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INTERPOLATED SUBSPACES OF EXPONENTIAL 
VECTORS OF THE UNBOUNDED OPERATORS 

IN BANACH SPACES 

Abstract. It is shown that the spectral subspaces of the unbounded operators in Ba-
nach spaces and also their integer degrees can be described with help of interpolation. The 
spectral subspaces of operators are described on the basis of abstract Bernstein inequality. 
The results are applied to research of the root subspaces of regular elliptic operators in a 
bounded domains. 

1. The given work is devoted to the problem of construction of the spec-
tral decomposition for the unbounded linear operators in Banach spaces. 
The difficulties in constructing such decomposition with help of the spectral 
measure are known [6]. We use for this purpose the Lions-Peetre interpola-
tion method [11]. 

For the given unbounded operator A in Banach space X the element x 
in its domain C1 C X is named as a vector of the exponential type v > 0 if 
x satisfies the inequality 

(1) \\AkxII < ukc, k e z + , 
where c > 0 is some constant independent from k [9]. Subspace of such 
vectors is further denoted by £ ^ ( C l ) . Such subspace in case of the operator 
A with a discrete spectrum (see [8]) is equal to the linear hull of its root 
vectors corresponding to eigenvalues in the circle of radius v. In [1] it is 
shown that in case of the operators with a separated spectrum entered in 
[6] the union ¿(C1) : = 1J„ ̂ ( C 1 ) is precisely equal to the set of all spectral 
subspaces. In case of the operator of differentiation A = D in space LP(R) 
the subspace ¿ ^ ( C 1 ) consists of the restrictions on R of the entire analytic 
functions of the exponential type u and the condition (1) is reduced to the 
classical Bernstein inequality. 
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Thus in Banach spaces with help of the vectors of exponential type which 
are determined by the abstract Bernstein inequality (1) it is possible to 
describe the spectral subspaces of unbounded operators. In the given work 
the technique of research is based essentially on properties of the vectors of 
exponential type of the unbounded operators established in [8], [1], 

We describe the scales of spaces of the exponential type vectors of the 
unbounded operator and also their integer degrees determined on interme-
diate spaces (Theorem 1). We show existence of decomposition of the given 
space in a series of spectral subspaces (Theorem 2). The received results are 
applied to the description of spectral subspaces of integer degrees of the reg-
ular elliptic operators given in bounded domains of space R n (Theorem 3). 
In case of the elliptic operators with constant coefficients the existence of 
analytical expansion of root functions on the complex space C" and also 
their completeness is established (Theorem 4, Corollary 6). 

Among other works which are connected with the given research we shall 
note to the following [4], [10], [7]. We use a terminology from the book [11]. 

2. Let in the Banach complex space X with the norm || • || a closed unbounded 
linear operator A with the dense domain C1 is given and such that A"1 6 
£(2) . We denote by Cm, (m € Z+) the domain of Am with the norm ||x||c™ = 
P m a : | | , (x e Cm). We put C° = X for the unit operator A0 = I. By Theorem 
VII.9.7 [3] and equality f |m=o C m = x [5] t h e r e follows that operator Am 

in X is closed. 
For numbers u > 0 we define the spaces 

Using the closure of Am, by analogy with [9], the completeness of spaces 
£p(Cm) can be established. Further we suppose £p(Cm) ^ {0}. 

P r o p o s i t i o n 1. The following inclusions 

P r o o f . If x € ¿ T ( C m ) , t h a n IMIf&iC-) < IMIfij-iC-)- Therefore, x € S^(Cm). 
If x € £^ (C m ) , than there exists the independent of k constant a , that 

oo 

normed by 

£ f (C m ) C O C m ) C £ï+£(Cm), (Ve > 0) 
are valid. 
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< v a l ! k . P r o m this l i m s u p ||j4fcx||£m < v and ||x||£i-+e,Cm) < oo 
k—»oo 00 

for any e > 0. T h u s , x € £i+e(Cm). • 

Let 0 < t, 1/0, v\ < 00 a n d 1 < po, p\ < 00. For numbers 6, (0 < 6 < 1 ) 
we define the interpolation spaces 

(££(Cm),££(Cm))e<P = 

{x e + W " ) = \\x\\(s^(c-),£;i(c^))gp < 0 ° } 

with the n o r m 

,dt\i/p 
(\[t-°K(t,x)r^y/p:P< 0 0 

0 . s u p t JC(t,x) :p = 00, 
. 0<i<oo 

where is designated /C( i , x) = _ i n f (||so||£"0(Cm) + 1 ||®i||£"i(Cm)), 

x0e££(Cm), Xle£^(Cm). X_X0+I1 

PROPOSITION 2. For all 1 < p, po, pi < oo and vq t^ v\ the equalities 

£p»(Cm) = (%0°(Cm),^(Cm))e,P, ™here u = „ ¿ " V , 

are valid (with a n accuracy to the equivalence of norms). 

P r o o f . T h e space Sp(Cm) is isometric to the subspace of sequences i n X of 
the form 

£ m = { ( ¿ f c * ) £ o : W ( A k * ) k , m < oo>. 

where a = l o g 2 i / - 1 a n d | |(yl f c£)|| i£m = ||x||£^(Cm) for x € ££(Cm). F r o m 

T h e o r e m 1 . 1 8 . 2 [11] for a 0 ± o i follows the next equal ity lp{,m)e,q = 

Zp m , where a = ( 1 — 0)ao + 9 a \ . F r o m this we obtain the needed equality. • 

COROLLARY 1. For all 1 < p < oo the equalities 

£(Cm) : = ( J £^(Cm) = | J £p(Cm), f | £^(Cm) = f ) %(Cm) 
i/>0 i/>0 v>0 i/>0 

are valid. 

I n part icular , the space £(X) consists of exponential type vectors of A, 
introduced i n [9]. 

COROLLARY 2 . In conditions of proposition we have the inequalities M „ < 
Ml~e , where is the norm A in £(££(Cm)). 

3 . L e t 0 < t < oo a n d 1 < p, q < oo. For 0 < 0 < 1 a n d r € N we put 

(Cm, Cm+r)e g = {x G C™ + Cm+r : | M | ( C ~ , 9 < o o } , 
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where 

( J [ r V ( ^ ) F j ) 1 / 5 : ? < 0 0 , 

sup t JCmtr(t,x) 
„0<t<oo 

q = oo, 

/Cm.rii .x) = inf (llxollc» + t||xi||Cm+r), x 0 € Cm, xx 6 C m + r . 
1=10+11 

THEOREM 1. ÏTie restriction of unbounded operator Ar on space (Cm, Cm+r)g^ 
is the closed operator with domain (Cm+T, Cm+2r)ejq. In particular for arbi-
trary v > 0 the linear space 

£^((Cm, Cm+r)o,g) = {xe (Cm, Cm+r)e,q : M^,^).„ < oo} 

relatively the norm 

IMI £ï((Cm,Cm+r)etq) 

oo 

( E 
Jk=0 

|(Cm)Cm+r)9 x l /p 
,,kp 

\ VP J :p< oo, 

sup 
_ fcez+ 

: p = oo 

is complete. 
r, , , , 1 0 . tor 1 < po) Pi < oo suc/i mai - = 1 the equality 

P Po Pi 

where 
Su cm+r)e,p) = (£p0(Cm), £;x{Cm+r))e^ 

= € : | | x | | ( % ( C m ) f p V C m + r ) ) 

and 

x0e£^0(Cm), 
is valid. 
P r o o f . For elements x = xq + x\ G C m we have 

||x||Cm = ||x0 + Xl He-» < ||x0||c- + ||xi||Cm < llxollc» + "m,r||xi||Cm+r, 

where am,r is norm of the imbedding Cm+r Cm. Prom this ||x||cm < 

tCm,r(&m,r,x). Defining the norm / C m ) r ( a m > r , x ) on space Cm + Cm+r, we 
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arrive at continuous imbedding Cm + Cm+r •> Cm. From surjection we have 
the isomorphism Cm + Cm+T = Cm. Moreover, 

I M I c m < ||®o||cm + oim,r\\xi\\c™+T < 2 max {||x0||cm> cim,r\\xi\\Cm+r}, 
where max{||a:o||cm> o;m,r||£i||c">+'-} is norm on Cmf]Cm+r. Thus we have 
the isomorphism Cmf\Cm+T = Cm+r. At last Ar G £(Cm+r,Cm) for all m G 
Z+. Hence, the conditions of Theorem 3.1.2 [2] are valid and we have Ar G 
£((Cm + r , Cm+r+1)e,q, (Cm, Cm+1)e,q). Moreover, for some constant -ye,q,m,r 
we obtain the inequality 

£m,r(<*m,r, X) < 79,g ,m,r <*m,r I M I ( C m , C m + r ) e , q > x e ^"N Cm+r)e<q. 

In particular, for m = 0 the imbedding (X, Cr)e,q ^ X is continuous. If 
now xn G (Cr, C2r)e,g and xn —• x, ^4rx„ —> y in norm (£, Cr)etq, that 
xn x and vlrxn —> y in norm X. From closure Ar in X we have Arx = y. 
Therefore, Ar is closed in (X, Cr)etq. By induction the operator Ar is closed 
in (Cm, Cm+r)ff>q for any m G Z+. Thus for any v > 0 can be determined 
the Banach space £» ((Cm, Cm+r)gtP). 

For arbitrary a G R we form the following Banach spaces of sequences 

lp{2k°Cm) = { (y f c )£o = Vk € C" ; \\(yk)\\ip = ( £ 2 ^ | | y f c | | ? m ) 1 / P < oo}, 
L fc=0 } 

lp(2k°(Cm, Cm+r)e,P) = {(yk)?=o : yk € (C"\ Cm+r)e,p> 

\\(yk)\\o,lp = (Y.2kn\yk\\\Crn,Cm+r)ep)l'P< OO } . 
fc=0 ' ' 

From Theorem 1.18.1 [11] there follows 
lp(2k°(Cm, Cm+r\p) = (ZP0(2fc(TCm), lP1(2kaCm+r))e>p, 

where 1/p = (1 — 0)/po + 6/pi. 
For x G £p(Cm) and v~l = 2" we have | | x | | ^ ( C m ) = There-

fore, the isometric imbedding 

£p(Cm) ^ lp(2kaCm) 

holds. Similarity we receive 
£^((Cm, Cm+r)otP)^lp(2k°(Cm, Cm+r)e,P), 

where = \\(Arkx)\\e,lp for all s G Cm+r)o,P)-

From this we obtain | | z | | ~ Nl(%(Cm),££1(c'n+r))« P ' • 

COROLLARY 3. For numbers 1 < p, q < oo, 0 < 9 < 1 and r G N the 
imbedding 

£P
u((cm, cm+r)o,q) C £;{cm) 

is valid. 
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It follows from continuous imbedding (Cm, Crn+T)e,q > Cm, which estab-
lished above. 
COROLLARY 4. For numbers 1 < p, q < oo, £ > 0, 0 < 9 < 1 and re N we 
have 

£i((Cm, Cm+r)e,q) c £p((Cm, Cm+r)e,q) C £^e((Cm, Cm+r)e,q), 

S((Cm, Cm+r)e,q) := (J Cm+r)e,q) = (J Cm+r)g,q), 
i/>0 i/>0 

f l 5r((Cm, Cm+rk9) = f | Cm+r)B<q). 
i/>0 i/>0 

For proof is sufficiently to use the closure of AT in (Cm, Cm+r)etq and to 
apply Proposition 1, 2 and Corollary 1. 

4. Let 1 < <7 < oo, 1 < p < oo and {£p^n\cm)} be a sequence of Ba-
nach spaces, corresponding to non decreasing sequence of positive numbers 
{^(n)}^! such that lim u(n) = oo. Let's fix the number 1 < p < oo and n—>oo 
define the space 

Zp[£v
p
{n\cm)} = { f > „ = z € Cm : *„ 6 £p^(Cm); MVP < oo} 

^ n=l ' 

with the norm 
oo ,, 

» „ = iff ( £ 2 ^ > | | z J ^ ( n ) ) ' ' , 

where inf over all convergent series by norm of Cm is taken. Consider 
a sequence of spaces {£p^n\(Cm,Cm+r)giq)} too. For every vector x € 
(Cm,Cm+r)e,q we define the convergent in (Cm,Cm+r)e,q series x = T,™=ixn, 
where xn € £p{n\(Cm, Cm+r)6,q). For 1 < p < oo we define the Banach 
space 

eP[£pnH(cm, cm+r)e>q)] 

where 

00 i/p 

THEOREM 2. Let 1 < q, p < oo and 1 < p < oo. The following equalities ep[£^nHcm)} = ~£(C™), 
ep[£^n\(Cm, cm+r)e,q)\ = £((Cm, Cm+r)e,q), 

where the closure are by norms Cm and (Cm, Cm+r)e,q respectively, are valid. 
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P r o o f . For ye£p{n)(Cm) we have ||y||*,<2^1y||^(„)(Cm). Since £vp{n)(Cm) 
C £p^n+1\cm), in inequality we can cross to limit 

||y||<, < 2 " - 1 r l i m \\y\\£«n){CJn) = 2p_1||y||cm-

By Holder's inequality 
00 oo 

1 / p 

n=l n=l r ' ' n=l "p (Cm)> 
E \\*n\W < 2 P - 1 E I M U ^ * 2 P _ 1 ( E a ^ H ^ - w O 

the series x — y are absolutely convergent in £p[£p ( n )(Cm)]. Let's show 
that the series x n is convergent to x in £p[£p^n\cm)]. Since 

oo oo oo 

E i M c » < E l l^n f , (n ) ( c m ) < { E 2 ^ ^ ^ ^ ) 1 / p , 
n=1 n=l n=1 p 

that series x = X ^ L i xn are absolutely convergent in Cm. Thus, for e > 0 
there exists N that 

N 

x - E x \ = || E ^ E H a «ik ^ 2 P _ 1 E li^lic™ < e> 

n=l p n>N p n>N n>N 

and that is why the space ip is complete. Since oo oo 
IMIc» < inf E I M I c m < inf E IMU<»>rc»> - ll®llv 

x = £ x » n = l x = £ x » n = l P ' 

that ||z||Cm < \\x\\ep < 2P-l\\x\\Cm for x e £p{n)(Cm). By Corollary 1 we have 

U~=i^(n)(Cm) = £{Cm). Therefore, 

For proof of second equality is sufficiently to use the closure of AT in 
(Cm, Cm+r)6 q and instead of Cm in the previous reasoning we believe 
(Cm,Cm+r)0tq. m 

5. Consider in the space X = Lp(ft) (1 < p < oo) on bounded domain 
ft C R n of class C°° with boundary <9f2 the regular elliptic operator of 2Z-th 
order 

A: C1 3 u i—• E a<*(t)Dau(t) e Lp(Cl), aa € C°°{Q), 
\a\<2l 

C1 := {u € W*(tt) : BjU(%n = ^ 3 = 1, • • •, *}, 
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and such that A e £[Lp(f2)]. We denote the Sobolev space by W^'(il) and 

Bi = E hiAt)Da, bjia(t)ec°°(dsi), {0<k1<k2< ...<k) 
M <kj 

is the collection of boundary operators. It is known (§ 5.4.3 [11]) that A has 
discrete spectrum a (A) = {An}nepj, i.e. lim |An| = oo and root subspaces 71—>00 
Hn of every eigenvalues An € C are finite-dimensional and lim |An| = oo. ra—>oo 

From Theorem 5.4.4 [11] there follows 

CM = {u € Wf^Q) : BjAku{t) |AN = 0, j = 1 , . . . , / ; k = 1 , . . . , M - L}. 

THEOREM 3. For numbers 1 < p,po, Pi < oo and 0 < 6 < 1 the equality 
e; ((cm, cm+r)e,P) = ^0(cm)C]£pAcm+r) = 

Lin{R„, : |A„| < m i n ( I / ^ , I^+H-I)}, 

where Lin is linear algebraic hull of vectors, is valid. 

P r o o f . For operators Am+r+l in Cm+r we have a(Am+r+1) = {A™+r+1} ([3], 
Theorem VII.10). Using Theorem 1 [8] for linear hulls of finite collections of 
root subspaces we obtain 

£{(Cm+r) = Lin {Hn : |An|m+r+1 < u), re Z+. 

Therefore, the spaces £j/(Cm+r) are finite-dimensional. From Proposition 2 
for 1 < p < oo and v = Vq~6(vo + e)d, e > 0 we have 

££(Cm+r) = {£^°(Cm+r), £f0+e(Crn+r))dp. 

Using density the subspace £^°(Cm+r) f)£"0+£(Cm+r) in the space 
(£^(Cm+r), £i0+e(Cm+r))ep (Theorem 1.6.2 [11]) for sufficiently small e > 0 
we obtain £j/(Cm+r) = ££(Cm+r) for any v > 0, 1 < p < oo. From this and 
Theorem 1 we have 

Su C™+r)9,P) = (Cm), Cm+r))0,p = 

sp»0(cnn^(cm+r) = 
Lin{Kn : \\n\m+l < v} f)Lin {lln : |An|m+r+1< v) = 

Lin{Hn : |An| < m i n ( i / ^ , i^m+r+i)}. • 

REMARK 1. Using the result from [10], we have 

OCm)= Lin {1^: \\n\m+1 < v}{J{xn: Axn = Xnxn] |A„r + 1 = u}. 
Further, suppose that coefficients of equation aa are constants. 
We denote by Exp (Cn) the space of all entire analytical functions of the 

exponential type on Cn. 
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THEOREM 4. For numbers m, r E N, 9 G (0,1) and 1 < p < oo i/ie equalities 

S((Cm, Cm+r)e,P) = {« G Exp (C n ) | : = 0; 

j = l,...,/; fc € Z + j = Lin {7?.n : n € N}, 

where Lin is linear algebraic hull of all root vectors of A, are valid. 

P r o o f . From Theorem 3 and Corollary 4 we have 

£((Cm, Cm+r)e,P) = {j£p{{Cm, Cm+r)6tP) = 
V 1 1 

{jLin{Rn : |An| < min( i /^+i , i/m+r+i)} - Lin {Tin : n G N}. 
V 

It remains to use the equality 

£(Cm) = { u 6 Exp(Cn)\ n : BjAku\ d n = 0; j = 1,..., Z; k € Z+J 

= Lin {Tin • n € N}, 

which established in [7]. • 

REMARK 2. Under the condition kj / 219 — \ / p for all j = 1 , . . . , / and 
m — 1 the equality (see [11], §4.3.3) 

(L„(f2), C 1 ) ^ = { n € : Bju| = 0; j = 1 , . . . , / } , 

where is Besov space, is valid. 
Since the entire functions of the exponential type are dense in Bplp(Q) 

([11], §2.5.4), that the restriction of A on (Lp(Q,), C1)q<P has the complete 
system of root vectors Lin {1Zn : n G N}. 
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