-2,0,0)$, $A_4(2,1,2,0)$, $A_5(3,2,-3,1)$ be five points in the four-dimensional space. It is easy to check that $A_1A_3 \perp H_{13}$, $A_3A_4 \perp H_{34}$ and $A_2A_5 \perp H_{25}$, but A_1A_2 is not perpendicular to A_3A_5 .

3. The orthocentric structure of simplexes

In this section let S^{n+2} be an orthocentric, nondegenerate simplex with the vertices A_1, \dots, A_{n+1} and the orthocenter A_{n+2} in the space E^n . Then by Theorem 1 we get the following

LEMMA 4. *The point A_i is the orthocenter of the simplex S^i with the vertices $A_1, \dots, A_{i-1}, A_{i+1}, \dots, A_{n+2}$, $i = 1, \dots, n+2$.*

The above suggests us to introduce a definition.

DEFINITION 1. Let A_{n+2} be the orthocenter of the simplex S^{n+2} . The $n+2$ points $A_1, \dots, A_{n+1}, A_{n+2}$ are such that the 1-dimensional edge joining any two of them is perpendicular to the $(n-1)$ -dimensional subspace determined by the remaining n points. $n+2$ such points will be said to form an orthocentric structure. Each point of it is the orthocenter of the simplex determined by the remaining $n+1$ points. Hence the $n+2$ points determine also an orthocentric structure of $n+2$ simplexes.

Using some properties of the Euler line of an orthocentric simplex (see [1] and [3]) we prove

THEOREM 3. *The $n+2$ Euler lines of an orthocentric structure of simplexes are concurrent.*

P r o o f. Let $\varepsilon_{1\dots n}$ be the Euler line of the $(n-1)$ -dimensional face $A_1 \dots A_n$. Obviously $A_1 \dots A_n$ is the common face of the simplexes S^{n+1} and S^{n+2} . Let G^{n+2} be the centroid and O^{n+2} the circumcenter of S^{n+2} (Fig. 1). The point A_{n+2} is the orthocenter of S^{n+2} hence the line $A_{n+2}G^{n+2}O^{n+2}$ is the Euler line of S^{n+2} . By some theorems from [3], we know that $Q_{1\dots n}G' : G'G_{1\dots n} = n : 1$, where $Q_{1\dots n}$ is the orthocenter, $G_{1\dots n}$ the centroid of the face $A_1 \dots A_n$.

and G' is the projection of G^{n+2} onto $\varepsilon_{1..n}$. Let $A_{n+2}G_{1..n}$ be the median of S^{n+1} . This line meets $G'G_{n+2}$ in some point. It must be the centroid G^{n+1} of S^{n+1} because the projection of this point cuts $\varepsilon_{1..n}$ at the same ratio $n:1$. The line $A_{n+1}G^{n+1}O^{n+1}$ is the Euler line of S^{n+1} . Let N be the point of intersection of the two lines $A_{n+2}G^{n+2}O^{n+2}$ and $A_{n+1}G^{n+1}O^{n+1}$. Applying Menelaus' theorem to the triangle $A_{n+2}G^{n+2}G_{1..n}$ and the transversal $A_{n+1}G^{n+1}O^{n+1}$ we find that

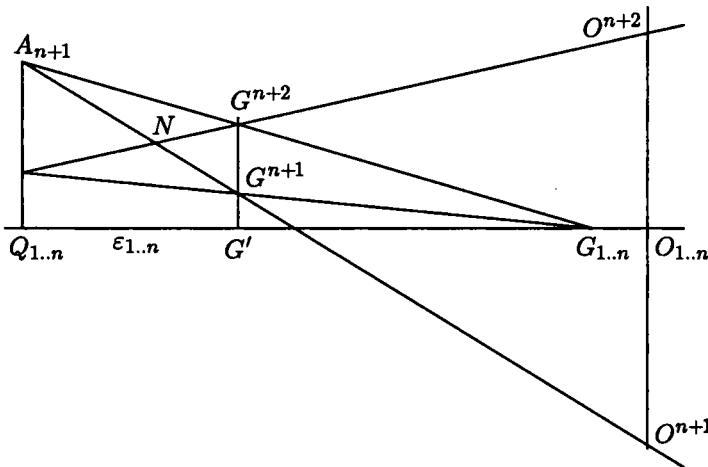


Fig. 1

$$(A_{n+2}G^{n+1} : G^{n+1}G_{1..n}) \cdot (G_{1..n}A_{n+1} : A_{n+1}G^{n+2}) \cdot (G^{n+2}N : NA_{n+2}) = 1.$$

The first two ratios (by the Area Principle, see [4]) are $n:1$ and $(n+1):n$, respectively then

$$G^{n+2}N : NA_{n+2} = 1 : (n+1).$$

Certainly $G^{n+1}N : NA_{n+1} = 1 : (n+1)$. Thus the Euler line of S^{n+2} is met by the Euler line of another simplex of the orthocentric structure in N , hence the proposition. ■

DEFINITION 2. The point N is called the orthic point of the orthocentric structure of simplexes.

As the corollaries from Theorem 3 we get

THEOREM 4. (a) *The centroids of an orthocentric structure of simplexes form an orthocentric structure of points.*

(b) *The circumcenters of an orthocentric structure of simplexes form an orthocentric structure of points.*

The $(n+2)$ centroids form a figure homothetic to the points of the given orthocentric structure, the homothetic center being the orthic point N , and the homothetic ratio being $-1 : (n+1)$. The $(n+2)$ circumcenters also form a figure homothetic to the points of the given orthocentric structure, the homothetic center being the orthic point N , and the homothetic ratio being $-n : 2$. ■

REMARK 4. The preceding theorems are analogous to the corresponding propositions dealing with the orthocentric structure of four points in the plane. The orthic point corresponds to the nine-point center in the plane. But the analogy can not be pursued much further. Contrary to what happens on the plane, on the Euler line of a simplex in n -dimensional Euclidean space we have

$$GO' : O'Q = (n-1) : (n+1)$$

where G is the centroid, Q is the orthocenter and O' the center of the $3(n+1)$ -points sphere of an orthocentric simplex (see [3]). Thus accordingly to Theorem 3

$$GN : NQ = 1 : (n+1).$$

Hence $(n-1) : (n+1) = 1 : (n+1)$ (i.e. the orthic point N equals the $3(n+1)$ -points center) only for $n = 2$. Similarly, the simplexes of an orthocentric structure do not have the same orthic simplex as it is in E^2 (see [1] for this and others examples for E^2 and E^3).

References

- [1] N. Altshiller-Court: *Modern Pure Solid Geometry*, 2nd edition, Chelsea Publishing, Bronx, NY, 1964.
- [2] K. Borsuk: *Multidimensional Analytic Geometry*, PWN, Warsaw, 1969.
- [3] M. Buba-Brzozowa: *The n -sphere of $3(n+1)$ points*, Proc. of IV International Conference Graphica 2001, Sao Paulo, Brazil, 5-9 Nov. 2001, pp. 479-481.
- [4] B. Gruenbaum and G. C. Shepard: *Ceva, Menelaus and the area principle*, Math. Magazine 68 (1995), 254-268.

FACULTY OF MATHEMATICS AND INFORMATION SCIENCES
 WARSAW UNIVERSITY OF TECHNOLOGY
 Pl. Politechniki 1
 00-661 WARSZAWA, POLAND
 e-mail: buba@mini.pw.edu.pl
 kawitz@mini.pw.edu.pl

Received January 9, 2003.

