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PROJECTIONS OF CYLINDERS AND GENERALIZATION
OF THE PARABELN MODEL OF AFFINE GEOMETRY

Abstract. We generalize the known construction of ”parabeln model” of the affine
plane geometry to arbitrary finite dimension and study some transformations character-
istic for the obtained structures.

1. Introduction

It is known that in R? the class of all parabolas with equation y =
a -z +b-z + c with fixed parameter a # 0, together with the lines z = ¢,
¢ € R is an affine plane. At the same time the class of all parabolas (i.e. with
o arbitrary) is a kind of Galileo plane — a projection of the real Laguerre
plane (see [4]).

It is seen that similar procedure can be applied in the case of three dimen-
sional space R3, in which we can consider paraboloids as planes of an affine
space. In the paper we generalize this construction to the n-dimensional
real space and projection of a (projective) cylinder onto this space. We es-
tablish main formulas describing analytically the obtained surfaces and the
geometry determined by these surfaces.

2. Projection of a cylinder
Let us consider the space R"t! and its subspace H: 2,1 = 0, the ele-
ments of H will be identified with points of R under the map
H > (z1,...,20,0) » (z1,...,25).
In the space R"t! we consider the cylinder W defined by

n—1
(1) w: Z g0zl 4+ (zny1 — 1)1 =1,

=1
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where a; # 0 are arbitrary, and e? = 1. The vertex of W is the direction of
the z,-axis. Let b= (0,...,0,2) e W.

Let £ be the projection of W onto H with center b. We shall investigate
the image of geometry of W under the map €. As usual, this geometry is
defined on W by the family of all the intersections W N P, where P is a
hyperplane of R**1.

Let P be an arbitrary hyperplane of R*+1:

n+1
(2) P: ZAia:i+E =0.

i=1
We are going to determine £&(W N P).
Fact 2.1. Ifb€ P and P j H then §(WNP) = HNP is a hyperplane of H.

Proof. The projection of P is a hyperplane PN H of H, so it remains to
prove that each line in P which is not parallel to H and goes through b —
crosses W in some other point. But this is clear, since all the lines through b
tangent to W lie in the hyperplane tangent to W at b, and this hyperplane
is parallel to H. =

Now, let b € P, this yields 24,41 + E # 0, so we can assume

(3) E+2A,11=1,1e. E=1-2A,4;.

FACT 2.2. Let P be a hyperplane of R**1 with equation (2) such that b ¢ P.
(i) If P is not parallel to z,, azis then T = (W N P) is a quadric in R®

and it can represented as the graph of a function:

n—1

~eia} 2
(4) T: zn=) _u—(l'i +pi)? + pu,

i=1

whe'reu=4An,pi=2—Zigéifori=1,...,n—1, and

1 n-1
Pn = E(Zsia?pf +8An41 — 4).
i=1

Conversely, for every set T with equation (4) there ezists a hyperplane P
such that (W NP)=T.
(i) If P is parallel to z, azxis then T = (W N P) is a cylinder in R
with equation
n—1

(5) T: Y ciaf(zi+pi)® = —pa,
i—1

where p; are as in (1). The direction of the z,-azis is the vertez of T'.
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Proof. Let ¢ = (z1,...,2,,0) € H. Points of the line which joins = and

b are of the form p, = (azx,...,0zrs,2 — 2a) with a € R. The condition
Pa € P leads with (3) to
n
(6) a- (EAizi - 2An+1) = -1,
i=1
and the condition p, € W yields
n—1
(7) a- ( Z eiale? + 4) =4.
i=1
Combining (6) and (7) we obtain an equation of the set T = {(W N P):
n—1
(8) T: Y (eia?z? +4Aizi) + 4AnTn — 8Ant1 +4 =0.
i=1

For p; = —5—‘ we get ;a2z? + 4A;z; = €ia2(z; + pi)? - e,pz a? for i =
1,...,n—1 Thus (8) is equlvalent to

n—1 n;l
9) T: E eia?(z; + p:)% + 44z, — Z eiplal —8An11 +4=0.
=1 i=1

Clearly, P is not parallel to z,, axis iff A, # 0. In this case the equation (9)
is equivalent to (4), and if P is parallel to x,, axis then (9) is equivalent to

(5). =

3. Generalized paraboloids

Let T be the class of all sets of the form (4). Elements of 7 will be called
generalized paraboloids. Let Tp € T be defined by

n—1
(10) To: zn= Z gia’z?.

i=1
FAcT 3.1. The family T consists of all the images of To, given by (10), under
dilatations of R™.
Proof. Consider a dilatation f of R™ such that f~! is defined by the formula
(11) ) =B -z+t, t=(t1,..-,tn)
Then f(Ts) has equation

2

(12) ST Pantin= 3 csal(Bo +1) —ﬂzsz Mot ) B

=1



180 K. Prazmowski

This equation can be rewritten in the form

n—1 2
oz =S eagfe+ EY -1
(13) COES DT ,B(a:, + ﬂ) Ztn

It is seen that f(Zp) € 7. But conversely, for every T € T with equation
(4) we set 8 = %, t;=pPp;fori=1,...,n—1, and t, = —Bp, and then the
dilatation f defined by (11) maps Tp onto T. w

Let us fix a point ¥ € W on the affine generator passing through b, then
b = (0,...,0,¢,2) for some ¢ # 0. If ¥’ belongs to a hyperplane P with

equation (2) such that (3) holds then we get A, = ‘Tl Consequently, the
general form of the projections of such hyperplanes P is the following

(14) T: Azn= Z 52 i — ) 2+ g,

where A = % is fixed and ¢; = —p;, ¢ = ;Pn are arbitrary. Let 7, be the
class of all the sets with equations of the form (14). We have evident

FacT 3.2. For every two paraboloids T, T» € T, there is a translation of R"
which maps T1 onto T, and every image of a paraboloid T € T, under a
translation of R™ is in Ty as well. w

4. Reflections in paraboloids
For every T € T we define the symmetry or by the condition
or(z)y=2' iff ze€T andz' =z, or
z @z’ € T and the line zz’ has direction of z, axis.

Clearly, or is a well defined involution with Fix(or) = T. Let Tp € T be
the paraboloid with equation

(15) To: 2pzn = Zsz

We write 7y for the class of all the hyperplanes of R™ which are parallel to
the z, axis. Clearly, or(S) = S for every T € T and S € 7. Reflections in
paraboloids are automorphisms of the family 7 U P, where P is the set of
all the (n — 1)-hyperplanes of R".

Facr 4.1. Let T' € Ty,. The function o maps the family P\ Ty onto T,.
Consequently, o+ maps T, onto P\ To.

Proof. Let TV = Tp be defined by (15). Right from definition we get

(16) o1 (Z1y .-, Tn) = (:1:1, i Ze, )

z—l
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Let S be a hyperplane of R™ such that S ¢ 7g. Then S has equation

n—1
(17) S: z,= Z D;z; + Dy
i=1
and its image o1, (S) has equation
1 n—1 n—1
(18) o (S): = Z giale? — x, = Z D;z; + Dy,
F =1 i=1
which is equivalent to
n-1 n—1
(19) or,(S): pxn= Z gialz? — E uD;z; — uDo.
i=1 i=1

Note that €;a2z? — uD;z; = gia?(x; — p;)? + p?, where p; = 5‘-2%12)—’ for i =
2 2
1,...,n—1. With p, = pu(p ;:11 %;- — Dy) we obtain the equation
n—1
(20) o1s(8):  paa =) €ia}(zi — pi)* — Pn.
i=1

This yields o1, (S) € 7,.
Conversely, if T € T, has equation (14) then we set p = A, D; = _&iofa

c
fori=1,...,n—1,and Dy = %(Z?;ll ¢? + ¢,) and then for the hyperplane
S with the above coefficients in the equation (17) we obtain o7, (S) =T.

Now, let T € T, be arbitrary. By 3.2 there is a translation 7 of R"
with 7(Tp) = T'. It is seen that op» = (o,)” = 7 0 o, o 7—1. This yields
or/(S) € T, forevery S€P. =

FacT 4.2. Let T' € Ty, and p # A. Then the function o maps Ty onto

Tpx.
A—p

Proof. Let T = Ty be given by the equation (15); then the symmetry or, is

defined by (16). Let T' € T, be defined by the formula (14). Then we obtain
the following equation of o, (T):

(21) o (T): /\(; Z eiale? — mn) = Z eia2(z; — ¢)% + ¢,
i=1

=1

which is equivalent to

n—1
(22)  duzn =) (Asalz? — peial(zi — ¢)?) — pan
i=1

n—1
=Y (e:i(A — p)aiz? + 2ueialqizs — peialql) — pign.
i=1
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Set r; = —-{ﬂ— and ro = 15 uq"+C\'E757 Y7L eia2g?. Then (22) is equivalent
to
A

(23) 3 ;,u, Tp = Z gia2(z; — ;)% = ro.
i=1

Therefore, o7, (T) € Twa . Now, let TV € Ty, be arbitrary. As in the proof

of 4.1, by 3.2 we con31der“a translation 7 of R™ with o7» = o7, and then, by

3.2 we get o(T) = 7{or,(771(T))) € T for every T €7,. =

5. Paraboloid model of affine space
As an immediate consequence of 4.1 we have

COROLLARY 5.1. If Ty is defined by (15) then the map oT, is an isomorphism
between the affine geometry of R™ and the structure G}, = (R, ToUT,,), where
elements of the set To U7, are considered as hyperplanes.

Clearly, the symmetry og, maps ordinary dilatations of R™ onto the
dilatations of Gj;. Calculating we come to the following

FacT 5.2. Let Ty be given by the equation (15), so the symmetry oq, is
defined by the formula (16).

(1) If f is a homothety defined by the formula f(z) = az then the map
f?T = oq, 0 f ooy is defined by

(24) f"TO(:vl,...,:cn)=(axl,...,a:cn_l, ( Zel 2(oz—l +zn))

(ii) If f is a translation of R*, f(z) =z + 7, T = (n,...,Tn) then the
map f°To is defined by

(25)  f7To(z1,...,2n)

n—1
= (m1+7'1,...,a:n_1+7'n_1, Ze,a 7',2:1+:rn+'rn),
”1—1
n—-1

where T}, = = Z £:a°72 — 7,,. Consequently, f°To is a translation of R iff
i=1
f has the z, azis as its direction. Otherwise, f°To is a composition of a
translation
/
(z1...,Zn)~ (T1+ 71, -, Tne1 + Tn—1,Zn + T,)

and a shear of R™,

2 n—1
(z1y...,Zn) (:1:1, ey Tn—1, M Z g0z + xn)
i=1
2 n—1
which has the hyperplane with equation — Z g:a21iz; = 0 as an axis. w
i=1
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As a consequence we obtain

Facr 5.3. If T1,T» € T, then Ty and To are parallel in G, iff there is a
translation along the x,, azis which maps T1 onto T. m

Now we shall give a characterization of the (affine) lines of such models.
Clearly, every line L can be determined as the intersection of a family of
hyperplanes. We can choose them in such a way, that L = DNT, where D
is a plane parallel to the z,-axis, and T € TyU7,. Let 0 = (01,...,0,) € D,
then
(26) D = {(o1 +e1,...,0n-1+Yen—1,0n + 6):7,0 € R},
where e = (e1,...,en—1,0) and w = (0,...,0, 1) are two vectors which span
D. Indeed, let a,b be any two points of L, and let L’ be the affine line on
these two points. We choose D as the affine plane parallel to the z,-axis,
which contains L’. Clearly, a,b € D, so L C D. Then, either, L’ is parallel
to z, as well, or e is the vector of the line in which D crosses the hyperplane
with equation z, = 0. Let T be given by the formula (14). To find the
intersection D NT we must solve the equation

(27) A(011 + 5 Z €ia; 761 +0; — qi)2 + qn-

Then we get a parametric deﬁmtlon of DNT:

(28) DNT: o+~ve+p(y)w,
! ¢a?
where p(7) = 3 5 (7e; + 01— g + &2 — on.
i=1
We see that p(y) = p2y? + p1y + po is, either, a linear map, or a quadratic
map. Consequently, D N T is either a line (ordinary affine), or a parabola.
Note that the coefficients of p(y) are

n—1
(29) p2 Z 2110) 1 ,, n= % Z 25ia,-26¢(0i - @),

1
and po = iaf(0i — @)’ + an = 0n.
i=1

The vector e is determined by D uniquely - up to proportionality, and
coefficients p; depend on this vector, p; = p;(e). Note that

(30)  pa(ae) = a’pa(e), pi(ae) = api(e), and po(ae) = po(e)
for every scalar a.

Let us fix a plane D. Therefore, either, ps(e) = 0 for every suitable vector
e — in this case DN T is always a line and the set of lines in D determined
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by Gj; coincides with the set of lines of R™ which lie on D, or pa(e) # 0,
and we can choose e so as |pz(e)| = +. In this case the set of "lines” in D
determined by G}, yields the ordinary parabeln model (see [1]).

6. Geometry on a paraboloid
Clearly, for every paraboloid T € 7, with equation (14) the map

_ 1 n—1
(31) 7wt (zy,...,%n 1) <a:1,...,mn_l,X(Zeiaf(zi—qi)2+qn))
i=1

establishes a one-to-one correspondence between the hyperplane M: =z, =
0 of R™ and the set T); its inverse « is just a projection along the z,-axis.

There is a natural structure of a metric affine space defined on M deter-
mined by the form

n—

1
(32) ((zy) = )_eaizi
i=1

1=

The map 7~! defines on T an isomorphic copy of the geometry on M, but,
as we can see, this geometry is also induced on T just by its "own nature”.

FACT 6.1. Let S € P be a (n — 1)-hyperplane in R™.

(i) If S € Ty then 7(SNT) is a hyperplane in M.

(ii) If S € Ty then, either 7(SNT) is empty, or n(SNT) is a (possibly
degenerated) hypersphere in M, with respect to the form defined by (32).

Every hyperplane in M and every hypersphere in M can be obtained by
(i) and (ii).

Proof. The statement (i) is evident.

(if) Without loss of generality we can assume that T € 7}, is defined by
(14) with ¢ =0 fori = 1,...,n. Let S € P\ Ty be defined by (17). Then
S NT is characterized on S by the equation

n—1
(33) Z(sia?x? — AD;z;) — ADy = 0.
i=1
Consequently, 7(S NT) is characterized by the equation
= 2 2 _ 2 = D?
(34) ; €:a; (fL’i - Si) =\ (i=1 E,;If?-) + )\Do,

where s; = 2—);%'7 But (34) is a general equation of a hypersphere in M. Con-
’ . n—1
versely, given a hypersphere Sy with equation Z eia?(z; — 8;)% = p we take

=1



Projections of cylinders 185
the hyperplane S with equation (17), where D; = Ei;'i’— fori=1,...,n-1
and Do = —1—,@ by the above, 7(SNT) = Sp. =

Analogously, for every symmetry IK of M, where K is an admitting
reflection hyperplane, the map (ox)" = 7"!ook o is a symmetry of T.
This symmetry is, in fact, a suitable symmetry of R™.

FACT 6.2. Let T € T, S € Tp, ' = n(SNT), and t = [t1,...,tn] be a
direction (a vector) in R™.

(i) If the skew symmetry o of R™ with azis S and direction t preserves
T then in M the map (%)™ is the reflection in S'.
(ii) Every symmetry os: of M is of the form given in (i).

Proof. Without loss of generality we can assume that T €- T3, is defined
by the formula (15) and S is defined by the formula "7~ ! D;z; + Do = 0
(cf. (17)). Then the pro jective closures: T of T and S of S’ have equations
n—1
(35) T: 2uxors,— Z E,a a: =0, and S: Z D;z; + Doz = 0.
i=1 i=1
Thus the hyperplane polar to the projective point d = {dp,d;,...,d,} has
equation
n—1
(36) udoZy + pdpxo — Z sia?dimi = 0 (cf. [2]).
i=1
Combining (35) and (36) we get the pole d = {0,dy,...,d,} of S with
respect to T, where d; = —'7 fori=1,...,n—1land d, = ——%Q. Therefore,

o&(T) = T iff the vector ¢ is parallel to the vector [217, ooy EL;‘G‘,I— —&].
n— 1
Set t' = [;:g, ,En—la",—] It is seen that (0%)™ coincides with the skew

symmetry crs, of M. To finish the proof we note that, evidently, S’ and ¢/
are orthogonal with respect to the form defined by (32). =

The above result can be strengthened, establishing affine automorphisms
of the considered paraboloid. For convenience, let T' be determined by the
equation (10). Recall that the form ( is defined on M: =z, = 0 by the
formula (32).

Let f be an affine transformation of R"™; therefore there is a matrix
A = [a;j]ij=1,.,n and a vector u € R" such that det A # 0 and

(37) f(xla"'az’n):(yla"',yn)

where y; = Z;-;l a;;jT; +uifori=1,...,n.
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LEMMA 6.3. The following conditions are equivalent:

(i) The function f leaves T invariant.
(ii) The matriz A can be written in the form

- -

dy
B d_2
dn-_l
_[wl w2...wn_1] D

-

such that: B is a (n — 1) x (n — 1) matriz with columns denoted by By, ...,
B,_i; let us write v = [u1,...,un—1] and V = u,, then we have

a) V = ((v,v);
b) C(B]aB'r) =0f0rj,r=1,...,n—1,j7ér;
c)d=|[0,...,0};

d) w; = 2{(Bj,v) forj=1,...,n—-1;
e) ((Bj, B;) =DajaJ2 forj=1,...,n—1, and D #0.

Proof. Evidently, f~1(T) is determined by the equation 7! e;a2y? — yn
= 0, where y;, y, are given by (37). Substituting we come to

n—1 n . n
(38) Z sia?( Z Q; ;a4 TiTr + u? +2 Z a,‘,j’u.,':l:j) —

i=1 Jr=1 j=1 j=1

Then we find that the left hand side of (38) can be written as the sum of
the following items

n
Qn ;Tj — up = 0.

n—1
Z eia?u,? —u, [={(v,v)-V]

i=1
n—1
(2 Z £i02uiai; — ani) - x; = (2(v,Bj) —w;)-xj]:j=1,...,n—1;
i=1
n—1
(23" eiwiain — anpn) 2 [=(2(v,d) = D) - 2]
i=1

[ = C(dv d) : m?z]

PN
m
-
]
: B
[
; )
. 3
~ ~— ~—~ ~_
8
ERY

-x? [=((B;,Bj)-z3:j=1,...,n—1;
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n—1
(2 Z s,-a?a,-,jai,r) -ziz, [=2((Bj,Br) - zjr,]:1<j<r<n-1
=1

n—1
(2 Z e,-a?a,-,jai,n) zizn [=20(Bj,d) -rjza]:j=1,...,n—L
i=1
Taking into account that the equation (38) must be proportional with some
coefficient A # 0 to the equation

n—1

Y (ejad) -z +(-1) -z, =0

j=1
we get (b) and ¢((Bj, B;) = )\eja;"?; therefore columns B; form an orthogonal
basis of R*~1. Then we get {(Bj,d) = 0 for j = 1,...,n — 1, which gives
(c). In particular, it follows {(d,d) = 0 and ¢{(v,d) = 0. The remaining
conditions are now evident. =

As a consequence we obtain

PROPOSITION 6.4. The two classes coincide: one consisting of the restric-
tions fIT where f is an affine transformations of R™ which preserves T,
and the second consisting of all the maps 7o gon~! where g is a similarity
of R*! equipped with the form (.

Proof. It suffices to note that (in notation of 6.3) for a given f the map
g: R*~! — R™"! defined by

(39) g(zl,...,zn_l) = (21,...,Zn_1)
with
n—1
zi = Zbi,jfl:j'f'vi fori=1,...,n—1
Jj=1

has the required properties. Conversely, given g (i.e. given B and v) uniquely
determines f - i.e. it determines A and u. =

7. Inversions

The formula (32) defines a form on R" as well, though now, the form ¢
is degenerate. A hypersphere S’ determined by this form has equation

n—1
(40) S’ E eial(z; — 5;)% = p,
i=1
which is, in fact, equivalent to (5). One can define inversion 0, ¢ in S’ with

center s = (8y,...,8n-1,5n) (Sn arbitrary - S’ does not determine its center
uniquely!) by the following requirements:
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a) 055 (P) C P for every hyperplane P of R* through s;
b) if s € P and ¢ is nondegerate on P then o, s/|P is an ordinary (metric)
inversion.

FAacT 7.1. Let S’ be a (-hypersphere in R™ with a center s, and S be a
(n — 1)-hyperplane in R". If s ¢ S then, either

(i) S is not parallel to the x,-azis, and o, 5/(S) is a paraboloid, or

(i) S € To and then o5 (S) is a hypersphere.
Proof. Without loss of generality we can assume that S’ is defined by (40)
with s; = 0 for ¢ = 1,...,n. One can see that the inversion o, = 0,5 is
defined by the formula
p

1 2.2

T, 0, sz fori=1,...,n.
j=1 €555

(41) op(x) =y, where y; =

Note that o, is an involution.
Let S € P\ Tp. Then S is characterized by the equation of the form (17),
so g,(S) is defined by

n—1 n—1 n—1
(42) 0,(S): pxn= Z pDiz; + Dy - Z e;ax?, where Z eja;‘?:c? # 0.
i=1 i=1 j=1
Assumption s € S yields Dy # 0, so (42) is equivalent to
n—1
(43) o,(S): Lfl,'n = Z sia?(zi - q,-)2 + qn,
DO i=1
where ¢; = 2D fori=1 n—1,and ¢, = :-"—; ’.‘_16'2;- Conse-
i 2D0€iai Yooy 3 qn 4D0 i=1 &t a .
quently, o,(S) € T.
If S is parallel to the z,-axis then its equation is of the form
. ?;11 Diz; + Do = 0, so its image under o0, is defined by the equation

(44) op(S): 0= "2—:1 pD;z; + Do - "Z-:l eiale?,
Clearly, (44) is equivalent to - -

(45) 0n(S) 3 suadoi— ) = —am
where ¢; are as before. Theref:)::, 0,(S) is a hypersphere. =

8. Final remarks
Most of the results of the paper can be stated and proved in a more
general setting, for spaces over an arbitrary field § with char(§) # 2 and
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symmetric bilinear form o with dim(rad(¢p)) = 1. Indeed, let V be a (n+1)-
dimensional vector space over § and (g be a form on V. Let {o(p, p) # 0. One
can consider the projection £ of the cylinder W = {u € V:{p(u —p,u—p) =
Co(p,p)} from the point 2p € W onto the subspace Y of V tangent to W
at the zero vector § € W. The form {p determines on Y a form ¢ such
that W is the inversive closure of (Y,¢) (cf. [3]); in fact, { = (o|Y and
rad(¢) = rad({o) C Y. The family of all the sets W N P, where P is a
hyperplane of V with P }f rad(¢p), p € P are mapped by £ onto a family 7 of
affine quadrics in Y such that the group-of dilatations of Y acts transitively
on 7. Each line in Y parallel to rad(¢) crosses T € T in exactly one point —
this enables us to define reflection o for every T € 7. Then oy maps TUP
onto itself, where P is the set of all the hyperplanes in Y. On the other hand,
one can define in (Y] ¢) reflections in hyperspheres (suitable cylinders). Such
a reflection maps a hyperplane of Y either, on itself, or on a hypersphere,
or on an element of 7.

To get the above statements it suffices to choose in V a suitable orthogo-
nal coordinate system so as rad((p) is the z,-axis, Y is spanned by the first
n vectors of the basis, and p = (0, ...,0,1). Then the form (p is defined by
the formula (o(z,y) = ?;11 04 T;Yi + Qny1Tn41Yn+1 fOr some parameters o,
and we can repeat (slightly more complicated) calculations similar to those
presented in the previous sections. However, such an approach, though more
general, seems to be less intuitive.
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