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SPECTRAL PROPERTIES OF GENERALIZED INVERSES

Abstract. Let A denote a unital complex Banach algebra. An element a € A is said
to be relatively regular if aba = a for some b € A. Then b will be called a generalized
inverse of a. In this note we study spectral properties of generalized inverses of a.

1. Relatively regular elements

Throughout this paper let .A denote a complex unital Banach algebra
with unit 1. If a € A, then o(a), p(a), and r(a) denote the spectrum, the
resolvent set and the spectral radius of a, respectively.

An element a € A is called relatively regular if there is £ € A such that
aza = a. In this case z is called a generalized inverse or a g;-inverse of a.
The set of all relatively regular elements of A is denoted by A. Let a € A
If b € A satisfies the two equations

aba=a and bab =1,
then b will be called a g,-inverse of a.

PROPOSITION 1. Leta € A. Ifz € Aisa g1-inverse of a, then b = zazx is

a ga-inverse of a. Hence A = {a € A : there is b € A with aba = a and
bab = b}.

Proof. Simple verification. m

By .A:l we denote the set of all invertible elements of .A. It is clear that
A1C Aandifae A~ be A, and aba = a, then b=a"L.

PROPOSITION 2. If b € A is a go-inverse of a € A, then the set of all
generalized inverses of a consists of all elements of the form

b+ u — bauab,
where u is arbitrary in A.
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Proof. [4, Theorem 2, § 2.3]. =
NOTATIONS. For a € A let
a !(0) = {z € A:az =0}.
If a # 0, then the conorm vy(a) of a is defined by
7(a) = inf{||az| : d(z,a™(0)) = 1},
where d(z,a~1(0)) denotes the distance of = from a~1(0).
PROPOSITION 3. Let a € A\ {0}. Then:
(1) aA = {az : ¢ € A} is closed;

(2) v(a) > 0;
(3) if z € A is a generalized inverse of a, then
1
— < |lizi}.
5 <l

Proof. Let z € A such that aza = a. Put p = az and ¢ = 1 — za. Then
it is easy to see that p2 = p, ¢® = q, pA = aA and a=1(0) = gA. Thus we
have aA = {y € A : py = y}. This shows (1). Use (1) and [5, Satz 55.2]
to see that (2) holds. Now take y € A such that d(y,a~1(0)) = 1. Since
ay = a(zay), y — zay € a~*(0), thus

1=d(y,a™'(0)) = d(zay,a™*(0)) < l|zay| < ||zl llayl],

hence

Wi_ll < [lay]| for all y € A with d(y,a=(0)) = 1.

This gives ﬂ%[[ <v(a). =
DEFINITIONS:

(1) An element a € A is said to be decomposably regular if there is
b€ A~ such that aba = a.

(2) An element a € A is called simply polar if there is b € A with aba = a
and ab = ba.

EXAMPLE. If X is a complex Banach space and if A is the Banach algebra
of all bounded linear operators on X, it follows from [3, Theorem 3.8.6] that
A € A is decomposably regular if and only if A € A and

N(A) =~ X/A(X),

where N(A) denotes the kernel and A(X) denotes the range of A. It follows
that if dim X < oo, then each A € A is decomposably regular.

The proof of the following theorem can be found in {3, Theorem 7.3.4].
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THEOREM 1. If A= {p € A: p? = p} is the set of idempotents of A, then
{a € A:a is decomposably regular} = A1 A= AA"! = Anc(A™),
where cl(A~Y) denotes the closure of A71.
In what follows we will use the following
NoTaTIONS. For a € A put
Gi(a) ={be A:bis a gi-inverse of a},
Ga(a) = {be A:bis a gy-inverse of a},
and
a(a) = inf{r(b) : b € G1(a)}.
PROPOSITION 4. Let a € A. If a(a)r(a) < 1, then a is decomposably regular.

Proof. If r(a) = 0, then a is decomposably regular, since a € cl (A~?)
(Theorem 1). Thus we can assume that 7(a) > 0. Hence a(a) < 1/r(a).
Therefore there is b € G1(a) with 7(b) < 1/r(a). Now take some z € C such
that r(b) < |z| < 1/r(a). It follows that za —1 € A™! and z — b € A~ L.
From

(za — 1)ba = zaba — ba = za — ba = (z — b)a
we get
ba = (za —1)7(z — b)a.
Put ¢ = (za —1)7}(z — b). Then c € A}, ca = ba, and
a = a(ba) = aca,
thus, a is decomposably regular. =
THEOREM 2. For a € A the following assertions are equivalent:
(1) a is not decomposably regular;
(2) {z € C:|z|r(a) <1} C o(b) for each b € Gi(a).
Proof. (1) = (2): Proposition 4 shows that r(a) > 0. Let b € G1(a) and
take z € C such that |z|r(a) < 1. Then za — 1 € A~1. Assume to the
contrary that z € p(b). As in the proof of Proposition 4 we then see that a
is decomposably regular, a contradiction. Hence
{z € C:|z|r(a) < 1} C o(b).
Since o(b) is closed, it follows that
{z € C:|z|r(a) <1} C o(b).
(2) = (1): Since the spectrum is always bounded, we see that r(a) > 0.
Hence 0 € {z € C: |z|] < 1/r(a)} C o(b) for all b € Gy(a). Thus b C A1
for each b € G1(a). =
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As an immediate consequence of Theorem 2 and its proof we get
COROLLARY 1. If a € A is not decomposably reqular, then r(a) > 0 and
a(a)r(a) > 1.
PROPOSITION 5. Suppose that a € A is simply polar.
(1) There is a unique b € A such that
aba=a, bab="b and ab= ba.
(2) a is decomposably regular.
(3) r(a) =0 if and only ifa = 0.
Proof. (1) There is some ¢ € A such that aca = a and ac = ca. Put b = cac.
By Proposition 1, b is a gs-inverse of a. Furthermore we have
ab = acac = ac = ca = caca = ba.
If d € G2(a) and ad = da, then
d = dad = d%a = d?aba = d%a®b = d(ada)b
= dab = dabab = da’b* = adab® = ab?
= bab = b.

(2) Take b € A such that aba = a, bab = b, and ab = ba. Put = =
b+ (1 —ab) and y = a+ (1 — ab). Then aza = aba + a(1 — ab)a = aba = a.
An easy computation gives

zy=1=yz,
thus z € A71.

(3) Suppose that r(a) = 0. Take ¢ € G1(a) with ac = ca. Then, by [5,
Satz 13.11}, r(ac) < r(a)r(c) = 0. Since ac = (ac)” for all n € N,

llac*/™ = ll(ac)™I*™ — 0 (n — oo),
thus ac = 0. Therefore a = (ac)a =0. =

COROLLARY 2. Leta € A\ A~! and a # 0. If a is simply polar and if b€ A
is the unique go-inverse of a with ab = ba, then

(1) 0 is a simple pole of the resolvent (z1 — a)~!;

(2) o(a) \ {0} # 6;

(3) r(b) = (dist(0,0(a) \ {O}))~! 2 r(a)™".
Proof. (1) follows from [8, Proposition 2.7].

(2) Since a # 0, o(a) # {0}, by Proposition 5.

(3) The first equation follows from Proposition 2.7 in [8]. Since ab = ba
and aba = q, it follows by induction that a™ = a™b™a™ for each n € N, thus
1 < |la™|| ]|o™|| for all n € N. This gives 1 < r(a)r(b). =
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2. Spectra and spectral radii of generalized inverses

Througout this section we assume that a € A\ A~ and that a # 0.
Furthermore let b denote a fixed gs-inverse of a, thus aba = a and b = bab.
Put p=1—ab and ¢ = 1 — ba. Then p? = p and ¢? = q. Since a ¢ A~ we
have p # 0 or q # 0.

Define the function f : C — A by

_Jb+azp, ifp#0,
f(z)_{b+zq, if p=0 (z€C).

In what follows we only consider the case where p # 0. The proofs of our
results are similar if p = 0 (and so f(z) = b+ zq).

PROPOSITION 6. For each z € C, f(z) € G1(a).
Proof. From pa = 0 it follows that f(z)a = ba. Thus af(z)a =aba=a. =

THEOREM 3. (1) z € o(f(2)) for each z € C.
(2) (a(®) U{z}) \ {0} C o(f(2)) So(d) U{z} (2 €C).

(3) If a is not decomposably regular, then
o(b)u{z} =o(f(z)) for all z€C.

Proof. (1) Since bp = 0, f(z)p = zp*® = zp, thus (21 — f(z))p = 0. Since
p # 0, it follows that z € o(f(2)).

(2) We divide the proof in several steps.

(i) We have 0 € o(b). Indeed, if 0 € p(b), then 1 = b~1b = b~ (bab) = ab,
thus p = 0, a contradiction.

(ii) The equation

:1\.(,\1 —b)(M — 2p) = A1 — £(2)

for A € C\ {0} is easily verified.

(iif) We now show that o(f(2)) C o(b)U{z}. To this end take A € o(f(2)).
If A =0, then A € o(b) U {z} by (i). If X # 0, we see from (ii) that

(AL =b)(A1 —2zp) ¢ A7,

thus A € o(b) or A € o(2p) = {2,0}. Hence A € o(b) U {z}.

(iv) It remains to show that (o(b) U {2} \ {0} C o(f(z)). Take X €
o(b) U {z} with A # 0. If X = z, then X € 0(f(2)), by (1). Hence we assume
that X\ # 2z and so A\ € o(b). Furthermore we can assume that z # 0, since

f(0) = b. Now suppose that A € p(f(z)). From (ii) we derive then that
Al — zp ¢ AL, This gives

—z(Z;Al —ba) ¢ AL
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z‘z"\_—_Oorz;’\=1,thusz=)\or)\=0,a

Since ba = (ba)?, we get
contradiction.
The proof of (2) is now complete.

(3) follows from (2) and Proposition 6. =

CoroLLARY 3. |J o(c)=C.
c€Gy(a)

Proof. Use Proposition 6 and Theorem 3(1). =

COROLLARY 4. For z € C we have

r(f(z)) = {r(b), if 2| < (b)

|z|, if |z| > r(b).

Proof. From Theorem 3(2) we see that r(b) < r(f(z)) for all z € C. Now
take z € Csuch that |z| < r(b) and p € o(f(2)) with || = r(f(2)). Theorem
3(2) shows that p € o(b) or u = 2, hence |u| < r(b) and therefore r(f(2)) <
r(b). Hence we have shown that r(f(z)) = r(b) if |z] < r(b). If z € C and
|z] > r(b), then it follows from Theorem 3(1), (2) that r(f(z)) =|z|. =

COROLLARY 5. For each ¢ € Gy(a) we have
[r(c),00) € {r(z) : z € Gi(a)}.
COROLLARY 6. Let 8(a) = inf{r(c) : c € Ga(a)}. Then
(B(a),0) € {r(z) : = € G1(a)}.

3. Norms of generalized inverses
THEOREM 4. Ifa € A\ A1, a # 0 and b € Ga(a) then
[lIB]], 00) < {llz]| : = € G1(a)}-

Proof. As above we ssume that p = 1 — ab # 0. Take o > ||b||. Define the
function f : [0,00) — A by f(t) = b+ tp. Corollary 4 gives

r(f(t)) =t for t > r(b).
Thus || f(¢)|| > ¢t for t > r(b), hence

) Jim [I£®)] = oo.
Since ||f(0)]| = |Ib]l < & and since t — ||f(¢)|| is continuous, (*) shows that

there is to > 0 such that ||f(to)|| = a. Put = = f(t9). By Proposition 6,
z € Gi(a). =
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DEFINITIONS. An element h € A is called hermitian if || exp(ith)|| = 1 for
all real t.

We say that a € A is Moore-Penrose-invertible if there exists z € A
satisfying the following Moore-Penrose conditions ([6]):

ara = a, rar = z, ax is hermitian and za is hermitian.

It follows from [7, Lemma 2.1] that for a € A there is at most one z € A
satisfying the Moore-Penrose conditions. Let

Al = {a € A: a is Moore — Penrose invertible}.

For a € A! the unique z € A satisfying the Moore-Penrose conditions is
denoted by a! and is called the Moore-Penrose inverse of a. It is clear that
A C A and that for a € At at € Gy(a).

THEOREM 5. Let a € AT\ A™! and a # 0. Then:
(1) =5 = o'l
(2) [lat, 00) = {llzl : = € G1(a)}.

Proof. (1) is shown in [7, Theorem 2.3].
(2) Put M = {||z|| : = € G1(a)}. Then, by Theorem 4, [||af||,c0) C M.
Now let z € G1(a). From Proposition 3(3) we see that WIES < |lz||. Thus, by

(1), llat|| < ||z||. This shows that M C [lat|l,00). m

4. C*-algebras
Througout this section .4 denotes a C*-algebra. It follows from [3, Propo-
sition 12.20] that for a € A,

a is hermitian < a = a*.
The following important result is shown in [4, Theorem 6].
THEOREM 6. A = AT,
COROLLARY 7. Leta € A\ A™! and a # 0. Then
[lla’ll, 00) = {llzll : = € G1(a)}.
Proof. Theorem 5 and Theorem 6. m
NOTATIONS. An element a € A is said to be

(i) an isometry if a*a = 1,

(ii) a partial isometry if aa*a = a,
(iii) unitary if a*a = 1 = aa*,
(iv) normal if a*a = aa*.
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COROLLARY 8. Suppose that a € A is an isometry, then:
(1) llefl = lla*[l =r(a) =1,

(2) a € A and af = a*,

(3) ba =1 for each b € G,(a),
(4) Gi(@) = Ga(a),

(5) Ifa ¢ A™! then

{lIe]] : &€ G1(a)} = {r(b) : b € G1(a)} = [1, 00).
Proof. (1)—(4) are clear.
(5) It follows from (1), (2), and Corollary 7 that
{litll = & € G1(a)} = [1, 00).

Put M = {r(b) : b € Gi(a)}. Let b € G1(a). By (3), ba = 1, thus b"a™ =1
for all n € N, hence 1 < ||b*]| |la™]| < [Ib”]| llal|™ = ||b™|- This gives () > 1.
Thus M C [1,00). Since r(at) = r(a*) = 1, 1 € M. Now take a > 1 = r(a)
and put b = a' + a(1 — aa'). Since a ¢ A~1, p =1 — aal # 0. Corollary 4
shows now that r(b) = . Therefore [1,00) C M. =

COROLLARY 9. Suppose that a € A\ {0} is a non-unitary partial isometry.
Then:

(1) a € A and af = a*,
(2) {liell : b € Gi(a)} = [l|al|, 0).
Proof. (1) Clear.
(2) Since ||af|| = ||a*|| = ||a||, the result follows from Corollary 7. =

PROPOSITION 7. If a € A is normal and ifa € .Z, then a is simply polar:
aal = ala.

Proof. [4, Theorem 10]. =

5. Holomorphically regular elements

If A is a complex unital Banach algebra, then an element a € A is
called holomorphically regular if there is a neighbourhood U C C of 0 and a
holomorphic function f : U — A such that

(a—21)f(z)(a—21)=a—21forall z€ U.
It is clear that in this case a € A. In [9, Theorem 1.4] we have shown the

following result:

PROPOSITION 8. For a € A the following conditions are equivalent:
(1) a € A and a=1(0) SN2, a™A;
(2) a is holomorphically regular.
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THEOREM 7. If a € A is holomorphically regular, a ¢ A~' and b € Gi(a),
then:

(1) r(b) > 0;

(2) {z € C: |2l < 5} € o(a);

(3) 1 <r(a)r(b).
Proof. Put U:= {z € C: |2|r(b) < 1} and f(2) = (1 —2b)"tbfor z € U.
It is shown in [9, Corollary 1.5] that
(%) (a—21)f(z)(a—21)=a—21forall ze U.
Now take zp € U and assume that 2o € p(a). From (x) we get that f (zo)
(a - 201)~!. Thus

(1 — Zob)_lb = b(l - Zob)_ = (a - 201)_
Therefore
b(a — z01) = (a — 201)b = 1 — zb,

hence ab = ba = 1, a contradiction, since a ¢ .A~1. Therefore we have shown

that U C o(a). Since o(a) is bounded, we derive that (1) holds. Furthermore,
since o(a) is closed, we get from U C o(a) that (2) holds. (3) follows from

(2). m
COROLLARY 10. If a € A is holomorphically regular, then 0 is an interior
point of o(a) and 1 < a(a)r(a).
PROPOSITION 9. Suppose that a € A is holomorphically regular and b €
Gi(a). Then

a™b"a™ = a™ for alln € N.
Proof. Since b € Gi(a),aba = a. Now suppose that a®b"a™ = a™ for some
n € N. Put p = a™b" and ¢ = 1 — ba. Then p? = p, ¢* = q¢,pA = a™A and
gA = A~1(0). Proposition 8 (1) shows then that gA C pA, hence ¢ = pq.
Therefore

1—ba =a™b"™(1 — ba),

thus

a™b"tla = a"b" — 1 + ba.
We conclude that

an+1bn+1an+1 = an+1bnan _ an+l + aban+1
= a(a™b"a") = o™t .

REMARK. From Proposition 9 we get a second proof of Theorem 7(3).
THEOREM 8. If A is a C*-algebra and a € A is normal, then

a is holomorphically reqular < a € A7,
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Proof. The implication “<” is clear. Now suppose that a is holomorphically
regular. Assume to the contrary that a ¢ A~!. Proposition 7 shows that a
is simply polar, thus, by Corollary 2 (1), 0 is an isolated point of o(a). But
this contradicts Corollary 10. (]

PROPOSITION 10. Let a € A.
(1) If b€ Ga{(a) and r =1 — ab — ba, then
r~1(0) = (a™*(0) Na.A) ® (b~1(0) NbA)
and
rA = (a~1(0) + a.A) N (571(0) + b.A).
(2) If A is a C*-algebra, then
(a)71(0) = (a*)"1(0) and a' A =a* A.
Proof. (1) If z € a=1(0) NaA, then z = (1 — ba)z = abz, hence rz = 0.
Thus a~1(0)NaA C r~1(0). A similar argument gives b=1(0)NbA C r~1(0).
Now take z € r~1(0), thus z = baz + abz. It follows that az = az + a(abz),
hence abz € a~1(0) Na.A. From bz = b(baz) + bx we get baz € b=1(0) NbA.
Therefore
z = abz + baz € (a~1(0) Na.A) + (b'(0) NbA).
Next we show that (a=1(0) N aA) N (571(0) NbA) = {0}.
Take z € (a=1(0) NaA) N (b71(0) N ba). Then
z = (1 - ba)z = abz = (1 — ab)z = baz,
hence 0 = z — baz = z. The proof of the first assertion is now complete.

If y € rA, then y = —abz + (1 — ba)z for some = € A. Hence y €
aA+ a"1(0). A similar argument gives y € bA + b71(0).

Now take z € (a=1(0) +aA)N(b1(0) +bA). Then z = x; +T5 = y1 + ¥2
with azy = 0,29 = abzs,by; = 0 and yo = bays. Put w = z; — y3. Then
w=1y — 22 and rw = w — baw — abw = w — ba(x1 — y2) — ab(y1 — z2) =
w+bays + abze = w+yo + 2 = 21 — Y2 + Y2 + T2 = 71 + 2 = 2. Therefore
z€rTA

(2) From aata = a and ataal = af we derive a*(at)*a* = a* and (a')* =
(a")*a*(a?)*, thus a* € A and (a')* € G2(a*). Then

(@)71(0) = (1 - (a!)*a")A = (1 — (aa")*)A
= (1 - aa)A = (a)~(0)
and
a*A=a*(a")* A= (a'a)*A=aladA =al A .
THEOREM 9. If A is a C*-algebra and a € A is holomorphically regular,
then:
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(1) a* is holomorphically regular;
(2) A=a"}0)® (a*)"1(0) ® (aANa*A).

Proof. (1) Take any b € G1(a) and put f(z) = (1 —zb)~1b for |z| < r(b)~ L.
As in the proof of Theorem 7,

(a—21)f(2)(a— 21) = a — 21 for |z| < r(b) L.
Thus
(@ = p1)(1 = pb*)~1o*(a* — p1) = a* — 1
for each p € C with |u| < r(b)~ 1. :

(2) Put b = a'. Since a=1(0) = (1 —ba).A C aA = abA, we have 1 —ba =
ab(1 — ba) = ab — ab%a, hence

1 — ba — ab = —ab?a.

By (1), a* ist holomorphically regular, thus (a*)~1(0) C a*A. Now use
Proposition 10 (2) to get b~1(0) C bA. Therefore (1 — ab)A C baA, thus
1 — ab = ba(1 — ab) = ba — ba?b, hence

1 — ba — ab = —ba’b.

This gives ab’a = ba®b. Put s = ab%a. By Proposition 8, a®b%a® = a?, thus
s? = (ba?b)? = ba?b%a%b = ba®b = s. Therefore s € A. Since a1(0) C aA
and b~1(0) C bA, Proposition 10 (1) gives

s710) = a1 (0) ® b7 1(0)
and

aA=aANDbA.
Now use A = s71(0) @ s.A and Proposition 10 (2) to get the result. =
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