

Nguyen Thanh Long

**SOLUTION APPROXIMATION
OF A SYSTEM OF INTEGRAL EQUATIONS BY A
UNIFORMLY CONVERGENT POLYNOMIALS SEQUENCE**

Abstract. In this paper we approximate the solution (f_1, f_2, \dots, f_n) of the following system of integral equations

$$(*) \quad f_i(x) = \sum_{j=1}^n \sum_{k=1}^m \left(a_{ijk} f_j(b_{ijk}x + c_{ijk}) + \alpha_{ijk} \int_0^{\beta_{ijk}x + \gamma_{ijk}} f_j(t) dt \right) + g_i(x), \quad i = 1, 2, \dots, n, \quad x \in \Omega = [-b, b],$$

by a uniformly convergent polynomials sequence, where $g_i : \Omega \rightarrow R$ are given continuous functions, $a_{ijk}, b_{ijk}, c_{ijk}, \alpha_{ijk}, \beta_{ijk}, \gamma_{ijk} \in R$ are given constants satisfying the following conditions

$$\begin{aligned} \sum_{i=1}^n \sum_{k=1}^m \max_{1 \leq j \leq n} (|a_{ijk}| + b|\alpha_{ijk}|) &< 1, \quad |b_{ijk}| < 1, \quad |\beta_{ijk}| < 1, \\ \max_{1 \leq i, j \leq n, 1 \leq k \leq m} \frac{|c_{ijk}|}{1 - |b_{ijk}|} &\leq b, \quad \max_{1 \leq i, j \leq n, 1 \leq k \leq m} \frac{|\gamma_{ijk}|}{1 - |\beta_{ijk}|} \leq b. \end{aligned}$$

1. Introduction

We consider the following system

$$(1.1) \quad f_i(x) = \sum_{j=1}^n \sum_{k=1}^m \left(a_{ijk} f_j(S_{ijk}(x)) + \alpha_{ijk} \int_0^{X_{ijk}(x)} f_j(t) dt \right) + g_i(x),$$

$i = 1, 2, \dots, n$, and $x \in \Omega \subset R$, where Ω is a bounded or unbounded interval. The given functions $g_i : \Omega \rightarrow R$, $S_{ijk}, X_{ijk} : \Omega \rightarrow \Omega$ are continuous, $a_{ijk}, \alpha_{ijk} \in R$ are given constants, f_i are unknown functions.

Key words and phrases: Banach fixed point theorem, Maclaurin expansion, Uniformly convergent polynomials sequence.

1991 *Mathematics Subject Classification:* 39B72.

In [1], the system (1.1) is studied with $\Omega = [-b, b]$, $m = n = 2$, $\alpha_{ijk} = 0$, $S_{ijk}(x)$ binomials of first degree. The solution is approximated by a uniformly convergent recurrent sequence, and it is stable with respect to the functions g_i . In [2-4] the existence and uniqueness of solution of the functional equation

$$(1.2) \quad f(x) = a(x, f(S(x))),$$

in the functional space $BC[a, b]$ have been studied. In [5], we have studied a special case of system (1.1) with $\alpha_{ijk} = 0$. By using the Banach fixed point theorem, we have obtained existence, uniqueness and also stability of the solution of system (1.1) with respect to the functions g_i . In the case $S_{ijk}(x)$ being binomials of first degree $g \in C^r(\Omega; R^n)$, and $\Omega = [-b, b]$ or Ω an unbounded interval of R we have obtained a Maclaurin expansion of the solution of system (1.1) until the order r . Furthermore, if g_i are polynomials of degree r , then the solution of system (1.1) is also a polynomial of degree r .

In this paper, by using the Banach fixed point theorem, we obtain existence, uniqueness and stability of the solution of system (1.1) with respect to the functions g_i , where $\Omega = [a, b]$ or Ω is unbounded interval of R . In the case of $S_{ijk}(x), X_{ijk}(x)$ being the functions of first degree and $g \in C^r(\Omega; R^n)$, we obtain a Maclaurin expansion up to r of the solution of system (1.1). Note that, if there exists one $\alpha_{ijk} \neq 0$ and $g_i(x)$ are polynomials of degree r , then the solution of system (1.1) is not certainly a sequence of polynomials yet (see remark 6). Finally, if g_i are continuous functions, the solution of system (1.1) is approximated by a uniformly convergent polynomials sequence. The results obtained here relatively generalize the ones in [1-6].

2. The theorems on existence, uniqueness and stability of solution

With $\Omega = [a, b]$, we denote by $X = C(\Omega; R^n)$ the Banach space of functions $f : \Omega \rightarrow R^n$ continuous on Ω with respect to the norm

$$(2.1) \quad \|f\|_X = \sup_{x \in \Omega} \|f(x)\|,$$

where

$$\|f(x)\| = \sum_{i=1}^n |f_i(x)|, \quad f = (f_1, f_2, \dots, f_n) \in X.$$

When $\Omega \subset R$ is an unbounded interval, we denote by $X = C_b(\Omega; R^n)$ the Banach space of functions $f : \Omega \rightarrow R^n$ continuous, bounded on Ω with respect to the norm (2.1).

We write the system (1.1) in the form of an operational equation in X . as follows

$$(2.2) \quad f = Tf \equiv Af + Jf + g,$$

where

$$f = (f_1, f_2, \dots, f_n), \quad Tf = ((Tf)_1, (Tf)_2, \dots, (Tf)_n),$$

with

$$(2.3) \quad \begin{aligned} (Tf)_i(x) &= (Af)_i(x) + (Jf)_i(x) + g_i(x), \\ (Af)_i(x) &= \sum_{j=1}^n \sum_{k=1}^m a_{ijk} f_j(S_{ijk}(x)), \\ (Jf)_i(x) &= \sum_{j=1}^n \sum_{k=1}^m \alpha_{ijk} \int_0^{X_{ijk}(x)} f_j(t) dt, i = 1, 2, \dots, n, x \in \Omega. \end{aligned}$$

We make the following assumptions

- (H₁) $g \in X$,
- (H₂) $S_{ijk}, X_{ijk} : \Omega \rightarrow \Omega$, are continuous,
- (H₃) $a_{ijk}, \alpha_{ijk} \in R$ satisfy the condition

$$\sigma \equiv \sum_{i=1}^n \sum_{k=1}^m \max_{1 \leq j \leq n} (|a_{ijk}| + b |\alpha_{ijk}|) < 1.$$

Then we have the following

THEOREM 1. *Let (H₁)–(H₃) hold. Then there exists a unique function $f = (f_1, f_2, \dots, f_n) \in X$ such that $f = Tf$. Moreover, f is stable with respect to g in X .*

P r o o f. It is evident that $T : X \rightarrow X$. Considering $f, \tilde{f} \in X$, we easily verify, by (H₃), that

$$(2.4) \quad \|Tf - T\tilde{f}\|_X \leq \sigma \|f - \tilde{f}\|_X.$$

Then, using Banach fixed point theorem, we have the existence of a unique $f \in X$ such that $f = Tf$.

Consider $f, \tilde{f} \in X$ being two solutions of (2.2) corresponding to g and $\tilde{g} \in X$, respectively. By the analogous evaluation, we have

$$\|f - \tilde{f}\|_X \leq \frac{1}{1 - \sigma} \|g - \tilde{g}\|_X.$$

Hence, f is stable with respect to g .

REMARK 1. Theorem 1 gives a consecutive approximate algorithm

$$(2.5) \quad f^{(\nu)} = Tf^{(\nu-1)}, \quad \nu = 1, 2, \dots, f^{(0)} \in X.$$

Then the sequence $\{f^{(\nu)}\}$ converges in X to the solution f of (2.2) and we have the error estimation

$$(2.6) \quad \|f^{(\nu)} - f\|_X \leq \|Tf^{(0)} - f^{(0)}\|_X \frac{\sigma^\nu}{1 - \sigma}, \quad \nu = 1, 2, \dots$$

REMARK 2. Let S_{ijk} , X_{ijk} be the binomials of first degree

$$(2.7) \quad S_{ijk}(x) = b_{ijk}x + c_{ijk}, \quad X_{ijk}(x) = \beta_{ijk}x + \gamma_{ijk} \quad \text{and} \quad \Omega = [-b, b].$$

Suppose that the real numbers b_{ijk} , c_{ijk} , β_{ijk} , γ_{ijk} satisfy the conditions

$$(H'_2) \quad (i) \quad |b_{ijk}| < 1, \quad |\beta_{ijk}| < 1, \quad i, j = 1, \dots, n, \quad k = 1, \dots, m,$$

$$(ii) \quad \max_{1 \leq i, j \leq n, 1 \leq k \leq m} \frac{|c_{ijk}|}{1 - |b_{ijk}|} \leq b, \quad \max_{1 \leq i, j \leq n, 1 \leq k \leq m} \frac{|\gamma_{ijk}|}{1 - |\beta_{ijk}|} \leq b.$$

Then (H_2) holds.

Then we have the following

THEOREM 2. Suppose that $\Omega = [-b, b]$, the real numbers a_{ijk} , b_{ijk} , c_{ijk} , α_{ijk} , β_{ijk} , γ_{ijk} satisfy (H'_2) , (H_3) and $S_{ijk}(x)$ are of the form (2.7). Then, for each $g \in X$, there exists a unique function $f \in X$ being the solution of system

$$(2.8) \quad f_i(x) = \sum_{j=1}^n \sum_{k=1}^m \left(a_{ijk} f_j(b_{ijk}x + c_{ijk}) + \alpha_{ijk} \int_0^{\beta_{ijk}x + \gamma_{ijk}} f_j(t) dt \right) + g_i(x),$$

$$i = 1, 2, \dots, n, \quad \text{and} \quad x \in \Omega = [-b, b].$$

Moreover, this solution is stable with respect to $g = (g_1, \dots, g_n)$ in X .

REMARK 3. (i) The result in [1] is a special case of Theorem 2 with $m = n = 2$ and $\alpha_{ijk} = 0$.

(ii) Theorem 2 is still true for $\Omega = R$ and in this case the terms b_{ijk} , c_{ijk} , β_{ijk} , γ_{ijk} need not satisfy the assumption (H'_2) .

3. Maclaurin expansion of the solution

Now, we consider $\Omega = [-b, b]$ and the real numbers a_{ijk} , b_{ijk} , c_{ijk} , α_{ijk} , β_{ijk} , γ_{ijk} as in Theorem 2.

Let $f \in C^1(\Omega; R^n)$ be the unique solution of system (2.8) corresponding to $g \in C^1(\Omega; R^n)$. Differentiating two members of (2.8), we obtain

$$(3.1) \quad f'_i(x) = \sum_{j=1}^n \sum_{k=1}^m \left(a_{ijk} b_{ijk} f'_j(b_{ijk}x + c_{ijk}) + \alpha_{ijk} \beta_{ijk} \int_0^{\beta_{ijk}x + \gamma_{ijk}} f'_j(t) dt \right)$$

$$+ \sum_{j=1}^n \sum_{k=1}^m \alpha_{ijk} \beta_{ijk} f_j(0) + g'_i(x), \quad i = 1, 2, \dots, n, \quad \text{and} \quad x \in \Omega = [-b, b],$$

where $f'_i(-b)$ and $f'_i(b)$ mean the forward derivative at $-b$ and the backward derivative at b of f_i , respectively. Put

$$(3.2) \quad F^{[0]} = (F_1^{[0]}, \dots, F_n^{[0]}) = f, \quad a_{ijk}^{(1)} = a_{ijk}b_{ijk}, \alpha_{ijk}^{(1)} = \alpha_{ijk}\beta_{ijk}.$$

From $(H'_2(i))$ and (H_3) , we have

$$(3.3) \quad \sigma^{(1)} \equiv \sum_{i=1}^n \sum_{k=1}^m \max_{1 \leq j \leq n} \left(|a_{ijk}^{(1)}| + b |\alpha_{ijk}^{(1)}| \right) \leq \sigma < 1,$$

By Theorem 2, there exists a unique function $F^{[1]} = (F_1^{[1]}, \dots, F_n^{[1]}) \in C(\Omega; R^n)$, being the solution of the system

$$(3.4) \quad F_i^{[1]}(x) = \sum_{j=1}^n \sum_{k=1}^m \left(a_{ijk}b_{ijk}F_j^{[1]}(b_{ijk}x + c_{ijk}) \right. \\ \left. + \alpha_{ijk}\beta_{ijk} \int_0^{\beta_{ijk}x + \gamma_{ijk}} F_j^{[1]}(t)dt \right) + \sum_{j=1}^n \sum_{k=1}^m \alpha_{ijk}\beta_{ijk}F_j^{[0]}(0) + g_i'(x), \\ i = 1, 2, \dots, n, \text{ and } x \in \Omega = [-b, b].$$

Moreover, from the uniqueness, this solution is also derivative $f' = (f'_1, \dots, f'_n)$ of f , i.e., $F^{[1]} = f'$.

Similarly, let $f \in C^r(\Omega; R^n)$ be the solution of system (2.8) corresponding to $g \in C^r(\Omega; R^n)$. Differentiating r times two members of (2.8), we obtain

$$(3.5) \quad f_i^{(r)}(x) = \sum_{j=1}^n \sum_{k=1}^m \left(a_{ijk}b_{ijk}^r f_j^{(r)}(b_{ijk}x + c_{ijk}) \right. \\ \left. + \alpha_{ijk}\beta_{ijk}^r \int_0^{\beta_{ijk}x + \gamma_{ijk}} f_j^{(r)}(t)dt \right) + \sum_{j=1}^n \sum_{k=1}^m \alpha_{ijk}\beta_{ijk}^r f_j^{(r-1)}(0) + g_i^{(r)}(x), \\ i = 1, 2, \dots, n, \text{ and } x \in \Omega = [-b, b].$$

From $(H'_2(i))$ and (H_3) , we have

$$(3.6) \quad \sigma^{(r)} \equiv \sum_{i=1}^n \sum_{k=1}^m \max_{1 \leq j \leq n} (|a_{ijk}b_{ijk}^r| + b |\alpha_{ijk}\beta_{ijk}^r|) \leq \sigma < 1.$$

Therefore, the following system

$$(3.7) \quad F_i^{[r]}(x) = \sum_{j=1}^n \sum_{k=1}^m \left(a_{ijk} b_{ijk}^r F_j^{[r]}(b_{ijk}x + c_{ijk}) \right. \\ \left. + \alpha_{ijk} \beta_{ijk}^r \int_0^{\beta_{ijk}x + \gamma_{ijk}} F_j^{[r]}(t) dt \right) + \sum_{j=1}^n \sum_{k=1}^m \alpha_{ijk} \beta_{ijk}^r F_j^{[r-1]}(0) + g_i^{(r)}(x), \\ i = 1, 2, \dots, n, \text{ and } x \in \Omega = [-b, b], \text{ with } F^{[r-1]} = f^{(r-1)},$$

has a unique solution $F^{[r]} = (F_1^{[r]}, \dots, F_n^{[r]}) \in C(\Omega; R^n)$, equal to the derivative $f^{(r)} = (f_1^{(r)}, \dots, f_n^{(r)})$ of the solution f .

Therefore, we have the following theorem.

THEOREM 3. *Let $g \in C^r(\Omega; R^n)$. Then there exist $f \in C^r(\Omega; R^n)$ and $F^{[r]} \in C(\Omega; R^n)$ being the unique solutions of systems (2.8) and (3.7), respectively. Furthermore, $F^{[r]}$ is the r -order derivative of f .*

REMARK 4. In the case of $\Omega = R$, we suppose additionally that the real numbers $a_{ijk}, b_{ijk}, \alpha_{ijk}, \beta_{ijk}$ satisfy the condition

$$(3.8) \quad \max_{0 \leq s \leq r} \sum_{i=1}^n \sum_{k=1}^m \max_{1 \leq j \leq n} (|a_{ijk} b_{ijk}^s| + b |\alpha_{ijk} \beta_{ijk}^s|) < 1.$$

Then, if

$$(3.9) \quad g \in C_b^r(\Omega; R^n) = \{g \in C_b(\Omega; R^n) : g', g'', \dots, g^{(r)} \in C_b(\Omega; R^n)\},$$

the conclusion of Theorem 3 is still true, where the functional spaces $C(\Omega; R^n)$ and $C^r(\Omega; R^n)$ appearing in Theorem 3 are replaced by $C_b(R; R^n)$ and $C_b^r(R; R^n)$, respectively. The proof of this result is the same as that of Theorem 3.

Now we return to the same case of $\Omega = [-b, b]$. Suppose that $f \in C^q(\Omega; R^n)$ is the unique solution of (2.8) corresponding to $g \in C^q(\Omega; R^n)$. For each $r = 1, 2, \dots, q$, we have $F^{[r]}$ as in Theorem 3. Then, from the Maclaurin formula we have

$$(3.10) \quad f_i(x) = \sum_{r=0}^{q-1} \frac{f_i^{(r)}(0)}{r!} x^r + \frac{1}{(q-1)!} \int_0^x (x-t)^{q-1} f_i^{(q)}(t) dt, \\ i = 1, 2, \dots, n, \text{ and } x \in \Omega = [-b, b].$$

On the other hand, we have

$$(3.11) \quad F^{[r]} = f^{(r)}, \quad r = 0, 1, 2, \dots, q.$$

From (3.10), (3.11) we have

$$(3.12) \quad f_i(x) = \sum_{r=0}^{q-1} \frac{F_i^{[r]}(0)}{r!} x^r + \frac{1}{(q-1)!} \int_0^x (x-t)^{q-1} F_i^{[q]}(t) dt, \\ i = 1, 2, \dots, n, \text{ and } x \in \Omega = [-b, b].$$

Inversely, suppose that a function $\tilde{f} = (\tilde{f}_1, \dots, \tilde{f}_n) \in C(\Omega; R^n)$ is given by the formula

$$(3.13) \quad \tilde{f}_i(x) = \sum_{r=0}^{q-1} \frac{F_i^{[r]}(0)}{r!} x^r + \frac{1}{(q-1)!} \int_0^x (x-t)^{q-1} F_i^{[q]}(t) dt, \\ i = 1, 2, \dots, n, \text{ and } x \in \Omega = [-b, b].$$

Then, from (3.11), (3.13) we have

$$(3.14) \quad \tilde{f}_i(x) = \sum_{r=0}^{q-1} \frac{f_i^{(r)}(0)}{r!} x^r + \frac{1}{(q-1)!} \int_0^x (x-t)^{q-1} f_i^{(q)}(t) dt = f_i(x), \\ i = 1, 2, \dots, n, \text{ and } x \in \Omega = [-b, b].$$

Hence, \tilde{f} is a solution of (2.8).

Therefore, we have the following theorem.

THEOREM 4. *Let $g \in C^q(\Omega; R^n)$. Then the solution $f \in C^q(\Omega; R^n)$ of systems (2.8) is represented by (3.12), where $F^{[r]} \in C(\Omega; R^n)$ is the unique solution of system (3.7). Inversely, every function $\tilde{f} \in C^q(\Omega; R^n)$ represented by (3.13) is a solution of (2.8).*

REMARK 5. We consider the case of $\Omega = R$ and the real numbers a_{ijk} , b_{ijk} , α_{ijk} , β_{ijk} satisfy the condition (3.8). If $g \in C_b^q(R; R^n)$, the conclusion of Theorem 4 is still true, where the functional spaces $C(\Omega; R^n)$ and $C^q(\Omega; R^n)$ appearing in Theorem 4 are replaced by $C_b(R; R^n)$ and $C_b^q(R; R^n)$, respectively.

Returning to the case of $\Omega = [-b, b]$ we have the following corollary.

COROLLARY 5. *If $\alpha_{ijk} = 0$ and g_1, \dots, g_n are polynomials of degree not greater than $r-1$, then the solution f of system (2.8) corresponding to $\alpha_{ijk} = 0$ is also a sequence of such polynomials.*

Proof. We have

$$(3.15) \quad g_i^{(r)}(x) = 0, i = 1, 2, \dots, n, x \in [-b, b].$$

Then $F^{[r]} = 0$ is the unique solution of system (3.7). Applying (3.12) with

$q = r$, we have

$$(3.16) \quad f_i(x) = \sum_{s=0}^{r-1} \frac{F_i^{[s]}(0)}{s!} x^s, \quad i = 1, 2, \dots, n, \quad x \in \Omega = [-b, b].$$

REMARK 6. Corollary 5 is not true if there exists at least one $\alpha_{ijk} \neq 0$. Indeed, consider the system (2.8) corresponding to $\Omega = [-1, 1]$, $m = n = 2$, $k = 1$, $(a_{12}, b_{12}, c_{12}) = (1/8, 1/2, 1/2)$, $(a_{ij}, b_{ij}, c_{ij}) = (0, 0, 0) \forall (i, j) \neq (1, 2)$; $(\alpha_{11}, \beta_{11}, \gamma_{11}) = (1/4, 1, 0)$, $(\alpha_{22}, \beta_{22}, \gamma_{22}) = (1/2, 1, 0)$, $(\alpha_{ij}, \beta_{ij}, \gamma_{ij}) = (0, 0, 0) \forall (i, j) \neq (1, 2), (2, 1)$ as follows

$$(3.17) \quad \begin{aligned} f_1(x) &= \frac{1}{8} f_2\left(\frac{x+1}{2}\right) + \frac{1}{4} \int_0^x f_1(t) dt + g_1(x), \\ f_2(x) &= \frac{1}{2} \int_0^x f_2(t) dt + g_2(x), \quad x \in [-1, 1] \end{aligned}$$

with $g_1(x) = 1$, $g_2(x) = x$. The exact solution of Eq.(3.17) is $f_1(x) = \frac{1}{4}(e + 3)e^{x/4} + \frac{1}{16}e^{1/4}x$, $f_2(x) = 2e^{x/2} - 2$.

4. Solution approximation by a uniformly convergent polynomials

In this part, we consider the system (2.8) with $\Omega = [-b, b]$ and the real numbers $a_{ijk}, b_{ijk}, c_{ijk}, \alpha_{ijk}, \beta_{ijk}, \gamma_{ijk}$ as in Theorem 2. Let $f \in C(\Omega; R^n)$ be the unique solution of system (2.8) corresponding to $g \in C(\Omega; R^n)$. We shall approximate the solution f by a uniformly convergent recurrent sequence consisting of the polynomials.

First, by the Weierstrass theorem, each function g_i is approximated by a sequence of polynomials $P_i^{[q]}$ converging uniformly to g_i when the degree $q \rightarrow +\infty$. Hence, $P^{[q]} = (P_1^{[q]}, \dots, P_n^{[q]})$ converges in $C(\Omega; R^n)$ to g when $q \rightarrow +\infty$. We consider the sequence $\{f^{[q]}\}$ defined as follows

$$(4.1) \quad \begin{aligned} f^{[0]} &\equiv 0, \\ f^{[q]} &\equiv Af^{[q]} + Jf^{[q-1]} + P^{[q]}, \quad q = 1, 2, \dots \end{aligned}$$

We note that $Jf^{[q-1]} + P^{[q]}$ is polynomial of degree not greater than q . Corollary 5, solution $f^{[q]}$ of (4.1) is also a sequence of such polynomials.

Therefore, we have the following theorem.

THEOREM 6. *We have $\lim_{q \rightarrow +\infty} \|f^{[q]} - f\|_X = 0$.*

Furthermore, if the series $\sum_{j=1}^{\infty} \alpha^{-j} \|P^{[j]} - g\|_X$ is convergent then we have the error estimation

$$(4.2) \quad \|f^{[q]} - f\|_X \leq \left(\|f\|_X + (1 - \|A\|)^{-1} \sum_{j=1}^{\infty} \alpha^{-1} \|P^{[j]} - g\|_X \right) \alpha^q, \quad q = 1, 2, \dots$$

where $\alpha = \|J\|(1 - \|A\|)^{-1} < 1$.

Proof. From (2.2), (4.1), we have

$$(4.3) \quad f^{[q]} - f = A(f^{[q]} - f) + J(f^{[q-1]} - f) + P^{[q]} - g, \quad q = 1, 2, \dots$$

On the other hand, by (H_3) , we have the following estimates

$$(4.4) \quad \begin{aligned} \|A\| &\leq \sum_{i=1}^n \sum_{k=1}^m \max_{1 \leq j \leq n} |a_{ijk}|, \\ \|J\| &\leq b \sum_{i=1}^n \sum_{k=1}^m \max_{1 \leq j \leq n} |\alpha_{ijk}|, \\ \|A\| + \|J\| &\leq \sigma < 1. \end{aligned}$$

It follows from (4.3), (4.4), that

$$(4.5) \quad \|f^{[q]} - f\|_X \leq \|A\| \|f^{[q]} - f\|_X + \|J\| \|f^{[q-1]} - f\|_X + \|P^{[q]} - g\|_X.$$

or

$$(4.6) \quad E_q \leq \alpha E_{q-1} + \delta_q, \quad q = 1, 2, \dots, E_0 = \|f\|_X,$$

where

$$(4.7) \quad E_q = \|f^{[q]} - f\|_X,$$

$$(4.8) \quad \delta_q = (1 - \|A\|)^{-1} \|P^{[q]} - g\|_X \rightarrow 0, \text{ as } q \rightarrow +\infty,$$

$$(4.9) \quad \alpha = (1 - \|A\|)^{-1} \|J\| < 1.$$

From (4.6), we obtain

$$(4.10) \quad 0 \leq E_q \leq E_0 \alpha^q + \sum_{j=1}^q \delta_j \alpha^{q-j}, \quad q = 1, 2, \dots$$

We only have to prove that: $\lim_{q \rightarrow +\infty} E_q = 0$.

Let $\varepsilon > 0$. By (4.8), there exists a natural number q_0 such that

$$(4.11) \quad 0 \leq \delta_q \leq (1 - \alpha) \varepsilon, \text{ for all } q > q_0.$$

We have

$$(4.12) \quad 0 \leq \sum_{j=1}^q \delta_j \alpha^{q-j} = \sum_{j=1}^{q_0} \delta_j \alpha^{q-j} + \sum_{j=q_0+1}^q \delta_j \alpha^{q-j}$$

$$\leq \alpha^q \sum_{j=1}^{q_0} \delta_j \alpha^{-j} + (1-\alpha)\varepsilon \alpha^q \sum_{j=q_0+1}^q \alpha^{-j}, \text{ for all } q > q_0.$$

By (4.11), the second sum in the right-hand side of (4.12) is estimated as follows:

$$(4.13) \quad (1-\alpha)\varepsilon \alpha^q \sum_{j=q_0+1}^q \alpha^{-j} = (1-\alpha)\varepsilon \alpha^q \alpha^{-q_0-1} \times \frac{1-\alpha^{-(q-q_0)}}{1-\alpha^{-1}} \\ = \varepsilon (1-\alpha^{q-q_0}) < \varepsilon, \text{ for all } q > q_0.$$

Hence, it follows from (4.12)–(4.13), that

$$(4.14) \quad 0 \leq E_q \leq \left(E_0 + \sum_{j=1}^{q_0} \delta_j \alpha^{-j} \right) \alpha^q + \varepsilon, \text{ for all } q > q_0.$$

Let $q \rightarrow +\infty$, we obtain from (4.14), that $0 \leq \lim_{q \rightarrow +\infty} E_q \leq \varepsilon$, for all $\varepsilon > 0$. Hence $\lim_{q \rightarrow +\infty} E_q = 0$.

Finally, we deduce easily the inequality (4.2) from (4.10) and the proof of Theorem 6 is complete.

References

- [1] C. Q. Wu, Q. W. Xuan, D. Y. Zhu, *The system of the functional equations and the fourth problem of the hyperbolic system*, South-East Asian Bull. Math. 15 (1991), 109–115.
- [2] T. Kostrzewski, *Existence and uniqueness of BC[a,b] solutions of nonlinear functional equation*, Demonstratio Math. 26 (1993), 61–74.
- [3] T. Kostrzewski, *BC-solutions of nonlinear functional equation. A nonuniqueness case*, Demonstratio Math. 26 (1993), 275–285.
- [4] M. Lupa, *On solutions of a functional equation in a special class of functions*, Demonstratio Math. 26 (1993), 137–147.
- [5] Nguyen Thanh Long, Nguyen Hoi Nghia, Nguyen Kim Khoi, Dinh Van Ruy, *On a system of functional equations*, Demonstratio Math. 31 (1998), 313–324.
- [6] Nguyen Thanh Long, Nguyen Hoi Nghia, *On a system of functional equations in a multi-dimensional domain*, Z. Anal. Anw. 19 (2000), 1017–1034.

DEPARTMENT OF MATHEMATICS-INFORMATICS
 UNIVERSITY OF NATURAL SCIENCE
 VIETNAM NATIONAL UNIVERSITY HOCHIMINH CITY
 227 Nguyen Van Cu Str., Dist. 5,
 HOCHIMINH CITY, VIETNAM
 e-mail: longnt@hcmc.netnam.vn

Received November 1, 2002.