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SUPERPOSITION OPERATORS
ON SEQUENCE SPACES DEFINED BY ¢-FUNCTIONS

Abstract. Let A and u be solid sequence spaces. For a sequence of ¢-functions & =
(o) let A(D) = {z = (zk) : ($x(|zx[)) € A}. Provided an another sequence of ¢-functions
¥ = (1), we present a method for the characterization of superposition operators Py :
A(@) — p(¥) by the assumption that acting conditions for Py : A — p are known. As
applications we subscribe superposition operators on sequence spaces of Maddox and on
multiplier spaces.

1. Introduction

Let R be the set of all real numbers, R* = [0,00) and N = {1,2,...}. Let
w be the vector space of all real sequences z = (zx) = (zk)xen. By the term
sequence space, we shall mean any linear subspace of w. A sequence space (or
a set of sequences) A is called solid if (zx) € A and |yx| < |zk| (k € N) yield
(yx) € A. Well known examples of solid sequence spaces are the space £, of
all bounded sequences and the space ¢y of all convergent to zero sequences,
also the spaces

USS {"3= (zk) G‘U5Z|$k|p <oo}
k
and
1 n
(wo)p = {:z: = (zk) Ew: lirlr,n;;: Z |2k [P = 0}
k=1

for 0 < p < oo. The sequences from (wg), are called strongly convergent
(with index p) to zero. For p = 1 we write £ and wy instead of ¢; and (wp)1,
respectively.
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Let p = (px) be a sequence of strictly positive numbers. As the general-
izations of spaces ¢, Co, £p and (wg), we consider the following solid sets
of sequences (cf., for example, [17]):

€ (p) = {z = (&) € w : sup Jzx[** < o0},
k

co(p) = {z = () € w: lim |zx[P* =0},

£(p) = {m = (zk) Ew: Z |zk|PF < oo},
k

wo(p) = {x = (=) € w: lim % 3 feul? = o}.

k=1

It is known that these sets are linear if the sequence p = (pi) is bounded,
they are called also the sequence spaces of Maddox (see, for example, [11]).
We note that sequence spaces of type £(p) were introduced much earlier by
Orlicz [21].

These and some other generalizations of classical sequence spaces may be
given by means of moduli and Orlicz functions or, more generally, by means
of p-functions. Recall that a function ¢ : Rt — R™ is called a modulus if

() $(t) =0 &t =0,
(i) Bt +u) < B(t) + B(w) (t,u20),
(iii) ¢ is nondecreasing,
(iv) ¢ is continuous.
In this definition, because of (ii), we may replace (iv) with
(iv') ¢ is continuous from the right at 0.

We remark also that the moduli are the same as the moduli of continuity:
a function ¢ : R* — R* is a modulus of continuity of a continuous function
if and only if the conditions (i)—(iii) and (iv’) are satisfied (see [8], p. 866).

If in the definition of a modulus the condition (ii) is replaced by the
condition of convexity
(v) ¢lat + (1 - a)u) < ad(t) + (1 - a)p(u) (t,u20, 0<a <),

¢ is called an Orlicz function.
Provided a modulus ¢, Ruckle [27] defined and studied the space

o6) = {z=(z) €w: 3" dllzul) < 00} = fo = (a) € w: ($(Jz])) € ¢}.
k

For an Orlicz function ¢, the Orlicz sequence space is determined by (see,
[16], p. 137)
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£3¢) = {m =(zx) Ew:3p>0 Z¢(p|a:k|) < oo}.
e
If & = (¢x) is a sequence of Orlicz functions, the space

@) ={o=(m)ew:3p>0 Y dulplarl) <o}
k

is called a modular or Musielak-Orlicz sequence space (see [20], p. 173).
Together with £3(¢) and ¢3(&) there are examined also the sets

(@) ={z=(zx) Ew:Vp>0 > ¢(pler|]) <0},
k

F@)={z=(m) €w:¥p>0 I gulolaul) < o},
k

In the mathematical literature there exist various modifications of these
definitions, where £ is replaced by an another solid sequence space (see, for
example, [2, 6, 9, 10, 12-15, 18, 19, 22, 23, 28]). To investigate all such
spaces from a more general point of view, we use the following notion (cf.
[20], p. 4).

DEFINITION 1. A function ¢ : Rt — R* is called a ¢-function if the condi-
tions (i), (iii) and (iv) are satisfied.

Let @ = (¢«) be a sequence of p-functions and let &(z) = (¢ (|z«|)). For
a solid sequence space A we define the solid sets

M(P) = {z = (zx) ew: B(pz) € A} (p>0),

A () = {z = (zx) ew:3p>0 (pz) € A} = | J M(9),

A(®) = {z = (zx) Ew:¥p >0 P(pz) € A} = [} \(P).
>0

We write A\(®) instead of A\1(®).

For example, defining » = maz{1,sup px}, it is easy to see that the
sequence spaces of Maddox €. (p), co(p), £(p) and wo(p) we may consider
as the spaces £oo(M), co(M), £€,(M) and (wo)-(M), respectively, where
M = (ux) is the sequence of moduli defined by p(t) = tP+/7.

For an arbitrary sequence of p-functions & = (¢x) the sets \°(®), A3 (P)
and A\Y(®) are different in general, and

(1) A (B) € NP (P) C A(D).

At the same time, the sets A?(®) (p > 0) may not be linear, i.e., they
may not be sequence spaces. However, a routine verification shows that,
provided A be a solid sequence space, the sets A*(®), A3(®) and \Y(®) are
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solid sequence spaces whenever all ¢ satisfy either (ii) or (v). Moreover,
the equalities

(2) X(8) = X (8) = A(9),

hold if the sequence of p-functions & satisfies so-called uniform Ag-condition:
there exists a constant K > 0 such that ¢x(2t) < K¢r(t) (k€ N, t > 0)
(cf. [16], p. 167).

In particular, for a solid sequence space ), the sets A\?($), A3(&) and
A¥(®) are sequence spaces whenever ¢, (k € N) are either moduli or Orlicz
functions. Since uniform Az-condition holds (with K = 2) for every sequence
of moduli ¢ = (¢«), we also conclude that (2) is true whenever all ¢ are
either moduli or Orlicz functions such that & satisfies uniform As-condition.
The exact conditions for the equalities (2) in the case A = ¢ are given by
Sragin [29 , Proposition 6].

Let X and u be two sets of sequences and let f : NxR — R be a function
such that

(S1) f(k,0)=0 (k € N).
A superposition operator Py : A — p is defined by
Pp(z) = (f(k,z)) € . (z = (zx) € A).

We say that a superposition operator Py is even if the functions f(k,-)
(k € N) are even, i. e. f(k,—t) = f(k,t) (k € N, t € R) or, equivalently,

(S2) f(k,t) = f(k[t)) (keN, teR).

It should be noted that an even superposition operator Py : A — pu is
characterized by

Pi(—z) = Ps(z) (z€X)

whenever A and p contain the space ¢ of all finite sequences, i. e. of sequences
having finitely many non-zero elements. For example, the spaces £, co, £p,
(wo), and also £, (p), co(p), £(p), wo(p) contain ¢.

Superposition operators on sequence spaces are not studied so intensiv as
on spaces of functions (see, for example, [1]). The complete investigation of
superposition operators on sequence spaces £, ¢o and £f for 1 < p < 0o was
given by Dedagich and Zabreiko [7] (see also {4, 24]). The acting conditions
for Py : wp — £ are proved in [3] by the assumption that the functions
f(k,-) are continuous. The results of Sragin [29] contain characterizations of
superposition operators on £°($) and £7(®), where & = (¢4) is a sequence
of p-functions. Some authors [5, 25, 26, 30, 31] have been studied continuity
and boundedness of superposition operators in various sequence spaces.
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Throughout this paper let A and p be solid sequence spaces, and let
& = (¢r) and ¥ = (yx) be sequences of p-functions such that A(®) and
w(¥) are sequence spaces. It is not difficult to see that superposition op-
erators Py : A(®) — u(¥) play a fundamental role by the investigation of
superposition operators P; : A($) — u°(¥) and Py : A3(®) — p3(¥).
We present a method which permits to characterize superposition operators
Py : \(9) — u(¥) by the assumption that the p-functions ¢; are unbounded
and the acting conditions for Ps : A — p are known. This method of reduc-
tion bases on the possibility to describe a given superposition operator by
means of two even superposition operators. As applications we extend the
characterizations of Py : A — p with A = £, or p = £, from [7, 24] and of
P; : wg — £ from [3] to the case 0 < p < oo and describe superposition
operators on sequence spaces of Maddox and on multiplier spaces.

2. Superposition operators from A\(®) into u(¥)
For a given sequence space A let

M={r=(zx)€er:zx >0 (keN)}

The characterizations of superposition operators Py : A?(®) — u?(¥)
and P; : A3(®) — u3(¥) essentially reduce to the examination of operators
Ps : X(®) — u(¥). Indeed, in view of \3(®) = | >0 AP(P) it is clear that
Py : XA3(®) — 4 (P) if and only if for every p > 0 there exists o > 0 such that
P; : A?($) — p°(¥). But a superposition operator Py : A\($) — u®(¥) we
may interpret as superposition operator Py : A(®p) — u(¥o) with respect
the ¢-function sequences $p = (¢7) and Yo = (yg) with ¢4 (t) = dr(pt)
and ¥7 (t) = ¥x(ot), respectively.

Therefore, in the sequel we consider only superposition operators of the
type P : A($) — u(¥), the formulation of the characterizations of corre-
sponding operators Py : AP(®) — p°(¥) and Py : A3(®) — p?(¥) we leave
to readers.

The characterization of superposition operators on £(®) is contained in
Proposition 13 of Sragin [29].

THEOREM 1. Py : £(®) — £(¥) if and only if there ezist a sequence (ay) € £+
and numbers v > 0, 6 > 0 and kg € N such that

Ye(|f(k, 1)) < ak + v (]t])
whenever ¢ (|t]) < & and k > ko.

Let A and u be solid sequence spaces such that Py : A — p. Defining the
functions f(H) :NxR - R and f&) : Nx R — R by
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_f flk,—-t) ift<O _ _ [ fkt) ift<O
fOUk,t) = {f(k,t) if t >0, IOk 1) = {f(k,—t) ift>0,
or, equivalently, by
(3) FOU(R8) = fk, 18], O Kk,1) = F(k, = It]),

we get two even superposition operators Pf(+) and Pf(_) on A. Using that
for every z = (zx) € A we have

z=x" +z7,
where 22% = (z + |zk|) and 2z~ = (zx — |zk]), by (S1) we may write
Pf(z) = Py (2¥) + Ppoy (z7),
Py (@) = Py(a*) + Py(=z"), Pyor() = Pya™) + Py(~a*).

Since ) contains together with an element z also the elements z+, z~, —z*
and —z~, we have proved the following statement.

LEMMA. Superposition operator Py maps X into p if and only if the even
superposition operators Ps+) and Py map A into p.

Now we consider the superposition operator Py : A($) — u(¥), where
@ = (¢) is a sequence of unbounded ¢-functions. By Lemma we get P+, :
MN@) — p(¥) and Py~ : AM(@) — w(¥). To describe these even superposition
operators, for any ¢, we define a new function ¢,:1 by
¢ (1) = sup{u : de(u) = t}.
Then ¢ (¢ '(t)) = t and since A is solid, for every = = (zx) € A\(®) there
exists a sequence y = (yx) € A with |zx| = &5 (|yx|), and conversely, for

every y = (yx) € A any sequence = = (xx) with |zx| = ¢;'(Jyx|) belongs to
A(®). Since f(+) satisfies (S2), we have

Py (z) € p(®) = @r(If P (k, |ze)))) € n,
and so Pyc+) maps A(®) into u(¥) if and only if
@e(F ki (D)D) € 1 () € X)-
Therefore, defining the function f!(p;)_ 1 NxR—=Rby

fyg-s (k1) = du(If (b, &5 (D)) (k €N, teR),
because of (3) we get

Pf(+) : )\(45) — ,U.(W) = Pf(+) . A — .
e
Similarly we find
Proy 1 XN@) - w(¥) <= Pf(_) tA - p,
Go-

-1
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where the function f!(p;)_l :N xR — R is defined by the equality
fooa k1) = ¥l f (k=65 (E))) (KEN, tER),

Consequently, we have proved our key result.

THEOREM 2. If the p-functions ¢ (k € N) are unbounded, then Py : \($) —
w(¥) if and only if the even superposition operators Pf(+) and Pf(_) map
—1 -1
A into p. o o
First we apply Theorem 1 to obtain extensions of two known results
about the superposition operators Py : £, — {,.

PROPOSITION 1. (A) Let 0 < p,q < oco. Then Py : £, — £, if and only if
there ezist a sequence (ax) € £* and numbers vy > 0, § > 0, ko € N such
that

4) |F(k, )7 < ax +[t° (|¢] <6, k = ko).

(B) Let 0 < p < 00 and 1 < q < 0o. Then Py : €, — {4 if and only if
there exist a sequence (bx) € £} and numbersy >0, § > 0, ko € N such that

(5) £ (k, )] < b +[tP/T (It < 6, K 2 ko).

Proof. For 0 < p,q < 0o let ¢x(t) = tP and ¢, (t) = t9. From Theorem 1
it follows that Py : £, — £, or, equivalently, Py : £($) — £(¥) if and only
if there exist a sequence (ax) € £* and numbers v > 0, § > 0, ko € N such
that

|7 (k)7 < ax +tf (tP <6, k = ko).
But this is (4) with §1/? instead of 4.
If ¢ > 1 then (4) yields

£ (ks )] < ()9 + M (18] < 6, & 2 ko).

So, denoting bx = (ax)'/9, we get (5). Since the implication (5) => P; :
£, — £, is obvious, (B) is also proved. m

For 1 < p < oo, Proposition 1 was proved by Petranuarat and Kemprasit
[24, Theorem 2.2] (statement (A) with 1 < ¢ < o0) and by Dedagich and
Zabreiko [7, Theorem 1] (statement (B)).

Subsequently we apply Theorem 2 to prove extensions of some known
characterizations of superposition operators on (or into) £, and on wy.

In [7, Theorem 7] the authors assert (without proof) that a superposition
operator Py maps £, (1 < p < 00) into £y, if and only if limg_, 0, ¢—0 | f (K, t)]
< 00. It seems that this is not true in general. Defining, for example,
f(k,0) = 0 and f(k,t) =1 — (=1)* if t > 0, we clearly have P; : £, — £
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but the limit limg_, o0 t—0 |h(k, t)| does not exist. We show that the charac-
terization of Py : cg — £ from [7, Theorem 8] is true also for Py : £, — £.
In addition, we consider the case where f(k, ) (k € N) are continuous on R.

PROPOSITION 2. Let 0 < p < 0o. Then the following are equivalent:
(a) Pr:co — Lo
(b) Py : €y — Loo;
(c) Iag) €€, 36 >03Iko e N |f(k,t)| <ar (Jt| <6, k> ko);
(d) 3>0 Elko eN Supltlss’kao |f(k, t)l < 00.

If f(k,-) (k € N) are continuous, then each of (a)—(d) is equivalent to
(€) 36 >0 supjycspen |f(k,t)| <oo.
Proof. (a)==>(b) and (c)<=>(d) are obvious.

(b)==(d). Let = (zx) € £,. If (d) is not satisfied, then there exist a
subsequence (y;) of z and indices l;, I; < l;41 (2 € N) such that

(6) |f(lw)l =24 (PeN).
Defining

[y ifk=l (ieN)
Y %= {0 otherwise,

we obtain a sequence z = (2x) € £,. But Pg(z) ¢ £ since by (6) we have
fla)lzi  GeN).
(d)=>(a). If z = (zx) € co, then we can choose an index Il such that
|zl <8 (k> lp). Denoting ki = max{ko,lo}, by (d) we get

sup |f(k,zk)| < 00
E>ky

which yields P¢(z) € £w.
Now let f(k,-) be continuous on R for all £ € N. Then (d)=(e) since,
by continuity of f(k, ),

sup  |f(k,1)] < oo.
1<k<ko,|t| <5

Using that (e)==>(d) is obvious, we have (d)<=>(e). »
PROPOSITION 3. Let 0 < p < oo. Then the following are equivalent:
(a) P :co — co;
(b) Pf : ep — Cg;
(6) HMtksoo, 0 | £k, )] = 0
(d) 3(ak) €cF 36 >0 3ko €N |f(k,t)| < ax (It| <98, k> ko);
(e) Jko € N limy—o SUPk> ko |f(k,t)| = 0.
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If f(k,-) (k € N) are continuous, then each of (a)—(e) is equivalent to
(f) im0 supy | f(k,t)| = 0.

Proof. For 1 < p < oo the equivalences (a)<=(b)<=(c) <=(d) follow
from Theorems 7 and 8 of [7].

(e)=>(c) is trivial.

(a)=(e). Suppose that (a) is satisfied but (e) fails to hold. We can
choose a sequence (y;) € co, a number ¢ > 0 and a sequence (I;) of indices
such that

(8) |, v)l 20 (i€N).

Then cy contains the sequence z = (2i) defined as in (7). But P¢(2) ¢ co
since by (8) we have

If(li,2.) >€0>0 (i €N).

Thus (e) must hold.

Now let 0 < p < 1. It is sufficient to prove that (b) is equivalent, for
example, to (c). Defining for all n € N, ¢ (t) = t? and ¥ (t) = t, we may
write

Pf :Zp — g Pf :8(45) — Co(!p).
Therefore, since (b)<=>(c) holds for p = 1 and ¢; ' (t) = t!/?, by Theorem
2 we have that Py : £, — co if and only if

i 1/P\[ =
_im 106, £12/7)| =0.

But this is equivalent to (c), because £|t|'/? —» 0 <= t — 0.
Finally, if all functions fi are continuous and (e) holds, by
lim sup |f(k,t)|=0
t—0 k<ko
we get (f). Since (f)==(e) is obvious, the proof is completed. =
PROPOSITION 4. Let 0 < p < co. Then Py : co — £, if and only if
(a) 36 >03kp e N Ekao supyy<s |f (K, t)|P < oo
If f(k,-) is continuous for all k € N then (a) is equivalent to
(b) 36 >0 3, supjy<s | f(k, )P < oco.

Proof. It is known that (a) is necessary and sufficient for Py : ¢cg — £, in
the case 1 < p < oo [7, Theorem 8.

For 0 < p < 1 we define ¢x(t) = t and 9x(t) = tP. Then Py : ¢cg —
£, <= Py :co(P) — £(¥). So by Theorem 2 we conclude that Py : co — ¢,
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if and only if there exist § > 0 and ko € N such that
> sup | (k, £)f" < oo,

k>ko ItIS

which clearly coincides with (a).
The last part we can prove in the same way as in Proposition 2. =

PROPOSITION 5. Let 0 < p < 0o. Then Py : £, — £, if and only if

Vn >0 Z sup |f(k,t)[? < oo.
L |tI<n

Proof. The case 1 < p < oo is considered in {7, Theorem 8]. For 0 < p < 1
we apply Theorem 2 in the same way as in Proposition 4. m

For completeness we formulate also characterizations of superposition
operators of the remainder two types, connected with the spaces £, and cg
(see [7, Theorem 8§}).

PROPOSITION 6. 1) Py : £ — co if and only if
Vn >0 lim sup |f(k,t)| =0.
ko t<y

2) Py : Lo — Lo if and only if

Vn >0 sup sup |f(k,t)] < oco.
keN |t|<n

Chew (3] characterized superposition operators from wg into £. We con-
sider the operators Py : (wg)p — €4 with 0 < p,q < c0.

PROPOSITION 7. Let 0 < p,q < oo. If f(k,-) is continuous for every k € N
then Py : (wo)p — €4 if and only if there exist a number § > 0 and sequences
(ck)Po € €1 and (di) € €1 such that

(9) |f (K, 0)I% < d + 277t
whenever [t|P < 276, 2" <k < 27! (r=0,1,2,...).

Proof. For 0 < p < oo let ¢(t) = tP,¢(t) = t7 (k € N). Then Py :
(wo)p — €4 we may interpret as Py : wo(F) — €(¥). Therefore, since (9)
with p = ¢ = 1 is necessary and sufficient for Py : wy — £ (see [3]), by
Theorem 2 we have that Py : (wg), — £4 if and only if there exist a number
8 > 0 and sequences (cx)32, € £ and (di) € £+ such that

|F(k, £[t|YP) < dip 4+ ¢, 27T|t] (Jt] <276, 2" <k <27t r=0,1,2,...).
But this is (9) with £|t|'/? instead of t. The proof is finished. m
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At the end of this section we characterize superposition operators Py :
A(®) — p(¥) for the same pairs of sequence spaces A, p € {£so, c0,¢p,(wo)p}
as in Propositions 1-7.

THEOREM 3. Let 0 < p,q < oo. Then Py : £,(®) — £4(¥) if and only if there
erist a sequence (ai) € £+ and numbers vy > 0, § > 0 and ko € N such that

(e(IF (K, )))? < ar + (S (ED)? (Px(lt]) <6, k 2 ko).
Proof. The statement follows immediately from Theorem 1 since operator
Py : £,($) — £,(¥) we may consider as operator Py : £($P) — £(¥7), where
&P = (¢%) and 7 = (¢3) with ¢f(t) = (8x(£))” and ${(t) = (dx(1))?,

respectively. m

THEOREM 4. Let 0 < p < 0o. If the p-functions ¢ (k € N) are unbounded
then:

(A) The following are equivalent:
(a) P : co(®) — Loo(¥);
(b) Py : £5(D) — £oo(¥);
(c) Iak) € €%, 36 > 0 3ko € N (| f(k,2)]) < ak (x(|t]) < 6, k> ko);
(d) 36 >0 3ko € N supy, (1) <s,k2k0 Vi (| f (K, t)]) < 00.

If, in addition, f(k,-) (k € N) are continuous and ¢-functions ¢, (k € N)
are strictly increasing, then each of (a)—(d) is equivalent to

(e) 36 >0 supg, (i)<s,ken Pr(|f(k,t)]) < oo.
(B) The following are equivalent:

(a) Py : co(®) — co(¥);

(b) Py : £5(P) — co(¥);

(¢) lime—0,k—o0 Yk (| (K, 265 1 ([E))]) = O;
(d) I(ax) € cF 36 > 0 Tk € N ¢ (| £ (K, t)]) < a (¢x(lt]) < 8, k > ko);

(€) 3ko € N limeosupyy i, Yr(If (k, 2 ' (1£))]) = 0.
If, in addition, f(k,-) (k € N) are continuous and @-functions ¢, (k € N)
are strictly increasing, then each of (a)—(e) is equivalent to
(f) limg—o supy i (|f (k, 65 ([¢))]) = 0.
(C) Py : co(P) — £,(¥) if and only if
(a) 36 >03ko € N 37,5, supy, (eny<s (W (|F (K, 1)]))P < oo
If, in addition, f(k,-) (k € N) are continuous and @-functions ¢, (k € N)

are strictly increasing, then (a) is equivalent to

(b) 38>0 3, supy, en<s(¥r(|f(k,2)]))P < co.
Proof. (A). The equivalence (c) <= (d) is obvious.
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Basing on Proposition 2, by Theorem 2 we have that both conditions (a)
and (b) are true if and only if there exist a sequence (ax) € £, and numbers
4 >0, ko € N such that

i(IF (R, 8 (D)) S ak (181 <6, k> ko).
Since ¢x(¢; (|t])) = |t| then, writing ¢ instead of £¢;*(|t]), we get the
equivalent condition (c).

If the p-functions ¢x (k € N) are strictly increasing, the functions
¢,:1 are continuous. Since ¢ and f(k,-) are assumed continuous, we con-
clude that the even functions f (k -) and (;)_1 (k, -) are continuous too.
Therefore, the equivalence (d) <=> (e) follows by Theorem 2 because of
corresponding equivalence in Proposition 2.

Statements (B) and (C) we can prove similarly, using Propositions 3
and 4, respectively. m

Analogously, using Propositions 5 and 6, we get

THEOREM 5. Let 0 < p < oo. If the p-functions ¢r (k € N) are unbounded
then:

(A) Py : £oo(P) — £,(¥) if and only if
>0 Y up (k1 (K, )]))? < oo.

r ex(lth<
(B) Py : £oo(P) — co(¥) if and only if
Vn>0 lim sup ok(|f(k,t)]) = 0.
k- de(lth)<n
(C) Py : £oo (D) — £oo(P) if and only if
Vn>0 sup sup oi(|f(k,t)]) < co.
keN ¢ (It])<n
By Proposition 7 we can formulate
THEOREM 6. Let 0 < p,q < oo. If f(k,:) (k € N) are continuous and
p-functions ¢, (k € N) are unbounded and strictly increasing then Py :

(w0)p(®) — £4(¥) if and only if there exist a number 6 > 0 and sequences
(ck)2 o € £+ and (di) € £F such that

We(1f(*, )D)T < di + 277 (i ([2]))P
whenever i (Jt]))P <276, 2r <k <2l (r=0,1,2,...).

3. Superposition operators on sequence spaces of Maddox and on
multiplier spaces
Let p = (px) and ¢ = (gx) be two bounded sequences of strictly positive
numbers. The sequence spaces of Maddox £.(p), co(p), £(p) and wo(p) we
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can consider as the spaces oo (D), co(P), £(P) and wo(P), where & = (i)
with ¢ (t) = tP* (k € N). So, defining & = (¢) by ¥« (t) = t% (k € N) and
taking into account that our ¢-functions ¢, (k € N) are unbounded and
strictly increasing, from Theorems 3-6 we get the following characterizations
of superposition operators on sequence spaces of Maddox.

COROLLARY 1. Py : £(p) — £(q) if and only if there ezist a sequence (ax) €
¢+ and numbers v > 0, § > 0 and ko € N such that

|f (K, t)|* < ar +[t[P* ([E[P* <6, k > ko).
COROLLARY 2. (A) The following are equivalent:

(a) Py : co(p) = £o(q);

(b) Py : £(p) — £oo(9);

(c) 3(ax) €€L,36>03ko €N |f(K,t)|% <a  (Jt[P* <6, k> ko);
(d) 36 >0 3ko €N SUP|4pk <6 k>ko | (K5 )| < 00.

If f(k,-) (k € N) are continuous then each of (a)—(d) is equivalent to
(e) 36 >0  supjyre <o ken |f (K, t)|% < oco.
(B) The following are equivalent:

(a) Py : co(p) — co(q);

(b) Py : £(p) — co(q);

(C) limt—bo,k—voo |f(k, :‘Eltll/p“)IQk = 0;

(d) Har) € cf >0 ko €N |f(k,)|* <ar (8% <8, k> ko);
(e) ko € N lim,_,o SUPk> ko |f(k, :tltll/Pk)lfhc =0.

If f(k,-) (k € N) are continuous then each of (a)—(e) is equivalent to
(£) lim;_o supy, | f(k, [t|'/Px)|% = 0.

(C) Py : co(p) — £(g) if and only if
(a) 36 >03ko € N 37,5 suppee<s | f(k,2)|%* < 0.

If f(k,-) (k € N) are continuous then (a) is equivalent to
(by36>0 >, supjypex <5 |.f (K, £)|%* < oo.

COROLLARY 3. (A) Py : £x(p) — £(q) if and only if

V>0 Z sup |f(k,t)|?* < oo.

k |tPE<y

(B) Py : £o(p) — co(q) if and only if

Vn>0 lim sup |f(k,t)|? =0.
K JtlPk <n



172 E. Kolk

(C) Py : oo(p) — Loo(q) if and only if

Vn>0 sup sup |f(k,t)|? < oo.
keN [t|Pk <n

COROLLARY 4. If f(k,-) is continuous for every k € N then Py : wo(p) —

£(q) if and only if there exist a number § > 0 and sequences (cx)2, € £+
and (di) € £+ such that

£ (k, )| < die + 2778
whenever [t[Px < 274, 2" <k < 2™t (r=0,1,2,...).
Finally, let A, 1 be solid sequence spaces and let u = (ug), v = (vg) be

two sequences such that ur # 0, v # 0 (k € N). We consider multiplier
spaces

M(u, ) = {z = (zr) € w: (ukzk) € A} = {z = (zk) € w: (Jukzk|) € A},
M(v,p) = {z = (z) € w: (vezx) € p} = {z = (zx) € w: (lvrzk|) € p}.
Defining for all k € N and t € R,

S (t) = |uklt, Pr(t) = |vilt,
we get two sequences @ = (¢) and ¥ = (¢x) of unbounded and strictly
increasing o-functions. Since M(u, A) = A(®), M (v, u) = p(¥), from Theo-
rems 3-6 we get the following characterizations of superposition operators
on multiplier spaces.

COROLLARY 5. Let 0 < p,q < 0o0. Py : M(u,£,) — M(v,4,) if and only if
there erist a sequence (ax) € £+ and numbers ¥ > 0, § > 0 and kg € N such
that

luk f(k, )7 < ag + y|uktP  (|uktP <6, k > ko).

COROLLARY 6. Let 0 < p < 0o. Then:
(A) The following are equivalent:

(a) Py : M(u,co) = M(v,2);

(b) Ps: M(u, £p) = M(v, £e);

(c) El(ak) € f;’o 36 >0 3kg e N |’ka(k,t)| <ar |uxt| <98, k> ko)

(d) 36 >0 ak() S N Suplukt|551k2k0 I'ka(k,t)' < 00.
If f(k,-) (k € N) are continuous then each of (a)-(d) is equivalent to

(e) 36 >0  supjy,sj<sken [Vkf(k, t)]| < oco.
(B) The following are equivalent:

(a) Pf : M(uv CO) - M(’U, CO);

(b) Py : M(u, £p) — M(v,co);

() limy—0 k—oo Uk f(k, £|ukt])] = O;
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(d) El(ak) € Cg' 36 >0 3k €N |’ka(k,t)| < ag (|ukt| <4, k> ko);
(e) ko € N limy_,osupg>, vk f(k, £|uxt|)] = 0.

If f(k,-) (k €N) are continuous then each of (a)-(e) is equivalent to
(f) Yim;—,o supy, vk f(k, £]uxt|)| = 0.

(C) Py : M(u,co) = M(v,4,) if and only if
(8) 36 >03ko €N 37,54 SUPju,1<s [V f(K, t)] < oo

If f(k,-) (k € N) are continuous then (a) is equivalent to

(b)I6>0 >, SuPlukt|ga(|”kf(k7t)| < 00.

COROLLARY 7. Let 0 < p < 00. Then:
(A) Py : M(u,€s) = M(v,4,) if and only if

.Vn >0 Z sup |vef(k,t)|P < o0.

& lukt|<n
(B) Py : M(u,£s) — M(v, co) if and only if

Vn>0 lim sup |vef(k,t)|=0.
k Jugt|<n

(C) Py : M(u,le0) = M(v,Lx) if and only if

Vn>0 sup sup |ugf(k,t)| < oo.
k€N |uxt|<n
COROLLARY 8. Let 0 < p,q < o0. If f(k,-) is continuous for every k € N
then Py : M(u, (wo)p) — M(v,£,) if and only if there exist a number § > 0
and sequences (ck)5>, € €1 and (di) € €t such that

lve f(k, t)|9 < di + ¢ 27" |ugt|?
whenever jugtlP <274, 21 <k <2t (r=0,1,2,...).

Suantai [30] described superposition operators Py : M(u,f) — £ for
ug(t) = t" and Py : M(u,l) — £ for ug(t) = t~" (with r > 0) by additional
assumption that the functions f(k, ) (k € N) are bounded on every bounded
subset of R.
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