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SPECTRAL PROPERTIES OF GENERALIZED INVERSES 

Abstract. Let A denote a unital complex Banach algebra. An element a E A is said 
to be relatively regular if aba = a for some b € A. Then b will be called a generalized 
inverse of a. In this note we study spectral properties of generalized inverses of a. 

1. Relatively regular elements 
Throughout this paper let A denote a complex unital Banach algebra 

with unit 1. If a 6 A, then cr(a), p(a), and r(a) denote the spectrum, the 
resolvent set and the spectral radius of a, respectively. 

An element a e A is called relatively regular if there is x € A such that 
axa = a. In this case x is called a generalized inverse or a g\-inverse of a. 
The set of all relatively regular elements of A is denoted by A. Let a € A. 
If b 6 A satisfies the two equations 

aba = a and bab = 6, 

then b will be called a 52-inverse of a. 

P R O P O S I T I O N 1 . Let a € A. If X € A is a g\-inverse of a, then b = xax is 
a g2-inverse of a. Hence A = {o 6 A : there is b & A with aba = a and 
bab = b}. 

P r o o f . Simple verification. • 

By Awe denote the set of all invertible elements of A. It is clear that 
A~l C A and if a € A~l, b 6 A, and aba = a, then b = a - 1 . 

P R O P O S I T I O N 2 . If b E A is a g2-inverse of a e A, then the set of all 
generalized inverses of a consists of all elements of the form 

b + u — bauab, 

where u is arbitrary in A. 
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Proof . [4, Theorem 2, § 2.3], • 

NOTATIONS. F o r a e A le t 

a~1(0) = {x G A : ax = 0}. 

If a ^ 0, then the conorm 7(a) of a is defined by 

7(a) = inf{||ax|| : d(x,a - 1(0)) = 1}, 

where d(x, a _ 1 (0)) denotes the distance of x from a _ 1(0) . 

PROPOSITION 3. Let a e A \ { 0 } . Then: 

(1) aA = {ax : x G A} is closed; 
(2) 7(a) > 0; 
(3) if x G A is a generalized inverse of a, then 

Proof . Let x € A such that axa = a. Put p = ax and q = 1 — xa. Then 
it is easy to see that p2 = p, q2 = q, pA = aA and a - 1 (0 ) = qA. Thus we 
have aA = {y G A : py = y}. This shows (1). Use (1) and [5, Satz 55.2] 
to see that (2) holds. Now take y € A such that d(y, a - 1 (0 ) ) = 1. Since 
ay = a(xay), y — xay € a - 1 (0 ) , thus 

1 = dfaa-^O)) = d(xay,a-l(0)) < \\xay\\ < ||x|| M , 

hence 

7T17 < ||ay|| for all y G A with d{y)a~1{0)) = 1. 
IMI 

This gives ^ < 7(a). • 

DEFINITIONS: 

(1) An element a G A is said to be decomposably regular if there is 
b G Asuch that aba = a. 

(2) An element a G A is called simply polar if there is b G A with aba = a 
and ab = ba. 

E X A M P L E . If X is a complex Banach space and if A is the Banach algebra 
of all bounded linear operators on X, it follows from [3, Theorem 3.8.6] that 
A G A is decomposably regular if and only if A € A and 

N(A) ~ X/A(X), 

where N(A) denotes the kernel and A(X) denotes the range of A. It follows 
that if dim X < 00, then each A G A is decomposably regular. 

The proof of the following theorem can be found in [3, Theorem 7.3.4]. 
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THEOREM 1. If À = {p G A : p2 = p} is the set of idempotents of A, then 

{a G A: a is decomposably regular} = A~1A = AA~l = A fl cl(.A -1), 

where cl(A~l) denotes the closure of A~1. 

In what follows we will use the following 

NOTATIONS. F o r a e Â p u t 

Gi (a) = {b G A : b is a 31-inverse of a}, 

^2(0) = {b G A : b is a «^-inverse of a}, 

and 
a(a) = inf{r(6) : b G Gi(o)}. 

PROPOSITION 4. Let a G A. Ifa(a)r(a) < 1 , then a is decomposably regular. 

P r o o f . If r(a) = 0, then a is decomposably regular, since a e cl (.4. -1) 
(Theorem 1). Thus we can assume that r(a) > 0. Hence a(a) < l / r ( a ) . 
Therefore there is b € Gi(a) with r(b) < l/r(a). Now take some z € C such 
that r(b) < \z\ < 1 /r(a). It follows that za - 1 € A~l and z - b 6 A~l. 
Prom 

(za — 1 )ba = zaba — ba = za — ba = (z — b)a 
we get 

ba = (za — l)_1(z — b)a. 
Put c = (za — 1 )~l(z — b). Then c 6 A~l, ca = ba, and 

a = a(ba) = aca, 

thus, a is decomposably regular. • 

THEOREM 2. For a € A the following assertions are equivalent: 

(1) a is not decomposably regular; 
(2) {z e C : \z\r(a) < 1 } Ç <7(6) for each b e Gi(o). 

P r o o f . (1) (2): Proposition 4 shows that r(a) > 0. Let b G Gi(a) and 
take z 6 C such that \z\r(a) < 1. Then za — 1 € A~l. Assume to the 
contrary that z G p(b). As in the proof of Proposition 4 we then see that a 
is decomposably regular, a contradiction. Hence 

{z G C : |z|r(a) < 1} Ç <7(6). 

Since a(b) is closed, it follows that 

{zeC: \z\r(a) < 1 } Ç a(b). 

(2) => (1): Since the spectrum is always bounded, we see that r(a) > 0. 
Hence 0 G {z G C : \z\ < 1 /r(a)} C a(b) for all b G Gj(o). Thus b Ç A'1 

for each 6 G G\(a). • 
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As an immediate consequence of Theorem 2 and its proof we get 
COROLLARY I. If a € A is not decomposably regular, then r(a) > 0 and 

a(a)r(a) > 1. 
PROPOSITION 5. Suppose that a e A is simply polar. 

(1) There is a unique b G A such that 
aba = a, bab = b and ab = ba. 

(2) a is decomposably regular. 
(3) r(a) = 0 if and only if a = 0. 

P r o o f . (1) There is some c € A such that aca = a and ac = ca. Put b = cac. 
By Proposition 1, b is a ¿^-inverse of o. Furthermore we have 

ab = acac = ac = ca = caca = ba. 
If d G G2(a) and ad = da, then 

d = dad = d2a = d2aba = d2a2b = d(ada)b 
= dab = dabab = da2b2 = adab2 = ab2 

= bab = b. 
(2) Take b G A such that aba = a, bab = b, and ab = ba. Put x = 

b + (1 — ab) and y = a + (1 — ab). Then axa = aba + a(l — ab)a = aba - a. 
An easy computation gives 

xy = 1 = yx, 
thus x G A-1. 

(3) Suppose that r(a) = 0. Take c G Gi(a) with ac = ca. Then, by [5, 
Satz 13.11], r(ac) < r(a)r(c) = 0. Since ac = (ac)n for all n G N, 

||«c||1/" = | | ( a c r | | 1 / » - » 0 ( n - » o o ) > 

thus ac = 0. Therefore a = (ac)a = 0. • 
COROLLARY 2. Let a G . 4 \ . 4 - 1 and a / 0 . If a is simply polar and ifbsA 
is the unique gi-inverse of a with ab = ba, then 

(1) 0 is o simple pole of the resolvent (z 1 — a ) - 1 ; 
(2) a ( a ) \ { O } ^ 0 ; 
(3) r(b) = (dist(0,<r(a) \ {0}))"1 > r(a)"1 . 

P r o o f . (1) follows from [8, Proposition 2.7]. 
(2) Since a ^ 0, cr(a) ^ {0}, by Proposition 5. 
(3) The first equation follows from Proposition 2.7 in [8]. Since ab = ba 

and aba — a, it follows by induction that an = anbnan for each n G N, thus 
1 < ||an|| ||6n|| for all n G N. This gives 1 < r(a)r(b). m 
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2. Spectra and spectral radii of generalized inverses 
Througout this section we assume that a E A \ A"1 and that a / 0 . 

Furthermore let b denote a fixed ^-inverse of a, thus aba = a and b = bab. 
Put p = 1 — ab and q = 1 — ba. Then p2 = p and q2 = q. Since a £ A"1 we 
have p 0 or q ^ 0. 

Define the function / : C —• A by 

! fp = 0 < - C , 

In what follows we only consider the case where p ^ 0. The proofs of our 
results are similar if p = 0 (and so f(z) = b + zq). 

PROPOSITION 6. For each z eC, f ( z ) e Gi(a). 

P r o o f . From pa = 0 it follows that f ( z ) a = ba. Thus a f ( z ) a = aba = a. • 

THEOREM 3. (1 ) z e p ( f ( z ) ) for each z e C . 

(2 ) (a(b) U { z } ) \ { 0 } Ç a ( f ( z ) ) Ç a(b) U { * } (z G C ) . 
(3 ) If a is not decomposably regular, then 

o(b) U { z } = t r ( f ( z ) ) for all z EC. 

P r o o f . (1) Since bp = 0, f ( z ) p = zp2 = zp, thus (zl — f ( z ) ) p = 0. Since 
p ^ 0, it follows that z G a ( f ( z ) ) . 

(2) We divide the proof in several steps. 
(i) We have 0 € a (b). Indeed, if 0 € p(b), then 1 = b~1b = 6_1(6a6) = ab, 

thus p — 0, a contradiction. 
(ii) The equation 

j ( X l - b ) ( X l - z p ) = X l - f ( z ) 

for A € C \ {0} is easily verified. 
(iii) We now show that cr(f(z)) Ç a(b)U{z}. To this end take A E cr(f(z)). 

If A = 0, then A 6 a(b) U {z} by (i). If A / 0, we see from (ii) that 

( X l - b ) { X l - z p ) £ A ~ \ 

thus A E a{b) or A E cr(zp) = {z,0}. Hence A E a(b) U { z } . 
(iv) It remains to show that (a(b) U { z } \ {0} Ç ° ( f ( z ) ) - Take A E 

a(b) U { z } with A ^ 0. If A = z, then A E a ( f ( z ) ) , by (1). Hence we assume 
that A,£ z and so A € cr{b). Furthermore we can assume that z / 0 , since 
/(0) = b. Now suppose that A 6 p ( f ( z ) ) . From (ii) we derive then that 
XI — zp £ A-1. This gives 

- z ( ^ l - f e a ) iA~\ 
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Since ba = (6a)2, we get ^ ^ = 0 or = 1, thus z = A or À = 0, a 
contradiction. 

The proof of (2) is now complete. 

(3) follows from (2) and Proposition 6. • 

COROLLARY 3. ( J a(c) = C . ceGi(a) 

P r o o f . Use Proposition 6 and Theorem 3(1). • 

COROLLARY 4. For z E C we have 

r(f(z))_ir(b), if \z\ < r(b) 
r{HZ))-\\z\, if \z\ > r(b). 

P r o o f . From Theorem 3(2) we see that r(b) < r(f(z)) for all z € C. Now 
take z eC such that \z\ < r(b) and /J, 6 a(f(z)) with |/z| = r(f(z)). Theorem 
3(2) shows that ¡JL € CR(b) or N = z, hence \/J,\ < r(b) and therefore r(f(z)) < 
r(b). Hence we have shown that r(f(z)) = r(b) if \z\ < r(b). If 2 6 C and 
\z\ > r(b), then it follows from Theorem 3(1), (2) that r(f(z)) = \z\. m 

COROLLARY 5. For each c 6 G2(a) we have 

[r(c), oo) Ç {r(x) : x € Gi(a)}. 

COROLLARY 6. Let /3(a) = inf{r(c) : c 6 G2(a)}. Then 

(/3(a), oo) Ç (r(x) : x € Gi(a)}. 

3. Norms of generalized inverses 

THEOREM 4. I f a e Â \ A a ± 0 and b e G2(a) then 

[||fe||,oo) Ç {||a;|| : a: € Gi(a)>. 

P r o o f . As above we ssume that p = 1 — ab ^ 0. Take a > ||b||. Define the 
function / : [0, oo) —> A by f(t) = b + tp. Corollary 4 gives 

r(f(t)) = t for t > r(b). 

Thus ||/(i)| | > t for t > r(b), hence 

(*) lim ||/(t)| | = oo. t—>oo 

Since ||/(0)|| = ll&H < a and since 11—> ||/(i)| | is continuous, (*) shows that 
there is to > 0 such that ||/(io)|| = a. Put x = /(io)- By Proposition 6, 
x € Gi(a). • 
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DEFINITIONS . An element h E A is called hermitian if || exp(z£/i)|| = 1 for 
all real t. 

We say that a € A is Moore-Penrose-invertible if there exists x G A 
satisfying the following Moore-Penrose conditions ([6]): 

axa = a, xax — x, ax is hermitian and xa is hermitian. 

It follows from [7, Lemma 2.1] that for a € A there is at most one x 6 A 
satisfying the Moore-Penrose conditions. Let 

A? = {a E A : a is Moore — Penrose invertible}. 

For a E A^ the unique x E A satisfying the Moore-Penrose conditions is 
denoted by a^ and is called the Moore-Penrose inverse of a. It is clear that 
A* C A and that for a E a* € G2(a). 

THEOREM 5. Let a e A* \ A'1 and a ^ 0. Then: 

( 1 ) ^ = 11«% 

(2) [||at,oo) = {|H| : a : e G i ( a ) } . 

Proof . (1) is shown in [7, Theorem 2.3]. 
(2) Put M = {||®|| : x € Gi(a)}. Then, by Theorem 4, [||at||,oo) C M. 

Now let x e Gi(a). From Proposition 3(3) we see that ^ y < ||a:||. Thus, by 
(1), ||at|| < ||x||. This shows that M C [||ot||,oo). • 

4. C*-algebras 
Througout this section A denotes a C*-algebra. It follows from [3, Propo-

sition 12.20] that for a € A, 

a is hermitian a = a*. 

The following important result is shown in [4, Theorem 6]. 

THEOREM 6. A - A^. 

COROLLARY 7. Let a e A \ A~l and a ± 0. Then 

[||ot||>oo) = {||®||:a:eGi(a)}. 

Proof . Theorem 5 and Theorem 6. • 

NOTATIONS. An element a e A is said to be 

(i) an isometry if a* a = 1, 
(ii) a partial isometry if aa*a = a, 

(iii) unitary if a* a = 1 = aa*, 
(iv) normal if a*a = aa*. 
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COROLLARY 8. Suppose that a E A is an isometry, then: 

(1) |M| = ||a*|| = r(a) = 1, 
(2) a E A and a^ = a*, 
(3) ba = 1 for each b E Gi(a), 
(4) Gi(a) = G2(a), 
(5) If a ¿A'1 then 

{||6|| : b E Gi(a)} = {r(6) : b E Gx(a)} = [1, oo). 
P r o o f . (l)-(4) are clear. 

(5) It follows from (1), (2), and Corollary 7 that 

{ | | 6 | | : 6€G i (a)} = [l,oo). 
Put M = {r(6) : b E Gi(a)}. Let b £ Gi(a). By (3), ba = 1, thus bnan = 1 
for all ne N, hence 1 < ||bn|| ||an|| < ||6n|| ||a||" = ||bn||. This gives r(b) > 1. 
Thus M C [1, oo). Since r ^ ) = r(a*) = 1, 1 € M. Now take a > 1 = r(at) 
and put b = a* + a ( l — <W). Since a ^ A~l, p = 1 — aa^ ^ 0. Corollary 4 
shows now that r(b) — a. Therefore [l,oo) C M. m 

COROLLARY 9. Suppose that a E A \ { 0 } is a non-unitary partial isometry. 
Then: 

(1) a G A and a* = a*, 
(2) {ll&H : b € Gi(a)} = [||a||, oo). 

P r o o f . (1) Clear. 
(2) Since ||a+1| = ||a*|| = ||a||, the result follows from Corollary 7. • 

PROPOSITION 7. If a E A is normal and if a € A, then a is simply polar: 
aat = a^a. 

P r o o f . [4, Theorem 10]. • 

5. Holomorphically regular elements 
If A is a complex unital Banach algebra, then an element a € A is 

called holomorphically regular if there is a neighbourhood U C C of 0 and a 
holomorphic function / : U —> A such that 

(a — zl)f(z)(a — z l ) = a — zl for all z EU. 

It is clear that in this case a E A. In [9, Theorem 1.4] we have shown the 
following result: 

PROPOSITION 8. For a E A the following conditions are equivalent: 
(1) a E A and a -^O) C f£°= 1 anA; 
(2) a is holomorphically regular. 
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THEOREM 7. If a E A is holomorphically regular, a A~l and b 6 G I ( A ) , 
then: 

(1) r(b) > 0; 
(2) {z € C : \z\ < ^ y } C a(a); 
(3) 1 < r ( a ) r ( 6 ) . 

P r o o f . Put U := {z € C : \z\r{b) < 1} and f(z) = (1 - for zeU. 
It is shown in [9, Corollary 1.5] that 
(*) (a — zl)f(z)(a — z 1) = a — zl for all z &U. 
Now take ZQ £ U and assume that z0 6 p(a). Prom (*) we get that f(zo) = 
(a — zol)-1. Thus 

(1 - z0b)~xb = 6(1 - zob)-1 = {a- zol)-1. 
Therefore 

b(a — zol) = (a — zol)b = 1 — zob, 
hence ab = ba = 1, a contradiction, since a £ A~l. Therefore we have shown 
that U C a (a). Since a(a) is bounded, we derive that (1) holds. Furthermore, 
since a(a) is closed, we get from U C a(a) that (2) holds. (3) follows from 
(2). 

COROLLARY 10. If a € A is holomorphically regular, then 0 is an interior 
point of a (a) and 1 < a(a)r(a). 
PROPOSITION 9. Suppose that a £ A is holomorphically regular and b € 
Gi(a). Then 

anbnan = an for all n€ N. 
P r o o f . Since b 6 Gi(a),aba = a. Now suppose that anbnan = an for some 
n G N. Put p ' anbn and q = 1 - ba. Then p2 = p, q2 = q,pA = anA and 
qA = .i4-1(0). Proposition 8 (1) shows then that qA C pA, hence q = pq. 
Therefore 

1 -ba = anbn( 1 - ba), 
thus 

anbn+ia = anbn -1 + ba. 
We conclude that 

an+lbn+lan+l = _ + 

= a(anbnan) = a n + 1 . • 
REMARK. Prom Proposition 9 we get a second proof of Theorem 7(3). 
THEOREM 8. If A is a C* -algebra and a € A is normal, then 

a is holomorphically regular a € 
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P r o o f . The implication ">i=" is clear. Now suppose that a is holomorphically 
regular. Assume to the contrary that a ^ A"1. Proposition 7 shows that a 
is simply polar, thus, by Corollary 2 (1), 0 is an isolated point of a (a). But 
this contradicts Corollary 10. • 
PROPOSITION 10. Let a e A. 

(1) Ifbe G2(a) and r = 1 — ab — ba, then 
r-1 (0) = (a"1 (0) D aA) 0 (6_1 (0) n bA) 

and 
rA = ( a - 1 ( 0 ) + aA) n (fc-^O) + bA). 

(2) If A is a C*-algebra, then 
( a t ) - 1 ^ ) = (a*) -1(0) and a U = a*A. 

P r o o f . (1) If x 6 a - 1 (0) fl aA, then x = (1 — ba)x = abx, hence rx = 0. 
Thus a_ 1(0) f\aA C r - 1 (0 ) . A similar argument gives 6 _ 1 ( 0 ) n M C r _ 1(0) . 
Now take x G r - 1 (0) , thus x = bax + abx. It follows that ax — ax + a(abx), 
hence abx G a_ 1(0) n a A. From bx = b(bax) + bx we get bax G 6 - 1(0) fl bA. 
Therefore 

x = abx + bax G (a_1(0) n aA) + (6:(0) n bA). 
Next we show that (a_1(0) D aA) n (6 -1(0) n bA) = {0}. 

Take x G (a _ 1 ( 0) n a A) n (&_1(°) n ba)- Then 

x — (1 — ba)x = abx = (1 — ab)x = bax, 
hence 0 = x — bax = x. The proof of the first assertion is now complete. 

If y G rA, then y = —abx + (1 — ba)x for some x G A. Hence y G 
aA + a - 1 (0) . A similar argument gives y G bA + 6 - 1(0). 

Now take 2 G ( a - 1 (0) + aA) n (0) + bA). Then z = i i + x2 = yi + y2 
with axi = 0,X2 = abx2, by\ = 0 and y2 = bay2- Put UJ = x\ — Then 
u> = yi — X2 and ru = u — bauj — abu> = u — ba(xi — y2) — ab{y\ — X2) = 
u) + bay2 + abx2 = u + y2 + X2 = xi - y2 + y2 + x2 = xx + x2 = z. Therefore 
2 G rA. 

(2) Prom aa^a = a and a^aa^ = a* we derive a*(a^)*a* = a* and (a*)* = 
(at)*a*(at)*, thus a* G A and (at)* G G2(a*). Then 

(a*) -1(0) = (1 - ( a ^ a * ) ^ = (1 - (aat)*)^ 
= ( 1 — aa^)A = ( a t ) - 1 ( 0 ) 

and 
a*A = a*(a^)*A= (a*a)*A = a*aA = a*A. m 

THEOREM 9. If A is a C*-algebra and a £ A is holomorphically regular, 
then: 
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(1) a* is holomorphically regular; 
(2) A = a - 1 (0 ) © (a*) -1(0) © ( a ^ f l a M ) . 

Proof . (1) Take any 6 e Gi(a) and put f(z) = (l-zb^bîor \z\ < r(6)_1 . 
As in the proof of Theorem 7, 

(a - zl)f(z)(a - z l ) = a-zl for \z\ < r(6)_1. 

Thus 
(a* - /xl)(l - /z6*)_16*(a* - fil) = a* - /*1 

for each fi € C with < T(6) -1 . 
(2) Put b = a*. Since a_ 1(0) = (1 — ba)A Ç aA = abA, we have 1 — ba = 

a6(l — 6a) = ab — ab2a, hence 
1 — fea — ab — —ab2a. 

By (1), a* ist holomorphically regular, thus (a*) -1(0) Ç a*A. Now use 
Proposition 10 (2) to get 6_ 1(°) ^ M . Therefore (1 - ab)A Ç baA, thus 
1 — ab = 6a(1 — ab) = ba — ba2b, hence 

1 — ba — ab = —ba2b. 

This gives ab2a = 6a26. Put s = ab2a. By Proposition 8, a2b2a2 = a2, thus 
s2 = (6a26)2 = 6a262a26 = 6a26 = s. Therefore s G À. Since o-x(0) Ç aA 
and 6_1(0) Ç bA, Proposition 10 (1) gives 

s - 1 (0 ) = a - 1 (0 ) © 6 - 1(0) 

and 
aA = aA fl bA. 

Now use A = s _ 1 (0) © s .A and Proposition 10 (2) to get the result. • 
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