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S U P E R P O S I T I O N O P E R A T O R S 
ON S E Q U E N C E SPACES D E F I N E D B Y ^ - F U N C T I O N S 

Abstract . Let A and /i be solid sequence spaces. For a sequence of functions 4> = 
(4>k) let A(i>) = {x = (xk) : (^fcd^fcl)) £ A}. Provided an another sequence of (^-functions 
if1 = (ipk)i w e present a method for the characterization of superposition operators Pf : 
A(#) —> /i(!f') by the assumption that acting conditions for Pf : A —> (J, are known. As 
applications we subscribe superposition operators on sequence spaces of Maddox and on 
multiplier spaces. 

1. Introduction 
Let R be the set of all real numbers, R + = [0, oo) and N = {1,2, . . .} . Let 

lj be the vector space of all real sequences x = (xk) = (xfc)fceN- By the term 
sequence space, we shall mean any linear subspace of u. A sequence space (or 
a set of sequences) A is called solid if (Xk) € A and |j/fc| < |xfc| (k e N) yield 
(yk) & A. Well known examples of solid sequence spaces are the space of 
all bounded sequences and the space Co of all convergent to zero sequences, 
also the spaces 

£p = = (a*) € u> : Y^ \xk\P < 
k 

and 
f 1 n 

(w0)p = < X = (Xk) 6 CJ : lim — |xfc|p = 0 
^ n n k=l 

for 0 < p < oo. The sequences from (WQ)p are called strongly convergent 
(with index p) to zero. For p = 1 we write £ and wq instead of l\ and (tfo)i, 
respectively. 
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Let p = (pk) be a sequence of strictly positive numbers. As the general-
izations of spaces Too, Co, TP and (WQ)p we consider the following solid sets 
of sequences (cf., for example, [17]): 

TOO(P) = {x = (xk) € U : sup \xk\Pk < oo}, 
k 

co(p) = {x = (xk) E UJ : lim \xk\Pk = 0}, fc 

i{p) = j x = (zfc) |xfc|Pfc < oo}, 
k 

woip) = \ x = (sfc) € u> : lim — V"] \xk\Pk = o l . I n n —' I ^ fc=l } 

It is known that these sets are linear if the sequence p = (pk) is bounded, 
they are called also the sequence spaces of Maddox (see, for example, [11]). 
We note that sequence spaces of type £(p) were introduced much earlier by 
Orlicz [21]. 

These and some other generalizations of classical sequence spaces may be 
given by means of moduli and Orlicz functions or, more generally, by means 
of (/^-functions. Recall that a function (j>: R + —> is called a modulus if 

(i) <t>(t) = . 0 « » t = 0) 

(ii) 4>{t + u) < 4>(t) + 4>(v) (t,u> 0), 
(iii) <f> is nondecreasing, 
(iv) (f) is continuous. 

In this definition, because of (ii), we may replace (iv) with 
(iv') <p is continuous from the right at 0. 
We remark also that the moduli are the same as the moduli of continuity: 

a function <j>: R + —> R + is a modulus of continuity of a continuous function 
if and only if the conditions (i)-(iii) and (iv') are satisfied (see [8], p. 866). 

If in the definition of a modulus the condition (ii) is replaced by the 
condition of convexity 

(v) <f>(at + (1 - a)u) < a<f>(t) + (1 - a)<p(u) (t, u > 0, 0 < a < 1), 

<p is called an Orlicz function. 
Provided a modulus <j>, Ruckle [27] defined and studied the space 

e(<f>) = j x = (xfc) € u> : ^24>(\xk\) < oo} = {x = (xk) e u : (^(|xfc|)) € 
k 

For an Orlicz function <j>, the Orlicz sequence space is determined by (see, 
[16], p. 137) 
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i3{(j)) = j z = (xfc) e w : 3 / ) > 0 ^2<t>{p\xk\) < ooj . 
fc 

If $ = (4>k) is a sequence of Orlicz functions, the space 

= j s = (xk) € w : 3p > 0 Y,Mp\xk\) < 0 0 } 

fc 
is called a modular or Musielak-Orlicz sequence space (see [20], p. 173). 
Together with £̂ (4>) and £̂ (<f>) there are examined also the sets 

t{<t>) = {x = (x f c ) e w : Vp > 0 J2<Kp\xk\) < 0 0 }, 
fc 

¿v(<2>) = {x = (xk) e w : V / ) > 0 < 00}. 
fc 

In the mathematical literature there exist various modifications of these 
definitions, where £ is replaced by an another solid sequence space (see, for 
example, [2, 6, 9, 10, 12-15, 18, 19, 22, 23, 28]). To investigate all such 
spaces from a more general point of view, we use the following notion (cf. 
[20], p. 4). 
DEFINITION 1. A function <fi : R + —> R + is called a tp-function if the condi-
tions (i), (iii) and (iv) are satisfied. 

Let $ = (cf)k) be a sequence of (^-functions and let <P(x) = (</>jt(|xfc|)). For 
a solid sequence space A we define the solid sets 

A'(<P) = {x = (xfc) £ LJ : $(px) € A} (p > 0), 

A3(<?) = {x = (xk) E oj : 3p > 0 $(px) € A} = | J A'(<P), 
p> o 

Av(#) = {x = (xk) e u : Vp > 0 $(px) € A} = A'($). 
p>0 

We write A(<P) instead of A 1 ^) . 
For example, defining r = max{1, supfc pk}, it is easy to see that the 

sequence spaces of Maddox (p), c0 (p), £(p) and w0(p) we may consider 
as the spaces £oo(M), c0(A4), £r(M) and (wo)r(A4), respectively, where 
M. = (pic) is the sequence of moduli defined by Pk(t) = tPk/T. 

For an arbitrary sequence of ^-functions <P — ((f) k) the sets Ap($), A3($) 
and Av(#) are different in general, and 

(1) Av(<?) C A'($) C A3($). 
At the same time, the sets \p(<£>) (p > 0) may not be linear, i.e., they 
may not be sequence spaces. However, a routine verification shows that, 
provided A be a solid sequence space, the sets Ap($), A3($) and Av($) are 
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solid sequence spaces whenever all (f>k satisfy either (ii) or (v). Moreover, 
the equalities 

(2) A v (£) = = A 3 ($) , 

hold if the sequence of ^-functions satisfies so-called uniform, A2-condition: 
there exists a constant K > 0 such that <f>k(2t) < K<j>k(t) (k G N, t > 0) 
(cf. [16], p. 167). 

In particular, for a solid sequence space A, the sets \ p ($ ) , A 3 ($ ) and 
Av(<£) are sequence spaces whenever 4>k (k € N) are either moduli or Orlicz 
functions. Since uniform A2-condition holds (with K = 2) for every sequence 
of moduli # = (<f>k), we also conclude that (2) is true whenever all <f>k are 
either moduli or Orlicz functions such that $ satisfies uniform A2-condition. 
The exact conditions for the equalities (2) in the case A = £ are given by 
Sragin [29 , Proposition 6]. 

Let A and /J, be two sets of sequences and let / : N x M —• M be a function 
such that 

(51)/(fc ,0) = 0 ( f c e N ) . 

A superposition operator Pf : A —• ¡x is defined by 

Pf 0»0 = (f(k, Xfc)) € ft (x = (xfc) € A). 

We say that a superposition operator Pf is even if the functions f(k, •) 
(k e N) axe even, i. e. f(k, —t) = f(k, t) (k G N, t € R) or, equivalently, 

(52)/(fc , t ) = /(*;,|t|) ( f c € N , i € R ) . 

It should be noted that an even superposition operator Pf : A —• fi is 
characterized by 

Pf(-x) = Pf(x) (xe\) 
whenever A and ¡j. contain the space (p of all finite sequences, i. e. of sequences 
having finitely many non-zero elements. For example, the spaces ioo, Co, £p, 
(w0)p and also ¿ooip), co(p), wQ(p) contain <p. 

Superposition operators on sequence spaces are not studied so intensiv as 
on spaces of functions (see, for example, [1]). The complete investigation of 
superposition operators on sequence spaces CQ and £p for 1 < p < 00 was 
given by Dedagich and Zabreïko [7] (see also [4, 24]). The acting conditions 
for Pf : w0 £ are proved in [3] by the assumption that the functions 
f(k, •) are continuous. The results of Sragin [29] contain characterizations of 
superposition operators on £ p ($ ) and where $ = (4>k) is a sequence 
of (^-functions. Some authors [5, 25, 26, 30, 31] have been studied continuity 
and boundedness of superposition operators in various sequence spaces. 
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Throughout this paper let A and p, be solid sequence spaces, and let 
$ = {(j>k) and & = (ipk) be sequences of (^-functions such that A($) and 

are sequence spaces. It is not difficult to see that superposition op-
erators Pf : A(#) —• ¿z(tf') play a fundamental role by the investigation of 
superposition operators Pf : \p(<&) —> and Pf : A3($) —> /i3(<Pr). 
We present a method which permits to characterize superposition operators 
Pf : A(i>) —> /z(tf') by the assumption that the ^-functions <j)k are unbounded 
and the acting conditions for Pf : A —• p are known. This method of reduc-
tion bases on the possibility to describe a given superposition operator by 
means of two even superposition operators. As applications we extend the 
characterizations of Pf : A —» p with A = £p or p = £p from [7, 24] and of 
Pf : wo £ from [3] to the case 0 < p < oo and describe superposition 
operators on sequence spaces of Maddox and on multiplier spaces. 

2. Superposition operators from \(<P) into p ^ ) 
For a given sequence space A let 

A+ = {x = (xk) e \ : x k > 0 ( f e e N)}. 

The characterizations of superposition operators Pf : \p($) —> 
and Pf : A3(#) —> p3(&) essentially reduce to the examination of operators 
P} : A(£) p(&). Indeed, in view of Aa(£) = (JP>oAP(^) J t i s c l e a r t h a t 

Pf : A3 ($) —• /z3 (#) if and only if for every p > 0 there exists a > 0 such that 
Pf : Ap(<?) —> But a superposition operator Pf : \p{$) —> we 
may interpret as superposition operator Pf : \($p) —• p(&cr) with respect 
the ^-function sequences <Pp = (<j>p

k) and tyo = (ipk) with 4>p
k(t) = (¡>k{pt) 

and = respectively. 
Therefore, in the sequel we consider only superposition operators of the 

type Pf : A($) —> /z(tf'), the formulation of the characterizations of corre-
sponding operators Pf : \p($) —> pa(&) and Pf : A3($) —> /z3(<P) we leave 
to readers. 

The characterization of superposition operators on £{$) is contained in 
Proposition 13 of Sragin [29]. 

T H E O R E M 1. Pf : £($) —> £(&) if and only if there exist a sequence (ak) € £+ 

and numbers 7 > 0 , 5 > 0 and ko € N such that 

M f ( k , t ) \ ) < a k + -rM\t\) 

whenever <f>k(\t\) < S and k > ko. 

Let A and p be solid sequence spaces such that Pf : A —> p. Defining the 
functions /(+) : N x R -» R and /<-) : N x R R by 
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/ ( + ) < M ) " ¿ i l 
t) if t < o 
- t ) if t > 0, 

or, equivalently, by 

(3) / ( + ) ( M ) = f ( k , |i|), f ^ ( k , t ) = f ( k , - \ t \ ) , 

we get two even superposition operators Pf(+) and Py(-> on A. Using that 
for every x = (xk) G A we have 

x = x + + x~~, 

where 2x+ = (Xk + |a?fc|) and 2x~ = (Xk — |zfc|)> by (SI) we may write 

Since A contains together with an element x also the elements X j 0C j X 
and —x~, we have proved the following statement. 

LEMMA. Superposition operator Pf maps A into \i if and only if the even 

superposition operators Pf(+) and Pft.-) map A into ¡ i . 

Now we consider the superposition operator Pf : A($) —• where 
$ = (<j>k) is a sequence of unbounded ^-functions. By Lemma we get Pf(+) : 
\($) —> and Pf(-) : —> To describe these even superposition 
operators, for any <j>k we define a new function (j)^1 by 

<f>k  1 ( t ) = sup{u : 4>k(u) = i}. 
Then <f>k{<t>k 1 ( 0 ) — * a n d since A is solid, for every x = (x^) G A(3>) there 
exists a sequence y = (yfc) G A with |xfc| = 1(|yfc|), and conversely, for 
every y = (yk) G A any sequence x = ( x k ) with |xfc| = 4>^ l(\yk\) belongs to 
A(<£). Since /(+> satisfies (S2), we have 

Pf(x) - P / ( + ) ( x + ) + P/ (-)(a;-) , 

P f M ( x ) = P f ( x + ) + P f { - x ~ ) , P/ (-) (x) = P f ( x ~ ) + P f ( - x + ) . 

because of (3) we get 

P f W : A ( $ ) - Pfi+) I*. 

Similarly we find 

P/(_) : A(<P) <=> P (-) : A /x, 
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where the function f ^ - i : N x R —> R is defined by the equality 

fti-i(k>t) = Mm-<f>k1(\t\))\) (ke N, te R). 

Consequently, we have proved our key result. 

THEOREM 2. If the ip-functions <f>k (k € N) are unbounded, then Pf : A(<?) —• 
/i(ii') if and only if the even superposition operators PA+) and PA-) map 
A into fj,. 

First we apply Theorem 1 to obtain extensions of two known results 
about the superposition operators Pf : £p —• £q. 

PROPOSITION 1. (A) Let 0 < p, q < oo. Then Pf : lp —> £q if and only if 
there exist a sequence (ak) G £+ and numbers 7 > 0, Ô > 0, ko G N such 
that 

(4) | / ( f c , i ) r < a f c + 7|i|" (|i| < 5, k > k0). 

(B) Let 0 < p < 00 and 1 < q < 00. Then Pf : tp —> tq if and only if 
there exist a sequence (bk) 6 and numbers 7 > 0, 6 > 0, ko G N such that 

(5) | / (M) |<&fc + 7l*lp/9 (|i| < S, k > ko). 
P r o o f . For 0 < p,q < 00 let <f>k(t) = tp and ipk(t) = tq. From Theorem 1 
it follows that Pf : iv —> £q or, equivalently, Pf : £($) —> £(&) if and only 
if there exist a sequence (ak) G £+ and numbers 7 > 0, 5 > 0, ko G N such 
that 

| / ( M ) l 9 < a f c + 7|t|P ( | i | P <* , k>k0). 
But this is (4) with instead of <5. 

If q > 1 then (4) yields 

| / ( f c , i ) l < K ) 1 / 9 + 7 1 / 9 | i | p / 9 (\t\<6, k > ko). 
So, denoting bk = (afc)1/9, we get (5). Since the implication (5) Pf : 
£p —y £q is obvious, (B) is also proved. • 

For 1 < p < 00, Proposition 1 was proved by Petranuarat and Kemprasit 
[24, Theorem 2.2] (statement (A) with 1 < q < 00) and by Dedagich and 
Zabreïko [7, Theorem 1] (statement (B)). 

Subsequently we apply Theorem 2 to prove extensions of some known 
characterizations of superposition operators on (or into) £p and on WQ. 

In [7, Theorem 7] the authors assert (without proof) that a superposition 
operator Pf maps £p (1 < p < 00) into if and only if limfc_,00it_,o | f(k, t) \ 
< 00. It seems that this is not true in general. Defining, for example, 
f(k, 0) = 0 and f(k, t) = 1 - ( - l ) f c if t > 0, we clearly have Pf : £p -> 
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but the limit limjfc_00it_+o \h(k, £)| does not exist. We show that the charac-
terization of Pf : Co —• £oo from [7, Theorem 8] is true also for Pf : £p —> ¿oo-
In addition, we consider the case where f(k, •) (k 6 N) are continuous on R. 

PROPOSITION 2. Let 0 < p < oo. Then the following are equivalent: 
(a) Pf : c0 ¿oo] 
(b) Pf:£p 

(c)3{ak)ee+o36>0 3k0eN \f(k,t)\<ak (|t| < 5, k > fc0); 
(d) 35 > 0 3k0 € N suplt|<5)fc>fco |/(fc, i)| < oo. 

-if f(k, •) (k € N) are continuous, then each of (a)-(d) is equivalent to 
(e) 35 > 0 sup|t|<5>fceN |/(fc, i)| < oo. 

P r o o f . (a )=^(b) and (c)4=»(d) are obvious. 
(b)=i-(d). Let x = (xk) € £p. If (d) is not satisfied, then there exist a 

subsequence (y*) of x and indices li < (i € N) such that 

(6) \f(k,yi)\>i (¿€ N). 
Defining 

(7) zk = !Vi 'llk = li 

\ 0 otherwise, 

we obtain a sequence z — (zk) G £p. But Pf(z) £ ¿^ since by (6) we have 

1 / ( 1 ^ ) 1 > i (<eN) . 
(d)=>(a). If x = (xk) € Co, then we can choose an index IQ such that 

|xfe| < 5 (k> lo). Denoting k\ = max{fco,/o}, by (d) we get 

sup \f(k,xk)\ < oo 
fc>fci 

which yields Pf(x) G loo-
Now let f(k, •) be continuous on M for all k 6 N. Then (d)=>(e) since, 

by continuity of f(k, •), 

sup |/(fc,t)| < oo. 
l<fc<fco,|t|<5 

Using that (e)=»(d) is obvious, we have (d)<i=>(e). • 

PROPOSITION 3. Let 0 < p < oo. Then the following are equivalent: 

(a) Pf : c0 -> co; 
(b) Pr.ep -» c0; 
(c) limfc^oo.i-^o \f{k,t)\ = 0; 
(d) 3(ofc) € c j 35 > 0 3k0 € N \f(k, i)| < ak (|t| <5, k> fc0); 
(e) 3k0 E N limt_o supfc>fco \f(k, i)| = 0. 
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If f(k, •) (k € N) are continuous, then each of (a)-(e) is equivalent to 

(f) l im t ^ 0 sup f c | / (M) l = 0. 

P r o o f . For 1 < p < oo the equivalences (a)<i==>-(b)<i=>(c) follow 
from Theorems 7 and 8 of [7]. 

(e)=^(c) is trivial. 
(a)=>(e). Suppose that (a) is satisfied but (e) fails to hold. We can 

choose a sequence (yj) € Co, a number £o > 0 and a sequence (/¿) of indices 
such that 

(8) \f(k,yi)\>s0 (i€ N). 
Then c0 contains the sequence z = (zk) defined as in (7). But P/(z) £ Co 
since by (8) we have 

\f(luzli)\>eo>0 (i€ N). 

Thus (e) must hold. 
Now let 0 < p < 1. It is sufficient to prove that (b) is equivalent, for 

example, to (c). Defining for all n 6 N, </>jt(i) = tp and ipk(t) = t, we may 
write 

Pf • ip • Co Pf : £($) -» Co (&) • 
Therefore, since (b)<^>(c) holds for p = 1 and 4>^(t) = t1/*, by Theorem 
2 we have that Pf : £p —> Co if and only if 

lim |/(fc, ± 1 ^ ) 1 = 0. fc—>oo,t—»0 

But this is equivalent to (c), because ±|i|1/?> —> 0 t —• 0. 
Finally, if all functions fk are continuous and (e) holds, by 

lim sup | / ( M ) | = 0 
t->0fc<fco 

we get (f). Since (f)=i>(e) is obvious, the proof is completed. • 

P R O P O S I T I O N 4 . Let 0 < p < OO. Then Pf : CO £p if and only if 

(a) 3 i > 0 3k0 € N Zk>k0
 suP|t|<«5 l/(*i 0IP < oo-

If f(k, •) is continuous for all k £ N then (a) is equivalent to 

(b)36>0 £fc s u P| t |< ( 5 l / (M)l p < oo. 

P r o o f . It is known that (a) is necessary and sufficient for Pf : CQ —> £p in 
the case 1 < p < oo [7, Theorem 8]. 

For 0 < p < 1 we define (f>k(t) = t and ipk(t) = tp. Then Pf : cq -> 
ip Pf : Co ($) £(&). So by Theorem 2 we conclude that Pf : c0 £p 
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if and only if there exist 6 > 0 and fco G N such that 

sup |/(fc,±|t|)|p<oo, 

which clearly coincides with (a). 
The last part we can prove in the same way as in Proposition 2. • 

PROPOSITION 5. Let 0 < p < oo. Then Pf : 4 o -»• £P if and only if 

Vr/ > 0 V sup |/(fc, t)\p < oo. 
k 1*1^ 

Proof . The case 1 < p < oo is considered in [7, Theorem 8]. For 0 < p < 1 
we apply Theorem 2 in the same way as in Proposition 4. • 

For completeness we formulate also characterizations of superposition 
operators of the remainder two types, connected with the spaces £ a n d Co 
(see [7, Theorem 8]). 

PROPOSITION 6. 1 ) Pf : —• c0 if and only if 

Vr/> 0 limsup |/(fc,t)| = 0. 
k M<r, 

2) Pf : £ oo ~̂  too if and only if 

Viy > 0 sup sup | f(k, i)| < oo. 
fceN|t|<î, 

Chew [3] characterized superposition operators from WQ into £. We con-
sider the operators Pf : (wo)p —» iq with 0 < p, q < oo. 

PROPOSITION 7. Let 0 < p, q < oo. If f(k, •) is continuous for every k € N 
then Pf : (WQ)p —> £q if and only if there exist a number 6 > 0 and sequences 
(cfc)gi0 G i+ and (dk) € £+ such that 

(9) \f(k,t)\q < dk + cr2~r\t\p 

whenever \t\p < 2rS, 2r < k < 2r+1 {r = 0 ,1 ,2 , . . . ) . 

Proof . For 0 < p < oo let 4>k{t) = tt>,ipk(t) = f (k 6 N). Then Pf : 
(WQ)p —> £q we may interpret as Pf : WQ(F) —> £(&). Therefore, since (9) 
with p = q = 1 is necessary and sufficient for Pf : wo —• £ (see [3]), by 
Theorem 2 we have that Pf : (WQ)p —> £q if and only if there exist a number 
Ô > 0 and sequences (cfc)£L0 6 £+ and (dk) G £+ such that 

|/(fc, ±|i|1/p)|9 < dk + cr2~r\t\ (|i| < 2rS, 2r <k < 2 r + 1 , r = 0 ,1 ,2 , . . . ) . 

But this is (9) with ±\t\1/p instead of t. The proof is finished. • 
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AT THE END OF THIS SECTION WE CHARACTERIZE SUPERPOSITION OPERATORS Pf : 
\(<P) —> FOR THE SAME PAIRS OF SEQUENCE SPACES A, n G {¿<x>, co/p,(wo)p} 
AS IN PROPOSITIONS 1 - 7 . 

THEOREM 3. Let 0 < p, q < oo. Then Pf : tp($) -> i q ( i f and only if there 
exist a sequence (a^) G and numbers 7 > 0, S > 0 and ko G N such that 

( M \ f ( k M ) q < o - k + i ( M m p k>ko). 
PROOF. THE STATEMENT FOLLOWS IMMEDIATELY FROM THEOREM 1 SINCE OPERATOR 
Pf : £ P ( $ ) —> R) WE MAY CONSIDER AS OPERATOR Pf : £($p) —* WHERE 
&> = (<%) AND * * = FT*) WITH = ( M T ) ) P AND V£(T) = (V>FC(«))', 
RESPECTIVELY. • 

THEOREM 4. Let 0 < p < 00. If the <p-functions (f>k (k G N) are unbounded 
then: 
(A) The following are equivalent: 

(A) Pf : CO(<P) - ¿ « O F ) ; 
(B) Pf : £p($) —• ¿ooi'P)', 
(C) 3(OFC) € t+o > 0 3k0 G N M\f(k,t)\) < ak <5, k> kQ); 
(D) 35 > 0 3k0 G N suP4,k(\t\)<stk>k0M\/(M)l) < 00. 

I f , in addition, f(k, •) (k G N) are continuous and ip-functions <f>k (k G N) 
are strictly increasing, then each of (A)-(D) is equivalent to 

(E) 36 > 0 sap^h{\t\)<6,k&fM/(M)L) < 00. 

(B) The following are equivalent: 
(A) Pf : co^) - <*(*); 
(b) P / : £ p ( $ ) —> Co (if'); 
(C) LIMT_O,FC-.OO^(L/(FC,±^FC1(|T|))L) = 0; 
(D) 3(OFC) G C+ 3 5 > 0 3k0 G N < M I / ( M ) I ) < ^ (MM) <6, k> kQ); 
(E) 3FCO G N UMT_»OSUPF C>F C OVFC(|/(*!,±^ 1(|I |))|) = 0. 

/ / , in addition, f(k, •) (FC G N) ARE continuous and ip-functions <f>k (k G N) 
are strictly increasing, then each of (A)-(E) is equivalent to 

(F) LIMT_»O8UPFCVFC(|/(FC,±0FC1(|I|))L) = 0. 

(C) Pf : CO(#) ¿P(tf') »/ AND only if 
(A) 35 > 0 3ko G N EF C>F C O S U P ^ ( | T | ) < 5 ( ^ L / ( M ) L ) ^ < 00. 

I f , in addition, f(k, •) (k G N) are continuous and <p-functions <pk {k G N) 
are strictly increasing, then (A) is equivalent to 

(B) 35 > 0 E F C S U P , F C ( , T | ) < I ( ^ ( | / ( M ) | ) ) P < 00. 

PROOF. (A) . THE EQUIVALENCE (C) (D) IS OBVIOUS. 
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Basing on Proposition 2, by Theorem 2 we have that both conditions (a) 
and (b) are true if and only if there exist a sequence (afc) G and numbers 
<5 > 0, k0 G N such that 

M l f i K i ^ W m ) < «fc (1*1 <S,k> k0). 
Since <i>k{4>k1(I*D) = 1*1 then, writing t instead of 1 ( | ) , we get the 
equivalent condition (c). 

If the (¿»-functions <f>k (k G N) are strictly increasing, the functions 
(f)^1 are continuous. Since <f>k and f(k, •) are assumed continuous, we con-
clude that the even functions (k, •) and (k, •) are continuous too. 
Therefore, the equivalence (d) (e) follows by Theorem 2 because of 
corresponding equivalence in Proposition 2. 

Statements (B) and (C) we can prove similarly, using Propositions 3 
and 4, respectively. • 

Analogously, using Propositions 5 and 6, we get 
THEOREM 5. Let 0 < p < oo. If the <p-functions <f>k (k G N) are unbounded 
then: 
(A) Pf : ¿oo($) ¿p(^) if and only if 

Vr ? >0 V sup (V>fc(|/(M)|))P < <*>. 
V ^(1*1)^1 

(B) Pf : ioo{$) c0{$) if and only if 
VT?>0 lim sup ipk(\f(k, i)|) = 0. 

k M\t\)<r, 
(C) Pf : -» £«,(#) if and only if 

V77 > 0 sup sup ipk(\f(k,t)\) < 00. 
fceN 0fc(|t|)<n 

By Proposition 7 we can formulate 
THEOREM 6. Let 0 < p, q < 00. If f(k,-) (k G N) are continuous and 
<p-functions <pk {k G N) are unbounded and strictly increasing then Pf : 
(u>o)p(&) if and only if there exist a number 6 > 0 and sequences 
(ck)kLo € and (dk) G t+ such that 

(M\mt)\))q<dk + c r 2 - r ( M \ t \ ) ) P 

whenever </>fc(|i|))p < 2r6, 2r < k < 2 r + 1 (r = 0,1,2, . . . ) . 

3. Superposition operators on sequence spaces of Maddox and on 
multiplier spaces 
Let p = (pk) and q = (qk) be two bounded sequences of strictly positive 

numbers. The sequence spaces of Maddox ¿OO(P), co(p), ¿(P) and WQ(p) we 
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can consider as the spaces and u>o(<£), where $ = (<f)k) 
with <t>k{t) = tP" (k G N). So, defining & = (V>fc) by ipk(t) = t« (fc € N) and 
taking into account that our (^-functions (f>k (k G N) are unbounded and 
strictly increasing, from Theorems 3-6 we get the following characterizations 
of superposition operators on sequence spaces of Maddox. 

COROLLARY l . P / : £{p) —* £(q) if and only if there exist a sequence (ak) G 
and numbers 7 > 0, 6 > 0 and ko G N such that 

| f(k, t)\"" <ak + 7|ip (\t\?* <6, k> kQ). 

COROLLARY 2. (A) The following are equivalent: 

(a) Pf : co(p) (q); 
(b) Pf : £{p) —* £oo(q)] 
(c) 3(ak) e e+o 36 > 0 3k0 G N \f(k, i)|9fc < ak (|i|*" <6, k> k0); 
(d) 3.5 > 0 3k0 G N s*pw,h<Stk>k0 | f(k, t)\o- < oo. 

If f(k, •) (k G N) are continuous then each of (a)-(d) is equivalent to 

(e) 36 > 0 s\ipWPk<5MN | / (M) | 9 f c < oo. 

(B) The following are equivalent: 

(a) Pf : co(p) —> c0(q); 
(b) Pf : £(p) - co(g); 
(c) limt^o,fc^oo | / ( f c ,± | i | 1 ^ ) | 9 f e = 0; 
(d) 3(afc) G c+ 3<5 > 0 3fc0 € N | f(k, t ) < ak flip* < 5, k > fc0); 
(e) 3k0 G N limt_,o supfc>feo \f(k, ± | i |Vp*) |« = o. 

If f(k, •) (k G N) are continuous then each of (a)-(e) is equivalent to 

(f) l im t _osup f c | / (A ! ) ± | t | 1 /w) l , f c =0. 

(C) Pf : co(p) —> £(q) if and only if 

(a) 36 > 0 3k0 G N £ f e> f c o sup |t |Pfc <5 |/(fc, t) \<"> < oo. 

If f(k,~) (k G N) are continuous then (a) is equivalent to 

(b) 35 > 0 £ f c s u p | t | rk<6 

COROLLARY 3 . ( A ) Pf : £oo(p) i f and only if 

Vrj > 0 V sup | / (M) | 9 f c < oo. 
fc |t|pk<i? 

(B) P/ : ¿00 (p) c0(g) ¿/ and only if 

V77 > 0 lim sup |/(fc,i)|9fc = 0. 
fc |t|pfc<i? 
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(C) Pf : 4o(p) -* too(q) if and only if 

V77 > 0 sup sup \f(k,t)\qk<oo. 
feeN |i|p*<r; 

COROLLARY 4. // /(fc, •) is continuous for every k G N i/ien P/ : wo(p) —> 
¿(g) 2/ and only if there exist a number 5 > 0 and sequences (ck)^_0 £ 
and (dfc) G such that 

i / ( M ) r < 4 + c r 2 - r | i r 
whenever \t\p* < 2r6, 2r < k < 2r+l {r = 0 ,1 ,2 , . . . ) -

Finally, let A, fi be solid sequence spaces and let u = (uk), v = (vk) be 
two sequences such that Uk ^ 0, vk ^ 0 (k G N). We consider multiplier 
spaces 

M(u, A) = {x = (xk) G uj : (u k x k ) G A} = {x = (xk) G u> : (Kx fc|) G A}, 
M(v^) = {x = (xfc) G w : (wfca:fc) G /i} = {x = (x/fc) G w : (|vfcXfc|) G Mi-

Defining for all k G N and t G R + , 

</>*(*) = |ufc|i, i>k(t) = |ffc|i, 
we get two sequences = (</>&) and & = (tpk) of unbounded and strictly 
increasing ^-functions. Since M(u, A) = A($), M(v, /z) = /¿(¿'), from Theo-
rems 3-6 we get the following characterizations of superposition operators 
on multiplier spaces. 

COROLLARY 5. Let 0 < p,q < 00. Pf : M(u,£p) —• M(v,£q) if and only if 
there exist a sequence (ak) G £+ and numbers 7 > 0, 5 > 0 and ko G N such 
that 

Ivkf(k, t)|9 <ak + <y\ukt\" (\ukt\P <6, k> k0). 

COROLLARY 6. Let 0 < p < 00. Then: 

(A) The following are equivalent: 
(a ) P / : A f ( u , c o ) - » M ( t ; > £ 0 o ) ; 
( b J P / i M M p J - i M M o o ) ; 
(c) 3(ofc) G ¿to > 0 3fco G N |ufc/(fc, t)| < afc |ufci| < 6, k > k0)\ 
(d) 3S > 0 3k0 G N suP|Ufci|<ijfc>fco |vfc/(fc, t)| < 00. 

If f(k, •) (A; G N) are continuous then each of (a)-(d) is equivalent to 

(e) 36 > 0 sup|Ufct|<i(feeN \vkf(k, t)| < 00. 

(B) The following are equivalent: 

(a) Pf : M(u, Co) ->• M(v,c0); 
(b) Pf : M(u,ep) -* M{v, c0); 
(c) limt_>o,fc-»oo \vkf(k,±\ukt\)\ = 0; 
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(d) 3(o f c) € 4 3<5 > 0 3k0 € N | v f c / ( M ) | < *k ( M l <S, k> k0)\ 

(e) 3k0 6 N lim t_0 supfc>fco \vkf(k, ±|ufci|)| = 0. 

If f(k, •) (k G N) are continuous then each of (a)-(e) is equivalent to 

(f) limt-,0supfc \vkf{k,±\ukt\)\ = 0. 

(C) Pf : M(u, co) —> M(v,£p) if and only if 
(a) 36 > 0 3k0 e N J2k>k0 suV\ukt\<s I v k f ( k , t)| < cx>. 

If f(k>") (k ^ N) are continuous then (a) is equivalent to 
(b) 35 > 0 £ f c s u p i ^ i ^ O v k f ( k , t)| < oo. 

COROLLARY 7. Let 0 < p < oo. Then: 
(A) Pf : M(u,£0o) —» M(v,£p) if and only if 

Vr?> 0 ^ SUP \vkf{k,t)\p<oo. 
k l-Ltfc*|<-i7 

(B) Pf : M(u,£oo) —> M(v,co) if and only if 

V77 > 0 lim sup \vkf(k,t)\ = 0. 
k |ufct|<»i 

(C) Pf : M(u,£oo) —> M{v,ioo) if and only if 

V77 > 0 sup sup \vkf(k, i)| < 00. 
fcGN |ufci|<rj 

COROLLARY 8. Let 0 < p,q < 00. If f(k, •) is continuous for every k € N 
then Pf : M(u, (wo)p) M(v,£g) if and only if there exist a number S > 0 
and sequences (ck)%L0 E £+ and (dk) € £+ such that 

\vkf(k, t)\q <dk + cr2~r\ukt\p 

whenever \ukt\p < 2rS, T < k < 2 r + 1 (r = 0 , 1 , 2 , . . .)• 

Suantai [30] described superposition operators Pf : M(u,£) —> £ for 
Uk(t) = tr and Pf : M(u, 4o) i for uk(t) = t~r (with r > 0) by additional 
assumption that the functions f(k, •) (k 6 N) are bounded on every bounded 
subset of R. 
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