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INTERPOLATED SUBSPACES OF EXPONENTIAL
VECTORS OF THE UNBOUNDED OPERATORS
IN BANACH SPACES

Abstract. It is shown that the spectral subspaces of the unbounded operators in Ba-
nach spaces and also their integer degrees can be described with help of interpolation. The
spectral subspaces of operators are described on the basis of abstract Bernstein inequality.
The results are applied to research of the root subspaces of regular elliptic operators in a
bounded domains.

1. The given work is devoted to the problem of construction of the spec-
tral decomposition for the unbounded linear operators in Banach spaces.
The difficulties in constructing such decomposition with help of the spectral
measure are known [6]. We use for this purpose the Lions-Peetre interpola-
tion method [11].

For the given unbounded operator A in Banach space X the element z
in its domain C! C X is named as a vector of the exponential type v > 0 if
z satisfies the inequality

1) | Akz|| < vFe,  kezy,

where ¢ > 0 is some constant independent from k [9]. Subspace of such
vectors is further denoted by £%(C'). Such subspace in case of the operator
A with a discrete spectrum (see [8]) is equal to the linear hull of its root
vectors corresponding to eigenvalues in the circle of radius v. In [1] it is
shown that in case of the operators with a separated spectrum entered in
[6] the union E£(C!) := U, £%(C?!) is precisely equal to the set of all spectral
subspaces. In case of the operator of differentiation A = D in space L,(R)
the subspace £ (C!) consists of the restrictions on R of the entire analytic
functions of the exponential type v and the condition (1) is reduced to the
classical Bernstein inequality.
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Thus in Banach spaces with help of the vectors of exponential type which
are determined by the abstract Bernstein inequality (1) it is possible to
describe the spectral subspaces of unbounded operators. In the given work
the technique of research is based essentially on properties of the vectors of
exponential type of the unbounded operators established in [8], [1].

We describe the scales of spaces of the exponential type vectors of the
unbounded operator and also their integer degrees determined on interme-
diate spaces (Theorem 1). We show existence of decomposition of the given
space in a series of spectral subspaces (Theorem 2). The received results are
applied to the description of spectral subspaces of integer degrees of the reg-
ular elliptic operators given in bounded domains of space R" (Theorem 3).
In case of the elliptic operators with constant coefficients the existence of
analytical expansion of root functions on the complex space C™ and also
their completeness is established (Theorem 4, Corollary 6).

Among other works which are connected with the given research we shall
note to the following [4], [10], [7]. We use a terminology from the book [11].

2. Let in the Banach complex space X with the norm ||-|| a closed unbounded
linear operator A with the dense domain C! is given and such that A~! €
£(x%). We denote by C™, (m € Z,.) the domain of A™ with the norm ||z||¢cm =
|A™z||, (x € C™). We put C° = X for the unit operator A° = I. By Theorem
VIL9.7 [3] and equality Nov_oC™ = X [5] there follows that operator A™
in X is closed.

For numbers v > 0 we define the spaces

o0
g™ ={zec®: olgem <00},  C€®:=[)C
k=0
normed by

0 Ak Pm 1/
(W) 1y <o

lzllercmy = *=0
™ |Arzfjem
sup ——— :p=00.
k€Z+ 14

Using the closure of A™, by analogy with [9], the completeness of spaces
&y (C™) can be established. Further we suppose £;(C™) # {0}.

PROPOSITION 1. The following inclusions
EY(C™ C ELIC™ C &Y (C™),  (Ve>0)
are valid.

Proof.Ifz € £/(C™), than ||z||gy cm) < llz|ley(cm)- Therefore, z € E5,(C™).
If z € E4(C™), than there exists the independent of k constant a, that
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||A’°a:||l/k < val/k, From this hmsup||A’°:lc||(1:{,{c < v and ||z gureemy < 00
k o0

for any € > 0. Thus, z € 8"“(6’"‘)

Let 0 < ¢, vy, 1 < 00 and 1 < pg, p1 < co. For numbers 8, (0 < 0 < 1)
we define the interpolation spaces

(Epo (CT™), €51 (C™))gp =
{IL‘ c g;;g(cm) +£V1(Cm) ”:1:”( VO(Cm) gvl(cm))o < OO}
with the norm

(°§° [tk (¢, z)]"%) VP < oo

”:II” 8"0(Cm) g"l (C"‘) 0
( Jes sup t7K(t,z) 1 p = 00,
0<t<oo
where is designated K(t,z) = z=.§££m1 (||:L'o||£;g cm Tt ||a:1||5;11 (cm))>

zo € £,2(C™), z1 € ELH(C™).

PROPOSITION 2. For all 1 < p, po, p1 < 00 and vy # vy the equalities
EX(C™) = (ER(C™), EL(C™)gp> where v =170,

are valid (with an accuracy to the equivalence of norms).

Proof. The space £;(C™) is isometric to the subspace of sequences in X of
the form

= {(4*2)§ ¢ I(A*2)llg,,, < oo},

where 0 = logyv~! and ||(A’°:c)||l;'m = ||zllgy(cm) for x € £;(C™). From
Theorem 1.18.2 [11] for o # 0 follows the next equality (170, 151 ) 4 =

Po,m> "p1,m
15 m» Where o = (1—60)0g +6801. From this we obtain the needed equality. m

COROLLARY 1. For all 1 < p < 0o the equalities
eecm™y:=Jesnem = éegiem, N €scCc™ = &™)
v>0 v>0 v>0 v>0
are valid.

In particular, the space £(X) consists of exponential type vectors of A,
introduced in [9].

COROLLARY 2. In conditions of proposition we have the inequalities M, <
MO M? , where M), is the norm A in £(EL(C™)).

3. Let0<t<oocand1<p g<o0. For0<0<1andre€N we put
(cm, cm+r)o,q ={zeC™+C™": |laflcm,cminy,, < 0},
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where
<o dt\1/q
( S [t BICm,r(ti w)]q?) 1q <00,
”z“(Cm,Cm+r)9 . = 0
' -6
sup t™ Kmr(t, ) 1q =00,
o<t<oo
Kmy(tyz) = _inf (||zollem +tlz1flemsr), zo € C™, 21 € C™H,
z=z0+z1

THEOREM 1. The restriction of unbounded operator A" on space (C™ C™1")g 4
is the closed operator with domain (C™*7, Cm+2r)g,q. In particular for arbi-
trary v > 0 the linear space

E5((C™, C™)oq) = {2 € (€™, €™ )og ¢ llallicm,cmeys, < 0}

relatively the norm

k
. i AT x”I()cm,cmw)a'q)l/p  p < 00
M )

el =
x v ™m m+7r = =
é'p((C ,cm+ )o,q) ”A'km”(c"t,cmr)g,q
T 'p =00
keZy v
is complete.
1 1-6 6 )
For 1 < pg, p1 < 00 such that — = + — the equality
p po p
£ (€™ €™ o) = (E4(C™), ELC™ gy,

where

(Ea(C™), £5 (€™ M)

B {z € EQC™) + & C™) < Nzl ey, cm, 5, cmen),

X 1
= (T ear )7 <o),
0

and

Keperi(t,z) = _inf  (llzolleg,cm) + tllmalle, emin)),

To € £ (C™), T1 €& ™,
is valid.

Proof. For elements = zg + 1 € C™ we have
llzllem = llzo + z1llem < [|lZollem + lz1llem < |zollem + cm rllz1llem+,

where oy, is norm of the imbedding C™*" < C™. From this [|z[¢m <
Kmr(@m;r, z). Defining the norm Ky, r(m,r, z) on space C™ + C™*7, we
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arrive at continuous imbedding C™ + C™*" < C™. From surjection we have
the isomorphism C™ + C™*" = C™. Moreover,
lzficm < izollem + amrllzillemer < 2max {|lzollem, cm,r[z1llem+-},

where max {||zollcm, tm,r||Z1|[¢m+r} is norm on C™(C™*". Thus we have
the isomorphism C™ N C™+" = C™*". At last A™ € £(C™*",C™) for all m €
Z. Hence, the conditions of Theorem 3.1.2 [2] are valid and we have A™ €
g((cmtr, cmrtly, o, (C™, C™ ) 1) Moreover, for some constant g g m,r
we obtain the inequality

Kmr(0mr ) < Yo,9,m,r afn,r ”z”(Cm,Cm—f-r)g’q, x e (C™, C"H-r)a,q.
In particular, for m = 0 the imbedding (%, C")sq — X is continuous. If
now z, € (C",C? )y, and z, — z, A"z, — y in norm (%, C")gq, that
zp, — z and A"z, — y in norm X. From closure A" in X we have A"z = y.
Therefore, A" is closed in (X, C")g 4. By induction the operator A" is closed
in (C™, C™*")g 4 for any m € Z,. Thus for any v > 0 can be determined
the Banach space & ((C™, C™*")g;).

For arbitrary ¢ € R we form the following Banach spaces of sequences

L2k Cm) = {(ym 20 vk € C™; 1)y, = (Z 27 gl ) ' < °°}’
(25 (C™, C™ MY ,p) = {(yk)i‘io : Yk € (C™, Cm+r)94’;
oo - 1/p
16 e, = (322 lnligm cminy,,) < o0}

k=0
From Theorem 1.18.1 [11] there follows

(257 (C™, €™ )gp) = (1o (2C™), 1y (2C™7))g

where 1/p = (1 - 6)/po + 9/P1
For z € £7(C™) and v™* = 2 we have ||a:l|gu cmy = ||(A’k:c)||l There-
fore, the isometric imbedding

EL(C™) <= 1p(2FC™)
holds. Similarity we receive
5;(((,""', Cm+r)0,p)H p(2ka(cm, cm+r)0,p)’
where ||a:|]£,,((cm e (A z)llgy, for all z € EX((C™, C™)gp).
From this we obtain ”‘E”S"((cm emtr)g ) ™ ||:1:||(g (cm), &5, (cm+n)), - "
P

COROLLARY 3. For numbers 1 < p,g < 00,0 < 8 <1 andr € N the

tmbedding
E/((C™, €™ Mg ) C E5(C™)

is valid.
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It follows from continuous imbedding (C™, C™*")g , — C™, which estab-
lished above.

COROLLARY 4. For numbers 1 <p, ¢<00,€>0,0<80<1andr € N we
have

EL((C™, €™ M)o,q) T EJ((C™, C™HM)g,q) T ELFE((C™, C™ g ,q),
5((cm Cm+'r)0,q) _ U 51 ((cm Cm+r 0q U 8” Cm Cm+r)0,q)’

v>0 v>0
() ELUC™, C™M)a,g) = [ EH((C™, C™HT)g,)-
v>0 v>0

For proof is sufficiently to use the closure of A" in (C™, C™*")g, and to
apply Proposition 1, 2 and Corollary 1.

4. Let 1 < g < 00,1 < p < o0 and {8,','(")((?"‘)} be a sequence of Ba-
nach spaces, corresponding to non decreasing sequence of positive numbers
{v(n)}, such that Jim v(n) = oo. Let’s fix the number 1 < p < 0o and

define the space
ep[S;(")(Cm)] = { Z T,=xz€C™:z, € Sz';(n)(Cm); llzlle, < OO}
n=1

with the norm
||-’B||e = inf (Zoo 2n(p—1)”$n”p )1/p
P I=E Tn = g;(") (Cm) ]

where inf over all convergent series by norm of C™ is taken. Consider

a sequence of spaces {&p (n)((Cm C™t")g,4)} too. For every vector z €
(C™,C™*T)g 4 We define the convergent in (C™,C™* ")y , series T = Y 02 1 Zn,

where z, € & V(n)((C"‘ C™t")gq). For 1 < p < 0o we define the Banach
space
GolE™((C™, €™ )ag)]
— m m+r .
- {.’L‘ € (C ) C )9,q . “‘T"gplg;;(“)((cm,cm+r)o'q)] < OO}
where

]
n(p=1) | 5. || 1/e
”1"”3 [gl'(n)((cm cmtrygy )] lnf (Z 2 ”wn” v(n)((Cm cm+r)g )) .

In p=i
THEOREM 2. Let 1 < q, p < oo and 1 < p < 0. The following equalities
L,lE;™(c™) = "€c™),
Lol ™ (€™, ™ )e )] = E((C, C™7)g ),

where the closure are by norms C™ and (C™, C™*")g 4 respectively, are valid.
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Proof. For ye £™(C™) we have llylle, <27~ 1||y||g.,(n)(cm) Since £5™(C™)
cé& (n+1)(C'"), in inequality we can cross to limit

p—1 1: _ op—1
lylle, <227 Jim yllgecer my = 2" lllem:

n—oo

By Hélder’s inequality

- _ _ 1/p
Z”"’n“fp <2 1Zl||”"'"”5;""(cm) <? 1(22"(” 1)||z"||gv<n>(cm))
n=

n=1

the series £ = .22 ; z,, are absolutely convergent in £,[£, (m) (C™)]. Let’s show
that the series ) ;2 ; =, is convergent to = in 2,,[8"(”) (C™)]. Since

n(o— /e
annncm<znxn||gu<n)(cm) (22 O Dlenlumiemy)

that series £ = ) 2> z,, are absolutely convergent in C™. Thus, for € > 0
there exists N that

N
o= Sl = X ol < 2 tonlly <270 X llanlen <
n=1 ° n>N

n>N

and that is why the space ZP[S"(n) (C™)] is complete. Since

lzllem < . mzf nnZ znllem < —mzfznnz_: ”In”g"(")(cm) < lizlle,,
that ||z[lcm < |l]le, < 2°7|z||cm for = € £™(C™). By Corollary 1 we have
e &4 (cmy = £(C™). Therefore,

lzllem < llzle, < 277 lzllem, = € EC™).

For proof of second equality is sufficiently to use the closure of A" in

(€™, C™+7)9, and instead of C™ in the previous reasoning we believe
€™ C™)gq. =

5. Consider in the space ¥ = L,(2) (1 < p < 00) on bounded domain
2 C R™ of class C*° with boundary 91 the regular elliptic operator of 2I-th
order

A: Cl S u+— Z aa(t)Dau(t) € LP(Q), aq € Cm(ﬁ),
|l <2t
cli:= {u € W{Q) : Bju(t)po=0; j= 1,---,1},
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and such that A~! € £[L,(2)]. We denote the Sobolev space by ng(Q) and
= Z bj,a(t)Da, bj,a(t) S C°°(BQ), (0 <ki<ks<...< kl)
o <k;

is the collection of boundary operators. It is known (§ 5.4.3 [11]) that A has
discrete spectrum o(A) = {An}nen, ie. nlLIIc}o |An| = oo and root subspaces

R of every eigenvalues A\, € C are finite-dimensional and Jim |An| = oo.
From Theorem 5.4.4 [11] there follows
cm = {ue WIn@Q): Bid*u(t)pq =0, j=1,....5 k=1,...,m-1}.
THEOREM 3. For numbers 1 < p,po, p1 < 00 and 0 < 8 < 1 the equality
SV ((Cm Cm+r)0 p) (Cm)ﬂ (Cm+'r —
Lin{R, : |An] < min (um_+1, I/m)},
where Lin is linear algebraic hull of vectors, is valid.

Proof. For operators A™+7+! in C™*" we have o (A™17+1) = {Am+r+1} (]3],
Theorem VII.10). Using Theorem 1 [8] for linear hulls of finite collections of
root subspaces we obtain

EV(C™) = Lin{Ry : [A]™ 1< v}, rez,.

Therefore, the spaces £/ (C™*") are finite-dimensional. From Proposition 2
forl<p<ococandv= Vé_o(l/o + 6)0, € > 0 we have

EJ(C™HT) = (E1°(C™T), EFTEC™ gy
Using density the subspace £;°(C™t")NE7°H(C™*") in the space
EP(CmHT), grote(cmtT Theorem 1.6.2 [11]) for sufficiently small € > 0
( 1 » ¢1 6.,p Yy

we obtain £ (C™F") = £/(C™*") for any v > 0, 1 < p < co. From this and
Theorem 1 we have

& (€™, C™)op) = (E3o(C™), €4 (C™)g, =
Ep(C™M &R (C™T) =
Lin{Ry : D™t < v} Lin{Rp: Aa|™ <} =
Lin{Rn : |An| < min (U7, ymaiT)}. w
REMARK 1. Using the result from [10], we have
EX(C™)= Lin{Rn,: |)\n|m+1 <v} U{zn: Ay = Ay [ An|™ Tl = v}.

Further, suppose that coefficients of equation a, are constants.
We denote by Ezp (C™) the space of all entire analytical functions of the
exponential type on C™.
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THEOREM 4. For numbersm, r € N, § € (0,1) and 1 < p < oo the equalities
E((C™, €™ )o,p) = {u € Bap (C) o : Bif*u g0 =0;
i=1,...,1; k€Z+} = Lin{R, : n € N},
where Lin is linear algebraic hull of all root vectors of A, are valid.

Proof. From Theorem 3 and Corollary 4 we have
g((cmv Cm+r)0,p) = Ug;((cm, Cm+r)9,p) =

v
ULin {Rr: |An| < min (Vﬁ, l/m+1r+1)} = Lin{R,: n e N}.
v

It remains to use the equality
E(C™) = {u € E:rp((Cn)l K BjAkul an=0i=1..., ke Z+}
=Lin{R,: n €N},
which established in [7]. =

REMARK 2. Under the condition k; # 218 — 1/p for all j = 1,...,1 and
m = 1 the equality (see [11], §4.3.3)

(L), oy = {u € B : By g =055 =1,...,1},

where Bgfg () is Besov space, is valid.

. . . . . 2[9
Since the entire functions of the exponential type are dense in B3 ,(f2)

([11], §2.5.4), that the restriction of A on (L,(£2), C!)g, has the complete
system of root vectors Lin {R, : n € N}.
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