

Enno Kolk

SUPERPOSITION OPERATORS
ON SEQUENCE SPACES DEFINED BY φ -FUNCTIONS

Abstract. Let λ and μ be solid sequence spaces. For a sequence of φ -functions $\Phi = (\phi_k)$ let $\lambda(\Phi) = \{x = (x_k) : (\phi_k(|x_k|)) \in \lambda\}$. Provided an another sequence of φ -functions $\Psi = (\psi_k)$, we present a method for the characterization of superposition operators $P_f : \lambda(\Phi) \rightarrow \mu(\Psi)$ by the assumption that acting conditions for $P_f : \lambda \rightarrow \mu$ are known. As applications we subscribe superposition operators on sequence spaces of Maddox and on multiplier spaces.

1. Introduction

Let \mathbb{R} be the set of all real numbers, $\mathbb{R}^+ = [0, \infty)$ and $\mathbb{N} = \{1, 2, \dots\}$. Let ω be the vector space of all real sequences $x = (x_k) = (x_k)_{k \in \mathbb{N}}$. By the term *sequence space*, we shall mean any linear subspace of ω . A sequence space (or a set of sequences) λ is called *solid* if $(x_k) \in \lambda$ and $|y_k| \leq |x_k|$ ($k \in \mathbb{N}$) yield $(y_k) \in \lambda$. Well known examples of solid sequence spaces are the space ℓ_∞ of all bounded sequences and the space c_0 of all convergent to zero sequences, also the spaces

$$\ell_p = \left\{ x = (x_k) \in \omega : \sum_k |x_k|^p < \infty \right\}$$

and

$$(w_0)_p = \left\{ x = (x_k) \in \omega : \lim_n \frac{1}{n} \sum_{k=1}^n |x_k|^p = 0 \right\}$$

for $0 < p < \infty$. The sequences from $(w_0)_p$ are called strongly convergent (with index p) to zero. For $p = 1$ we write ℓ and w_0 instead of ℓ_1 and $(w_0)_1$, respectively.

Key words and phrases: superposition operator, sequence space, modulus, Orlicz function, φ -function, sequence spaces of Maddox, multiplier spaces.

2000 *Mathematics Subject Classification:* 47H30, 46A45.

This research was in part supported by Estonian Scientific Foundation Grant 3991.

Let $p = (p_k)$ be a sequence of strictly positive numbers. As the generalizations of spaces ℓ_∞ , c_0 , ℓ_p and $(w_0)_p$ we consider the following solid sets of sequences (cf., for example, [17]):

$$\begin{aligned}\ell_\infty(p) &= \{x = (x_k) \in \omega : \sup_k |x_k|^{p_k} < \infty\}, \\ c_0(p) &= \{x = (x_k) \in \omega : \lim_k |x_k|^{p_k} = 0\}, \\ \ell(p) &= \left\{x = (x_k) \in \omega : \sum_k |x_k|^{p_k} < \infty\right\}, \\ w_0(p) &= \left\{x = (x_k) \in \omega : \lim_n \frac{1}{n} \sum_{k=1}^n |x_k|^{p_k} = 0\right\}.\end{aligned}$$

It is known that these sets are linear if the sequence $p = (p_k)$ is bounded, they are called also the sequence spaces of Maddox (see, for example, [11]). We note that sequence spaces of type $\ell(p)$ were introduced much earlier by Orlicz [21].

These and some other generalizations of classical sequence spaces may be given by means of moduli and Orlicz functions or, more generally, by means of φ -functions. Recall that a function $\phi : \mathbb{R}^+ \rightarrow \mathbb{R}^+$ is called a *modulus* if

- (i) $\phi(t) = 0 \Leftrightarrow t = 0$,
- (ii) $\phi(t+u) \leq \phi(t) + \phi(u)$ ($t, u \geq 0$),
- (iii) ϕ is nondecreasing,
- (iv) ϕ is continuous.

In this definition, because of (ii), we may replace (iv) with

- (iv') ϕ is continuous from the right at 0.

We remark also that the moduli are the same as the moduli of continuity: a function $\phi : \mathbb{R}^+ \rightarrow \mathbb{R}^+$ is a modulus of continuity of a continuous function if and only if the conditions (i)–(iii) and (iv') are satisfied (see [8], p. 866).

If in the definition of a modulus the condition (ii) is replaced by the condition of convexity

- (v) $\phi(\alpha t + (1 - \alpha)u) \leq \alpha\phi(t) + (1 - \alpha)\phi(u)$ ($t, u \geq 0$, $0 \leq \alpha \leq 1$),

ϕ is called an *Orlicz function*.

Provided a modulus ϕ , Ruckle [27] defined and studied the space

$$\ell(\phi) = \left\{x = (x_k) \in \omega : \sum_k \phi(|x_k|) < \infty\right\} = \{x = (x_k) \in \omega : (\phi(|x_k|)) \in \ell\}.$$

For an Orlicz function ϕ , the *Orlicz sequence space* is determined by (see, [16], p. 137)

$$\ell^{\exists}(\phi) = \left\{ x = (x_k) \in \omega : \exists \rho > 0 \quad \sum_k \phi(\rho|x_k|) < \infty \right\}.$$

If $\Phi = (\phi_k)$ is a sequence of Orlicz functions, the space

$$\ell^{\exists}(\Phi) = \left\{ x = (x_k) \in \omega : \exists \rho > 0 \quad \sum_k \phi_k(\rho|x_k|) < \infty \right\}$$

is called a *modular* or *Musielak-Orlicz sequence space* (see [20], p. 173). Together with $\ell^{\exists}(\phi)$ and $\ell^{\exists}(\Phi)$ there are examined also the sets

$$\ell^{\forall}(\phi) = \{ x = (x_k) \in \omega : \forall \rho > 0 \quad \sum_k \phi(\rho|x_k|) < \infty \},$$

$$\ell^{\forall}(\Phi) = \{ x = (x_k) \in \omega : \forall \rho > 0 \quad \sum_k \phi_k(\rho|x_k|) < \infty \}.$$

In the mathematical literature there exist various modifications of these definitions, where ℓ is replaced by an another solid sequence space (see, for example, [2, 6, 9, 10, 12–15, 18, 19, 22, 23, 28]). To investigate all such spaces from a more general point of view, we use the following notion (cf. [20], p. 4).

DEFINITION 1. A function $\phi : \mathbb{R}^+ \rightarrow \mathbb{R}^+$ is called a φ -function if the conditions (i), (iii) and (iv) are satisfied.

Let $\Phi = (\phi_k)$ be a sequence of φ -functions and let $\Phi(x) = (\phi_k(|x_k|))$. For a solid sequence space λ we define the solid sets

$$\lambda^{\rho}(\Phi) = \{ x = (x_k) \in \omega : \Phi(\rho x) \in \lambda \} \quad (\rho > 0),$$

$$\lambda^{\exists}(\Phi) = \{ x = (x_k) \in \omega : \exists \rho > 0 \quad \Phi(\rho x) \in \lambda \} = \bigcup_{\rho > 0} \lambda^{\rho}(\Phi),$$

$$\lambda^{\forall}(\Phi) = \{ x = (x_k) \in \omega : \forall \rho > 0 \quad \Phi(\rho x) \in \lambda \} = \bigcap_{\rho > 0} \lambda^{\rho}(\Phi).$$

We write $\lambda(\Phi)$ instead of $\lambda^1(\Phi)$.

For example, defining $r = \max\{1, \sup_k p_k\}$, it is easy to see that the sequence spaces of Maddox $\ell_{\infty}(p)$, $c_0(p)$, $\ell(p)$ and $w_0(p)$ we may consider as the spaces $\ell_{\infty}(\mathcal{M})$, $c_0(\mathcal{M})$, $\ell_r(\mathcal{M})$ and $(w_0)_r(\mathcal{M})$, respectively, where $\mathcal{M} = (\mu_k)$ is the sequence of moduli defined by $\mu_k(t) = t^{p_k/r}$.

For an arbitrary sequence of φ -functions $\Phi = (\phi_k)$ the sets $\lambda^{\rho}(\Phi)$, $\lambda^{\exists}(\Phi)$ and $\lambda^{\forall}(\Phi)$ are different in general, and

$$(1) \quad \lambda^{\forall}(\Phi) \subset \lambda^{\rho}(\Phi) \subset \lambda^{\exists}(\Phi).$$

At the same time, the sets $\lambda^{\rho}(\Phi)$ ($\rho > 0$) may not be linear, i.e., they may not be sequence spaces. However, a routine verification shows that, provided λ be a solid sequence space, the sets $\lambda^{\rho}(\Phi)$, $\lambda^{\exists}(\Phi)$ and $\lambda^{\forall}(\Phi)$ are

solid sequence spaces whenever all ϕ_k satisfy either (ii) or (v). Moreover, the equalities

$$(2) \quad \lambda^{\forall}(\Phi) = \lambda^{\rho}(\Phi) = \lambda^{\exists}(\Phi),$$

hold if the sequence of φ -functions Φ satisfies so-called *uniform Δ_2 -condition*: there exists a constant $K > 0$ such that $\phi_k(2t) \leq K\phi_k(t)$ ($k \in \mathbb{N}$, $t > 0$) (cf. [16], p. 167).

In particular, for a solid sequence space λ , the sets $\lambda^{\rho}(\Phi)$, $\lambda^{\exists}(\Phi)$ and $\lambda^{\forall}(\Phi)$ are sequence spaces whenever ϕ_k ($k \in \mathbb{N}$) are either moduli or Orlicz functions. Since uniform Δ_2 -condition holds (with $K = 2$) for every sequence of moduli $\Phi = (\phi_k)$, we also conclude that (2) is true whenever all ϕ_k are either moduli or Orlicz functions such that Φ satisfies uniform Δ_2 -condition. The exact conditions for the equalities (2) in the case $\lambda = \ell$ are given by Šragin [29, Proposition 6].

Let λ and μ be two sets of sequences and let $f : \mathbb{N} \times \mathbb{R} \rightarrow \mathbb{R}$ be a function such that

$$(S1) \quad f(k, 0) = 0 \quad (k \in \mathbb{N}).$$

A *superposition operator* $P_f : \lambda \rightarrow \mu$ is defined by

$$P_f(x) = (f(k, x_k)) \in \mu \quad (x = (x_k) \in \lambda).$$

We say that a superposition operator P_f is *even* if the functions $f(k, \cdot)$ ($k \in \mathbb{N}$) are even, i. e. $f(k, -t) = f(k, t)$ ($k \in \mathbb{N}$, $t \in \mathbb{R}$) or, equivalently,

$$(S2) \quad f(k, t) = f(k, |t|) \quad (k \in \mathbb{N}, t \in \mathbb{R}).$$

It should be noted that an even superposition operator $P_f : \lambda \rightarrow \mu$ is characterized by

$$P_f(-x) = P_f(x) \quad (x \in \lambda)$$

whenever λ and μ contain the space φ of all finite sequences, i. e. of sequences having finitely many non-zero elements. For example, the spaces ℓ_{∞} , c_0 , ℓ_p , $(w_0)_p$ and also $\ell_{\infty}(p)$, $c_0(p)$, $\ell(p)$, $w_0(p)$ contain φ .

Superposition operators on sequence spaces are not studied so intensiv as on spaces of functions (see, for example, [1]). The complete investigation of superposition operators on sequence spaces ℓ_{∞} , c_0 and ℓ^p for $1 \leq p < \infty$ was given by Dedagich and Zabreiko [7] (see also [4, 24]). The acting conditions for $P_f : w_0 \rightarrow \ell$ are proved in [3] by the assumption that the functions $f(k, \cdot)$ are continuous. The results of Šragin [29] contain characterizations of superposition operators on $\ell^{\rho}(\Phi)$ and $\ell^{\exists}(\Phi)$, where $\Phi = (\phi_k)$ is a sequence of φ -functions. Some authors [5, 25, 26, 30, 31] have been studied continuity and boundedness of superposition operators in various sequence spaces.

Throughout this paper let λ and μ be solid sequence spaces, and let $\Phi = (\phi_k)$ and $\Psi = (\psi_k)$ be sequences of φ -functions such that $\lambda(\Phi)$ and $\mu(\Psi)$ are sequence spaces. It is not difficult to see that superposition operators $P_f : \lambda(\Phi) \rightarrow \mu(\Psi)$ play a fundamental role by the investigation of superposition operators $P_f : \lambda^\rho(\Phi) \rightarrow \mu^\sigma(\Psi)$ and $P_f : \lambda^3(\Phi) \rightarrow \mu^3(\Psi)$. We present a method which permits to characterize superposition operators $P_f : \lambda(\Phi) \rightarrow \mu(\Psi)$ by the assumption that the φ -functions ϕ_k are unbounded and the acting conditions for $P_f : \lambda \rightarrow \mu$ are known. This method of reduction bases on the possibility to describe a given superposition operator by means of two even superposition operators. As applications we extend the characterizations of $P_f : \lambda \rightarrow \mu$ with $\lambda = \ell_p$ or $\mu = \ell_p$ from [7, 24] and of $P_f : w_0 \rightarrow \ell$ from [3] to the case $0 < p < \infty$ and describe superposition operators on sequence spaces of Maddox and on multiplier spaces.

2. Superposition operators from $\lambda(\Phi)$ into $\mu(\Psi)$

For a given sequence space λ let

$$\lambda^+ = \{x = (x_k) \in \lambda : x_k \geq 0 \quad (k \in \mathbb{N})\}.$$

The characterizations of superposition operators $P_f : \lambda^\rho(\Phi) \rightarrow \mu^\sigma(\Psi)$ and $P_f : \lambda^3(\Phi) \rightarrow \mu^3(\Psi)$ essentially reduce to the examination of operators $P_f : \lambda(\Phi) \rightarrow \mu(\Psi)$. Indeed, in view of $\lambda^3(\Phi) = \bigcup_{\rho > 0} \lambda^\rho(\Phi)$ it is clear that $P_f : \lambda^3(\Phi) \rightarrow \mu^3(\Psi)$ if and only if for every $\rho > 0$ there exists $\sigma > 0$ such that $P_f : \lambda^\rho(\Phi) \rightarrow \mu^\sigma(\Psi)$. But a superposition operator $P_f : \lambda^\rho(\Phi) \rightarrow \mu^\sigma(\Psi)$ we may interpret as superposition operator $P_f : \lambda(\Phi\rho) \rightarrow \mu(\Psi\sigma)$ with respect the φ -function sequences $\Phi\rho = (\phi_k^\rho)$ and $\Psi\sigma = (\psi_k^\sigma)$ with $\phi_k^\rho(t) = \phi_k(\rho t)$ and $\psi_k^\sigma(t) = \psi_k(\sigma t)$, respectively.

Therefore, in the sequel we consider only superposition operators of the type $P_f : \lambda(\Phi) \rightarrow \mu(\Psi)$, the formulation of the characterizations of corresponding operators $P_f : \lambda^\rho(\Phi) \rightarrow \mu^\sigma(\Psi)$ and $P_f : \lambda^3(\Phi) \rightarrow \mu^3(\Psi)$ we leave to readers.

The characterization of superposition operators on $\ell(\Phi)$ is contained in Proposition 13 of Šragin [29].

THEOREM 1. $P_f : \ell(\Phi) \rightarrow \ell(\Psi)$ if and only if there exist a sequence $(a_k) \in \ell^+$ and numbers $\gamma \geq 0$, $\delta > 0$ and $k_0 \in \mathbb{N}$ such that

$$\psi_k(|f(k, t)|) \leq a_k + \gamma \phi_k(|t|)$$

whenever $\phi_k(|t|) \leq \delta$ and $k \geq k_0$.

Let λ and μ be solid sequence spaces such that $P_f : \lambda \rightarrow \mu$. Defining the functions $f^{(+)} : \mathbb{N} \times \mathbb{R} \rightarrow \mathbb{R}$ and $f^{(-)} : \mathbb{N} \times \mathbb{R} \rightarrow \mathbb{R}$ by

$$f^{(+)}(k, t) = \begin{cases} f(k, -t) & \text{if } t < 0 \\ f(k, t) & \text{if } t \geq 0, \end{cases} \quad f^{(-)}(k, t) = \begin{cases} f(k, t) & \text{if } t < 0 \\ f(k, -t) & \text{if } t \geq 0, \end{cases}$$

or, equivalently, by

$$(3) \quad f^{(+)}(k, t) = f(k, |t|), \quad f^{(-)}(k, t) = f(k, -|t|),$$

we get two even superposition operators $P_{f^{(+)}}$ and $P_{f^{(-)}}$ on λ . Using that for every $x = (x_k) \in \lambda$ we have

$$x = x^+ + x^-,$$

where $2x^+ = (x_k + |x_k|)$ and $2x^- = (x_k - |x_k|)$, by (S1) we may write

$$P_f(x) = P_{f^{(+)}}(x^+) + P_{f^{(-)}}(x^-),$$

$$P_{f^{(+)}}(x) = P_f(x^+) + P_f(-x^-), \quad P_{f^{(-)}}(x) = P_f(x^-) + P_f(-x^+).$$

Since λ contains together with an element x also the elements x^+ , x^- , $-x^+$ and $-x^-$, we have proved the following statement.

LEMMA. *Superposition operator P_f maps λ into μ if and only if the even superposition operators $P_{f^{(+)}}$ and $P_{f^{(-)}}$ map λ into μ .*

Now we consider the superposition operator $P_f : \lambda(\Phi) \rightarrow \mu(\Psi)$, where $\Phi = (\phi_k)$ is a sequence of unbounded φ -functions. By Lemma we get $P_{f^{(+)}} : \lambda(\Phi) \rightarrow \mu(\Psi)$ and $P_{f^{(-)}} : \lambda(\Phi) \rightarrow \mu(\Psi)$. To describe these even superposition operators, for any ϕ_k we define a new function ϕ_k^{-1} by

$$\phi_k^{-1}(t) = \sup\{u : \phi_k(u) = t\}.$$

Then $\phi_k(\phi_k^{-1}(t)) = t$ and since λ is solid, for every $x = (x_k) \in \lambda(\Phi)$ there exists a sequence $y = (y_k) \in \lambda$ with $|x_k| = \phi_k^{-1}(|y_k|)$, and conversely, for every $y = (y_k) \in \lambda$ any sequence $x = (x_k)$ with $|x_k| = \phi_k^{-1}(|y_k|)$ belongs to $\lambda(\Phi)$. Since $f^{(+)}$ satisfies (S2), we have

$$P_{f^{(+)}}(x) \in \mu(\Psi) \iff (\psi_k(|f^{(+)}(k, |x_k|)|)) \in \mu,$$

and so $P_{f^{(+)}}$ maps $\lambda(\Phi)$ into $\mu(\Psi)$ if and only if

$$(\psi_k(|f^{(+)}(k, \phi_k^{-1}(|y_k|))|)) \in \mu \quad ((y_k) \in \lambda).$$

Therefore, defining the function $f_{\Psi\Phi^{-1}}^{(+)} : \mathbb{N} \times \mathbb{R} \rightarrow \mathbb{R}$ by

$$f_{\Psi\Phi^{-1}}^{(+)}(k, t) = \psi_k(|f(k, \phi_k^{-1}(|t|))|) \quad (k \in \mathbb{N}, t \in \mathbb{R}),$$

because of (3) we get

$$P_{f^{(+)}} : \lambda(\Phi) \rightarrow \mu(\Psi) \iff P_{f_{\Psi\Phi^{-1}}^{(+)}} : \lambda \rightarrow \mu.$$

Similarly we find

$$P_{f^{(-)}} : \lambda(\Phi) \rightarrow \mu(\Psi) \iff P_{f_{\Psi\Phi^{-1}}^{(-)}} : \lambda \rightarrow \mu,$$

where the function $f_{\Psi\Phi^{-1}}^{(-)} : \mathbb{N} \times \mathbb{R} \rightarrow \mathbb{R}$ is defined by the equality

$$f_{\Psi\Phi^{-1}}^{(-)}(k, t) = \psi_k(|f(k, -\phi_k^{-1}(|t|))|) \quad (k \in \mathbb{N}, t \in \mathbb{R}).$$

Consequently, we have proved our key result.

THEOREM 2. *If the φ -functions ϕ_k ($k \in \mathbb{N}$) are unbounded, then $P_f : \lambda(\Phi) \rightarrow \mu(\Psi)$ if and only if the even superposition operators $P_{f_{\Psi\Phi^{-1}}^{(+)}}$ and $P_{f_{\Psi\Phi^{-1}}^{(-)}}$ map λ into μ .*

First we apply Theorem 1 to obtain extensions of two known results about the superposition operators $P_f : \ell_p \rightarrow \ell_q$.

PROPOSITION 1. (A) *Let $0 < p, q < \infty$. Then $P_f : \ell_p \rightarrow \ell_q$ if and only if there exist a sequence $(a_k) \in \ell^+$ and numbers $\gamma \geq 0$, $\delta > 0$, $k_0 \in \mathbb{N}$ such that*

$$(4) \quad |f(k, t)|^q \leq a_k + \gamma|t|^p \quad (|t| \leq \delta, k \geq k_0).$$

(B) *Let $0 < p < \infty$ and $1 \leq q < \infty$. Then $P_f : \ell_p \rightarrow \ell_q$ if and only if there exist a sequence $(b_k) \in \ell_q^+$ and numbers $\gamma \geq 0$, $\delta > 0$, $k_0 \in \mathbb{N}$ such that*

$$(5) \quad |f(k, t)| \leq b_k + \gamma|t|^{p/q} \quad (|t| \leq \delta, k \geq k_0).$$

P r o o f. For $0 < p, q < \infty$ let $\phi_k(t) = t^p$ and $\psi_k(t) = t^q$. From Theorem 1 it follows that $P_f : \ell_p \rightarrow \ell_q$ or, equivalently, $P_f : \ell(\Phi) \rightarrow \ell(\Psi)$ if and only if there exist a sequence $(a_k) \in \ell^+$ and numbers $\gamma \geq 0$, $\delta > 0$, $k_0 \in \mathbb{N}$ such that

$$|f(k, t)|^q \leq a_k + \gamma|t|^p \quad (|t|^p \leq \delta, k \geq k_0).$$

But this is (4) with $\delta^{1/p}$ instead of δ .

If $q \geq 1$ then (4) yields

$$|f(k, t)| \leq (a_k)^{1/q} + \gamma^{1/q}|t|^{p/q} \quad (|t| < \delta, k \geq k_0).$$

So, denoting $b_k = (a_k)^{1/q}$, we get (5). Since the implication (5) $\Rightarrow P_f : \ell_p \rightarrow \ell_q$ is obvious, (B) is also proved. ■

For $1 \leq p < \infty$, Proposition 1 was proved by Petranuarat and Kemprasit [24, Theorem 2.2] (statement (A) with $1 \leq q < \infty$) and by Dedagich and Zabreiko [7, Theorem 1] (statement (B)).

Subsequently we apply Theorem 2 to prove extensions of some known characterizations of superposition operators on (or into) ℓ_p and on w_0 .

In [7, Theorem 7] the authors assert (without proof) that a superposition operator P_f maps ℓ_p ($1 \leq p < \infty$) into ℓ_∞ if and only if $\lim_{k \rightarrow \infty, t \rightarrow 0} |f(k, t)| < \infty$. It seems that this is not true in general. Defining, for example, $f(k, 0) = 0$ and $f(k, t) = 1 - (-1)^k$ if $t > 0$, we clearly have $P_f : \ell_p \rightarrow \ell_\infty$

but the limit $\lim_{k \rightarrow \infty, t \rightarrow 0} |h(k, t)|$ does not exist. We show that the characterization of $P_f : c_0 \rightarrow \ell_\infty$ from [7, Theorem 8] is true also for $P_f : \ell_p \rightarrow \ell_\infty$. In addition, we consider the case where $f(k, \cdot)$ ($k \in \mathbb{N}$) are continuous on \mathbb{R} .

PROPOSITION 2. *Let $0 < p < \infty$. Then the following are equivalent:*

- (a) $P_f : c_0 \rightarrow \ell_\infty$;
- (b) $P_f : \ell_p \rightarrow \ell_\infty$;
- (c) $\exists (a_k) \in \ell_\infty^+ \exists \delta > 0 \exists k_0 \in \mathbb{N} \quad |f(k, t)| \leq a_k \quad (|t| \leq \delta, k \geq k_0)$;
- (d) $\exists \delta > 0 \exists k_0 \in \mathbb{N} \quad \sup_{|t| \leq \delta, k \geq k_0} |f(k, t)| < \infty$.

If $f(k, \cdot)$ ($k \in \mathbb{N}$) are continuous, then each of (a)–(d) is equivalent to

- (e) $\exists \delta > 0 \quad \sup_{|t| \leq \delta, k \in \mathbb{N}} |f(k, t)| < \infty$.

P r o o f. (a) \Rightarrow (b) and (c) \Leftrightarrow (d) are obvious.

(b) \Rightarrow (d). Let $x = (x_k) \in \ell_p$. If (d) is not satisfied, then there exist a subsequence (y_i) of x and indices l_i , $l_i < l_{i+1}$ ($i \in \mathbb{N}$) such that

$$(6) \quad |f(l_i, y_i)| \geq i \quad (i \in \mathbb{N}).$$

Defining

$$(7) \quad z_k = \begin{cases} y_i & \text{if } k = l_i \quad (i \in \mathbb{N}) \\ 0 & \text{otherwise,} \end{cases}$$

we obtain a sequence $z = (z_k) \in \ell_p$. But $P_f(z) \notin \ell_\infty$ since by (6) we have

$$|f(l_i, z_{l_i})| \geq i \quad (i \in \mathbb{N}).$$

(d) \Rightarrow (a). If $x = (x_k) \in c_0$, then we can choose an index l_0 such that $|x_k| \leq \delta$ ($k \geq l_0$). Denoting $k_1 = \max\{k_0, l_0\}$, by (d) we get

$$\sup_{k \geq k_1} |f(k, x_k)| < \infty$$

which yields $P_f(x) \in \ell_\infty$.

Now let $f(k, \cdot)$ be continuous on \mathbb{R} for all $k \in \mathbb{N}$. Then (d) \Rightarrow (e) since, by continuity of $f(k, \cdot)$,

$$\sup_{1 \leq k < k_0, |t| \leq \delta} |f(k, t)| < \infty.$$

Using that (e) \Rightarrow (d) is obvious, we have (d) \Leftrightarrow (e). ■

PROPOSITION 3. *Let $0 < p < \infty$. Then the following are equivalent:*

- (a) $P_f : c_0 \rightarrow c_0$;
- (b) $P_f : \ell_p \rightarrow c_0$;
- (c) $\lim_{k \rightarrow \infty, t \rightarrow 0} |f(k, t)| = 0$;
- (d) $\exists (a_k) \in c_0^+ \exists \delta > 0 \exists k_0 \in \mathbb{N} \quad |f(k, t)| \leq a_k \quad (|t| \leq \delta, k \geq k_0)$;
- (e) $\exists k_0 \in \mathbb{N} \quad \lim_{t \rightarrow 0} \sup_{k \geq k_0} |f(k, t)| = 0$.

If $f(k, \cdot)$ ($k \in \mathbb{N}$) are continuous, then each of (a)–(e) is equivalent to

$$(f) \lim_{t \rightarrow 0} \sup_k |f(k, t)| = 0.$$

Proof. For $1 \leq p < \infty$ the equivalences (a) \iff (b) \iff (c) \iff (d) follow from Theorems 7 and 8 of [7].

(e) \implies (c) is trivial.

(a) \implies (e). Suppose that (a) is satisfied but (e) fails to hold. We can choose a sequence $(y_i) \in c_0$, a number $\varepsilon_0 > 0$ and a sequence (l_i) of indices such that

$$(8) \quad |f(l_i, y_i)| \geq \varepsilon_0 \quad (i \in \mathbb{N}).$$

Then c_0 contains the sequence $z = (z_k)$ defined as in (7). But $P_f(z) \notin c_0$ since by (8) we have

$$|f(l_i, z_{l_i})| \geq \varepsilon_0 > 0 \quad (i \in \mathbb{N}).$$

Thus (e) must hold.

Now let $0 < p < 1$. It is sufficient to prove that (b) is equivalent, for example, to (c). Defining for all $n \in \mathbb{N}$, $\phi_k(t) = t^p$ and $\psi_k(t) = t$, we may write

$$P_f : \ell_p \rightarrow c_0 \iff P_f : \ell(\Phi) \rightarrow c_0(\Psi).$$

Therefore, since (b) \iff (c) holds for $p = 1$ and $\phi_k^{-1}(t) = t^{1/p}$, by Theorem 2 we have that $P_f : \ell_p \rightarrow c_0$ if and only if

$$\lim_{k \rightarrow \infty, t \rightarrow 0} |f(k, \pm|t|^{1/p})| = 0.$$

But this is equivalent to (c), because $\pm|t|^{1/p} \rightarrow 0 \iff t \rightarrow 0$.

Finally, if all functions f_k are continuous and (e) holds, by

$$\lim_{t \rightarrow 0} \sup_{k < k_0} |f(k, t)| = 0$$

we get (f). Since (f) \implies (e) is obvious, the proof is completed. ■

PROPOSITION 4. Let $0 < p < \infty$. Then $P_f : c_0 \rightarrow \ell_p$ if and only if

$$(a) \exists \delta > 0 \exists k_0 \in \mathbb{N} \quad \sum_{k \geq k_0} \sup_{|t| \leq \delta} |f(k, t)|^p < \infty.$$

If $f(k, \cdot)$ is continuous for all $k \in \mathbb{N}$ then (a) is equivalent to

$$(b) \exists \delta > 0 \quad \sum_k \sup_{|t| \leq \delta} |f(k, t)|^p < \infty.$$

Proof. It is known that (a) is necessary and sufficient for $P_f : c_0 \rightarrow \ell_p$ in the case $1 \leq p < \infty$ [7, Theorem 8].

For $0 < p < 1$ we define $\phi_k(t) = t$ and $\psi_k(t) = t^p$. Then $P_f : c_0 \rightarrow \ell_p \iff P_f : c_0(\Phi) \rightarrow \ell(\Psi)$. So by Theorem 2 we conclude that $P_f : c_0 \rightarrow \ell_p$

if and only if there exist $\delta > 0$ and $k_0 \in \mathbb{N}$ such that

$$\sum_{k \geq k_0} \sup_{|t| \leq \delta} |f(k, \pm|t|)|^p < \infty,$$

which clearly coincides with (a).

The last part we can prove in the same way as in Proposition 2. ■

PROPOSITION 5. *Let $0 < p < \infty$. Then $P_f : \ell_\infty \rightarrow \ell_p$ if and only if*

$$\forall \eta > 0 \quad \sum_k \sup_{|t| \leq \eta} |f(k, t)|^p < \infty.$$

P r o o f. The case $1 \leq p < \infty$ is considered in [7, Theorem 8]. For $0 < p < 1$ we apply Theorem 2 in the same way as in Proposition 4. ■

For completeness we formulate also characterizations of superposition operators of the remainder two types, connected with the spaces ℓ_∞ and c_0 (see [7, Theorem 8]).

PROPOSITION 6. 1) *$P_f : \ell_\infty \rightarrow c_0$ if and only if*

$$\forall \eta > 0 \quad \lim_k \sup_{|t| \leq \eta} |f(k, t)| = 0.$$

2) *$P_f : \ell_\infty \rightarrow \ell_\infty$ if and only if*

$$\forall \eta > 0 \quad \sup_{k \in \mathbb{N}} \sup_{|t| \leq \eta} |f(k, t)| < \infty.$$

Chew [3] characterized superposition operators from w_0 into ℓ . We consider the operators $P_f : (w_0)_p \rightarrow \ell_q$ with $0 < p, q < \infty$.

PROPOSITION 7. *Let $0 < p, q < \infty$. If $f(k, \cdot)$ is continuous for every $k \in \mathbb{N}$ then $P_f : (w_0)_p \rightarrow \ell_q$ if and only if there exist a number $\delta > 0$ and sequences $(c_k)_{k=0}^\infty \in \ell^+$ and $(d_k) \in \ell^+$ such that*

$$(9) \quad |f(k, t)|^q \leq d_k + c_r 2^{-r} |t|^p$$

whenever $|t|^p \leq 2^r \delta$, $2^r \leq k < 2^{r+1}$ ($r = 0, 1, 2, \dots$).

P r o o f. For $0 < p < \infty$ let $\phi_k(t) = t^p$, $\psi_k(t) = t^q$ ($k \in \mathbb{N}$). Then $P_f : (w_0)_p \rightarrow \ell_q$ we may interpret as $P_f : w_0(F) \rightarrow \ell(\Psi)$. Therefore, since (9) with $p = q = 1$ is necessary and sufficient for $P_f : w_0 \rightarrow \ell$ (see [3]), by Theorem 2 we have that $P_f : (w_0)_p \rightarrow \ell_q$ if and only if there exist a number $\delta > 0$ and sequences $(c_k)_{k=0}^\infty \in \ell^+$ and $(d_k) \in \ell^+$ such that

$$|f(k, \pm|t|^{1/p})|^q \leq d_k + c_r 2^{-r} |t| \quad (|t| \leq 2^r \delta, 2^r \leq k < 2^{r+1}, r = 0, 1, 2, \dots).$$

But this is (9) with $\pm|t|^{1/p}$ instead of t . The proof is finished. ■

At the end of this section we characterize superposition operators $P_f : \lambda(\Phi) \rightarrow \mu(\Psi)$ for the same pairs of sequence spaces $\lambda, \mu \in \{\ell_\infty, c_0, \ell_p, (w_0)_p\}$ as in Propositions 1–7.

THEOREM 3. *Let $0 < p, q < \infty$. Then $P_f : \ell_p(\Phi) \rightarrow \ell_q(\Psi)$ if and only if there exist a sequence $(a_k) \in \ell^+$ and numbers $\gamma \geq 0$, $\delta > 0$ and $k_0 \in \mathbb{N}$ such that*

$$(\psi_k(|f(k, t)|))^q \leq a_k + \gamma(\phi_k(|t|))^p \quad (\phi_k(|t|) \leq \delta, k \geq k_0).$$

Proof. The statement follows immediately from Theorem 1 since operator $P_f : \ell_p(\Phi) \rightarrow \ell_q(\Psi)$ we may consider as operator $P_f : \ell(\Phi^p) \rightarrow \ell(\Psi^q)$, where $\Phi^p = (\phi_k^p)$ and $\Psi^q = (\psi_k^q)$ with $\phi_k^p(t) = (\phi_k(t))^p$ and $\psi_k^q(t) = (\psi_k(t))^q$, respectively. ■

THEOREM 4. *Let $0 < p < \infty$. If the φ -functions ϕ_k ($k \in \mathbb{N}$) are unbounded then:*

(A) *The following are equivalent:*

- (a) $P_f : c_0(\Phi) \rightarrow \ell_\infty(\Psi)$;
- (b) $P_f : \ell_p(\Phi) \rightarrow \ell_\infty(\Psi)$;
- (c) $\exists (a_k) \in \ell_\infty^+ \exists \delta > 0 \exists k_0 \in \mathbb{N} \psi_k(|f(k, t)|) \leq a_k \ (\phi_k(|t|) \leq \delta, k \geq k_0)$;
- (d) $\exists \delta > 0 \exists k_0 \in \mathbb{N} \sup_{\phi_k(|t|) \leq \delta, k \geq k_0} \psi_k(|f(k, t)|) < \infty$.

If, in addition, $f(k, \cdot)$ ($k \in \mathbb{N}$) are continuous and φ -functions ϕ_k ($k \in \mathbb{N}$) are strictly increasing, then each of (a)–(d) is equivalent to

$$(e) \exists \delta > 0 \sup_{\phi_k(|t|) \leq \delta, k \in \mathbb{N}} \psi_k(|f(k, t)|) < \infty.$$

(B) *The following are equivalent:*

- (a) $P_f : c_0(\Phi) \rightarrow c_0(\Psi)$;
- (b) $P_f : \ell_p(\Phi) \rightarrow c_0(\Psi)$;
- (c) $\lim_{t \rightarrow 0, k \rightarrow \infty} \psi_k(|f(k, \pm \phi_k^{-1}(|t|))|) = 0$;
- (d) $\exists (a_k) \in c_0^+ \exists \delta > 0 \exists k_0 \in \mathbb{N} \psi_k(|f(k, t)|) \leq a_k \ (\phi_k(|t|) \leq \delta, k \geq k_0)$;
- (e) $\exists k_0 \in \mathbb{N} \lim_{t \rightarrow 0} \sup_{k \geq k_0} \psi_k(|f(k, \pm \phi_k^{-1}(|t|))|) = 0$.

If, in addition, $f(k, \cdot)$ ($k \in \mathbb{N}$) are continuous and φ -functions ϕ_k ($k \in \mathbb{N}$) are strictly increasing, then each of (a)–(e) is equivalent to

$$(f) \lim_{t \rightarrow 0} \sup_k \psi_k(|f(k, \pm \phi_k^{-1}(|t|))|) = 0.$$

(C) *$P_f : c_0(\Phi) \rightarrow \ell_p(\Psi)$ if and only if*

$$(a) \exists \delta > 0 \exists k_0 \in \mathbb{N} \sum_{k \geq k_0} \sup_{\phi_k(|t|) \leq \delta} (\psi_k(|f(k, t)|))^p < \infty.$$

If, in addition, $f(k, \cdot)$ ($k \in \mathbb{N}$) are continuous and φ -functions ϕ_k ($k \in \mathbb{N}$) are strictly increasing, then (a) is equivalent to

$$(b) \exists \delta > 0 \sum_k \sup_{\phi_k(|t|) \leq \delta} (\psi_k(|f(k, t)|))^p < \infty.$$

Proof. (A). The equivalence (c) \iff (d) is obvious.

Basing on Proposition 2, by Theorem 2 we have that both conditions (a) and (b) are true if and only if there exist a sequence $(a_k) \in \ell_{\infty}^+$ and numbers $\delta > 0$, $k_0 \in \mathbb{N}$ such that

$$\psi_k(|f(k, \pm\phi_k^{-1}(|t|))|) \leq a_k \quad (|t| \leq \delta, k \geq k_0).$$

Since $\phi_k(\phi_k^{-1}(|t|)) = |t|$ then, writing t instead of $\pm\phi_k^{-1}(|t|)$, we get the equivalent condition (c).

If the φ -functions ϕ_k ($k \in \mathbb{N}$) are strictly increasing, the functions ϕ_k^{-1} are continuous. Since ϕ_k and $f(k, \cdot)$ are assumed continuous, we conclude that the even functions $f_{\Psi\Phi^{-1}}^{(+)}(k, \cdot)$ and $f_{\Psi\Phi^{-1}}^{(-)}(k, \cdot)$ are continuous too. Therefore, the equivalence (d) \iff (e) follows by Theorem 2 because of corresponding equivalence in Proposition 2.

Statements (B) and (C) we can prove similarly, using Propositions 3 and 4, respectively. ■

Analogously, using Propositions 5 and 6, we get

THEOREM 5. *Let $0 < p < \infty$. If the φ -functions ϕ_k ($k \in \mathbb{N}$) are unbounded then:*

(A) $P_f : \ell_{\infty}(\Phi) \rightarrow \ell_p(\Psi)$ if and only if

$$\forall \eta > 0 \quad \sum_k \sup_{\phi_k(|t|) \leq \eta} (\psi_k(|f(k, t)|))^p < \infty.$$

(B) $P_f : \ell_{\infty}(\Phi) \rightarrow c_0(\Psi)$ if and only if

$$\forall \eta > 0 \quad \lim_k \sup_{\phi_k(|t|) \leq \eta} \psi_k(|f(k, t)|) = 0.$$

(C) $P_f : \ell_{\infty}(\Phi) \rightarrow \ell_{\infty}(\Psi)$ if and only if

$$\forall \eta > 0 \quad \sup_{k \in \mathbb{N}} \sup_{\phi_k(|t|) \leq \eta} \psi_k(|f(k, t)|) < \infty.$$

By Proposition 7 we can formulate

THEOREM 6. *Let $0 < p, q < \infty$. If $f(k, \cdot)$ ($k \in \mathbb{N}$) are continuous and φ -functions ϕ_k ($k \in \mathbb{N}$) are unbounded and strictly increasing then $P_f : (w_0)_p(\Phi) \rightarrow \ell_q(\Psi)$ if and only if there exist a number $\delta > 0$ and sequences $(c_k)_{k=0}^{\infty} \in \ell^+$ and $(d_k) \in \ell^+$ such that*

$$(\psi_k(|f(k, t)|))^q \leq d_k + c_r 2^{-r} (\phi_k(|t|))^p$$

whenever $\phi_k(|t|)^p \leq 2^r \delta$, $2^r \leq k < 2^{r+1}$ ($r = 0, 1, 2, \dots$).

3. Superposition operators on sequence spaces of Maddox and on multiplier spaces

Let $p = (p_k)$ and $q = (q_k)$ be two bounded sequences of strictly positive numbers. The sequence spaces of Maddox $\ell_{\infty}(p)$, $c_0(p)$, $\ell(p)$ and $w_0(p)$ we

can consider as the spaces $\ell_\infty(\Phi)$, $c_0(\Phi)$, $\ell(\Phi)$ and $w_0(\Phi)$, where $\Phi = (\phi_k)$ with $\phi_k(t) = t^{p_k}$ ($k \in \mathbb{N}$). So, defining $\Psi = (\psi_k)$ by $\psi_k(t) = t^{q_k}$ ($k \in \mathbb{N}$) and taking into account that our φ -functions ϕ_k ($k \in \mathbb{N}$) are unbounded and strictly increasing, from Theorems 3–6 we get the following characterizations of superposition operators on sequence spaces of Maddox.

COROLLARY 1. $P_f : \ell(p) \rightarrow \ell(q)$ if and only if there exist a sequence $(a_k) \in \ell^+$ and numbers $\gamma \geq 0$, $\delta > 0$ and $k_0 \in \mathbb{N}$ such that

$$|f(k, t)|^{q_k} \leq a_k + \gamma |t|^{p_k} \quad (|t|^{p_k} \leq \delta, k \geq k_0).$$

COROLLARY 2. (A) The following are equivalent:

- (a) $P_f : c_0(p) \rightarrow \ell_\infty(q)$;
- (b) $P_f : \ell(p) \rightarrow \ell_\infty(q)$;
- (c) $\exists (a_k) \in \ell_\infty^+ \exists \delta > 0 \exists k_0 \in \mathbb{N} \quad |f(k, t)|^{q_k} \leq a_k \quad (|t|^{p_k} \leq \delta, k \geq k_0)$;
- (d) $\exists \delta > 0 \exists k_0 \in \mathbb{N} \quad \sup_{|t|^{p_k} \leq \delta, k \geq k_0} |f(k, t)|^{q_k} < \infty$.

If $f(k, \cdot)$ ($k \in \mathbb{N}$) are continuous then each of (a)–(d) is equivalent to

$$(e) \exists \delta > 0 \quad \sup_{|t|^{p_k} \leq \delta, k \in \mathbb{N}} |f(k, t)|^{q_k} < \infty.$$

(B) The following are equivalent:

- (a) $P_f : c_0(p) \rightarrow c_0(q)$;
- (b) $P_f : \ell(p) \rightarrow c_0(q)$;
- (c) $\lim_{t \rightarrow 0, k \rightarrow \infty} |f(k, \pm |t|^{1/p_k})|^{q_k} = 0$;
- (d) $\exists (a_k) \in c_0^+ \exists \delta > 0 \exists k_0 \in \mathbb{N} \quad |f(k, t)|^{q_k} \leq a_k \quad (|t|^{p_k} \leq \delta, k \geq k_0)$;
- (e) $\exists k_0 \in \mathbb{N} \quad \lim_{t \rightarrow 0} \sup_{k \geq k_0} |f(k, \pm |t|^{1/p_k})|^{q_k} = 0$.

If $f(k, \cdot)$ ($k \in \mathbb{N}$) are continuous then each of (a)–(e) is equivalent to

$$(f) \lim_{t \rightarrow 0} \sup_k |f(k, \pm |t|^{1/p_k})|^{q_k} = 0.$$

(C) $P_f : c_0(p) \rightarrow \ell(q)$ if and only if

$$(a) \exists \delta > 0 \exists k_0 \in \mathbb{N} \quad \sum_{k \geq k_0} \sup_{|t|^{p_k} \leq \delta} |f(k, t)|^{q_k} < \infty.$$

If $f(k, \cdot)$ ($k \in \mathbb{N}$) are continuous then (a) is equivalent to

$$(b) \exists \delta > 0 \quad \sum_k \sup_{|t|^{p_k} \leq \delta} |f(k, t)|^{q_k} < \infty.$$

COROLLARY 3. (A) $P_f : \ell_\infty(p) \rightarrow \ell(q)$ if and only if

$$\forall \eta > 0 \quad \sum_k \sup_{|t|^{p_k} \leq \eta} |f(k, t)|^{q_k} < \infty.$$

(B) $P_f : \ell_\infty(p) \rightarrow c_0(q)$ if and only if

$$\forall \eta > 0 \quad \lim_k \sup_{|t|^{p_k} \leq \eta} |f(k, t)|^{q_k} = 0.$$

(C) $P_f : \ell_\infty(p) \rightarrow \ell_\infty(q)$ if and only if

$$\forall \eta > 0 \quad \sup_{k \in \mathbb{N}} \sup_{|t|^{p_k} \leq \eta} |f(k, t)|^{q_k} < \infty.$$

COROLLARY 4. If $f(k, \cdot)$ is continuous for every $k \in \mathbb{N}$ then $P_f : w_0(p) \rightarrow \ell(q)$ if and only if there exist a number $\delta > 0$ and sequences $(c_k)_{k=0}^\infty \in \ell^+$ and $(d_k) \in \ell^+$ such that

$$|f(k, t)|^{q_k} \leq d_k + c_r 2^{-r} |t|^{p_k}$$

whenever $|t|^{p_k} \leq 2^r \delta$, $2^r \leq k < 2^{r+1}$ ($r = 0, 1, 2, \dots$).

Finally, let λ, μ be solid sequence spaces and let $u = (u_k)$, $v = (v_k)$ be two sequences such that $u_k \neq 0$, $v_k \neq 0$ ($k \in \mathbb{N}$). We consider multiplier spaces

$$M(u, \lambda) = \{x = (x_k) \in \omega : (u_k x_k) \in \lambda\} = \{x = (x_k) \in \omega : (|u_k x_k|) \in \lambda\},$$

$$M(v, \mu) = \{x = (x_k) \in \omega : (v_k x_k) \in \mu\} = \{x = (x_k) \in \omega : (|v_k x_k|) \in \mu\}.$$

Defining for all $k \in \mathbb{N}$ and $t \in \mathbb{R}^+$,

$$\phi_k(t) = |u_k|t, \quad \psi_k(t) = |v_k|t,$$

we get two sequences $\Phi = (\phi_k)$ and $\Psi = (\psi_k)$ of unbounded and strictly increasing φ -functions. Since $M(u, \lambda) = \lambda(\Phi)$, $M(v, \mu) = \mu(\Psi)$, from Theorems 3–6 we get the following characterizations of superposition operators on multiplier spaces.

COROLLARY 5. Let $0 < p, q < \infty$. $P_f : M(u, \ell_p) \rightarrow M(v, \ell_q)$ if and only if there exist a sequence $(a_k) \in \ell^+$ and numbers $\gamma \geq 0$, $\delta > 0$ and $k_0 \in \mathbb{N}$ such that

$$|v_k f(k, t)|^q \leq a_k + \gamma |u_k t|^p \quad (|u_k t|^p \leq \delta, k \geq k_0).$$

COROLLARY 6. Let $0 < p < \infty$. Then:

(A) The following are equivalent:

- (a) $P_f : M(u, c_0) \rightarrow M(v, \ell_\infty)$;
- (b) $P_f : M(u, \ell_p) \rightarrow M(v, \ell_\infty)$;
- (c) $\exists (a_k) \in \ell_\infty^+ \exists \delta > 0 \exists k_0 \in \mathbb{N} \quad |v_k f(k, t)| \leq a_k \quad |u_k t| \leq \delta, k \geq k_0$;
- (d) $\exists \delta > 0 \exists k_0 \in \mathbb{N} \quad \sup_{|u_k t| \leq \delta, k \geq k_0} |v_k f(k, t)| < \infty$.

If $f(k, \cdot)$ ($k \in \mathbb{N}$) are continuous then each of (a)–(d) is equivalent to

$$(e) \exists \delta > 0 \quad \sup_{|u_k t| \leq \delta, k \in \mathbb{N}} |v_k f(k, t)| < \infty.$$

(B) The following are equivalent:

- (a) $P_f : M(u, c_0) \rightarrow M(v, c_0)$;
- (b) $P_f : M(u, \ell_p) \rightarrow M(v, c_0)$;
- (c) $\lim_{t \rightarrow 0, k \rightarrow \infty} |v_k f(k, \pm|u_k t|)| = 0$;

(d) $\exists (a_k) \in c_0^+ \exists \delta > 0 \exists k_0 \in \mathbb{N} |v_k f(k, t)| \leq a_k (|u_k t| \leq \delta, k \geq k_0);$
 (e) $\exists k_0 \in \mathbb{N} \lim_{t \rightarrow 0} \sup_{k \geq k_0} |v_k f(k, \pm|u_k t|)| = 0.$

If $f(k, \cdot)$ ($k \in \mathbb{N}$) are continuous then each of (a)–(e) is equivalent to

$$(f) \lim_{t \rightarrow 0} \sup_k |v_k f(k, \pm|u_k t|)| = 0.$$

(C) $P_f : M(u, c_0) \rightarrow M(v, \ell_p)$ if and only if

$$(a) \exists \delta > 0 \exists k_0 \in \mathbb{N} \sum_{k \geq k_0} \sup_{|u_k t| \leq \delta} |v_k f(k, t)| < \infty.$$

If $f(k, \cdot)$ ($k \in \mathbb{N}$) are continuous then (a) is equivalent to

$$(b) \exists \delta > 0 \sum_k \sup_{|u_k t| \leq \delta} (|v_k f(k, t)|) < \infty.$$

COROLLARY 7. Let $0 < p < \infty$. Then:

(A) $P_f : M(u, \ell_\infty) \rightarrow M(v, \ell_p)$ if and only if

$$\forall \eta > 0 \sum_k \sup_{|u_k t| \leq \eta} |v_k f(k, t)|^p < \infty.$$

(B) $P_f : M(u, \ell_\infty) \rightarrow M(v, c_0)$ if and only if

$$\forall \eta > 0 \lim_k \sup_{|u_k t| \leq \eta} |v_k f(k, t)| = 0.$$

(C) $P_f : M(u, \ell_\infty) \rightarrow M(v, \ell_\infty)$ if and only if

$$\forall \eta > 0 \sup_{k \in \mathbb{N}} \sup_{|u_k t| \leq \eta} |v_k f(k, t)| < \infty.$$

COROLLARY 8. Let $0 < p, q < \infty$. If $f(k, \cdot)$ is continuous for every $k \in \mathbb{N}$ then $P_f : M(u, (w_0)_p) \rightarrow M(v, \ell_q)$ if and only if there exist a number $\delta > 0$ and sequences $(c_k)_{k=0}^\infty \in \ell^+$ and $(d_k) \in \ell^+$ such that

$$|v_k f(k, t)|^q \leq d_k + c_r 2^{-r} |u_k t|^p$$

whenever $|u_k t|^p \leq 2^r \delta$, $2^r \leq k < 2^{r+1}$ ($r = 0, 1, 2, \dots$).

Suantai [30] described superposition operators $P_f : M(u, \ell) \rightarrow \ell$ for $u_k(t) = t^r$ and $P_f : M(u, \ell_\infty) \rightarrow \ell$ for $u_k(t) = t^{-r}$ (with $r > 0$) by additional assumption that the functions $f(k, \cdot)$ ($k \in \mathbb{N}$) are bounded on every bounded subset of \mathbb{R} .

References

- [1] J. Appell, P. P. Zabreiko, *Nonlinear Superposition Operators*, Cambridge Tracts in Mathematics, Vol. 95, Cambridge University Press, Cambridge 1990.
- [2] V. K. Bhardwaj, N. Singh, *Some sequence spaces defined by Orlicz functions*, Demonstratio Math. 33 (2000), 571–582.
- [3] T. S. Chew, *Superposition operators on w_0 and W_0* , Comment. Math. Prace Mat. 29 (1990), 149–153.

- [4] T. S. Chew, P. Y. Lee, *Orthogonally additive operators on sequence spaces*, Southeast Asian Bull. Math. 17 (1993), 81–85.
- [5] B. Choudhary, *A note on boundedness of superposition operators on sequence spaces*, J. Analysis 8 (2000), 55–64.
- [6] J. Connor, *On strong matrix summability with respect to a modulus and statistical convergence*, Canad. Math. Bull. 32 (1989), 194–198.
- [7] F. Dedagich, P. P. Zabreiko, *On superposition operators in ℓ_p spaces*, Sibirsk. Mat. Zh. 28 (1987), 86–98 (in Russian).
- [8] *Encyclopaedia of Mathematics*, Vol. 1, edited by M. Hazewinkel, Kluwer Academic Publishers, Dordrecht 1995.
- [9] A. Esi, *Some new sequence spaces defined by Orlicz functions*, Bull. Inst. Math. Acad. Sinica 27 (1999), 71–76.
- [10] D. Ghosh, P. D. Srivastava, *On some vector valued sequence space using Orlicz function*, Glas. Mat. 34 (1999), 253–261.
- [11] K.-G. Grosse-Erdmann, *The structure of the sequence spaces of Maddox*, Canad. J. Math. 44 (1992), 298–302.
- [12] E. Kolk, *Sequence spaces defined by a sequence of moduli*, in: Abstracts of conference “Problems of Pure and Applied Mathematics”, Tartu (1990), 131–134.
- [13] E. Kolk, *On strong boundedness and summability with respect to a sequence of moduli*, Tartu Ül. Toimetised 960 (1993), 41–50.
- [14] E. Kolk, *F-seminormed sequence spaces defined by a sequence of modulus functions and strong summability*, Indian J. Pure Appl. Math. 28 (1997), 1547–1566.
- [15] E. Kolk, *On sequence spaces defined by a regularly varying modulus*, Acta Comment. Univ. Tartuensis Math. 4 (2000), 11–15.
- [16] J. Lindenstrauss, L. Tzafriri, *Classical Banach Spaces. I. Sequence Spaces*, Ergebnisse der Mathematik und ihre Grenzgebiete, Vol. 92, Springer-Verlag, Berlin–New York 1977.
- [17] Y. Luh, *Die Räume $\ell(p)$, $\ell_\infty(p)$, $c(p)$, $c_0(p)$, $w(p)$, $w_0(p)$ und $w_\infty(p)$* , Mitt. Math. Sem. Giessen 180 (1987), 35–57.
- [18] I. J. Maddox, *Sequence spaces defined by a modulus*, Math. Proc. Cambridge Philos. Soc. 100 (1986), 161–166.
- [19] E. Malkowsky, E. Savas, *Some λ -sequence spaces defined by a modulus*, Arch. Math. (Brno) 36 (2000), 219–228.
- [20] J. Musielak, *Orlicz Spaces and Modular Spaces*, Lecture Notes in Mathematics, Vol. 1034, Springer-Verlag, Berlin–Heidelberg–New York–Tokyo 1983.
- [21] W. Orlicz, *Über konjugierte Exponentenfolgen*, Studia Math. 3 (1931), 200–211.
- [22] S. D. Parashar, B. Choudhary, *Sequence spaces defined by Orlicz functions*, Indian J. Pure Appl. Math. 25 (1994), 419–428.
- [23] S. Pehlivan, B. Fisher, *Some sequence spaces defined by a modulus*, Math. Slovaca 45 (1995), 275–280.
- [24] S. Petranuarat, Y. Kemprasit, *Superposition operators of ℓ_p and c_0 into ℓ_q ($1 \leq p, q < \infty$)*, Southeast Asian Bull. Math. 21 (1997), 139–147.
- [25] R. Pluciennik, *Continuity of superposition operators on w_0 and W_0* , Comment. Math. Univ. Carolinae 31 (1990), 529–542.
- [26] R. Pluciennik, *Boundedness of superposition operators on w_0* , Southeast Asian Bull. Math. 15 (1991), 145–151.
- [27] W. H. Ruckle, *FK spaces in which the sequence of coordinate vectors is bounded*, Canad. J. Math. 25 (1973), 973–978.

- [28] V. Soomer, *On sequence spaces defined by a sequence of moduli and an extension of Kuttner's theorem*, Acta Comment. Univ. Tartuensis Math. 2 (1998), 29–38.
- [29] I. V. Šragin, *Conditions for the imbedding of classes of sequences, and their consequences*, Mat. Zametki 20 (1976), 681–692 (in Russian).
- [30] S. Suantai, *Boundedness of superposition operators on E_r and F_r* , Comment Math. Prace Mat. 37 (1997), 249– 259.
- [31] S. D. Unoningsih, R. Płuciennik, L. P. Yee, *Boundedness of superposition operators on sequence spaces*, Comment. Math. Prace Mat. 35 (1995), 209–216.

INSTITUTE OF PURE MATHEMATICS
UNIVERSITY OF TARTU
50090 TARTU, ESTONIA
e-mail: ekolk@math.ut.ee

Received March 17, 2003.

