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A GENERALIZED UPPER AND LOWER SOLUTION
METHOD FOR SINGULAR DISCRETE
INITIAL VALUE PROBLEMS

Abstract. This paper presents new existence results for singular discrete initial value
problems. In particular our nonlinearity may be singular in its dependent variable and is
allowed to change sign.

1. Introduction
An upper and lower solution theory is presented for the singular discrete
initial value problem

W {Ay(z’— 1) = ¢6) fG,y(), i€ N ={L,...,T}
y(0) =0,

where T € {1,2,...}, N* = {0,1,...,T} and y : N* — R. Throughout

this paper we will assume f : N x (0,00) — R is continuous. As a result our

nonlinearity f(¢,u) may be singular at u = 0 and may change sign.

REMARK 1.1. Recall amap f : N x(0,00) — R is continuous if it is continu-
ous as a map of the topological space N x (0, 0o) into the topological space R.
Throughout this paper the topology on N will be the discrete topology.

We will let C(N*t,R) denote the class of map u continuous on N¥t
(discrete topology), with norm ||u|| = max;cn+ |u(z)]- By a solution to (1.1)
we mean a u € C(N*, R) such that u satisfies (1.1) for 2 € N and u satisfies
the initial condition. _

It is of interest to note here that the existence of solutions to singular
initial value problems in the continuous case have been studied in great
detail in the literature [1]-[3]. However, for the discrete case the singular
initial problem has not been examined.

2. Existence theory
In this section we use the ideas in [1], [2] to obtain new results for the
singular discrete initial value problem
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(2.1) {A-’/(i - 1) = q(1) f(3,9(%), i€ N={1,...,T}
y(0) =0,

where our nonlinearity f may change sign. Our main result can be stated

immediately.

THEOREM 2.1. Let ng € {1,2,...} be fized and suppose the following condi-
tions are satisfied:

(2.2) f:N x (0,00) = R is continuous,
(2.3) q € C(N, (0,00)),
there erists a function o € C(N*,R)
(2.4) with a(0)=0,a>0 on N such
that q(i) f(i,e(i)) 2 Aa(i —1) for i€ N
and
there erists a function € C(NT,R) with
(2.5) B@E) > a(i) and B(i) 2 o= for i€ Nt with
q(é) f(4,8()) < AB(i—1) for i€ N.

Then (2.1) has a solution y € C(N*,R) with y(i) > a(i) for i€ N*.

Proof. Fix n € {no,no + 1,....}. We begin with the discrete initial value
problem

(2.6) { %giz—;f q(é) £2,G,y(3), i€ N
here
f(i,a(d)), y < oi)
fao(y) =4 f(6y), o) <y < B()
f(@,B(5)), y = B().
Then (2.6) is equivalent to
J0) = { st ,-%é.q(j)f':“(j’y(j))’ ieN

From Brouwer’s fixed point theorem we know that (2.6) has a solution
Yno € C(NT,R). We first show

(2.7) Yno(3) 2 (i), i€ N*F.

Suppose (2.7) is not true. Then there exists a 7 € N such that y,,(7) <
a(T), Yno(T — 1) > a7 — 1), since yn,(0) — (0) = ;= > 0. Thus we have

Ao (T = 1) = (1) f2o (T, Yno (7)) = 4(7) (7, 2(7)) 2 Ac(7 — 1)
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ie.,

| Yno(T) — &(T) 2 Yno(T ~ 1) —a(r~1) 2 0,
a contradiction.

Next we show

(2.8) Yno (i) < B(3) for i€ NT.
If (2.8) is not true then there exists 7 € N such that y,,(7) > B(7) and
Uno (7 — 1) < B(1 — 1), since y,,(0) = nio < B(0). Thus we have
Ayno (T — 1) = q(7) f2, (T 4no (7)) = g(7) £(7, B(7)) < AB(T - 1)
ie.,
Yno(T) — B(T) S yno(T — 1) = B(1 — 1) <0,
a contradiction.
Since (2.8) holds, so we have
(i) < yno(i) < B(3) for ie N*.

Next we consider
29) {204~ D) =00 firs GO, £ ¥
'n0+1 )

here

f(,0(d), y < afd)

f1:0+1(i’ y) = f(la y)a a(z) LY < Yne (Z)
Fi4no (8))s Y 2 Yno (9)-
Now Brouwer’s fixed point theorem guarantees that (2.9) has a solution

Uno+1 € C(Nt,R). Essentially the same reasoning as above yields

() < Yno+1(8) < Yno(3), i€ NT.
Now proceed inductively to construct yn,42, Yno+3, ... as follows. Sup-

pose we have y, for some k € {ng + 1,n0 + 2,...} with a(i) < y(i) <
yk—1(i) for i € N*. Then consider the dlscrete 1n1t1a1 value problem

(2.10) {ﬁggl _kB_— q(?) fr1(3,9(@)), i€N

here
(3,a(3)), y < afi)
fer1(hy) = f(Gy), a(d) <y < ye(9)
F&ue(3), v > y(3).

Now Brouwer’s fixed point theorem guarantees that (2.10) has a solution
yk+1 € C(N*,R), and essentially the same reasoning as above yields

(2.11) a(i) < yre1(8) < yr(i) for i€ N*.
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Thus for each n € {ng,no+1,....} we have
(2.12) (i) € Yn(8) < Yn-1(0) < ... < yno(d) < B() for i€ NT.

This immediately guarantees the existence of a subsequence Z,, of inte-
gers and a function y with y, converging to y on Nt as n — oo through
Zp,- Now y,,, n € Z,,, satisfies y, (i) > (i) > 0 for i € N, and

() = 243 i) G u), i€ N

Let n — oo through Z,, to obtain
y(@) = 9@ f(,y(), i€ N.
=1
Also we have y(0) = limp_,oo L = 0. Thus y(i) € C(N*,R) is a solution to
(2.1) and (i) < y(i) < B(:). =

Suppose (2.2)—(2.4) hold, and in addition assume the following conditions
are satisfied:

(2.13) q(?) f(i,9) > Aa(i — 1) for (i,y) € N x {y € (0,00) : y < a(3)}
and

there exists a function 8 € C(N*,R) with
(214) { B) > & for i€ N* with q@) 7, B(9) < ABG~ 1)

for € N.
Then the result in Theorem 2.1 is again true. This follows immediately from
Theorem 2.1 once we show (i) > a(i) for ¢ € N*. Suppose it is false.
Then there exists a 7 € N such that 3(7) < a(7) and B(r—1) > a(r-1),
since 3(0) — a(0) > '513 > 0. Hence we have

Aa(r —1) < q(1)f(7, B(1)),
and therefore AB(t—1) > Aa(r-1),ie. f(r)—a(r) > B(t—-1)—a(r—1) >
0, a contradiction. Thus we have
COROLLARY 2.2. Let ng € {1,2,....} be fized and suppose (2.2)—(2.4),

(2.13) and (2.14) hold. Then (2.1) has a solution y € C(N*,R) with
y(i) > a(i) for ie N*.

Next we discuss how to construct the lower solution a in (2.4) and in
(2.13). Suppose the following condition is satisfied:

there exists a.constant kg > 0 such that for i € N

let n € {no,no+1,...} and associated with each n
(2.15)
and 0<y <3 wehave g(3) f(,y) > ko.
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Let
a(d) = { k ZZ _1OQ(J),

where

0<k<—-———l—— kmax q(i) < ko.

noYic 4() N
Then a(z) < =, Aa(i — 1) = kq(i) < ko, a(0) =0, & > 0 for : € N with
(2.4) and (2. 133 holding, since

q(@)f@,y) > ko > Aa(i—1), fori € N, 0 < y < afi),
and
26)f (i, a(i) > ko > Aa(i—1), i € N.
We combine this with Corollary 2.2 to obtain our next result.
THEOREM 2.3. Let ng € {1,2,....} be fized and suppose (2.2), (2.3), (2.14),

and (2.15) hold. Then (2.1) has a solution y € C(N*,R) with y(i) >0 for
i€N.

Looking at Theorem 2.3 we see that all the conditions (except maybe
(2.14)) are easy to verify in applications. However it is easy to place condi-
tions (which are easy to check in practice) on our nonlinearity to guarantee
(2.14). We present one such general result in Theorem 2.4.

THEOREM 2.4. Let ng € {1,2,....} be fized and suppose (2.2)—(2.4) hold.
Also assume the following condition is satisfied:

If (9 < 9(y) +hly) on N x(0,00) with
(2.16) g > 0 continuous and nonincreasing on (0, 00)
’ and h >0 continuous on [0,00)
h/g nondecreasing on (0, 00).

Also suppose there exists a constant M > 0 with M > sup;cn+ (i) and
with

T
M du

2.17 q(e
(2.17) >4 < H | =
holding. Then (2.1) has a solution y € C(Nt,R) with y(z) > a(i) for
ie Nt
Proof. Choose € >0, ¢ < M with

T

M
(2.18) 3 46 < +'LM] | du_

poe [1+2573] ¢ 9(v)
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Without loss of generality assume nio < €. We consider the discrete initial
value problem

(2.19) {ﬁg:;2=qamwmxl+§%p,zew

We define a mapping ® : D — D by
1
(®y) (%) = { L+ Yiny a()9w())(1+ 258), i€ N,

L 4= 0,
ng !’
where D := {y € C(N*,R); n—lo <y@) < (@nio)(i), i€ Nt}

By the definition of &, it is readily verified that ® is a continuous map-
ping from D to D (note g in nonincreasing). The Brouwer’s fixed point
theorem tells us that ® has at least one fixed point in D. Let 8(¢) be a fixed
point in D. Then it is easy to check that (%) is a solution to problem (2.19)
such that - < B(5) < (®;5)(i), i € N™.

Now clalm that a(z) < ,B(z) < M,i € N*. First we show
(2.20) B(i) > a(i), i€ N*. :

Suppose (2.20) is false. Then since ((0) = nlo > a(0) = 0, there exists a
T € N with
B(t) < a(r), B(r—1) 2 a(r —1).
Now for 7 € N, we have from (2.19) and M > sup;cn+ a(i) that
h(M)
AB(r—1)=q(r N1+
B(r = 1) = a(Ma(BE) (1 + 23

T)g(o(T M
> (r)glem) 1+ 2T

2 g(1)f(r, (7)) 2 Aa(r —1).
Thus B(7) — a(t) 2 f(t — 1) — a(t — 1) > 0, a contradiction.
Next we show
(2.21) B(#) < M, i€ N*.
Since AB(i—1) >0 on N, B(i) is increasing on N*. Now for : € N we
have from (2.19) that
AB(E—1 h(M)

ABGE-1) _
e = O 1+ g e
Since g(u) > g(B(2)) for 0 < u < B(¢) for i € N, then we have

PO g AB(i — 1)
INoRr©o)

B

o |1+ 5ap) i€,
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and then sum the above from 1 to T to obtain
B(T) B(T) T

du du [ h(M)] )

— < — < |1+ =2 q(%).
Vsw sV qw s M an] &0

no

This together with (2.18) implies 3(T) < M, ie., B(i) < M for i € N*.

Observe that

16,6 < 9066 (1+ 2500
. h(M)\ .
<o) (1+ 293 ) i€ N
Thus we have ((i) > nio and B(i) > (i) for i € Nt with
: o : h(M) Nl Al s
AB(—1) = q(i)g(B(2))(1 + m) 2 q(i)f(1,8()), i € N,

so that ((¢) satisfies (2.5). The result follows from Theorem 2.1. m

Combining Theorem 2.4 with the comments before Theorem 2.3 yields
the following theorem.

THEOREM 2.5. Let ng € {1,2,....} be fized and suppose (2.2), (2.3), (2.15)
and (2.16) hold. In addition assume there is a constant M > 0 with (2.17)
holding. Then (2.1) has a solution y € C(N*t,R) with y(i) >0 fori € N.

Proof. This follows immediately from Theorem 2.4 once we show there
exists « € C(N*,R) such that (2.4) hold, and

(2.22) M > o(i) foreach i€ NT.
Let
a(i) = {kE}:l q(j), i€ N
0, :=0,
with

! kmax q(i) < ko, k < —TNI—

noicy 4(i) N Simt 40)
Then a € C(N*,R) and (2.4), (2.22) hold. =

Next we present an example which illustrates how easily the theory is
applied in practice.

O<k<

EXAMPLE 2.1. The initial value problem

(2.23) { yA(zégiz— D= oyl + WP +sin®F), i N
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with @ >0, >0 and o > 0 has a solution y € C(N+,R) with y(i) >0
for i € N, if
) Ca+1
(224) g < [T(a + 1)] Supce(ovoo)m_*_—ﬁ.
To see this we will apply Theorem 2.5 with
q(i) =0, g(u)=u"% h(u)=v’+1.

Clearly (2.2), (2.3), (2.15) and (2.16) hold. Also notice (2.24) implies that
there exists M > 0 such that
o < [T(a+1)7*

and so (2.17) holds.
Thus all the conditions of Theorem 2.5 are satisfied so existence is guar-
anteed.

REMARK 2.1. If 8 < 1 then (2.24) is automatically satisfied.

Ma+1
1+ Mo 4 Mot8’
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