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MONOTONE ITERATIVE TECHNIQUE FOR
IMPULSIVE RETARDED DIFFERENTIAL-FUNCTIONAL
EQUATIONS SYSTEMS

Abstract. In this paper, the monotone iterative method is applied to impulsive re-
tarded functional-differential problem. The problem is also discussed in case we abandon
the monotone method and start directly with the equivalent integral equation.

1. Introduction

The monotone iterative technique have been used to approximate the
extremal solutions of several problems: [1], [2], [4], [5], [6]-

In the present paper the monotone iterative method is applied to the
impulsive retarded functional-differential systems. The paper is organized
as follows. First, we prove a comparison lemma, then we show that it is
possible to construct the monotone sequences converging to the coupled
quasisolutions of the impulsive problem in a sector. Finally, in Section 4 an
alternative approach is discussed.

The above problems are motivated by the results of [1], [3].

2. Preliminaries

Let J=1[0,T],7>0,0=1t <t; <ty <...<tp, <tpy1 =T are given
points, J' = J\ {t;}}_;.

Denote by PC(J, R™) the set of all functions y : J — R™ which are con-
tinuous at t # tx, left continuous at t = t; and y(¢}) exists, k =1,2,...,p.
We denote by PC([—,0], R™) the set off all functions z : [-7,0] — R™ such
that z(t~) = z(¢) for all t € [-7,0), z(t*) exists for all t € [-7,0) and
z(tT) = z(t) for all but except at most a finite number of points t € [-7,0)
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with norm ||z||,, = tes[up()] |lz(t)||. Obviously for v € PC([~,0},R") C

L2([=7,0, "), [l < 7l[9llpe. Let
PC([-7,T),R") = {z : [-7,T] = R", z ||_,0)€ PC([-7,0],R")
and z |y€ PC(J,R™)}. In addition we denote the set PC([—7,T],R*) N
CYJ',R") by E.
We consider the impulsive retarded functional-differential equation
(IRFDE)

(1) ‘T,(t) = f(t,z(t),a:(t - Tl)axt)a te J,’
(2) Azl,_,, =I*z(t)), k=1,...,p,
(3) To = ¢’

where0<m <7, f: JXxR*xR"x PC([-1,0], R*) = R", z:(s) = z(t+3s),
s € [-1,0], Az|,_,, = z(t}) — z(t), I* : R* — R", ¢ € PC([-7,0], R").

For each fixed 3,1 < ¢ < n, let p;, ¢, Pi, Gi, P;, q; be nonnegative
integers such that p; + ¢ = pi + & = p; + §; = n — 1, so that we can
partition z(t) into z(t) = (z:(t), [z(t)]p:, [2(t)]q:), =(t —71) into z(t — 1) =
(.’Bi(t - 7'1), [:L‘(t — Tl)]ﬁ,-a [fL‘(t - Tl)]ti,') and Ty into (fEt,,', [mt]ﬁi, [xt]i) Then
the system (1)-(3) can be written as
(4) :L‘:(t) =fi (t’ :I:,;(t), [m(t)]m) [m(t)]QU zi(t - Tl)7 [m(t - Tl)]ﬁu

[:L‘(t - 7'1)]!71', Tt,iy [xt]i?,-a [Cct]é‘i): te J,7 t=1,...,n,
(5) Amlt:tk = Ik(m(tk))’ k= 17"‘ap7

We shall prove a comparison result which will be used in our discussion.
LEMMA 1. Let the function u € PC([-7,T],R) N C*(J',R) satisfy the
inequalities

0
(7 u'(t) < —Lu(t) — Mu(t—m)—- N S ug(s)ds forte J',
(8) A'u |t=tkS 0, k= 1,...,p,
(9) u(0) <u(t) <0 forte [0,
where the constans L, M, N are positive and
(10) 1>(L+M+ N1)o(p+1),

where 0 = max{tx+1 — tk,k=0,1,...,p}.
Then, u(t) <0 fort € [-7,T).
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Proof. We consider the following two cases.

Case 1: Let inequality (7) hold strictly and u(t) < 0 for t € [—7,0]. We
suppose, for the sake of contradiction, that there exists a point t* € (0,T)
such that u(t*) > 0.

We note that if u(tx) < 0, then from the inequality (8) it follows that
u(tf) < 0. Therefore, there exists a natural number m such that 0 < m < p
and a point ¢ € (0,7), € (tm,tm+1) such that u(f) = 0 and u(t) < 0 for
t € [-7,1).

Now, introduce the notation inf{u(t) : t € [-7,t}} = —\. Clearly A > 0.

There are three posibilities.

Case 1.1: Suppose there exists a point ¢ € [0,7?),1.T #t,k=1...,m
such that u(f) = —\. Let £ € (¢;,tj+1), where 5 < m. By the mean value
theorem the following equations hold:

u®) = u(tf) = o' (Om)(t — tm),

u(tm) - u(t+—1) = ul(em—l)(tm - tm—l)y
(11) .
utjs) — u(f) = u'(6;)(tj41 — 1),
where 6; € (tk,ter1), k=7+1,7+2,...,m—1,0; € (£, tj+1),0m € (tm,?).

From (7) we obtain
0
(12) w'(6k) < —Lu(6k) — Mu(bx —71) — N | up, (s)ds < (L + M + N7)A.
From (8), (11), (12) and by elementary transformations we obtain the in-
equality
u(®) = u(t) < w'(0m)(E — tm) + %' (Om—1)(tm — tm—1) + ... + /() (tj41 — )
<(L+M+N1t)do(m—j+1)<(L+ M+ N7)Xo(p+1).

It follows that
(13) 1<(L+M+ N1)o(p+1).

Inequality (13) is a contradiction to inequality (10).

Case 1.2: Suppose there exists a natural number k, 1 < k < p such that
te < t,u(t}) = —X. Consider the interval [t} ,f]. By arguments analogous to
those in Case 1.1, we obtain a contradiction.

Case 1.8 : Suppose there exists a natural number k£, 1 < k < p such
that t; < £ and u(tx) = —. From inequality (8) it follows u(t}) < u(tx) =
—X < 0. Consider the interval [t} ,f]. By arguments analogous to those in
Case 1.1, we obtain a contradiction.
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Case 2 : Suppose at most one of inequalities (7) and (9) is not strict.
Let € > 0 be arbitrary. Consider the function w(t) = u(t) — e~(L+M)te for
t € [0,T] and w(t) = u(0) — € for t € [—7,0].

The function w satisfies the inequalities

w'(t) = ' (t) + (L + M)e~(E+Mte

0
< —Lu(t)—Mu(t—n)-N S u(s)ds + (L + M)e~(L+Mte
-7
= — L(w(t) + e"ETMte) _ M(w(t — 1) + e~ EHME-T1)¢)
0
— N | [w(t+s)+ e~ EEME+ds 4 (L + M)e~(L+M)te
0
= — Lw(t) - Mw(t—7)— N S we(s)ds

0
+ Mee(LHMIt(1 — {L+M)T1) _ N S e~ (LHM)(t+s) g

-7
0
< - Lw(t) - Mw(it-71)—-N S wi(s)ds,t € J'
and w(0) = u(0) — e < 0.
According to Case 1, we obtain w(t) < 0, t € [—7,T]. Taking the limit
as € — 0, we obtain that u(t) <0 for ¢t € [-7,T).

3. Monotone iterative technique

The functions v,w € E are said to be coupled quasi lower and upper
solutions to system (4)—(6) if

Vi(t) < £i (b vi(), [o()]p, [w()]ger vi(t = 1), [o(t = 7], [w(t = 71)]a,
Ut i, [’vt];si, [wt]t—ii)’ teJ,i=1,...,n,

Avfyy, < IFo(te), k=1,...,p,

vo < &,

w;(t) 2 fi (tv w;(t), [w(t)]p:s [V(E)) g wi(t — 1), [w(t — 7)., [v(t — T1)]a.,
we i, [wel3,, [vt]ai), teJ,i=1,...,n,

Awlt:f:,, 2 Ik('w(tk)), k=1,...,p,

wo > @.
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The functions z,y € E are said to be coupled quasisolutions of (4)-(6) if

zi(t) = fi(t, 2:(t), [2O))pes W(tgir T:lt — 1), [2(t — 71)l5, [yt — 1)l

T, [Ze]5,, [yt]i)’ telJ,i=1,...,n,

Az|,_, = I*(z(t)), k=1,...,p,

To = ¢,

yi(t) = fi(t, 3 (8), [y®)lpo, [2(®)]au vi(t — 1), [yt — )]s, [ — T1)]g.,

Yt,i [Uel3, [-Tt]?i;),t eJ,i=1,...,n,

Aylyey, = IF(y(ts)), k=1,...,p,

Yo = ¢.
Let us list the following assumptions for convenience.

(A1) feC(J x R* x R* x PC([-T,0], R™), R™),
fit, zi, [z]p,, (&l o, v, [Wlpes [V, ¥ss [Y]3,, [#]3,) is monotone nondecreasing
in [z]p,, [y]5, and [¥]5,, and monotone nonincreasing in [z],, [y]z and [¢]3,.

(A2) v,w € F are coupled lower and upper quasisolutions of (4)-(6) such
that v < w on [-7,T).

(A3) For i = 1,...,n, there exist constans L;, M;, N; > 0 such that
£l 2:(0), B (®)]pos [£(ONaer 22t = 72), [t = 7))

[z(t — T1)]g, Tt,3, [z, [2¢lg,)
—£(t,2:(8), [l [ (O] B4 = 71, [t = T2l
[(t = 0))qus Ze,is [2:]5,, [¢]g,)

> —Li(z;(t) — Z:(t)) — Mi(z:(t — 1) — Zi(t — 71))

-N; S [@¢,i(s) — Z¢,:(8)]ds,

whenever v <z S w,v; L Z; <y S w;and v < Ty < 35 < Wy on

[_T) 0]'

(A4) I¥ : R - R, k=1,...,p, i = 1,...,n are continuous and
nondecreasing. :

Let

[v,w]={o € E: v(t) <o(t) <w(t) on [-7,T]}.

THEOREM 1. Suppose that (Al)—(A4) hold. Assume also that the differ-
ence v; — ¢;, ¢i — w; satisfy assumption (9) of Lemma 1 and the constans
L;, M;, N; satisfy inequality 1 > (L;+ M; + N;7)o(p+1) fori=1,2,...,n.
Then there ezist monotone sequences {v™(t)}, {w™(t)} which converge uni-
formly on [—7,T] to the coupled quasisolutions of the system (4)—(6) in the
sector [v, w].
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Proof. Let
nu € [v,w].
We consider the following problem

zi(t) = Fi(t,z(t),z(t — 1), z¢), t € J',
(14) Az; |¢=¢,= Izk(n(tk))a k=1,...,p,

:Ei(t):(pi(t),te [-—T,O], i=1,...,n,
with

Fi(t,z(t),z(t — 1), z¢)
= fi(t,m(®), [(®)]ps, [w(®)]gs, mi(t = 1), [0(t = 7)),

[u(t - Tl)]‘?n ,i, [ﬂt]ﬁ,«’ [ut]i')
0

—Li(zi(t) — m(t)) — Mi(zs(t — 1) = ms(t = 11)) = Ni § (22,4(5) — ms,3(5))ds.

-7

The paper [3] permits us to assure that this problem has a unique solution
z € E. Then we can define the operator

B: [v,w] X [v,w] = E
by [B(n, w)](t) = z(t), t € [-7,T], where z is the unique solution of (14).
This operator possesses the following properties: ‘
(a) v < B(v,w), B(w,v) <w,
®  n'n*u€,ulnt <9° = B(y',u) < B(r?,u),
(¢) n,ut,u? € [v,w),u! <u? = B(n,u') > B(n,u?).
To prove (a), we consider the function m;(t) = v;(t)—z;(t) i =1,...,n),

where z = B(v,w). By the definition of coupled quasi lower and upper
solutions we have

m;(t) = v;(t) — z;(t)
< fi(t,vi(t), ()]s [w(B)]gs vt = 71), [0t = 71)]5s

[w(t = 7)), v, [Vl [wilg,)
= fi (&, vi(8), () ]pes [w(B)]quy vilt — 1), [0t — 71)]3s1

[w(t — 71)]g, ve,is [vel3,» [welz,)

0
+ Li(@i(t) — vi(t)) + Mi(@i(t — 1) = vt = 11)) + N (21,5(8) — v1,3(s))ds
0
= —Lim;(t) — Mim;(t — 1) — N; S my,i(s)ds,

-7
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Am; Je—e, < I (v(t)) = If (v(te)) =0, mi(0) <my(t) <O, te[-7,0].

Thus, Lemma 1 implies that m;(t) < 0 on [—7,T)] and hence v;(t) < z;(t) on
[-7,T). In consequence v(t) < z(t),t € [-7,T]. Analogously one can show
that z(t) < w(t) on [—7,T)], where z = B(w,v).

Now, to prove (b), let us consider ! = B(n!,u), 2 = B(n?,u) with
n! < n?. We will prove that z! < z2 on [—7, T). Let m;(t) = z}(t)—22(¢t) (i =
1,...,n). In view of (A1),(A3) and (A4) we obtain
mi(t) = (z3)'(t) — (=)' (¥)
< £ty (8, [0 Ol Ol T = 72), 1712 = )]

[u(t — 7)., M0 E ), [ue]3,)
0

~Li(z}(t) = n} (1)) = Mi(z}(t — 71) =0} (¢ ~ 7)) = Ni § (22 4() — i 5(s))ds

—fi(t, 3 @), [0 )]sy [())gur 1 (€ — 71), [0 (¢ — 7))
[u(t —-N )]tiu ntl,h ["7?]5,-7 [ut]¢7.~)
+£i (&0 (@), 1P (®)]pss [w(®)] e mi (¢ = 71), 07 (¢ = 71)]5,
| [u(t — 7))z nis, 0], [we)a,)
—fi(t, (@), [0 ()]s
[w(®)]gs m3(t = 71), 2t = 71)]g, [t — 70)]as 7250 [P35 [, )

0
+Li(23(t) ~ nf (1)) + Mi(e}(t — m1) = nf (¢ — 7)) + Ni | (22:(s) —ni(s))ds

= —Li(z; (t) — n} (t)) — Mi(z} (t — 71) — 0} (t — 1))
-N; S (xtl,i(s) - th,i(s))ds

-

0
+Li(n?(t) =} (8) + Mi(nZ (¢ = m) = (¢ = 7)) + N § (n75(s) — mis(s))ds

-7

- 0

+Li(z3(t) = 17 (8)) + Mi(e3(t — 1) — i (¢ — 10)) + Ni § (23:(s) — m7.4(9))ds
0

= —L,-mi(t) - M,-mi(t - 7'1) - Ni S mt,i(s)ds)

A Je=t, < I (n* () — IF (0% (tk)) < O,

mi(t) =0, te [_vTv 0]'
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Thus, Lemma 1 implies that m;(t) < 0 on [-7,T} and hence z}(t) < z2(t)
on [—7,T)]. In consequence z!(t) < z%(t),t € [~7,T). Analogously one can
prove (c).

Now, starting at v = v and w® = w, we can recursively define

(15) v™ = B(v™ L, w™ ), w™ = Bw™ 1, v™1), m>1

From the properties of B it follows that {v™} is increasing, {w™} is decreas-
ing, and v™ < w™ for all m.

By standard arguments there exist a functions p and +, such that
limy, 00 v™(t) = p(t) and lim,, oo w™(t) = () uniformly on [~7,T]. We
can easily verify from (15) that p, v are coupled quasisolutions of (4)-—(6).
This completes the proof.

4. Positive solutions

In this section we abandon the monotone method and start directly with
the equivalent integral equation.

THEOREM 2. Assume that
(l) f = f1+f2; fl,f2 € C(JanXRnXLl([_T)O]7Rn)’Rn)) f(ta z,y’¢)
>0 forz >0, y >0 and % € PC([-7,0], R"), $(s) 2 0, s € [~,0].
(ii) there exist M > 0,b > 0,¢ > 0,d > 0 such that for any (t,z,y,v¥) €
J x R™ x R* x L([-,0], R™),
If:(t, 2z, y, V)| < M +bl|z|| + cllyll + dllgll;, 2=1,2;

(i) fit,z,y,%), f2(t,z,y,%) are monotonically nondecreasing and
nonincreasing in =,y € R™ and ¢ € PC([-T,0], R™), for each fized t € J,
respectively;

(iv) for anyz > 0,y > 0 and ¢ € PC([-7,0], R*), ¥(s) > 0, s € [-7,0],
0<A<1

fl(ta A:E, Aya >‘¢) > Aafl(t,.’l:,y,’l/)), 0<ax<l
f2(t, AJ:, A:‘/7 A'l)b) < /\—afz(t,fl?,y, ¢)1 0<a< 1a

(v) I* : R* - R*, I*(z) > 0 for z > 0;

(vi) ¢ € PC([-1,0}, R}), #(0) > 0.

Then problem (1)~3) has a positive solution z* in PC(J,R™) with
z5 = ¢.

Proof. By Lemma 2.1 in [3] the function z € E is a solution of (1) — (3) if
and only if it is a solution of the following integral equation
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IL'(t) = ¢(0) + Sfl(sa :L‘(S),.’L‘(S - Tl);ms)ds + Sf2(sa :z:(s), .’L‘(S - Tl)a -Ts)ds
0 0

+ Z I*(z(t)), t € J,

0<tr <t
where z,(s) = z(t+s) = ¢(t +s) if t + s < 0.
Let

_[e#@), -7<t<0,
yl(t)“‘{q&(ﬂ), 0<t<t.

Following the proof of Theorem 4.1 in [1] we create the function
t

ur(t) = #(0) + § £1(5,41(5),91(5s — 70), (31)s)ds
0

+{ fa(s,91(5), 91(s = 7)), (1)) ds,
0

where t € [0,t;]. The function v, is continuous on [0,¢;} and
ui(t) 2 ¢(0) =w(t), te(0t]
There exists 0 < A\; < 1 such that

l—a _1l-a
AT () Sw() <AL T n(t), telot]

Now, starting at

1 1
vi(t) = Alyi(t),  wi(t)=A7Zy(t), te0,t],
we can recursively define two sequences {v{*}, {w]*} by
t
(16) () = $(0) + | f(s, o7 (8), 0] (s — 1), (0" 7H)a)ds
0
¢

+ S fa(s, win_l(s)) w;n_l(s - 7-1)’ (wT—l)S)dss
0
m>2,t€ [O,tll

and

17) wi(t) = ¢(0) + | fu(s, w2 (8), w7 (s — ), (w),)ds
0

t
+§ f2(5,077(s), 01" (s = 1), (0] )s)ds,
0
m>2,te [OytI])
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where
@ )s(r) =o' s+ 1) =g(s+7), —T <s+7 <0,
@] s(r) =" s +r) =d(s +7), —T<s+7<0.
By argument analogous to those in Theorem 4.1 [1], we can prove that
(a) vi()) Sv}(®) S .. SOP'(B) Swl'(®) < - S W) Swi(t), te Ot

(b) oM (t) > N wMt), te0t], m=1,2,...,

() 0 < o P(t) — v (1) < (1= Af " )wi(t), t € [0,t]-
From (¢), it follows that

-+ m
[0 =Pl < (1= A7) max | wi®)],

which implies that {v]*(t)} converges uniformly to some continuous function
p1(t) on [0, t;]. Similary, we can prove that {w]*(¢)} also converges uniformly
to some continuous function ;(t) on [0,¢;]. From (a) it follows that
(18) 0 <o*(t) < p1(t) () Swl(t), te0,t1], m=1,2,....
From (18) and (c) we have derived
0 < m(t)—p1(t) < wP(t)—v(t) < (1-X")wi(t), t € [0,t:],m=1,2,... .
Thus

p1(t) = m1(t) = 71(t), t € [0, 1]
Taking the limit as m — oo in (16) or (17), from assumption (ii) and by
virtue of the Lebesgue dominated convergence theorem, we can see that the
function z7 is a positive solution of (1) — (3) on [0, ¢4].

Let
#(t), -7 <t<0,
y2(t) = {(b(()), 0<t<ty,
zi(t1) + IN =z (t1)), t1 <t<to.

We create the function
t

up(t) = z3(t1) + I' (&} (tr)) + | f1(5,92(5), v2(s — 71), (v2))ds

+ S f2(sa y2(s)a y2(s - Tl)’ (y2)3)dsa

where t € [t1,t2]. The function uy is continuous on [t1,ts] and
ug(t) > zi(t1) + I'(21(t1)) = 92(t), t € [t1,t2]-
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We can find A, 0 < Ay < 1 so small that

l—a _l—a
AT () Sua(t) Ay 7 wa(t), tE [t

We can define the sequences {vj*}, {w5*} as follows

1 _1
v3(t) = M y2(t), wi(t) = A3 %ye(t), t€ [t tal,

v (1) = 2} () + I (}()) + § fi(s, 057 (8), 05" (s — ), (v )s)ds

t1
t

+ S f2(s,w;n—1(s)’w12n—l(s - Tl)a (w;n_l).i)ds,
t
m>2 te [tl,tg],

and

wy(8) = 2 (t1) + I'(=1(t) + | fa(s, w5 (s), w5 (s — 71, (w5 1)s)ds

+ S f2(sa 'U;n_l(s)’v;n_l(s - 71)’ (v;n_l)s)dsa
ty
m > 2, te [tl,tz],

where
(v3 —1)3(7') = ”;n_l(s +r)=¢(s+r), -1 <s+r <0,
WP ()= v N s+r)=zi(s+71), 0<s+r <ty

and
(W Ns(r) =wi H(s+r)=d(s+7), —T<s+7<0,
(W N)s(r) =wp Y s+r)=zf(s+7), 0<s+r<ty,
As before, we can show that {v]*}, {w]*} are convergent to some function
z5. The function z3(t) is a positive solution of (1)-(3) on [t1,t2].
Proceeding as before, if t € [tp,tp+1], we define the function

Up+1(t) = x;(tp) + Ip(‘r;(tp)) + S f1(8, Yp+1(8), Yp+1(s — 71), (Yp+1)s)ds

tp
t
+ S f2(s7 yP+1(s), yp+1(s - Tl)) (yp+1)s)dsa te [tpa tp+1])

tp
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where z7 is a positive solution of (1)-(3) on [t,-1,t,] and

(Yp+1)s(r) = Ypt1(s +7) =¢(s+71), —T<s+7 <0,
Wp+1)s(r) = yps1(s +7) = ¢(0), 0<s+r<ty,
We+1)a(r) = gpra(s +7) = 2i(ts) + I'(z1(t1)), t1 <s+r <ty
Urr)s(r) = Ypra(s +7) = Z5(t) + P(E)), o <547 < by,
The function u,4, is continuous on (t, t,41] and
up+1(t) 2 x;(tp) + Ip(“’;(tp)) = yp+1(t), te [tpvtp+1]-
There exists 0 < Ap;1 < 1 such that

l- 1l
A1 ¥p+1(t) S ups1(t) S Ay T Ypr1(t), t € [ty tpral-
Define the sequences {v}} ;}, {wp;} on [tp,tp11] as follows

vp () = >‘3+1yp+1(t)7 w;1;+1(t) = )‘;-Elyp+1(t)) t € [tp, tps1),

Upr1(t) = Zp(tp) + IP(25(2p)) + Sfx(s,v,m (), o371’ (s — 1), (vpiy')s)ds

tp

+ S Fals, wiiy (), wpi' (s = 1), (wpiy')s)ds,

m>2, t € [tp, tpr1],
and
wphy(t) = w,*,(t ) + IP(z5(tp))

S fi(s,wiia (), wiin' (s = ), (win')a)ds
t,,

S f2($ vp+1 (S), v;-l{-_ll (s - Tl)’ (v;zr}{—_ll)S)ds’
tp
m>2 te [tp,tp+1],

where
(wpih)e(r) = (VpY)s(r) = $(s +7), —T <s+7<0,
(wp+1 )s(r) = ('Up+1 Js(r) =zi(s+7), 0<s+r<ty,

)

(wp+1 )s (1‘) ( p+11) (T) =z (s+r), b1 Ss+T <t
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As before, we can show that {vy}}, {wy}} are convergent to some positive
function z . The function z;, is a solution of (1)-(3) on [t,, tp+1]-

Let
¢(t)7 te [—Tv 0]:
zi(t), t € (0,t4),
z*(t) = § z5(t),  teE (b, ta,
:z:;+1, (tp’tp+1]~
The function z*(t) is a positive solution of (1)—(3). The proof is therefore
complete.
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