

Lidia Skóra

MONOTONE ITERATIVE TECHNIQUE FOR
IMPULSIVE RETARDED DIFFERENTIAL-FUNCTIONAL
EQUATIONS SYSTEMS

Abstract. In this paper, the monotone iterative method is applied to impulsive retarded functional-differential problem. The problem is also discussed in case we abandon the monotone method and start directly with the equivalent integral equation.

1. Introduction

The monotone iterative technique have been used to approximate the extremal solutions of several problems: [1], [2], [4], [5], [6].

In the present paper the monotone iterative method is applied to the impulsive retarded functional-differential systems. The paper is organized as follows. First, we prove a comparison lemma, then we show that it is possible to construct the monotone sequences converging to the coupled quasisolutions of the impulsive problem in a sector. Finally, in Section 4 an alternative approach is discussed.

The above problems are motivated by the results of [1], [3].

2. Preliminaries

Let $J = [0, T]$, $\tau > 0$, $0 = t_0 < t_1 < t_2 < \dots < t_p < t_{p+1} = T$ are given points, $J' = J \setminus \{t_i\}_{i=1}^p$.

Denote by $PC(J, R^n)$ the set of all functions $y : J \rightarrow R^n$ which are continuous at $t \neq t_k$, left continuous at $t = t_k$ and $y(t_k^+)$ exists, $k = 1, 2, \dots, p$. We denote by $PC([-\tau, 0], R^n)$ the set off all functions $x : [-\tau, 0] \rightarrow R^n$ such that $x(t^-) = x(t)$ for all $t \in [-\tau, 0]$, $x(t^+)$ exists for all $t \in [-\tau, 0]$ and $x(t^+) = x(t)$ for all but except at most a finite number of points $t \in [-\tau, 0]$

Key words and phrases: impulsive retarded functional-differential equations, coupled lower and upper solutions, monotone iterative technique.

1991 *Mathematics Subject Classification:* 35K50, 35K60, 35K99.

with norm $\|x\|_{pc} = \sup_{t \in [-\tau, 0]} \|x(t)\|$. Obviously for $\psi \in PC([- \tau, 0], R^n) \subseteq L^1([- \tau, 0], R^n)$, $\|\psi\|_1 \leq \tau \|\psi\|_{pc}$. Let

$$PC([- \tau, T], R^n) = \{x : [- \tau, T] \rightarrow R^n, x|_{[- \tau, 0]} \in PC([- \tau, 0], R^n)\}$$

and $x|_{J \in PC(J, R^n)}$. In addition we denote the set $PC([- \tau, T], R^n) \cap C^1(J', R^n)$ by E .

We consider the impulsive retarded functional-differential equation (IRFDE)

$$(1) \quad x'(t) = f(t, x(t), x(t - \tau_1), x_t), \quad t \in J',$$

$$(2) \quad \Delta x|_{t=t_k} = I^k(x(t_k)), \quad k = 1, \dots, p,$$

$$(3) \quad x_0 = \phi,$$

where $0 < \tau_1 \leq \tau$, $f : J \times R^n \times R^n \times PC([- \tau, 0], R^n) \rightarrow R^n$, $x_t(s) = x(t + s)$, $s \in [- \tau, 0]$, $\Delta x|_{t=t_k} = x(t_k^+) - x(t_k)$, $I^k : R^n \rightarrow R^n$, $\phi \in PC([- \tau, 0], R^n)$.

For each fixed i , $1 \leq i \leq n$, let p_i , q_i , \bar{p}_i , \bar{q}_i , $\bar{\bar{p}}_i$, $\bar{\bar{q}}_i$ be nonnegative integers such that $p_i + q_i = \bar{p}_i + \bar{q}_i = \bar{\bar{p}}_i + \bar{\bar{q}}_i = n - 1$, so that we can partition $x(t)$ into $x(t) = (x_i(t), [x(t)]_{p_i}, [x(t)]_{q_i})$, $x(t - \tau_1)$ into $x(t - \tau_1) = (x_i(t - \tau_1), [x(t - \tau_1)]_{\bar{p}_i}, [x(t - \tau_1)]_{\bar{q}_i})$ and x_t into $(x_{t,i}, [x_t]_{\bar{\bar{p}}_i}, [x_t]_{\bar{\bar{q}}_i})$. Then the system (1)–(3) can be written as

$$(4) \quad x'_i(t) = f_i(t, x_i(t), [x(t)]_{p_i}, [x(t)]_{q_i}, x_i(t - \tau_1), [x(t - \tau_1)]_{\bar{p}_i}, [x(t - \tau_1)]_{\bar{q}_i}, x_{t,i}, [x_t]_{\bar{\bar{p}}_i}, [x_t]_{\bar{\bar{q}}_i}), \quad t \in J', \quad i = 1, \dots, n,$$

$$(5) \quad \Delta x|_{t=t_k} = I^k(x(t_k)), \quad k = 1, \dots, p,$$

$$(6) \quad x_0 = \phi.$$

We shall prove a comparison result which will be used in our discussion.

LEMMA 1. *Let the function $u \in PC([- \tau, T], R) \cap C^1(J', R)$ satisfy the inequalities*

$$(7) \quad u'(t) \leq -Lu(t) - Mu(t - \tau_1) - N \int_{-\tau}^0 u_t(s) ds \quad \text{for } t \in J',$$

$$(8) \quad \Delta u|_{t=t_k} \leq 0, \quad k = 1, \dots, p,$$

$$(9) \quad u(0) \leq u(t) \leq 0 \quad \text{for } t \in [-\tau, 0],$$

where the constants L, M, N are positive and

$$(10) \quad 1 > (L + M + N\tau)\sigma(p + 1),$$

where $\sigma = \max\{t_{k+1} - t_k, k = 0, 1, \dots, p\}$.

Then, $u(t) \leq 0$ for $t \in [-\tau, T]$.

Proof. We consider the following two cases.

Case 1: Let inequality (7) hold strictly and $u(t) < 0$ for $t \in [-\tau, 0]$. We suppose, for the sake of contradiction, that there exists a point $t^* \in (0, T)$ such that $u(t^*) > 0$.

We note that if $u(t_k) < 0$, then from the inequality (8) it follows that $u(t_k^+) < 0$. Therefore, there exists a natural number m such that $0 < m \leq p$ and a point $\bar{t} \in (0, T)$, $\bar{t} \in (t_m, t_{m+1})$ such that $u(\bar{t}) = 0$ and $u(t) < 0$ for $t \in [-\tau, \bar{t}]$.

Now, introduce the notation $\inf\{u(t) : t \in [-\tau, \bar{t}]\} = -\lambda$. Clearly $\lambda > 0$.

There are three possibilities.

Case 1.1: Suppose there exists a point $\tilde{t} \in [0, \bar{t})$, $\tilde{t} \neq t_k$, $k = 1, \dots, m$ such that $u(\tilde{t}) = -\lambda$. Let $\tilde{t} \in (t_j, t_{j+1})$, where $j \leq m$. By the mean value theorem the following equations hold:

$$(11) \quad \begin{aligned} u(\bar{t}) - u(t_m^+) &= u'(\theta_m)(\bar{t} - t_m), \\ u(t_m) - u(t_{m-1}^+) &= u'(\theta_{m-1})(t_m - t_{m-1}), \\ &\dots \\ u(t_{j+1}) - u(\tilde{t}) &= u'(\theta_j)(t_{j+1} - \tilde{t}), \end{aligned}$$

where $\theta_k \in (t_k, t_{k+1})$, $k = j+1, j+2, \dots, m-1$, $\theta_j \in (\tilde{t}, t_{j+1})$, $\theta_m \in (t_m, \bar{t})$.

From (7) we obtain

$$(12) \quad u'(\theta_k) < -Lu(\theta_k) - Mu(\theta_k - \tau_1) - N \int_{-\tau}^0 u_{\theta_k}(s) ds < (L + M + N\tau)\lambda.$$

From (8), (11), (12) and by elementary transformations we obtain the inequality

$$\begin{aligned} u(\bar{t}) - u(\tilde{t}) &< u'(\theta_m)(\bar{t} - t_m) + u'(\theta_{m-1})(t_m - t_{m-1}) + \dots + u'(\theta_j)(t_{j+1} - \tilde{t}) \\ &< (L + M + N\tau)\lambda\sigma(m - j + 1) < (L + M + N\tau)\lambda\sigma(p + 1). \end{aligned}$$

It follows that

$$(13) \quad 1 < (L + M + N\tau)\sigma(p + 1).$$

Inequality (13) is a contradiction to inequality (10).

Case 1.2: Suppose there exists a natural number k , $1 \leq k \leq p$ such that $t_k < \bar{t}$, $u(t_k^+) = -\lambda$. Consider the interval $[t_k^+, \bar{t}]$. By arguments analogous to those in Case 1.1, we obtain a contradiction.

Case 1.3 : Suppose there exists a natural number k , $1 \leq k \leq p$ such that $t_k < \bar{t}$ and $u(t_k) = -\lambda$. From inequality (8) it follows $u(t_k^+) \leq u(t_k) = -\lambda < 0$. Consider the interval $[t_k^+, \bar{t}]$. By arguments analogous to those in Case 1.1, we obtain a contradiction.

Case 2 : Suppose at most one of inequalities (7) and (9) is not strict. Let $\epsilon > 0$ be arbitrary. Consider the function $w(t) = u(t) - e^{-(L+M)t}\epsilon$ for $t \in [0, T]$ and $w(t) = u(0) - \epsilon$ for $t \in [-\tau, 0]$.

The function w satisfies the inequalities

$$\begin{aligned}
 w'(t) &= u'(t) + (L+M)e^{-(L+M)t}\epsilon \\
 &\leq -Lu(t) - Mu(t - \tau_1) - N \int_{-\tau}^0 u_t(s)ds + (L+M)e^{-(L+M)t}\epsilon \\
 &= -L(w(t) + e^{-(L+M)t}\epsilon) - M(w(t - \tau_1) + e^{-(L+M)(t-\tau_1)}\epsilon) \\
 &\quad - N \int_{-\tau}^0 [w(t+s) + e^{-(L+M)(t+s)}\epsilon]ds + (L+M)e^{-(L+M)t}\epsilon \\
 &= -Lw(t) - Mw(t - \tau_1) - N \int_{-\tau}^0 w_t(s)ds \\
 &\quad + M\epsilon e^{-(L+M)t}(1 - e^{(L+M)\tau_1}) - N\epsilon \int_{-\tau}^0 e^{-(L+M)(t+s)}ds \\
 &< -Lw(t) - Mw(t - \tau_1) - N \int_{-\tau}^0 w_t(s)ds, t \in J'
 \end{aligned}$$

and $w(0) = u(0) - \epsilon < 0$.

According to Case 1, we obtain $w(t) \leq 0$, $t \in [-\tau, T]$. Taking the limit as $\epsilon \rightarrow 0$, we obtain that $u(t) \leq 0$ for $t \in [-\tau, T]$.

3. Monotone iterative technique

The functions $v, w \in E$ are said to be coupled quasi lower and upper solutions to system (4)–(6) if

$$\begin{aligned}
 v'_i(t) &\leq f_i(t, v_i(t), [v(t)]_{p_i}, [w(t)]_{q_i}, v_i(t - \tau_1), [v(t - \tau_1)]_{\bar{p}_i}, [w(t - \tau_1)]_{\bar{q}_i}, \\
 &\quad v_{t,i}, [v_t]_{\bar{p}_i}, [w_t]_{\bar{q}_i}), \quad t \in J', \quad i = 1, \dots, n, \\
 \Delta v|_{t=t_k} &\leq I^k(v(t_k)), \quad k = 1, \dots, p, \\
 v_0 &\leq \phi, \\
 w'_i(t) &\geq f_i(t, w_i(t), [w(t)]_{p_i}, [v(t)]_{q_i}, w_i(t - \tau_1), [w(t - \tau_1)]_{\bar{p}_i}, [v(t - \tau_1)]_{\bar{q}_i}, \\
 &\quad w_{t,i}, [w_t]_{\bar{p}_i}, [v_t]_{\bar{q}_i}), \quad t \in J', \quad i = 1, \dots, n, \\
 \Delta w|_{t=t_k} &\geq I^k(w(t_k)), \quad k = 1, \dots, p, \\
 w_0 &\geq \phi.
 \end{aligned}$$

The functions $x, y \in E$ are said to be coupled quasisolations of (4)-(6) if

$$x'_i(t) = f_i(t, x_i(t), [x(t)]_{p_i}, [y(t)]_{q_i}, x_i(t - \tau_1), [x(t - \tau_1)]_{\bar{p}_i}, [y(t - \tau_1)]_{\bar{q}_i},$$

$$x_{t,i}, [x_t]_{\bar{p}_i}, [y_t]_{\bar{q}_i}), t \in J', i = 1, \dots, n,$$

$$\Delta x|_{t=t_k} = I^k(x(t_k)), k = 1, \dots, p,$$

$$x_0 = \phi,$$

$$y'_i(t) = f_i(t, y_i(t), [y(t)]_{p_i}, [x(t)]_{q_i}, y_i(t - \tau_1), [y(t - \tau_1)]_{\bar{p}_i}, [x(t - \tau_1)]_{\bar{q}_i},$$

$$y_{t,i}, [y_t]_{\bar{p}_i}, [x_t]_{\bar{q}_i}), t \in J', i = 1, \dots, n,$$

$$\Delta y|_{t=t_k} = I^k(y(t_k)), k = 1, \dots, p,$$

$$y_0 = \phi.$$

Let us list the following assumptions for convenience.

$$(A1) \quad f \in C(J \times R^n \times R^n \times PC([- \tau, 0], R^n), R^n);$$

$f_i(t, x_i, [x]_{p_i}, [x]_{q_i}, y_i, [y]_{\bar{p}_i}, [y]_{\bar{q}_i}, \psi_i, [\psi]_{\bar{p}_i}, [\psi]_{\bar{q}_i})$ is monotone nondecreasing in $[x]_{p_i}, [y]_{\bar{p}_i}$ and $[\psi]_{\bar{p}_i}$, and monotone nonincreasing in $[x]_{q_i}, [y]_{\bar{q}_i}$ and $[\psi]_{\bar{q}_i}$.

(A2) $v, w \in E$ are coupled lower and upper quasisolations of (4)-(6) such that $v \leq w$ on $[-\tau, T]$.

(A3) For $i = 1, \dots, n$, there exist constants $L_i, M_i, N_i > 0$ such that

$$f_i(t, x_i(t), [x(t)]_{p_i}, [x(t)]_{q_i}, x_i(t - \tau_1), [x(t - \tau_1)]_{\bar{p}_i},$$

$$[x(t - \tau_1)]_{\bar{q}_i}, x_{t,i}, [x_t]_{\bar{p}_i}, [x_t]_{\bar{q}_i})$$

$$-f_i(t, \bar{x}_i(t), [x(t)]_{p_i}, [x(t)]_{q_i}, \bar{x}_i(t - \tau_1), [x(t - \tau_1)]_{\bar{p}_i},$$

$$[x(t - \tau_1)]_{\bar{q}_i}, \bar{x}_{t,i}, [x_t]_{\bar{p}_i}, [x_t]_{\bar{q}_i})$$

$$\geq -L_i(x_i(t) - \bar{x}_i(t)) - M_i(x_i(t - \tau_1) - \bar{x}_i(t - \tau_1))$$

$$-N_i \int_{-\tau}^0 [x_{t,i}(s) - \bar{x}_{t,i}(s)] ds,$$

whenever $v \leq x \leq w, v_i \leq \bar{x}_i \leq x_i \leq w_i$ and $v_{t,i} \leq \bar{x}_{t,i} \leq x_{t,i} \leq w_{t,i}$ on $[-\tau, 0]$.

(A4) $I_i^k : R^n \rightarrow R, k = 1, \dots, p, i = 1, \dots, n$ are continuous and nondecreasing.

Let

$$[v, w] = \{\sigma \in E : v(t) \leq \sigma(t) \leq w(t) \text{ on } [-\tau, T]\}.$$

THEOREM 1. Suppose that (A1)-(A4) hold. Assume also that the difference $v_i - \phi_i, \phi_i - w_i$ satisfy assumption (9) of Lemma 1 and the constants L_i, M_i, N_i satisfy inequality $1 > (L_i + M_i + N_i \tau) \sigma(p+1)$ for $i = 1, 2, \dots, n$. Then there exist monotone sequences $\{v^m(t)\}, \{w^m(t)\}$ which converge uniformly on $[-\tau, T]$ to the coupled quasisolations of the system (4)-(6) in the sector $[v, w]$.

Proof. Let

$$\eta, u \in [v, w].$$

We consider the following problem

$$(14) \quad \begin{cases} x'_i(t) = F_i(t, x(t), x(t - \tau_1), x_t), & t \in J', \\ \Delta x_i |_{t=t_k} = I_i^k(\eta(t_k)), & k = 1, \dots, p, \\ x_i(t) = \varphi_i(t), & t \in [-\tau, 0], \quad i = 1, \dots, n, \end{cases}$$

with

$$\begin{aligned} F_i(t, x(t), x(t - \tau_1), x_t) \\ = f_i(t, \eta_i(t), [\eta(t)]_{p_i}, [u(t)]_{q_i}, \eta_i(t - \tau_1), [\eta(t - \tau_1)]_{\bar{p}_i}, \\ [u(t - \tau_1)]_{\bar{q}_i}, \eta_{t,i}, [\eta_t]_{\bar{p}_i}, [u_t]_{\bar{q}_i}) \\ - L_i(x_i(t) - \eta_i(t)) - M_i(x_i(t - \tau_1) - \eta_i(t - \tau_1)) - N_i \int_{-\tau}^0 (x_{t,i}(s) - \eta_{t,i}(s)) ds. \end{aligned}$$

The paper [3] permits us to assure that this problem has a unique solution $x \in E$. Then we can define the operator

$$B : [v, w] \times [v, w] \rightarrow E$$

by $[B(\eta, u)](t) = x(t)$, $t \in [-\tau, T]$, where x is the unique solution of (14).

This operator possesses the following properties:

- (a) $v \leq B(v, w)$, $B(w, v) \leq w$,
- (b) $\eta^1, \eta^2, u \in [v, w]$, $\eta^1 \leq \eta^2 \Rightarrow B(\eta^1, u) \leq B(\eta^2, u)$,
- (c) $\eta, u^1, u^2 \in [v, w]$, $u^1 \leq u^2 \Rightarrow B(\eta, u^1) \geq B(\eta, u^2)$.

To prove (a), we consider the function $m_i(t) = v_i(t) - x_i(t)$ ($i = 1, \dots, n$), where $x = B(v, w)$. By the definition of coupled quasi lower and upper solutions we have

$$\begin{aligned} m'_i(t) &= v'_i(t) - x'_i(t) \\ &\leq f_i(t, v_i(t), [v(t)]_{p_i}, [w(t)]_{q_i}, v_i(t - \tau_1), [v(t - \tau_1)]_{\bar{p}_i}, \\ &\quad [w(t - \tau_1)]_{\bar{q}_i}, v_{t,i}, [v_t]_{\bar{p}_i}, [w_t]_{\bar{q}_i}) \\ &\quad - f_i(t, v_i(t), [v(t)]_{p_i}, [w(t)]_{q_i}, v_i(t - \tau_1), [v(t - \tau_1)]_{\bar{p}_i}, \\ &\quad [w(t - \tau_1)]_{\bar{q}_i}, v_{t,i}, [v_t]_{\bar{p}_i}, [w_t]_{\bar{q}_i}) \\ &\quad + L_i(x_i(t) - v_i(t)) + M_i(x_i(t - \tau_1) - v_i(t - \tau_1)) + N_i \int_{-\tau}^0 (x_{t,i}(s) - v_{t,i}(s)) ds \\ &= -L_i m_i(t) - M_i m_i(t - \tau_1) - N_i \int_{-\tau}^0 m_{t,i}(s) ds, \end{aligned}$$

$$\Delta m_i |_{t=t_k} \leq I_i^k(v(t_k)) - I_i^k(v(t_k)) = 0, \quad m_i(0) \leq m_i(t) \leq 0, \quad t \in [-\tau, 0].$$

Thus, Lemma 1 implies that $m_i(t) \leq 0$ on $[-\tau, T]$ and hence $v_i(t) \leq x_i(t)$ on $[-\tau, T]$. In consequence $v(t) \leq x(t)$, $t \in [-\tau, T]$. Analogously one can show that $x(t) \leq w(t)$ on $[-\tau, T]$, where $x = B(w, v)$.

Now, to prove (b), let us consider $x^1 = B(\eta^1, u)$, $x^2 = B(\eta^2, u)$ with $\eta^1 \leq \eta^2$. We will prove that $x^1 \leq x^2$ on $[-\tau, T]$. Let $m_i(t) = x_i^1(t) - x_i^2(t)$ ($i = 1, \dots, n$). In view of (A1), (A3) and (A4) we obtain

$$\begin{aligned}
m'_i(t) &= (x_i^1)'(t) - (x_i^2)'(t) \\
&\leq f_i(t, \eta_i^1(t), [\eta^1(t)]_{p_i}, [u(t)]_{q_i}, \eta_i^1(t - \tau_1), [\eta^1(t - \tau_1)]_{\bar{p}_i}, \\
&\quad [u(t - \tau_1)]_{\bar{q}_i}, \eta_{t,i}^1, [\eta_t^1]_{\bar{p}_i}, [u_t]_{\bar{q}_i}) \\
&\quad - L_i(x_i^1(t) - \eta_i^1(t)) - M_i(x_i^1(t - \tau_1) - \eta_i^1(t - \tau_1)) - N_i \int_{-\tau}^0 (x_{t,i}^1(s) - \eta_{t,i}^1(s)) ds \\
&\quad - f_i(t, \eta_i^1(t), [\eta^2(t)]_{p_i}, [u(t)]_{q_i}, \eta_i^1(t - \tau_1), [\eta^2(t - \tau_1)]_{\bar{p}_i}, \\
&\quad [u(t - \tau_1)]_{\bar{q}_i}, \eta_{t,i}^1, [\eta_t^1]_{\bar{p}_i}, [u_t]_{\bar{q}_i}) \\
&\quad + f_i(t, \eta_i^1(t), [\eta^2(t)]_{p_i}, [u(t)]_{q_i}, \eta_i^1(t - \tau_1), [\eta^2(t - \tau_1)]_{\bar{p}_i}, \\
&\quad [u(t - \tau_1)]_{\bar{q}_i}, \eta_{t,i}^1, [\eta_t^1]_{\bar{p}_i}, [u_t]_{\bar{q}_i}) \\
&\quad - f_i(t, \eta_i^2(t), [\eta^2(t)]_{p_i}, \\
&\quad [u(t)]_{q_i}, \eta_i^2(t - \tau_1), [\eta^2(t - \tau_1)]_{\bar{p}_i}, [u(t - \tau_1)]_{\bar{q}_i}, \eta_{t,i}^2, [\eta_t^2]_{\bar{p}_i}, [u_t]_{\bar{q}_i}) \\
&\quad + L_i(x_i^2(t) - \eta_i^2(t)) + M_i(x_i^2(t - \tau_1) - \eta_i^2(t - \tau_1)) + N_i \int_{-\tau}^0 (x_{t,i}^2(s) - \eta_{t,i}^2(s)) ds \\
&= -L_i(x_i^1(t) - \eta_i^1(t)) - M_i(x_i^1(t - \tau_1) - \eta_i^1(t - \tau_1)) \\
&\quad - N_i \int_{-\tau}^0 (x_{t,i}^1(s) - \eta_{t,i}^1(s)) ds \\
&\quad + L_i(\eta_i^2(t) - \eta_i^1(t)) + M_i(\eta_i^2(t - \tau_1) - \eta_i^1(t - \tau_1)) + N_i \int_{-\tau}^0 (\eta_{t,i}^2(s) - \eta_{t,i}^1(s)) ds \\
&\quad + L_i(x_i^2(t) - \eta_i^2(t)) + M_i(x_i^2(t - \tau_1) - \eta_i^2(t - \tau_1)) + N_i \int_{-\tau}^0 (x_{t,i}^2(s) - \eta_{t,i}^2(s)) ds \\
&= -L_i m_i(t) - M_i m_i(t - \tau_1) - N_i \int_{-\tau}^0 m_{t,i}(s) ds, \\
\Delta m_i |_{t=t_k} &\leq I_i^k(\eta^1(t_k)) - I_i^k(\eta^2(t_k)) \leq 0, \\
m_i(t) &= 0, \quad t \in [-\tau, 0].
\end{aligned}$$

Thus, Lemma 1 implies that $m_i(t) \leq 0$ on $[-\tau, T]$ and hence $x_i^1(t) \leq x_i^2(t)$ on $[-\tau, T]$. In consequence $x^1(t) \leq x^2(t)$, $t \in [-\tau, T]$. Analogously one can prove (c).

Now, starting at $v^0 = v$ and $w^0 = w$, we can recursively define

$$(15) \quad v^m = B(v^{m-1}, w^{m-1}), \quad w^m = B(w^{m-1}, v^{m-1}), \quad m \geq 1.$$

From the properties of B it follows that $\{v^m\}$ is increasing, $\{w^m\}$ is decreasing, and $v^m \leq w^m$ for all m .

By standard arguments there exist a functions ρ and γ , such that $\lim_{m \rightarrow \infty} v^m(t) = \rho(t)$ and $\lim_{m \rightarrow \infty} w^m(t) = \gamma(t)$ uniformly on $[-\tau, T]$. We can easily verify from (15) that ρ, γ are coupled quasisolutions of (4)–(6). This completes the proof.

4. Positive solutions

In this section we abandon the monotone method and start directly with the equivalent integral equation.

THEOREM 2. *Assume that*

(i) $f = f_1 + f_2$, $f_1, f_2 \in C(J \times \mathbb{R}^n \times \mathbb{R}^n \times L^1([-\tau, 0], \mathbb{R}^n), \mathbb{R}^n)$, $f(t, x, y, \psi) \geq 0$ for $x \geq 0$, $y \geq 0$ and $\psi \in PC([-\tau, 0], \mathbb{R}^n)$, $\psi(s) \geq 0$, $s \in [-\tau, 0]$.

(ii) *there exist $M > 0, b > 0, c > 0, d > 0$ such that for any $(t, x, y, \psi) \in J \times \mathbb{R}^n \times \mathbb{R}^n \times L^1([-\tau, 0], \mathbb{R}^n)$,*

$$\|f_i(t, x, y, \psi)\| \leq M + b\|x\| + c\|y\| + d\|\psi\|_1, \quad i = 1, 2;$$

(iii) *$f_1(t, x, y, \psi)$, $f_2(t, x, y, \psi)$ are monotonically nondecreasing and nonincreasing in $x, y \in \mathbb{R}^n$ and $\psi \in PC([-\tau, 0], \mathbb{R}^n)$, for each fixed $t \in J$, respectively;*

(iv) *for any $x > 0, y > 0$ and $\psi \in PC([-\tau, 0], \mathbb{R}^n)$, $\psi(s) \geq 0$, $s \in [-\tau, 0]$, $0 < \lambda < 1$*

$$f_1(t, \lambda x, \lambda y, \lambda \psi) \geq \lambda^\alpha f_1(t, x, y, \psi), \quad 0 < \alpha < 1$$

$$f_2(t, \lambda x, \lambda y, \lambda \psi) \leq \lambda^{-\alpha} f_2(t, x, y, \psi), \quad 0 < \alpha < 1;$$

(v) $I^k : \mathbb{R}^n \rightarrow \mathbb{R}^n$, $I^k(x) > 0$ for $x > 0$;

(vi) $\phi \in PC([-\tau, 0], \mathbb{R}_+^n)$, $\phi(0) > 0$.

Then problem (1)–(3) has a positive solution x^ in $PC(J, \mathbb{R}^n)$ with $x_0^* = \phi$.*

Proof. By Lemma 2.1 in [3] the function $x \in E$ is a solution of (1) – (3) if and only if it is a solution of the following integral equation

$$x(t) = \phi(0) + \int_0^t f_1(s, x(s), x(s - \tau_1), x_s) ds + \int_0^t f_2(s, x(s), x(s - \tau_1), x_s) ds \\ + \sum_{0 < t_k < t} I^k(x(t_k)), \quad t \in J,$$

where $x_t(s) = x(t + s) = \phi(t + s)$ if $t + s \leq 0$.

Let

$$y_1(t) = \begin{cases} \phi(t), & -\tau \leq t \leq 0, \\ \phi(0), & 0 < t \leq t_1. \end{cases}$$

Following the proof of Theorem 4.1 in [1] we create the function

$$u_1(t) = \phi(0) + \int_0^t f_1(s, y_1(s), y_1(s - \tau_1), (y_1)_s) ds \\ + \int_0^t f_2(s, y_1(s), y_1(s - \tau_1), (y_1)_s) ds,$$

where $t \in [0, t_1]$. The function u_1 is continuous on $[0, t_1]$ and

$$u_1(t) \geq \phi(0) = y_1(t), \quad t \in [0, t_1].$$

There exists $0 < \lambda_1 < 1$ such that

$$\lambda_1^{\frac{1-\alpha}{2}} y_1(t) \leq u_1(t) \leq \lambda_1^{-\frac{1-\alpha}{2}} y_1(t), \quad t \in [0, t_1].$$

Now, starting at

$$v_1^1(t) = \lambda_1^{\frac{1}{2}} y_1(t), \quad w_1^1(t) = \lambda_1^{-\frac{1}{2}} y_1(t), \quad t \in [0, t_1],$$

we can recursively define two sequences $\{v_1^m\}$, $\{w_1^m\}$ by

$$(16) \quad v_1^m(t) = \phi(0) + \int_0^t f_1(s, v_1^{m-1}(s), v_1^{m-1}(s - \tau_1), (v_1^{m-1})_s) ds \\ + \int_0^t f_2(s, w_1^{m-1}(s), w_1^{m-1}(s - \tau_1), (w_1^{m-1})_s) ds, \\ m \geq 2, \quad t \in [0, t_1]$$

and

$$(17) \quad w_1^m(t) = \phi(0) + \int_0^t f_1(s, w_1^{m-1}(s), w_1^{m-1}(s - \tau_1), (w_1^{m-1})_s) ds \\ + \int_0^t f_2(s, v_1^{m-1}(s), v_1^{m-1}(s - \tau_1), (v_1^{m-1})_s) ds, \\ m \geq 2, \quad t \in [0, t_1],$$

where

$$(v_1^{m-1})_s(r) = v_1^{m-1}(s+r) = \phi(s+r), \quad -\tau \leq s+r \leq 0, \\ (w_1^{m-1})_s(r) = w_1^{m-1}(s+r) = \phi(s+r), \quad -\tau \leq s+r \leq 0.$$

By argument analogous to those in Theorem 4.1 [1], we can prove that

$$(a) \quad v_1^1(t) \leq v_1^2(t) \leq \dots \leq v_1^m(t) \leq w_1^m(t) \leq \dots \leq w_1^2(t) \leq w_1^1(t), \quad t \in [0, t_1],$$

$$(b) \quad v_1^m(t) \geq \lambda_1^{\alpha^m} w_1^m(t), \quad t \in [0, t_1], \quad m = 1, 2, \dots,$$

$$(c) \quad 0 \leq v_1^{m+p}(t) - v_1^m(t) \leq (1 - \lambda_1^{\alpha^m}) w_1^1(t), \quad t \in [0, t_1].$$

From (c), it follows that

$$\|v_1^{m+p} - v_1^m\| \leq (1 - \lambda_1^{\alpha^m}) \max_{0 \leq t \leq t_1} |w_1^1(t)|,$$

which implies that $\{v_1^m(t)\}$ converges uniformly to some continuous function $\rho_1(t)$ on $[0, t_1]$. Similary, we can prove that $\{w_1^m(t)\}$ also converges uniformly to some continuous function $\gamma_1(t)$ on $[0, t_1]$. From (a) it follows that

$$(18) \quad 0 < v_1^m(t) \leq \rho_1(t) \leq \gamma_1(t) \leq w_1^m(t), \quad t \in [0, t_1], \quad m = 1, 2, \dots.$$

From (18) and (c) we have derived

$$0 \leq \gamma_1(t) - \rho_1(t) \leq w_1^m(t) - v_1^m(t) \leq (1 - \lambda_1^{\alpha^m}) w_1^1(t), \quad t \in [0, t_1], \quad m = 1, 2, \dots.$$

Thus

$$\rho_1(t) = \gamma_1(t) = x_1^*(t), \quad t \in [0, t_1].$$

Taking the limit as $m \rightarrow \infty$ in (16) or (17), from assumption (ii) and by virtue of the Lebesgue dominated convergence theorem, we can see that the function x_1^* is a positive solution of (1) – (3) on $[0, t_1]$.

Let

$$y_2(t) = \begin{cases} \phi(t), & -\tau \leq t \leq 0, \\ \phi(0), & 0 < t \leq t_1, \\ x_1^*(t_1) + I^1(x_1^*(t_1)), & t_1 < t \leq t_2. \end{cases}$$

We create the function

$$u_2(t) = x_1^*(t_1) + I^1(x_1^*(t_1)) + \int_{t_1}^t f_1(s, y_2(s), y_2(s - \tau_1), (y_2)_s) ds \\ + \int_{t_1}^t f_2(s, y_2(s), y_2(s - \tau_1), (y_2)_s) ds,$$

where $t \in [t_1, t_2]$. The function u_2 is continuous on $[t_1, t_2]$ and

$$u_2(t) \geq x_1^*(t_1) + I^1(x_1^*(t_1)) = y_2(t), \quad t \in [t_1, t_2].$$

We can find λ_2 , $0 < \lambda_2 < 1$ so small that

$$\lambda_2^{\frac{1-\alpha}{2}} y_2(t) \leq u_2(t) \leq \lambda_2^{-\frac{1-\alpha}{2}} y_2(t), \quad t \in [t_1, t_2].$$

We can define the sequences $\{v_2^m\}$, $\{w_2^m\}$ as follows

$$v_2^1(t) = \lambda_2^{\frac{1}{2}} y_2(t), \quad w_2^1(t) = \lambda_2^{-\frac{1}{2}} y_2(t), \quad t \in [t_1, t_2],$$

$$\begin{aligned} v_2^m(t) &= x_1^*(t_1) + I^1(x_1^*(t_1)) + \int_{t_1}^t f_1(s, v_2^{m-1}(s), v_2^{m-1}(s - \tau_1), (v_2^{m-1})_s) ds \\ &\quad + \int_{t_1}^t f_2(s, w_2^{m-1}(s), w_2^{m-1}(s - \tau_1), (w_2^{m-1})_s) ds, \\ &\quad m \geq 2, \quad t \in [t_1, t_2], \end{aligned}$$

and

$$\begin{aligned} w_2^m(t) &= x_1^*(t_1) + I^1(x_1^*(t_1)) + \int_{t_1}^t f_1(s, w_2^{m-1}(s), w_2^{m-1}(s - \tau_1), (w_2^{m-1})_s) ds \\ &\quad + \int_{t_1}^t f_2(s, v_2^{m-1}(s), v_2^{m-1}(s - \tau_1), (v_2^{m-1})_s) ds, \\ &\quad m \geq 2, \quad t \in [t_1, t_2], \end{aligned}$$

where

$$\begin{aligned} (v_2^{m-1})_s(r) &= v_2^{m-1}(s + r) = \phi(s + r), \quad -\tau \leq s + r \leq 0, \\ (v_2^{m-1})_s(r) &= v_2^{m-1}(s + r) = x_1^*(s + r), \quad 0 < s + r \leq t_1, \end{aligned}$$

and

$$\begin{aligned} (w_2^{m-1})_s(r) &= w_2^{m-1}(s + r) = \phi(s + r), \quad -\tau \leq s + r \leq 0, \\ (w_2^{m-1})_s(r) &= w_2^{m-1}(s + r) = x_1^*(s + r), \quad 0 < s + r \leq t_1, \end{aligned}$$

As before, we can show that $\{v_2^m\}$, $\{w_2^m\}$ are convergent to some function $x_2^*(t)$. The function $x_2^*(t)$ is a positive solution of (1)-(3) on $[t_1, t_2]$.

Proceeding as before, if $t \in [t_p, t_{p+1}]$, we define the function

$$\begin{aligned} u_{p+1}(t) &= x_p^*(t_p) + I_p(x_p^*(t_p)) + \int_{t_p}^t f_1(s, y_{p+1}(s), y_{p+1}(s - \tau_1), (y_{p+1})_s) ds \\ &\quad + \int_{t_p}^t f_2(s, y_{p+1}(s), y_{p+1}(s - \tau_1), (y_{p+1})_s) ds, \quad t \in [t_p, t_{p+1}], \end{aligned}$$

where x_p^* is a positive solution of (1)-(3) on $[t_{p-1}, t_p]$ and

$$\begin{aligned}
 (y_{p+1})_s(r) &= y_{p+1}(s+r) = \phi(s+r), \quad -\tau \leq s+r \leq 0, \\
 (y_{p+1})_s(r) &= y_{p+1}(s+r) = \phi(0), \quad 0 < s+r \leq t_1, \\
 (y_{p+1})_s(r) &= y_{p+1}(s+r) = x_1^*(t_1) + I^1(x_1^*(t_1)), \quad t_1 < s+r \leq t_2, \\
 &\dots \quad \dots \quad \dots \quad \dots \quad \dots \quad \dots \quad \dots, \quad \dots \\
 (y_{p+1})_s(r) &= y_{p+1}(s+r) = x_p^*(t_p) + I^p(x_p^*(t_p)), \quad t_p < s+r \leq t_{p+1}.
 \end{aligned}$$

The function u_{p+1} is continuous on $[t_p, t_{p+1}]$ and

$$u_{p+1}(t) \geq x_p^*(t_p) + I^p(x_p^*(t_p)) = y_{p+1}(t), \quad t \in [t_p, t_{p+1}].$$

There exists $0 < \lambda_{p+1} < 1$ such that

$$\lambda_{p+1}^{\frac{1-\alpha}{2}} y_{p+1}(t) \leq u_{p+1}(t) \leq \lambda_{p+1}^{-\frac{1-\alpha}{2}} y_{p+1}(t), \quad t \in [t_p, t_{p+1}].$$

Define the sequences $\{v_{p+1}^m\}$, $\{w_{p+1}^m\}$ on $[t_p, t_{p+1}]$ as follows

$$v_{p+1}^1(t) = \lambda_{p+1}^{\frac{1}{2}} y_{p+1}(t), \quad w_{p+1}^1(t) = \lambda_{p+1}^{-\frac{1}{2}} y_{p+1}(t), \quad t \in [t_p, t_{p+1}],$$

$$\begin{aligned}
 v_{p+1}^m(t) &= x_p^*(t_p) + I^p(x_p^*(t_p)) + \int_{t_p}^t f_1(s, v_{p+1}^{m-1}(s), v_{p+1}^{m-1}(s-\tau_1), (v_{p+1}^{m-1})_s) ds \\
 &\quad + \int_{t_p}^t f_2(s, w_{p+1}^{m-1}(s), w_{p+1}^{m-1}(s-\tau_1), (w_{p+1}^{m-1})_s) ds, \\
 m &\geq 2, \quad t \in [t_p, t_{p+1}],
 \end{aligned}$$

and

$$\begin{aligned}
 w_{p+1}^m(t) &= x_p^*(t_p) + I^p(x_p^*(t_p)) \\
 &\quad + \int_{t_p}^t f_1(s, w_{p+1}^{m-1}(s), w_{p+1}^{m-1}(s-\tau_1), (w_{p+1}^{m-1})_s) ds \\
 &\quad + \int_{t_p}^t f_2(s, v_{p+1}^{m-1}(s), v_{p+1}^{m-1}(s-\tau_1), (v_{p+1}^{m-1})_s) ds, \\
 m &\geq 2, \quad t \in [t_p, t_{p+1}],
 \end{aligned}$$

where

$$\begin{aligned}
 (w_{p+1}^{m-1})_s(r) &= (v_{p+1}^{m-1})_s(r) = \phi(s+r), \quad -\tau \leq s+r \leq 0, \\
 (w_{p+1}^{m-1})_s(r) &= (v_{p+1}^{m-1})_s(r) = x_1^*(s+r), \quad 0 < s+r \leq t_1, \\
 &\dots \quad \dots \quad \dots \quad \dots \quad \dots \quad \dots, \quad \dots \\
 (w_{p+1}^{m-1})_s(r) &= (v_{p+1}^{m-1})_s(r) = x_p^*(s+r), \quad t_{p-1} \leq s+r \leq t_p.
 \end{aligned}$$

As before, we can show that $\{v_{p+1}^m\}$, $\{w_{p+1}^m\}$ are convergent to some positive function x_{p+1}^* . The function x_{p+1}^* is a solution of (1)-(3) on $[t_p, t_{p+1}]$.

Let

$$x^*(t) = \begin{cases} \phi(t), & t \in [-\tau, 0], \\ x_1^*(t), & t \in (0, t_1], \\ x_2^*(t), & t \in (t_1, t_2], \\ \dots, & \dots \\ x_{p+1}^*, & (t_p, t_{p+1}]. \end{cases}$$

The function $x^*(t)$ is a positive solution of (1)-(3). The proof is therefore complete.

References

- [1] L. Erbe, X. Liu, *Monotone iterative methods for differential systems with finite delay*, Appl. Math. Comput. 43 (1991), 43–64.
- [2] D. Franco and J. Nieto, *First-order impulsive ordinary differential equations with anti-periodic and nonlinear boundary conditions*, Nonlinear Analysis 42 (2000), 163–173.
- [3] X. Fu, B. Yan, *The global solutions of impulsive retarded functional-differential equations*, J. Appl. Math. 2 (2000), 289–398.
- [4] S. G. Hristova and L. F. Roberts, *Monotone-iterative method of V. Lakshmikantham for a periodic boundary value problem for a class of differential equations with "Supremum"*, Nonlinear Analysis 44 (2001), 601–612.
- [5] G. S. Ladde, V. Lakshmikantham, A. S. Vatsala, *Monotone Iterative Techniques for Nonlinear Differential Equations*, Pitman, Belmont, CA 1985, 289–398.
- [6] L. Skóra, *Monotone iterative method for differential systems with impulses and anti-periodic boundary condition* Ann. Soc. Math. Polon., Series I: Commentationes Math. XLII (2) (2002), 237–249.

INSTITUTE OF MATHEMATICS
CRACOW UNIVERSITY OF TECHNOLOGY
Warszawska 24
31-155 KRAKÓW, POLAND

Received December 23, 2002; revised version June 5, 2003.

