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PROJECTIONS OF CYLINDERS AND GENERALIZATION 
OF THE PARABELN MODEL OF AFFINE GEOMETRY 

Abstract. We generalize the known construction of "parabeln model" of the affine 
plane geometry to arbitrary finite dimension and study some transformations character-
istic for the obtained structures. 

1. Introduction 
It is known that in R2 the class of all parabolas with equation y = 

a • x2 + b • x + c with fixed parameter a / 0, together with the lines x — c, 
c 6 R is an affine plane. At the same time the class of all parabolas (i.e. with 
a arbitrary) is a kind of Galileo plane - a projection of the real Laguerre 
plane (see [4]). 

It is seen that similar procedure can be applied in the case of three dimen-
sional space R3, in which we can consider paraboloids as planes of an affine 
space. In the paper we generalize this construction to the n-dimensional 
real space and projection of a (projective) cylinder onto this space. We es-
tablish main formulas describing analytically the obtained surfaces and the 
geometry determined by these surfaces. 

2. Projection of a cylinder 
Let us consider the space Rn+1 and its subspace H: xn+i = 0, the ele-

ments of H will be identified with points of Rn under the map 

H 3 (xi,...,xn,Q) t-f (x i , . . . ,x n ) . 
In the space Rn+i we consider the cylinder W defined by 

71—1 
(1) W: Yl£iaixl + (xn+l-l)2 = l, 

1=1 

Key words and phrases: paraboloids, parabeln model of affine plane, metric affine 
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where a* ^ 0 are arbitrary, and sf = 1. The vertex of W is the direction of 
the zn-axis. Let b = ( 0 , . . . , 0,2) € W. 

Let £ be the projection of W onto H with center b. We shall investigate 
the image of geometry of W under the map As usual, this geometry is 
defined on W by the family of all the intersections W fl P, where P is a 
hyperplane of Rn+1. 

Let P be an arbitrary hyperplane of i l n + 1 : 
n+1 

(2) P: Aixi + E = 0. 
¿=1 

We are going to determine fl P). 

FACT 2.1. Ifb e P and P }f H then £(WC)P) = HOP is a hyperplane ofH. 

Proof . The projection of P is a hyperplane P fl H of H, so it remains to 
prove that each line in P which is not parallel to H and goes through b -
crosses W in some other point. But this is clear, since all the lines through b 
tangent to W lie in the hyperplane tangent to W at b, and this hyperplane 
is parallel to H. » 

Now, let b # P, this yields + E ^ 0, so we can assume 

(3) E + 2An+1 - 1, i.e. E —1- 2An+1. 

FACT 2.2. Let P be a hyperplane of Rn+1 with equation (2) such that b & P. 

(i) If P is not parallel to xn axis then T = DP) is a quadric in i?n 

and it can represented as the graph of a function: 
"-1 _£.a2 

(4) T: xn = Y , — — ( x i + p i f + p n , 
t i f 

where fi = 4An, pi = for % — 1,..., n — 1, and ai 
2 n—l 

^ = 7 1 " ( E £ia?Pi + 8 A"+ 1 " 4 ) • 
i=l 

Conversely, for every set T with equation (4) there exists a hyperplane P 
such that n P) = T. 

(ii) If P is parallel to xn axis then T = £ (W DP) is a cylinder in Rn 

with equation 
Tl—l 

(5) T: £iai(xi + Pi)2 = ~Pn, 
i-l 

where pi are as in (i). The direction of the Xfi ** CLCCtS ts the vertex of T. 
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Proo f . Let x = (x i , . . . ,x n ,0 ) 6 H. Points of the line which joins x and 
b are of the form p a = (<*z i , . . . , a x n , 2 — 2a) with a € R . The condition 
pa 6 P leads with (3) to 

n 

(6) a - ( Y l A i x i ~ 2 A n + i ) = - ! > 
¿=1 

and the condition pa € W yields 
n - l 

( 7 ) + 

i=i 

Combining (6) and (7) we obtain an equation of the set T — £(W fl P): 
n-l 

( 8 ) T : ( £ i a i x i + 4 A i x i ) +  4 A n X n - + 4 = 0 . 

¿=1 

For pi = we get £ { a f x f + 4 A i X i = £tat
2(xi + p^ 2 - S i p f a f for i = 

ai 

1 , . . . , n — 1. Thus (8) is equivalent to 
n—1 n—1 

( 9 ) T : 2 £ i o f ( x i + P i ) 2 + 4 A n x n - £  £ i P i a i ~  8 A n + i + 4 = 0 . 

i=1 ¿=1 

Clearly, P is not parallel to xn axis iff An ^ 0. In this case the equation (9) 
is equivalent to (4), and if P is parallel to xn axis then (9) is equivalent to 
( 5 ) . . 

3. Generalized paraboloids 
Let T be the class of all sets of the form (4). Elements of T will be called 

g e n e r a l i z e d p a r a b o l o i d s . Let To € T be defined by 
n-l 

( 1 0 ) T o : x n = Y J ^ h i -

¿=1 
FACT 3.1. The f a m i l y T c o n s i s t s of all the images of T o , given by (10), under 

d i l a t a t i o n s of R n . 

Proo f . Consider a dilatation / of R n such that / " 1 is defined by the formula 

( 1 1 ) f - \ x ) = p - x + t , t = ( t u . . . , t n ) . 

Then /(To) has equation 

(12) /(To): ( 3 x n + i n = E  £ i a i ( P * i + = P £  £ i a i ( x i + V 

i=i ¿=i ^ 
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This equation can be rewritten in the form 
n_1 / t\2 1 (13) /(T0): xn = J^eiaZ(3(xi + j ) --tn. 

It is seen that /(To) £ T. But conversely, for every T € T with equation 
(4) we set = U = /3pi for i = 1 , . . . , n — 1, and tn = —f3pn and then the 
dilatation / defined by (11) maps To onto T. • 

Let us fix a point b' 6 W on the affine generator passing through b, then 
b' = (0, . . . , 0, c, 2) for some c / 0. If b' belongs to a hyperplane P with 
equation (2) such that (3) holds then we get An = Consequently, the 
general form of the projections of such hyperplanes P is the following 

n—1 
(14) T : Xxn = £iai(xi ~ Qi)2 + Qn, 

i=i 
where A = | is fixed and qi — —pi, qn = are arbitrary. Let T\ be the 
class of all the sets with equations of the form (14). We have evident 
F a c t 3.2. For every two paraboloids £ T\ there is a translation of Rn 

which maps T\ onto T2, and every image of a paraboloid T 6 T\ under a 
translation of Rn is in T\ as well, m 

4. Reflections in paraboloids 
For every T G T we define the symmetry CTT by the condition 

or(x) = x' iff x € T and x' = x, or 
i $ x ' e T and the line xx' has direction of XFI 3IX1SI 

Clearly, cry is a well defined involution with Fix(crx) = T. Let To € T be 
the paraboloid with equation 

71—1 
(15) T 0 : 2/txn = Y^ £iahl 

¿=1 
We write % for the class of all the hyperplanes of Rn which are parallel to 
the xn axis. Clearly, ox{S) = S for every T G T and S £ 1q. Reflections in 
paraboloids are automorphisms of the family T U V, where V is the set of 
all the (n — l)-hyperplanes of Rn. 
F a c t 4.1. Let T' G 72M. The function AT> maps the family V\TQ onto T^. 
Consequently, ctt' maps T^ onto V \ Tq. 

Proof . Let T' — To be defined by (15). Right from definition we get 

( 1 n ~ l \ (16) aT0(x\, . . . ,x n ) = I x i , . . . ,xn_i, - ^ S i a f x f - x n j . 
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Let S be a hyperplane of Rn such that S $ Tq. Then S has equation 
n—1 

( 1 7 ) S: xn = Y , DiXi + Do 
i=i 

and its image CTT0(S) has equation 
^ n—1 n—1 

(18) <7To(S)'- - £iaixi ~xn = Yl DiXi + Do, 
^ ¿=1 i=1 

which is equivalent to 
n—l n—1 

(19) VTo(S): Vxn = ^ £iaixi - Y fJ-DiXi - flDo. 
t=l ¿=1 

Note that eia^xf - ¡iDiXi = £iO%(xi - pi)2 + p f , where pi = ^r- for i = 

- 1 D2 1 

1 , . . . , n — 1. With pn = — Do) we obtain the equation 
n—l 

( 2 0 ) VTo(S): Lixn = ( x j - p , ) 2 - p „ . 
i=i 

This yields <7To(S) <E 2 
Conversely, if T € has equation (14) then we set p = Di = — 

for ¿ = 1 , . — 1, and Do = ^(S^Ti1 qf + qn) and then for the hyperplane 
S with the above coefficients in the equation (17) we obtain <jt0 (S) = T. 

Now, let T' 6 be arbitrary. By 3.2 there is a translation r of Rn 

with T(TO) = T'. It is seen that ot' — (aT0)T = r o crTo OT" 1 . This yields 
aT\S) € % for every S e V. m 

FACT 4.2. Let T' € and fx ^ A. Then the function <TY maps T\ onto 
Tj^x. 

Proof . Let T" = To be given by the equation (15); then the symmetry utq is 
defined by (16). Let T € T\ be defined by the formula (14). Then we obtain 
the following equation of or0(T): 

/ ^ n ~ i \ n—l 

(21) ctTO(T): A( - J2 £ i a i x i -xn) = Yl £ i aK x i ~ 9i)2 + 9n, 

which is equivalent to n—l 
(22) \nxn = (Aetata;? - /¿£ja2 (x{ - q i f ) - nqn 

i=l 
n—l 

= ~ + 2^iofqiXi - - nqn. 
i= l 
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Set n = and r0 = j^Qn + j j ^ i E ^ i * ^ h l Then (22) is equivalent 

t 0 A • 
(23) ~ )~~ X n = ^ £ i a i ( x i ~ ri)2 ~ ro-

Therefore, <?T0(T) € . Now, let T G be arbitrary. As in the proof 

of 4.1, by 3.2 we consider a translation r of Rn with ojv = <7y0 and then, by 

3.2 we get aT>(T) = r ^ T o C r - 1 ^ ) ) ) G T^a for every TeTx. » 

5. Paraboloid model of affine space 
As an immediate consequence of 4.1 we have 

COROLLARY 5.1. If TO is defined by (15) then the map CFTq is an isomorphism 

between the affine geometry ofRn and the structure G™ = (Rn, 7oU7^), where 

elements of the set To U T^ are considered as hyperplanes. 

Clearly, the symmetry cr̂ b maps ordinary dilatations of Rn onto the 
dilatations of G™. Calculating we come to the following 

FACT 5.2. Let TQ be given by the equation (15), so the symmetry CTT0 is 

defined by the formula (16). 

(i ) If f is a homothety defined by the formula f(x) = ax then the map 

f"To = aji, o / o crTo is defined by 

(24) f°To(x i , . . . , x „ ) = Y^£iafxf(a- 1) 

(ii) If f is a translation of Rn, f(x) = x + r , r = (T\, . . . , r n ) then the 

map faT° is defined by 

(25) faTo(xu...,xn) 

= (xi + ri,..., xn-i + rn_i, - £ia>inxi + xn + r'n ], 
v ^ i=l ' 

j n—1 
where r'n = — ^ ¿iC^T? — rn. Consequently, fTo is a translation of Rn iff 

f* ¿=l 

/ has the xn axis as its direction. Otherwise, f°To is a composition of a 

translation 
(Xi . . . , Xn) l-> ( l l + Tl, . . . ,Zn_l + Tn_ l ,Xn + T'n) 

and a shear of Rn, 

( \ [X\, . . . , Xn) I • I X\, . . . , Xn—l, / y £tat Tixi "I" xn I 

^ ^ ¿=1 ' 

2 n _ 1 
which has the hyperplane with equation — ̂  £jafr iXi = 0 as an axis, m 

f* «=1 
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As a consequence we obtain 

F A C T 5 . 3 . If 7 \ , T2 € then T\ and T2 are parallel in G™ i f f there is a 

translation along the xn axis which maps T\ onto T2. • 

Now we shall give a characterization of the (affine) lines of such models. 
Clearly, every line L can be determined as the intersection of a family of 
hyperplanes. We can choose them in such a way, that L — D fl T, where D 
is a plane parallel to the xn-axis, and T € % U 7^. Let o = (o 1 , . . . , on) € D, 
then 
(26) D = {(01 + 7 e i , . . . , on-1 + 7 e n _ i , on + <5): 7, S € R}, 

where e = (e i , . . . , e„_i, 0) and to = (0, . . . ,0 ,1) are two vectors which span 
D. Indeed, let a, b be any two points of L, and let L' be the affine line on 
these two points. We choose D as the affine plane parallel to the in-axis, 
which contains L'. Clearly, a, b € D, so L C D. Then, either, L' is parallel 
to xn as well, or e is the vector of the line in which D crosses the hyperplane 
with equation xn — 0. Let T be given by the formula (14). To find the 
intersection D fl T we must solve the equation 

n—1 
( 2 7 ) A ( o n + 6) = ^2 ZiaKlei + °i ~ ft)2 + 9n-

i=1 

Then we get a parametric definition of D fl T: 
( 2 8 ) DDT: 0 + je + p ( j ) w , 

n— 1 
where p(7) = ^ - ^ ( 7 ^ + °i ~ ft)2 + y ~ on-

i=1 

We see that p(7) = P272 + Pi7 + Po is, either, a linear map, or a quadratic 
map. Consequently, D fl T is either a line (ordinary affine), or a parabola. 
Note that the coefficients of p(j) are 

j n—1 j n—1 
( 2 9 ) = £ia<ieii = 2 £iaiei(°i - ft)> 

i=l i=1 
1 n _ 1 

a n d po = j J2 £iC%{oi - qif + y - on. 
i=1 

The vector e is determined by D uniquely - up to proportionality, and 
coefficients pi depend on this vector, pi = Pi(e). Note that 
(30) P2((*e) = a2p2(e), pi(ae) = api(e), and po(ae) = po(e) 

for every scalar a . 
Let us fix a plane D. Therefore, either, P2(e) = 0 for every suitable vector 

e - in this case D fl T is always a line and the set of lines in D determined 
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by G™ coincides with the set of lines of Rn which lie on D, or P2(e) i1 0, 
and we can choose e so as |p2(e)| = j - In this case the set of "lines" in D 
determined by yields the ordinary parabeln model (see [1]). 

6. Geometry on a paraboloid 
Clearly, for every paraboloid T eT\ with equation (14) the map 

/ 1 n—^ \ 
( 3 1 ) 7 r " 1 : ( x i , . . . , x n _ i ) + 

establishes a one-to-one correspondence between the hyperplane M: xn = 
0 of Rn and the set T; its inverse 7r is just a projection along the xn-axis. 

There is a natural structure of a metric affine space defined on M deter-
mined by the form 

n—1 
( 3 2 ) C( :c ,y) = Y l £ i a i x i y i -

¿=1 
The map 7r_1 defines on T an isomorphic copy of the geometry on M, but, 
as we can see, this geometry is also induced on T just by its "own nature". 

FACT 6 .1 . Let S eV be a (n - l)-hyperplane in Rn. 

(i) If S € % then ir(S D T) is a hyperplane in M. 
(ii) If S £ % then, either n(S fl T) is empty, or n(S fl T) is a (possibly 

degenerated) hypersphere in M, with respect to the form defined by (32). 
Every hyperplane in M and every hypersphere in M can be obtained by 

(i) and (ii). 

Proof . The statement (i) is evident. 
(ii) Without loss of generality we can assume that T G T\ is defined by 

(14) with qi = 0 for i = 1 , . . . , n. Let S € V \ % be defined by (17). Then 
S fl T is characterized on S by the equation 

n—1 
(33) ( £ i a i x i ~ X L > i x i ) ~ X D ° = 

i=1 

Consequently, 7r(5 fl T) is characterized by the equation 

( 3 4 ) E ^ O c i - S i ) 2 = A 2 ( + XDo, 

where Si = But (34) is a general equation of a hypersphere in M. Con-
71-1 

versely, given a hypersphere Sq with equation ^ £IAF(xi — s»)2 = p we take 
¿=1 
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the hyperplane S with equation (17), where Di = 2ei<^Sz for i — 1 , . . . , n — 1 

and D0 = by the above, N(S nT) = S0. m 

Analogously, for every symmetry ax of M, where K is an admitting 
reflection hyperplane, the map {cfrY = 7r_1 o ax o 7r is a symmetry of T. 
This symmetry is, in fact, a suitable symmetry of Rn. 

Fact 6.2. Let T e T, S € S' = n(S n T), and t = [ii , . . . ,t„] be a 
direction (a vector) in Rn. 

(i) If the skew symmetry al
s of RJ1 with axis S and direction t preserves 

T then in M the map is the reflection in S'. 
(ii) Every symmetry a$> of M is of the form given in (i). 

Proof . Without loss of generality we can assume that T 6 Tin is defined 
by the formula (15) and S is defined by the formula ^"Ti1 DIXI + DO = 0 
(cf. (17)). Then the projective closures: T of T and S of S have equations 

n—1 n—1 
(35) T: 2/J,xoxn — ^ SiO^xf = 0, and S: DIXI + DQXQ — 0. 

¿=1 ¿=1 
Thus the hyperplane polar to the projective point d = {do, d\,..., dn} has 
equation 

71—1 
(36) fJ.doxn + fidnxo — EiajdiXi = 0 (cf. [2]). 

i=i 
Combining (35) and (36) we get the pole d = {0, di,... ,dn} of S with 
respect to T, where di = for i = 1 , . . . , n — 1 and dn = — Therefore, H1 

a%{T) = T iff the vector t is parallel to the vector . . . , ^ ¿ j , 

Set t' = f - ^ j , . . . , Dn~21 ]. It is seen that fcri)7r coincides with the skew 

symmetry cr̂ , of M. To finish the proof we note that, evidently, S' and t' 
are orthogonal with respect to the form defined by (32). • 

The above result can be strengthened, establishing affine automorphisms 
of the considered paraboloid. For convenience, let T be determined by the 
equation (10). Recall that the form ( is defined on M: xn = 0 by the 
formula (32). 

Let / be an affine transformation of Rn\ therefore there is a matrix 
A = [aij]ij=it,„tn and a vector u G Rn such that det A ^ 0 and 

(37) / (x i > . . . , x n ) = (yi , . . . ,yn) 

where y» = X)j=i ai,jxj + for i = 1 , . . . , n. 
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LEMMA 6.3. The following conditions are equivalent: 

(i) The function f leaves T invariant. 
(ii) The matrix A can be written in the form 

dx 
d2 

i [ W\W2... Wn-1 
dn—l 

D 

such that: B i s a ( n - l ) x ( n - l ) matrix with columns denoted by B\,.. 
Bn-i; let us write v = [iti,..., un-i] o-nd V = un, then we have 

a) V = {(v,v); 
b) C(Bj, Br) = 0 for j, r = 1 , . . . , n - 1, j ± r; 
c) d = [ 0 > . . . , 0 ] ; 
d) vij = 2 ( ( B j , v) for j = 1 , . . . , n - 1; 
e) C{Bj, Bj) = DsjOj for j = 1 , . . . , n - 1, and D ^ 0. 

P r o o f . Evidently, / _ 1 ( T ) is determined by the equation X^Jj1 eiafyf — yn 

= 0, where j/j, yn are given by (37). Substituting we come to 
n—1 n n n 

(38) ( ai,jQi,rXjXr + + 2^ ai,juixj) ~ an,jxj ~ Un = 0. 
i=1 j,r=1 j=1 j=1 

Then we find that the left hand side of (38) can be written as the sum of 
the following items 

Eiafuf - un 

i=l 

(2 £iO%Uiaitj - a n j ) • Xj 
¿=1 

n—1 

(2 ^ ' UiQi n Q*n,nj ' 

n-1 ( £ • xl 
i=l 
n—1 

71—1 

¿=1 

= (2CK Bj) - Wj) • Xj] : j = 1 , . . . , n - 1; 

= (2Ç(v,d) - D) • xn] 

= C(d,d)-xl] 

= ((Bj,Bj)-x2j}:j = l,...,n-l] 

i=1 
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n—1 
(2 S i o f a i j a i • XjXr [ = 2 ((Bj, BT) • XjXr] : l < j < r < n - l ; 

i=i 
n—1 

^2 £iai a>i,jai,n) • XjXn [ = 2 C ( B j , d ) • XjXn] : j = 1 , . . . , n - 1. 
¿=1 

Taking into account that the equation (38) must be proportional with some 
coefficient A ^ 0 to the equation 

n—1 

i=1 

we get (b) and ((Bj, Bj) = A £ j O j \ therefore columns Bj form an orthogonal 
basis of i?n_1. Then we get ((Bj, d) = 0 for j = 1 , . . . , n - 1, which gives 
(c). In particular, it follows £ ( d , d ) = 0 and ((v,d) = 0. The remaining 
conditions are now evident. • 

As a consequence we obtain 

PROPOSITION 6.4. The two classes coincide: one consisting of the restric-
tions f fT where f is an affine transformations of Rn which preserves T, 
and the second consisting of all the maps it o g o 7 r - 1 where g is a similarity 
of Rn~l equipped with the form 

Proof. It suffices to note that (in notation of 6.3) for a given / the map 
g:Rn~l —> Rn~l defined by 
(39) g(xi,..., x n _ i ) = (zi,..., z n _ i ) 

with 
n—1 

Z{ = ^ bijXj + Vi for i = 1 , . . . , n — 1 
j=i 

has the required properties. Conversely, given g (i.e. given B and v) uniquely 
determines / - i.e. it determines A and u. • 

7. Inversions 
The formula (32) defines a form on Rn as well, though now, the form £ 

is degenerate. A hypersphere S' determined by this form has equation 

(40) 5': j j ^ t e - * ) 2 ^ , 
»=1 

which is, in fact, equivalent to (5). One can define inversion (Ta s< in S' with 
center s = ( s i , . . . , s n _i , sn) (sn arbitrary - S' does not determine its center 
uniquely!) by the following requirements: 
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a) o'a.S'i-f) — P f° r every hyperplane P of Rn through s; 
b) if s G P and ( is nondegerate on P then <JSts'\P is an ordinary (metric) 

inversion. 
FACT 7.1. Let S' be a (-hypersphere in Rn with a center s, and S be a 
(n — 1 )-hyperplane in Rn. If s £ S then, either 

(i) S is not parallel to the xn-axis, and crs,S'(S) is a paraboloid, or 
(ii) S € To and then 0s,S'(S) is a hypersphere. 

P r o o f . Without loss of generality we can assume that S' is defined by (40) 
with Si = 0 for i = 1 , . . . , n. One can see that the inversion ap = as>s< is 
defined by the formula 

(41) ap(x) = y, where y{ = _ _ _ / 9 9 • for i = 1 , . . . , n. 

Note that a p is an involution. 
Let S e V\Tq. Then S is characterized by the equation of the form (17), 

so crp(S) is defined by 
n—1 n—1 n—1 

(42) crp(S): pxn = J2 pDiXi + D0 • BiO-xf, where ^ ejajx'j / 0. 
¿=1 i=l j=1 

Assumption s £ S yields Dq / 0, so (42) is equivalent to 
n—l 

(43) ~FTxn = Y ] £ial(xi - Qi)2 + Qn, 
D ° . t i 

where ^ = -2Doe]d2 for i = 1 , . . . , n - 1, and = ^ Conse-
quently, CFP{S) 6 T. 

If S is parallel to the 
then its equation is of the form 

X ^ i 1 Dix% + Do = 0, so its image under a p is defined by the equation n—l n—l 
(44) ap(S): 0 = J 2 pDiXi + D0 • £ e{a\x\. 

i=1 ¿=1 
Clearly, (44) is equivalent to 

n—l 
(45) ap(S)-. £ i ° i ( x ' ~ = ~Qn, 

¿=1 
where qi are as before. Therefore, aP(S) is a hypersphere. • 

8. Final remarks 
Most of the results of the paper can be stated and proved in a more 

general setting, for spaces over an arbitrary field 5 with char (5) / 2 and 
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symmetric bilinear form Co with dim(rad(Co)) = 1- Indeed, let Y be a (n+1)-
dimensional vector space over £ and Co be a form on V. Let (o(p, p) ^ 0. One 
can consider the projection £ of the cylinder W = {u €Y:£o(u — p,u — p) = 

Co ( ? ) P)} from the point 2p G W onto the subspace Y of V tangent to W 
at the zero vector 6 G W. The form Co determines on Y a form C such 
that W is the inversive closure of (Y, C) (cf. [3]); in fact, C — Co|^ and 
rad(C) = rad(Co) C Y. The family of all the sets W f] P, where P is a 
hyperplane of V with P jf rad(Co), p & P are mapped by £ onto a family T of 
affine quadrics in Y such that the group of dilatations of Y acts transitively 
on T. Each line in Y parallel to rad(C) crosses T G T in exactly one point -
this enables us to define reflection cry for every T G T. Then cry maps TUV 
onto itself, where V is the set of all the hyperplanes in Y. On the other hand, 
one can define in (Y, C) reflections in hyperspheres (suitable cylinders). Such 
a reflection maps a hyperplane of Y either, on itself, or on a hypersphere, 
or on an element of T. 

To get the above statements it suffices to choose in ¥ a suitable orthogo-
nal coordinate system so as rad(Co) is the xn-axis, Y is spanned by the first 
n vectors of the basis, and p = (0 , . . . , 0,1). Then the form Co is defined by 
the formula Co(^, y) = Z ^ / aixiVi + an+ixn+iyn+i for some parameters a j , 

and we can repeat (slightly more complicated) calculations similar to those 
presented in the previous sections. However, such an approach, though more 
general, seems to be less intuitive. 
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