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A GENERALIZED UPPER AND LOWER SOLUTION 
METHOD FOR SINGULAR DISCRETE 

INITIAL VALUE PROBLEMS 

Abstract. This paper presents new existence results for singular discrete initial value 
problems. In particular our nonlinearity may be singular in its dependent variable and is 
allowed to change sign. 

1. Introduction 
An upper and lower solution theory is presented for the singular discrete 

initial value problem 
( , jAy(i-l)=q(i)f(i,y(i)), i G N = {1,.. . , T} 

\y(0) = 0, 
where T € {1,2,...}, N+ = {0,1,... ,T} and y : N+ -» R. Throughout 
this paper we will assume / : N x (0, oo) —» R is continuous. As a result our 
nonlinearity f(i,u) may be singular at u = 0 and may change sign. 
REMARK 1 . 1 . Recall a map f : Nx( 0, oo) —• R is continuous if it is continu-
ous as a map of the topological space N x (0, oo) into the topological space R. 
Throughout this paper the topology on N will be the discrete topology. 

We will let C(N+, R) denote the class of map u continuous on N+ 

(discrete topology), with norm ||u|| = max ie^+ |u(i)|. By a solution to (1.1) 
we mean a u € C(N+, R) such that u satisfies (1.1) for i G N and u satisfies 
the initial condition. 

It is of interest to note here that the existence of solutions to singular 
initial value problems in the continuous case have been studied in great 
detail in the literature [1]—[3]. However, for the discrete case the singular 
initial problem has not been examined. 

2. Existence theory 
In this section we use the ideas in [1], [2] to obtain new results for the 

singular discrete initial value problem 
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(l> u (Ay(i-l)=q(i)f(i,y(i)), i € N = {1,... ,T} 
W \ y(0) = 0, 

where our nonlinearity / may change sign. Our main result can be stated 
immediately. 

THEOREM 2.1. Let no €E {1,2, . . .} be fixed and suppose the following condi-
tions are satisfied: 

(2.2) / : N x (0, oo) —> R is continuous, 

(2.3) qeC(Ny( 0,oo))t 

{ there exists a function a € C(N+, R) 
with a(0) = 0, a > 0 on N such 
that q(i) f(i, a(i)) > Aa(i - 1) for i 6 N 

and 
' there exists a function (3 6 C(N+, R) with 

(2.5) 0(i) > a(i) and (3(i) > for i 6 N+ with 
^q(i)f(i,f3(i))<A(3(i-l)°for i e N. 

Then (2.1) has a solution y G C(iV+,R) with y(i) > a(z) for i e N+. 

P r o o f . Fix n G {no,no + 1, }. We begin with the discrete initial value 
problem 

(Ay(i-l) = q(i)K0(i>y(i)), ieN 
( 2-6 ) \ » (0 ) = A ; 
here 

f:0(hy) = { f(i,y), <*(i)<y<P(i) 
f(i,(3(i)), y>m-

Then (2.6) is equivalent to 

2/(») = 

From Brouwer's fixed point theorem we know that (2.6) has a solution 
yno € C(N+, R). We first show 

(2.7) yno(i)>a(i), i 6 N+. 

Suppose (2.7) is not true. Then there exists a r € N such that j/no(T) < 
a( r)> Vn0(r - 1) > a ( r - 1), since yno(0) - a(0) = ^ > 0. Thus we have 

Ayn o(r - 1) = q(r) /n*0(r,yn o(r)) = 9 ( r ) / ( r , a ( r ) ) > Aa ( r - 1) 
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i.e., 

Vn0(r) - Oi{r) > yno(r - 1) - a(r — 1) > 0, 
a contradiction. 

Next we show 

( 2 . 8 ) yno(i) <(3(i) for i e N + . 

If (2.8) is not true then there exists r G N such that yno (r) > /3(r) and 
yno(r - 1) < P(r - 1 ) , since y n o (0 ) = £ < p{0). Thus we have 

A y n o ( r - 1) = q(r) f*0(r,yn0(r)) = q(r) f(r,(3(r)) < A / 3 ( r - 1) 

i.e., 

Vnoir) - P(T) < yno(r - 1) - P(r - 1) < 0 , 

a contradiction. 

Since (2.8) holds, so we have 

a ( i ) <y«o(*) <P(i) for i e N + . 

Next we consider 

here 

{/(*>«(*))> y < a ( * ) 
/ (* .y)> < y < yno(0 
/(*.yno(*))> y>yn0(i)-

Now Brouwer's fixed point theorem guarantees that (2.9) has a solution 
2/no+i G C ( i V + , R ) . Essentially the same reasoning as above yields <*(*) < yno+i(*) < yn0(*)> i e i V + . 

Now proceed inductively to construct yn o+2, yn0+3> • • • a s follows. Sup-
pose we have yk for some k 6 {no + l , n o + 2 , . . . } with a(i) < yk{i) < 
Vk-i{i) for i € N+. Then consider the discrete initial value problem 

J A y ( z — 1) = q(i) f£+1(i, y(i)), i e N 

here 

f / ( i , <*(*))» y<a(i) 
fk+1(*. y) = / ( * , y) . < y < y * ( 0 

k /(*>y*(*))« y > y*(*)-

Now Brouwer's fixed point theorem guarantees that (2.10) has a solution 
yfc+i 6 C(N+, R ) , and essentially the same reasoning as above yields 

(2 .11) a(i) < yk+1{i) < yk(i) for i G N+. 
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Thus for each n G {no, no + 1, } we have 

(2.12) a(i) < yn(i) < yn^(i) < ... < yno(i) < /3(i) for i G N+. 

This immediately guarantees the existence of a subsequence Zno of inte-
gers and a function y with yn converging to y on N+ as n —• oo through 
Zno. Now yn , n € Zno, satisfies yn(i) > c*(z) > 0 for i G N, and 

1 1 

yn(i) = - + Y" q{j)f(j,yn(j)), i e N. 
n 1 

3=i 
Let n —• oo through Zn o to obtain 

¿=i 
Also we have y(0) = limn_>oo ^ = 0. Thus y(i) € C(N+, R) is a solution to 
(2.1) and a(i) < y{i) < p{ï). m 

Suppose ( 2 .2 ) - (2 .4 ) hold, and in addition assume the following conditions 
are satisfied: 

(2.13) q(i)f(i,y) > A a ( z - L ) for (i, y) E N x {y e (0, oo) : y < a(z)} 

and 

{there exists a function (3 6 C(N+, R) with 

(3(i) > £ for i€N+ with q(i) /(»,£(»)) < A/?(z - 1) 
for i e N. 

Then the result in Theorem 2.1 is again true. This follows immediately from 
Theorem 2.1 once we show (3(i) > a(i) for i G N+. Suppose it is false. 
Then there exists a T € N such that /3(r) < A(R) and ¡3(T — 1) > a ( r — 1), 
since (3(0) — a(0) > ^ > 0. Hence we have A a ( r - l ) < g ( r ) / ( T , / 3 ( r ) ) , 
and therefore A / 3 ( r - l ) > A a ( T - l ) , i . e . ^ ( R ) - A ( T ) > ^ ( T - l ) - A ( r - l ) > 
0, a contradiction. Thus we have 

COROLLARY 2.2. Let n0 € { 1 , 2 , } be fixed and suppose ( 2 . 2 ) - (2 .4 ) , 
(2.13) and (2.14) hold. Then (2.1) has a solution y G C(IV+,R) with 
y(i) > a(i) for i € iV+. 

Next we discuss how to construct the lower solution a in (2.4) and in 
(2.13). Suppose the following condition is satisfied: 

let n G {no, no + 1 , . . . } and associated with each n 
(2.15) there exists a constant ko > 0 such that for i G N 

^ and 0 < y < ^ we have q(i) f(i, y) > ko. 
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W 1 0 , 1 = 0, 

0 < k < rp , k max q(i) < kn. 

" o E L i 9 ( 0 
Then a(» ) < A a ( i - 1) = kq(i) < k0, a(0) = 0, a > 0 for i 6 N with 
(2.4) and (2.13*) holding, since 

?(*)/(«> y ) > k o > Aa ( i - 1), for i 6 AT, 0 < y < a(i), 

and 

q(i)f(i,a(i)) > /c0 > Aa ( i - 1), t € iV. 

We combine this with Corollary 2.2 to obtain our next result. 

T h e o r e m 2.3. Let n0 6 {1,2, } be fixed and suppose (2.2), (2.3), (2.14), 
and (2.15) hold. Then (2.1) has a solution y 6 C ( I V + , R ) with y(i) > 0 for 

i G N. 

Looking at Theorem 2.3 we see that all the conditions (except maybe 
(2.14)) are easy to verify in applications. However it is easy to place condi-
tions (which are easy to check in practice) on our nonlinearity to guarantee 
(2.14). We present one such general result in Theorem 2.4. 

T h e o r e m 2.4. Let n0 e {1,2, } be fixed and suppose (2.2)-(2.4) hold. 

Also assume the following condition is satisfied: 

I/(*, y) I < g(v) + h(y) on N x (0, oo) with 

g > 0 continuous and nonincreasing on (0, oo) 

and h > 0 continuous on [0, oo) 
, h/g nondecreasing on (0, oo). 

Also suppose there exists a constant M > 0 with M > supieN+ a(i) and 

with 

(2.16) 

(2-17) E 9(0 < r, , MM)! S 
M du 

i=1 [1 + $ S } ] i ' M 

holding. Then (2.1) has a solution y € C(N+, R ) with y(i) > a(i) for 

i e N+. 

P r o o f . Choose e > 0, e < M with 

T 1 M , 

( 2 - 1 8 ) E ( K 0 < T - ^ b h S 
t=l [ 1 + h M <9{uy 
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Without loss of generality assume ^ < e. We consider the discrete initial 
value problem 

(2.19) 
Ay(i-l) = q(i)g(y(i))(l + ^ ) , i G N, 
2/(0) = 

We define a mapping $ : D —• D by 

(*v)(0 = ( 7 + q U ) 9 i y m i + N> 
I 1 = 

where D := {y G C(N+, R); £ < y(i) < (*£)(t), i € iV+}. 
By the definition of $ , it is readily verified that $ is a continuous map-

ping from D to D (note g in nonincreasing). The Brouwer's fixed point 
theorem tells us that $ has at least one fixed point in D. Let (3(i) be a fixed 
point in D. Then it is easy to check that (3(i) is a solution to problem (2.19) 
such that £ < P(t) < ($£)(») , i e N+. 

Now claim that a(z) < (3(i) < M, i e N+ . First we show 
(2.20) (3{i) > a(i), i€N+. 
Suppose (2.20) is false. Then since /3(0) = ^ > <*(0) = 0, there exists a 
r G N with 

/3(T) < a(r), P(T - 1) > a(r - 1). 
Now for r € N, we have from (2.19) and M > supl&N+ a(i) that 

A / J (T-1 ) = ,(T)s(0(T))(1 + ^ ) 

9(ot(r)) 
> q(T)f(r, a(r)) > Aa( r - 1). 

Thus P(T) — A(R) > P(T — 1) — A(R — 1) > 0, a contradiction. 
Next we show 

(2.21) P(i)<M, i e N+. 
Since A@(i — 1) > 0 on N, (3(i) is increasing on N+. Now for i G N we 
have from (2.19) that 

AP(i-l) 
= 9(0 1 + 

h{M) 
g(M)\ 

, ieN. 
g ( m 

Since g{u) > g((3(i)) for 0 < u < P(i) for ieN, then we have 
/»(O 

1) 

du A f l i - l ) _ 
P ( U ) - 9 m ) ~q{l) 1 + 

h(M)' 
9 ( M ) J , ieN, 
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and then sum the above from 1 to T to obtain 
ß (T) ß (T) 

au r au S uu r au _ h(M) \—\ . . 
- S thä - 1 + I » -

T 

1=1 g(u) - ]_ g(u) ~ I g{M) 
"0 

This together with ( 2 . 1 8 ) implies f3{T) <M, i.e., (3{i) < M for i € N+. 
Observe that 

f[i,m<Mi))( 

Thus we have /3(z) > ^ and (3(i) > a(i) for i 6 N+ with 

Af3(i - 1) = q(i)g(m( 1 + > q(i)f(i, /*(<)), < € N, 

so that p(i) satisfies ( 2 . 5 ) . The result follows from Theorem 2 .1 . • 

Combining Theorem 2.4 with the comments before Theorem 2.3 yields 
the following theorem. 

THEOREM 2.5 . Let n0 e { 1 , 2 , } be fixed and suppose ( 2 .2 ) , ( 2 .3 ) , ( 2 .15 ) 
and ( 2 .16 ) hold. In addition assume there is a constant M > 0 with ( 2 . 1 7 ) 
holding. Then (2 .1 ) has a solution y € C(N+, R ) with y(i) > 0 f o r i € N. 

Proof . This follows immediately from Theorem 2.4 once we show there 
exists a € C(N+, R ) such that (2.4) hold, and 

(2 .22 ) M > a(i) for each i e N+. 

Let 
i e N 

W I 0, i = 0, 
with 

„ 1 , . . M 
0 < k < , «max an) < ko, k < —™ . 

n o Z L ^ ) ^ U " E L I 9(0 
Then a 6 C(N+, R ) and (2.4), (2.22) hold. • 

Next we present an example which illustrates how easily the theory is 
applied in practice. 

EXAMPLE 2 . 1 . The initial value problem 

( 2 ' 2 3 ) I 2/(0) - 0 
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with a > 0, (3 > 0 and a > 0 has a solution y G C(N+, R) with y(i) > 0 
for i £ N, if 

coc+l 
(2.24) a < pT(a + 1 ) ] - 1 « i P c 6 ( o , c o ) 1 + flB+ e a + / ? -

To see this we will apply Theorem 2.5 with 
q(i) = (j, = = u13 + 1. 

Clearly (2.2), (2.3), (2.15) and (2.16) hold. Also notice (2.24) implies that 
there exists M > 0 such that 

Ma+1 

a < [T(ot + 1)1_1- T7 TTTfl, 1 v n 1 + Ma + Ma+P 
and so (2.17) holds. 

Thus all the conditions of Theorem 2.5 are satisfied so existence is guar-
anteed. 
REMARK 2.1. If ¡3 < 1 then (2.24) is automatically satisfied. 
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