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MONOTONE ITERATIVE TECHNIQUE FOR 
IMPULSIVE RETARDED DIFFERENTIAL-FUNCTIONAL 

EQUATIONS SYSTEMS 

Abstract . In this paper, the monotone iterative method is applied to impulsive re-
tarded functional-differential problem. The problem is also discussed in case we abandon 
the monotone method and start directly with the equivalent integral equation. 

1. Introduction 
The monotone iterative technique have been used to approximate the 

extremal solutions of several problems: [1], [2], [4], [5], [6]. 
In the present paper the monotone iterative method is applied to the 

impulsive retarded functional-differential systems. The paper is organized 
as follows. First, we prove a comparison lemma, then we show that it is 
possible to construct the monotone sequences converging to the coupled 
quasisolutions of the impulsive problem in a sector. Finally, in Section 4 an 
alternative approach is discussed. 

The above problems are motivated by the results of [1], [3]. 

2. Preliminaries 
Let J = [0,T], r > 0, 0 = t0 < h < t2 <•••< tp < tp+1 = T are given 

points, J' = J\ {tj}f=1. 
Denote by PC {J, Rn) the set of all functions y : J —> Rn which are con-

tinuous at t ^ ifc, left continuous at t = tk and y(t£) exists, k = 1 ,2 , . . . ,p. 
We denote by PC( [ - r , 0], Rn) the set off all functions x : [ - r , 0] Rn such 
that x(t~) = x(t) for all t € [—r,0), exists for all t € [—r, 0) and 
a:(£+) = x(t) for all but except at most a finite number of points t 6 [—r, 0) 
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with norm ||x|| = sup ||x(t)||. Obviously for V e PC([-T,0],Rn) C 

L\[-r,0],R"), HVIIi < rW\\pc. Let 

PC([-r,T],Rn) = {x : [ - r , T ] -> Rn, x l ^ e PC([-r,0},Rn) 

and x |j€ PC(J,Rn)}. In addition we denote the set P C ( [ - r , T],Rn) D 
Cl{J',Rn) by E. 

We consider the impulsive retarded functional-differential equation 
(IRFDE) 

(1) x?(t) = f(t,x(t),x(t-T1),xt), t g J ' , 

(2) Ax\t=tk = Ik(x(tk)), fc = l 

(3) xq = <j>, 

where 0 < N < R, f : J x Rn x Rn x PC([-T, 0], Rn) -> Rn, xt{s) = x(t+s), 
s G [—r, 0], A®|t=tfc = ®(t+) - ®(tfc), /fe : i?n —> i?n, <t> G P C i t - r . O ] , ^ ) . 

For each fixed i, 1 < i < n, let pi, qj, p^ p{, qi be nonnegative 
integers such that pt + ^ = pi + qt = p{ + q{ = n — 1, so that we can 
partition x(t) into x(t) = (Xi(t), [x(i)]Pi, , x(t — ri) into — Ti) = 
(xi(i - n ) , [®(t - t i ) ] ^ , [®(t - Ti)]$i) and xt into (xt,i, [xt]p., Then 
the system (l)-(3) can be written as 

(4) xl(t) = fi(t,XI(t), [®(t)]w> [x(t)]qi,xi(t - n), [x(t - T i ) ] * , 

[x(t - r i ) ]^ ,®^ , [xt}p., [x t]?.), teJ', i = l,...,n, 

(5) Ax\t=tk=I
h(x(tk)), fc = l , . . . , p , 

(6) x0 = <f>. 

We shall prove a comparison result which will be used in our discussion. 

Lemma 1. Let the function u G PC([-r,T],R) n Cl{J\R) satisfy the 
inequalities 

o 
(7) u'(t) < -Lu(t) - Mu(t -Tl)-N \ ut(s)ds for t G J', 

— T 

(8) A u | t = t f c < 0 , k = l,...tPt 

(9) u(0) < u(i) < 0 for t G [ - t , 0], 

where the constans L, M, N are positive and 

(10) 1 > (L + M + Nr)a(p+1), 

where a = max{ifc+i — tk, k = 0 , 1 , . . . 
Then, u{t) < 0 forte [ - r , T], 
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Proof . We consider the following two cases. 
Case 1: Let inequality (7) hold strictly and u(t) < 0 for t G [—r, 0]. We 

suppose, for the sake of contradiction, that there exists a point t* G (0, T) 
such that u(t*) >0. 

We note that if u(tk) < 0, then from the inequality (8) it follows that 
u(i+) < 0. Therefore, there exists a natural number m such that 0 <m <p 
and a point t G (0, T ) , i 6 (tm,tm+1) such that u(t) = 0 and u(t) < 0 for 
te[-T,t). 

Now, introduce the notation inf{tt(i) : t G [—r, i]} = —A. Clearly A > 0. 
There are three posibilities. 
Case 1.1\ Suppose there exists a point t € [ 0 , t ) , t ^ tk,k = 1 , . . . , m 

such that u(t) = —A. Let t G (tj,tj+1), where j < m. By the mean value 
theorem the following equations hold: 

u(t) - u(t+) = u'{6m)(t - tm), 

u(tm) - it(C_i) = u'(0m-i)(tm - im_l), 

(11) 

u(tj+1) - u(t) = u'(6j){tj+\ - £), 

where 9k G (tk,tk+i), k = j + 1, j + 2 , . . . ,m - 1 , 0 j G (t,tj+i),6m G (tm,t). 

Prom (7) we obtain 
o 

( 1 2 ) u'(6k) < -Lu{0k) - Mu(6k - n ) - N \ u0k(s)ds <(L + M + Nr) A. 
—r 

From (8), (11), (12) and by elementary transformations we obtain the in-
equality 

u(t) - u(t) < u'(0m)(t - i m ) + u'(0m_i)(tm - tm-l) + .. • + - t) 

< (L + M + Nr)\(j(m - j + 1) < (L + M + Nr)Xa(p+ 1). 

It follows that 
( 1 3 ) 1 < {L + M + NT)ct(P+1). 

Inequality (13) is a contradiction to inequality (10). 
Case 1.2 : Suppose there exists a natural number k, 1 < k < p such that 

tk < t,u(t£) = —A. Consider the interval [ijj",t\. By arguments analogous to 
those in Case 1.1, we obtain a contradiction. 

Case 1.3 : Suppose there exists a natural number k, 1 < k < p such 
that tk <t and u(tk) = —A. From inequality (8) it follows u(t%) < u(tk) = 
—A < 0. Consider the interval By arguments analogous to those in 
Case 1.1, we obtain a contradiction. 
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Case 2 : Suppose at most one of inequalities (7) and (9) is not strict. 
Let e > 0 be arbitrary. Consider the function w(t) = u(t) — e - ( L + M ) t

e for 
t e [0,T] and w(t) = u(0) - e for i € [-r ,0] . 

The function w satisfies the inequalities 

w'(t) = u'(t) + (L + M)e^L+M^€ 

o 

< - Lu(t) - Mu(t - n ) - iV j u t(s)ds + (L + M)e~(L+M^e 

—T 

= - L(w(t) + - M(w(t - n) + 

o 
- N \ [w(t + s) + e-(L+M)(t+sh]ds + (L + M)e~(L+M^te 

—r 
0 

= - Lw(t) - Mw(t - r j - N J wt(s)ds 

— T 

0 
+ Mee-(L+M»( 1 - e^+MM) - jVe j e - ( L + M ) ( t + s )ds 

— T 

0 
< - Ltu(t) - Mw(t - n ) - N 5 wt(s)ds, t e J' 

— T 

and w(0) = u(0) - e < 0. 
According to Case 1, we obtain w(t) < 0, t € [—r, T]. Taking the limit 

as e —• 0, we obtain that u(t) < 0 for t € [—r,T]. 

3. Monotone iterative technique 
The functions v, w G E are said to be coupled quasi lower and upper 

solutions to system (4)-(6) if 

v'M < fi{t, Vi(t), b(i)]Pi, H*)]«, - n), [v(t - n)]ft, [w(t - n)]il( 

vt,i,bt]?,,KkJ> t e J', i = l,...,n, 

Mt=tk < Ik(v(tk)), k = l,...,p, 

Vo < <f>, 

w'i(t) > fi(t,Wi(t), [w(i)]Pi, [v(t)]qi,Wi(t - Ti), [w(t - Ti)]ft> [v(t - ri)] f t> 

^t.i'Klpi.H^J.i € J', i = l , . . . , n , 
Aw\t=tk>Ik(w(tk)), k = l,...,p, 

Wo > <t>. 
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The functions x,y € E are said to be coupled quasisolutions of (4)-(6) if 

x[(t) = fi(t, Xi(t), [x(t))Pi, [y(i)]9i, - n), [x(t - Tl)}Pi, [y(t - n)]ffl, 

xt,i,N^,[yt]^), t e J ' , i = i,...,n, 

Ax|t=tfc = Ik(x(tk)), k = l,...,p, 

XQ = (J>, 

y[(t) = fi{t,yi(t), [y(t)U, Ht)]qi,yi(t - n), [y(t - n)]Pi, [x(t - Tl)]9i, 

yt,i,[yt]p4.[®t]5t)ii e i = i,...,n, 

= ik(y(tk)), k = l , . . . , P , 

yo = 4>-

Let us list the following assumptions for convenience. 
( ¿ 1 ) / € C(J x RN x RN x PC([-T, 0], RN), RN)\ 

fi(t, [i] 
Pi 1 Wii) yiAy]piAy]qi^W\pA^]qi) i s monotone nondecreasing 

in [x]Pi, [y]Pi and [ip]Pi, and monotone nonincreasing in [x]9i, [y]qi and [ip]qr 

(A2) v,weE are coupled lower and upper quasisolutions of (4)-(6) such 
that v < w on [—r,T]. 

(A3) For i = 1 , . . . , n, there exist constans Li, Mi, Ni > 0 such that fi(t,Xi(t), [x(i)]Pi, [x(t)]9i, Xi(t - n), [x(t - n)]Pi, 

[x(t-ri)] i l JxM,[iEt]?4,[®t]y1) 
-fi(t,Xi(t), [x(i)]Pi, [x(t)]qi,xi(t - n), [x(t - ri)]Pit 

[x(t - Ti^xt^lxtlp.^xtlq.) 

> -Li(xi(t) - Xi(t)) - Mi(xi(t - n) - Xi(t - n)) 
0 

- N i J [xtii(s) - xt>i(s)]ds, 
—r 

whenever v < x < w,Vi < Xi < Xi < Wi and vt i < xti < xt i < wt i on 
[-T,0], 

(A4) If : Rn —> R, k = l,...,p, i = 1 ,...,n are continuous and 
nondecreasing. 

Let 
[«,ti>] = {a € E : v(t) < a(t) < w(t) on [~T,T]}. 

THEOREM 1. Suppose that (A1)-(AA) hold. Assume also that the differ-
ence Vi — (pi, <f>i — Wi satisfy assumption (9) of Lemma 1 and the constans 
Li, Mi, Ni satisfy inequality 1 > (Li + Mj + Nir)cr(p+1) for i = 1 , 2 , . . . , n. 
Then there exist monotone sequences {t>m(£)}, {wm(t)} which converge uni-

formly on \—T,T\ to the coupled quasisolutions of the system ( 4 ) - ( 6 ) in the 
sector [v, w]. 
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P r o o f . Let 
77, it € [v, w]. 

We consider the following problem 
r x'i(t) = Fi{t,x(t),x(t-T1),xt), t E J ' , 

(14) I Axi\t=tk= lHv(tk)), k = l , . . . , p , 
[ = e [—r,0], * = l , . . . , n , 

with 
Fi(t,x(t),x(t — T i ) , X t ) 

= fi(t,Vi(t), [v(t)]Pi, Mt)]qi,Vi(t - n), [r)(t - Ti)]ftl 

N * - Tl)k> ^M. [ni\ft, M g J 
0 

-Li(®i(t) - 77i(t)) - Mi(a:i(t - n ) - - n ) ) - Ni \ (xt,i(s) - T]t>i(s))ds. 
— T 

The paper [3] permits us to assure that this problem has a unique solution 
x € E. Then we can define the operator 

B : [v, w] x [1/, 1u] E 
by [ B ( r j , u ) ] ( t ) = x ( t ) , t G [—r,T], where x is the unique solution of (14). 

This operator possesses the following properties: 
(a) v<B(v,w), B(w, v) < w, 
(b) n\ Ti\ u e [v, w], 771 < r,2 =• B(T]\ u) < B t f , u), 
(c) r1, u1, u2 € [v, to], u1 < u2 =>• B(r), ti1) > B(rj, u2). 

To prove (a), we consider the function m,i(t) = Vi(t)—Xi(t) (i = 1 , . . . , n), 
where x = B(v,w). By the definition of coupled quasi lower and upper 
solutions we have 

mi(i) = «Kt ) -* i ( t ) 
< fi{t,Vi(t), - n), Ht - n ) ] ^ , 

[w{t - ri)]5i, Vt,u [«t]?i> [wt]9i) 
~fi{t,Vi(t), [w(i)]Pl, [w(t)]qi,Vi(t - ti), [v(t - n)]Pi, 

[w(t - Ti)]^, Vt,i, N ^ , 
0 

+ L i ( x i ( t ) - V i ( t ) ) + M i ( x i ( t - T i ) - Vi(t - r i ) ) + Ni \ ( x t ) i ( s ) - V t , i ( s ) ) d 8 

— T 

0 
= —Lim,i(t) — Mirrii(t — ri) — N{ J mt,i(s)ds, 
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Ami \t=tk< I?{v(tk)) ~ I?(v(tk)) = 0, m,i(0) < mj(t) < 0, t e [ - r , 0 ] . 

Thus, Lemma 1 implies that mj(i) < 0 on [—r, T] and hence Vi(t) < Xi(t) on 
[—r, T\. In consequence v(t) < x(t), t € [—r, T]. Analogously one can show 
that x(t) < w(t) on [—t,T], where x = B(w,v). 

Now, to prove (b), let us consider x1 = B ^ y u ) , x2 = B(rj2,u) with 
•q1 <r]2. We will prove that x1 < x2 on [ - r , T]. Let m^t) = xj(i)-a:?(i) (« = 
1 , . . . ,n). In view of (A1),(A3) and (A4) we obtain 

< { t ) = ( x } ) ' ( t ) - ( x 2 ) ' ( t ) 

< f i { t , r i i ( t ) , [ ^ W k , (i - n ) , [vHt - ri)]Pi, 

[u(t - T i ) ] ^ , ^ , [ri^p., [ut]?4) 

o 
-U{xJ(t) - v l ( t ) ) - Mi(x}(t - n ) - ^ ( i - n ) ) - Ni \ ( ^ ( a ) - r,lti(s))d8 

— T 

- f i { t , v l ( t ) , - n ) , [r}\t - Tl)}Pi, 

[u(t - T i ) ] ? 1 , \ f J t \ p i ) H ? , ) 

+/i(i,»7i ( i ) , t n \ t ) ]Pi, [ti(t)],0»7i (i - n ) , [v2(t - n ) k , 

[li(t - Ti)]ft, f/Ji, k 2 ]^ , [litfej 

- / ¿ M ( i ) > f o 2 ( 0 k > 

[ « ( i ) ] , o - n ) , [r?2(i - rOlp-,, [u(t - r O ] ^ , ^ , fo2]^, [u^-J 

+Li(®?(t) - ^ ( i ) ) + Mi(x2(t - n ) - r,2(t - n ) ) + tf, J ( x l ( s ) - rtti(8))d8 
— T 

= - L i { x \ ( t ) - r j l ( t ) ) - M i i x f a - Ti) - V } ( t - 7i)) Q 

- N i l i x l W - r t j W d s 
—r 
0 

V
2 ( t ) ~ Vl(t)) + M i t f i t - r i ) - r$(t - r i ) ) + Ni \ ( t j K s ) - v U s ) ) d s 

— T 
0 

+Li(x2(t) - V
2 ( t ) ) + Mi(x2(t - n ) - rfi(t - T i ) ) + Ni \ ( x 2

t ) i ( s ) - vli(s))ds 
— T 

0 
= -Limi(t) - MiTni(t - n ) - N{ J m t i i(s)ds, 

—r 
Arm |t=tfc< v 2 ( t k ) ) < 0 , 

rrii(t)= 0 , t E [-r,0]. 
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Thus, Lemma 1 implies that m* (t) < 0 on [—r, T] and hence xj (t) < x? (£) 
on [—r,T]. In consequence < x2(t),t G [—r, 71]. Analogously one can 
prove (c). 

Now, starting at v° = u and w° = we can recursively define 

(15) vm = B(vrn-1,wm-1), wm = B(wrn-l,vrn~l), m> 1. 

Prom the properties of B it follows that {i>m} is increasing, {wm} is decreas-
ing, and vm < wm for all m. 

By standard arguments there exist a functions p and 7, such that 
linim—xx, vm(t) = p(t) and limm-.oo wm(t) = 7(t) uniformly on [—r, T]. We 
can easily verify from (15) that p, 7 are coupled quasisolutions of (4)-(6). 
This completes the proof. 

4. Positive solutions 
In this section we abandon the monotone method and start directly with 

the equivalent integral equation. 

THEOREM 2. Assume that 

« / = /1+/2, fufi € C(Jxirtx/rxL1([-T.O],i2n),i2n), f(t,x,y,ip) 
> 0 for x > 0 , y > 0 and ip € PC([-T, 0], RN), tp(s) > 0 , s G [ - r , 0]. 

(ii) there exist M > 0,6>0,c>0, d> 0 such that for any (t, x, y, ip) € 
J x Rn x Rn x L1([—r, 0],i2n), 

||Mt, x, y, V) || < M + 6||x|| + c||y|| + d||VI| 1, ¿=1,2; 

(iii) fi(t,x,y,xf;), f2(t,x,y,ip) are monotonically nondecreasing and 
nonincreasing in x,y 6 RN and %p G PC([—t, 0], RN), for each fixed t € J, 
respectively; 

( iv) / o r any x > 0, y > 0 and ip € PC([-T, 0], i T ) , ip(s) > 0, s G [ - r , 0], 
0 < A< 1 

hi t , A®, Ay, AV>) > AQ/!(i, x, y, V), 0 < a < 1 
/2(i, Ax, Ay, AV>) < A~ a f 2 ( t , x, y, 0 < a < 1; 

(v) Ik -.Rn Rn, Ik(x) > 0 for x > 0; 
(vi) <F> G PC([—r, 0], R+), M>0. 

Then problem (l)-(3) has a positive solution x* in PC(J,RN) with 
x*0 - <j>. 

Proof. By Lemma 2.1 in [3] the function x £ E is a solution of (1) — (3) if 
and only if it is a solution of the following integral equation 
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t t 
x(t) = </>(0) + ^f1(s,x(s),x(s - Ti),xa)ds + ^f2(s,x(s),x(s - Tl),Xs)ds 

0 0 
+ Y 1 '*(*(«*)), j , 

0 <tk<t 

where xt(s) = x(t + s) = <j>(t + s) if t + s < 0. 
Let 

0 < i < ¿1. 
Following the proof of Theorem 4.1 in [1] we create the function 

t 

"i(t) = m + J/i(«,yi(«),yi (a - t l) , (yi),)ds 
o 

t 
+ \ h (a, yi(«), yi(s - t i), (yi)<)ds, 

o 
where i € [0,¿i]. The function u\ is continuous on [0,¿i] and 

« i ( t ) > ^ ( 0 ) = y i ( t ) , i e [0,4x1. 
There exists 0 < Ax < 1 such that 

A^yiCt) < «1 (t) < A ^ y x ( i ) , t e [0,ix]. 

Now, starting at 

vi(t) = Ai4yi(f), ^ ( t ) = A^yx(i) , i € [0,¿i], 
we can recursively define two sequences {v™}, {wj71} by 

t 
(16) v?(t) = m+\ms,V?-i(8),V?-i(8-n),(«r1).)^ 

0 
t 

+ S /2(a, w r H ' ) , - *i)> 
o 

m > 2, t e [0, ia] 
and 

t 
(17) < ( i ) = <¿(0) + J / i ( s , « » r - 1 (s) , « r - 1 (s - n ) , (wT~1)s)ds 

0 

+ 5 f2(s, v ^ H s ) , v?~l(8 - Ti), {v?-v).)da, 
0 

m > 2, t € [0,ii], 
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where 

K 1 " 1 ) ^ ) = + r) = </>(s + r), - r < s + r< 0, 

( u ; ^ - 1 ) s ( r ) = w?'1^ + r) = <p(s + r), - r < s + r< 0. 

By argument analogous to those in Theorem 4.1 [1], we can prove that 

(a) vj(i) < vf(t) < .. < v?(t) < wj"(t) < . . . < wf(t) < t»J(i), i 6 [0, ii], 

(b) v?{t) > A fw?(t), t e [0, ti], m = 1 , 2 , . . . , 

(c) 0 < v?+p(t) - v?(t) < (1 - i € [0,ii]. 

Prom (c), it follows that 

| | « ^ - « r i l < ( l - A ? m ) m « K ( i ) l , 

which implies that {^¡"(i)} converges uniformly to some continuous function 
Pi(t) on [0, ii]. Similary, we can prove that {^ ¡ " ( i ) } also converges uniformly 
to some continuous function 71 (i) on [0, ii]. From (a) it follows that 

(18) 0 < ^ ( É ) <Pl(t) < 7 i ( i ) <u>r(t), [0,ii], m= 1 , 2 , . . . . 

Prom (18) and (c) we have derived 

0 < 7 i ( i ) - P i ( * ) < < ( t ) ~ v ? ( t ) < ( 1 - A f W W - [0,ii],m = l , 2 , . . . . 
Thus 

pi(t) = 7l(t) = xUt), t € [0,ti]. 
Taking the limit as m —> 00 in (16) or (17), from assumption (ii) and by 
virtue of the Lebesgue dominated convergence theorem, we can see that the 
function x\ is a positive solution of (1) — (3) on [0,ti]. 

Let 
C <f>(t), -T < t < 0, 

y2(t) = { 0(0), 0 < t < i i , 
[ x ^ i O + J ^ x K i i ) ) , i i < i < i 2 . 

We create the function 
t 

u2{t) = *Ì(ti) + I1(x*l(ti)) + \ fi(s,y2(s),y2(s - T1),(y2)s)ds 
ti 

t 
+ \ h ( a , 2/2(a), 3/2(« - n ) , (l/a)«)da, 

ti 

where t 6 [ti,¿2]- The function u2 is continuous on [i 1,£2] and 

u2(t) > x*(ti) + lHx*(t 1)) = y2(t), t e [ti,t2]. 
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We can find A2, 0 < A2 < 1 so small that 

AP^y 2(t) < u2(t) < A 2 ^ y 2 ( t ) , t € [h,t2]. 

We can define the sequences {v™}, {w™} as follows 

vl(t) = Xly2(t), wl(t)=:\^y2(t), te[h,t2}, 

t 
v?(t) = xUh)+i\x\{t o ) + s h{S,vr\s),vrl(s - r i ) , (vr^ds 

il 

t 

ti m> 2, i 6 [t!,t2], 
and 

t 
< ( t ) = ®i(t0 + J 1 ^ ) ) + S Ms, w ? ~ H s ) , ~ n),(wr^ds 

h 
t 

+ \ f2(s,v?-1(s),v?-1(s-n),(v?-1)a)ds, 
tl 

m> 2, t € [ti,<2], 

where 

K 1 " 1 ) * ^ ) = + r) = <t>(s + r), - r < a + r < 0, 

K 1 " 1 ) * ^ ) = + 0 = + r), 0 < a + r < tu 

and 

« ^ M O = + r) = (f>(s + r), - r < s + r < 0, 
= w?-\s + r) = + r), 0<s + r<tu 

As before, we can show that {v™}, {w™} are convergent to some function 
x2. The function x2(t) is a positive solution of (l)-(3) on [tijta]-

Proceeding as before, if t 6 [ip, ip+i], we define the function 

t 

up+i(t) = x*(tp) + Ip(Xp(tp)) + j fi(s,yp+i(s),yp+i(s — Ti), (yp+i)s)ds 

t 
+ \ f2(s,yp+1(s),yp+1(s - T1),(yp+1)a)ds, te [tp,tp+1], 

b 
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where x* is a positive solution of (l)-(3) on [£p_i, tp\ and 

( y P + i ) s { r ) = y P + i { s + r) = </>(s + r ) , - r < s + r < 0 , 

(y P + i ) s ( r ) = yP+i(s + r) = <j>(0), 0 < s + r < ¿1, 
(yp+i) s(r) = y p + 1 ( s + r) = ^ ( ¿ i ) + / ^ ( ¿ i ) ) , t 1 < s + r < t 2 , 

( y P + i ) s ( r ) = yP+i(s + r) = x*p(tp) + I p ( X p ( t p ) ) , t p < s + r < t p + 1 . 

The function tip+i is continuous on [ t p , t p + i ] and 

u p + i ( t ) > x*p(tp) + P { x * p { t p ) ) = y p + 1 ( t ) , t e [tp, t p + 1 j . 

There exists 0 < Ap+i < 1 such that 
1 —or _ 1 —a 

< u p + i ( t ) < X p ^ ~ y p + 1 ( t ) , t G [ t p , t p + 1 } . 

Define the sequences {v™+1}, on [tp , ip+i] as follows 
i _ i 

vP+i(*) = A P +iyp+i(0 . «$+1 (0 =  x P + i y P + i ( t ) , * € [tp, i p + i ] , 

v p + i ( t ) = x*p(tp) + P ( x ; ( t p ) ) + j h ( s , v ^ i s - n ) , ( v ^ ) s ) d s 

t 

+ \ w ^ i s - n ) , ( w ^ ) a ) d s , 
tp 

m > 2, t € [ i p , i p + i ] , 

and 

< + i (t) = ^ p ) + P ( x ; ( t p ) ) 

t 

+ J A ( « , < + ! > ) , « f t r ^ - n ) , « i 1 ) , ) ^ 
ip 
t 

+ S - n ) , ( v ^ ~ i ) s ) d s , 
tp 

m > 2, t 6 [ i p , i p + i ] , 

where 

W i 1 ) - ^ ) = W i ' M r ) = ¿ ( s + r), - r < s + r< 0, 

( < + 1 1 ) s ( r ) = ( ^ J . C r ) = x*(s + r), 0 < s + r < t u 

W + i ) * ( r ) = K T i ^ W = x*p(s + r ) , t ^ < 
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As before, we can show that {w™+i} are convergent to some positive 
function x*+1. The function x*+1 is a solution of (l)-(3) on [tp,tp+1]. 

Let 

x*(t) = < 

f ¿ ( 0 . 
xt(t), 
x*2(t), 

t e [-r,0], 
t € (0 , i x ] , 
t€ {tut2], 

x. p+i) (¿p, ip+i]-
The function x*(t) is a positive solution of (l)-(3). The proof is therefore 
complete. 
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