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ON EXISTENCE AND STABILITY OF FORCED PERIODIC
OSCILLATIONS FOR A ROD IN THE VISCOUS FLUID

Abstract. The paper is devoted to the development of a numerical algorithm for
finding the time-periodic transverse oscillations of a rod under external forces. Moreover,
the dynamical stablility of these oscillations is proved under damping properities of the
fluid.

1. Statement of the problem

The problem to be solved here is to find a time periodic solution u(z,t) €
C*2(P) of the boundary value problem:

& %y ou

(1.1) 324 T 952 +b = f(z,t) for each (z,t) € P,
Oou 0%u &u
(12) ’U,(O,t) - -6_.’;;(0’ t) =0, Oz 2(l t) 913 (l’t) =0,

where P = {(z,t) € R? : z € [0,I],t > 0},C*%(P) means the class of
functions with continuous derivatives in £ and ¢ up to the order 4 and 2
respectively, parameters a, b,w > 0, and the function f(z,t) is T-periodic in
t. The main purpose below is to present a numerical algorithm for finding
of a solution of the problem (1.1), (1.2) and to prove the uniqueness and
dynamical stability of this solution.

The derivation of the equation (1.1) one may find in [9] and some results
concerning the study of transverse oscillations in question are obtained in
[2]. Firstly, we give a numerical algorithm for finding the solution of the the
boundary value problem (1.1), (1.2) in the simplest case f(z,t) = ¢(z) sinwt.
Because the right-hand side of (1.1) is a periodic function of a special form
with frequency w, we look for the desired solution z(z,t) to be periodic in
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t with the same frequency w for each z € [0,!]. Exactly, we construct this
solution z(z,t) in the form

(1.3) z(z, t) = y(z) sin(wt + ¢(z)),

where y(z) is amplitude of oscillations of a rod and ¢(z) is its phase.

2. Solving the reduced boundary value problem

Rewrite the function (1.3) in the form
(2.1) z(z,t) = v(z) sinwt + w(z) coswt,
where »
(2.2) v(z) = y(z) s v(z),
w(z) = y(c) sin (),

and substitute it to equation (1.1), so that

v (z) sinwt + w® (z) cos wt — aw?(v(z) sinwt + w(z) coswt)+
+bw(v(z) coswt — w(z) sinwt) = ¢(z) sinwt.

Because sinwt and coswt are linearly independent, we easily obtain the two

relations
(2.3) { v@(z) — aw?v(z) — bww(z) = ¢(z)

w¥(z) — aw?w(z) + bwv(z) = 0.
By virtue of boundary conditions (1.2) and relation (2.1) we have

{ v(0) sinwt + w(0) coswt = 0, v'(0)sinwt + w'(0) coswt = 0,

v"(l) sinwt + w'(I) coswt =0, v"(l)sinwt + w"”(l) coswt = 0.

Because both of these relations are identities in ¢ > 0, the boundary condi-
tions for v(z) and w(z) are

v(0) = w(0) = '(0) = w'(0) =0,

24 V(1) = w'(l) = v"(1) = w"(l) = 0.

Obviously, the existence of a solution of the two-point boundary value
problem (2.3), (2.4) allow us to obtain the solution 2(z,t) by (2.1). Reduce
the boundary value problem (2.3), (2.4) to the corresponding one for the only
differential equation. For that expressing v(z) from the second equation of
the system (2.3),
aw?w(z) — w?(z)

(2.5) v(z) = ™ )
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we obtain after four time differentiation of the first relation from (2.3) the
differential equation

(2.6) w®(z) — 200w (z) + w?(a%W? + BP)w(z) = —q(z)bw
and boundary conditions

w(0) = w'(0) = w®(0) = w®(0) =0,

w"(l) = w" (1) = w® (1) = w(l) = 0.

The characteristic equation corresponding to the differential equation
(2.6) is A8 — 2aw? X% +w?26% = 0, where 62 = a?w? + b2. Its roots can be write
in the form
M=a—iB, =a+i8, 3= —a—if, 4 = —a+1if,

As = 0B —ia, Ag =,B+ia,/\7 = -0 —ia, g = —-F+1iaq,

(2.7)

(2.8)
1 1

where o = 4= ¢/ (V28 + &+ aw)* and B = —\4—}—5\“/5(\/53—\/5+aw)2 .

Clearly, a > >0, o2 — 32 = 715\/wi6+awi, and af = 5\1—/5\/@6 — aw).

Then by the Lagrange method [8] we can represent the general solution w(z)
as

(2.9) w(z) = e (Cy(z) sin Bz + Ca(x) cos fz)
+e~%*(Cs(x) sin Bz + Cy(z) cos Bz)
+ eP*(Cs(z) sin oz + Cs(z) cos ax)
+ e~ P*(Cy(x) sin ax + Cs(x) cos ax),

where
Coos (z) = Ji(z, (-1 *1¢1, &2, 0, 8) + dop—1dla k = 1,2,

2 “Jk(z> (_1)k+1€2) Ely /Ba Ol) + d2k—1 dla k = 3a 4)
(2.10)

() Ji(z, &, (1)*€1, 0, f) + dardla k = 1,2,

2 —1
_Jk(za 51’ (_l)ké.?, 131 a) + dokdla k = 3a4
Here d; are unknown constants for ¢ = 1,8, the given constants

é1 = a(a? ~ 38?) and & = B(B? — 3a?), as well as the functions
T
Tk(z, t1, ta, t3, ta) = (—1)Fs | e D"t g (1) (¢, costat + tosintat)dt
0

for k =T1,4 and
bw

~ 16aB(a? = AN + 22

S
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The constants d; are determined by the boundary conditions (2.7), from
which we can easily obtain the system of linear algebraic equations

(2.11) Ad = B,

where vectors d = [dy, dg, d3, d4, ds, ds, d7,dg] and B = [0, 0,0, 0, bs, bg, b7, bg),
the matrixes A = {4; ;} = [C|D] (¢ =1,8, j =1,8), C is of the form

0 1 0 1
Jé] «a J5] -
K1 Ko —K1 Ko
61 ) 61 -0,

K(C1,¢2,0,08) K(C1,—C2,,8) K(—(2,¢1,~e,8) K(C1, 62—, B)
K(—-&,6,0,8) K(&1,62,0,8) —K(§2,61,—, B) K(—-&1,62, —a, )
K(p1, p2, 0, B) K(pg, —p, @, B) K(—pr, p2, —a, B) K(p2, p1, e, B)
| K(m,m,a,8) K(n,-m,o,B) K(m,-m,-a,8) —K(n2,m, -, B) |

and D is

0 1 0 1

o B o B
—K1 K2 K1 K2

92 91 92 —91

K(¢2,—C1,8,a) —K(C1,¢2,8,0) —K((2, 1, —B,a) K(—(1, (e, B, )
K(—Ela 52) ﬁ’ a) K(€2, Elv ,5, a) _K(€17 €2a _ﬂa a) K('—E2: Ela —ﬁa a)
K(p1, —p2, B, 0) =K (pa, w1, B, @) —K(p1, p2, —B, a) K(—p2, p1, =B, @)
__K(T’?’nl,ﬂra) K(_nlan%ﬂaa) K(_"D)nl,_ﬁ,a) K(Ul,ﬂ%—ﬂ,a) j

Here the constants {; = a2 — 2, { = 208, k1 = 2(1{s, K2 = (F — (3,
01 = G1é1 + Caba, 02 = ol — Grbo,mr = C2(8¢F — ¢3), w2 = G1(¢E - 3¢3),
m = apz — Bu1, 12 = ap1 + Bug, K(r,g,k,p) = e*(r cospl + gsinpl), and

8

b; = —s ¥ Cj(l)A;; for i = 5,6,7,8. The determinant of the system (2.11)
j=1

can be write after some simplification as

A = 20(aB)(a* - 843 (a® + 82)3(16 + e~ H*+A 4 4(cosh 2al cosh 281
+ cos 2al cos 231 + cosh 2al cos 2al + cosh 23! cos 251
+4(cosh(a + B)l cos(a — B)l + cosh(a — B)l cos(a + B)1))).

It follows from an elementary analysis of this expression, that A > 0.
That means the algebraic system (2.11) is uniquely solvable and its solu-
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tions can be given by the Cramer formulas. These formulas are realized via
program MATHEMATICA 4.1 in the form of the following procedure:

Zam[A_B._i]:=Module[{now,n},For[i=1,i<8,i++,
now|i_]:=ReplacePart[A][[1,i]],B[[1,i]],i]);n=Table[now([i],{i,8}]];
For[i=1,i<8,i++,Module[{d},M[i.]:=Zam[A,B,i];
d[i]:=Det[Ml[i]]/A];di=d][i].

Thus, the obtained solutions d; (¢ = 1,8) allow us to determine the

desired periodic solution z(z, t) by virtue relations (2.10), (2.11), (2.3), (2.1).
The obtained results, we represent by the following theorem.

THEOREM 1. %"- time-periodic solution u(z,t) of the boundary value problem
(1.1), (1.2) under f(z,t) = q(z)sinwt exists and is unique.

REMARK 1. The case where the right-hand side of equation (1.1) is f(z,t) =
g(z) coswt may be studied by the very similar manner, so that the boundary
value problem corresponding to (2.3), (2.4) is

78 (z) — aw?v(z) — bwiw(z) = 0,

T(2) - aw?D(z) + bw(z) = q(z),
7(0) = w(0) = 7'(0) =w'(0) =0,
') =w'(l) =7"() =w"(l) =0,
and the desired time-periodic solution @(z,t) = 7(z)sinwt + W(z) coswt
exists and is unique.

(2.12)

3. The general case of forced oscillations

Consider in the right-hand side equation of (1.1) the general T-periodic
function f(z,t) € C(P), that means to be continuous in z and t jointly and
represent it in the form of the Fourier series

x 2mn 2rn
3.1 z,t) = an(z — )t + b, (z) sin(—)t,
(3.1) f()g:‘l()COS(T)+() ()

where the Fourier coefficients

2mn

f(z,t) cos T tdt, buy(z) =

] b0
e O

2
f(z,t)sin T vdt.

(3.2) an(z)= T

e [
e NN

T

L]
!

To obtain the desired T-periodic solution G(z,t) consider the sequence
of boundary value problems (1.1)-(1.2) with the right-hand sides

%Tnt + bp(z) sin 27r_nt, n=1,2,..

an(zx) cos T
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Denote by gx(z, t) the Z-time-periodic solution for each of those. If v, () and
wy(z) are solutions of two-point boundary value problems (2.3), (2.4) under
q(z) = bn(z) and w = 25~ whereas 7, (z) and W, (z) are those corresponding
to (2.12) with g(z) = an(z), then, according to the above procedure, we can
write

gn(€,t) = (va() + Vn(z)) sin %Tnt + (wn () + Wn(z)) cos %Tnt.

The T-periodic solution G(z,t) should be represented in the form of the
[o.%}

functional series G(z,t) = Y gn(z,t).
n=1

It is necessary to note that the both above series are only formal and
their convergence should be justified but this is out of the paper. Hopefully,
such a convergence fully depends on the smoothness of the function f(z,t).

4. Global asymptotic stability of time-periodic solutions

Let G(z,t) be a T-periodic solution of the general boundary value prob-
lem (1.1), (1.2) and p(z,t) be an arbitrary solution of the initial-boundary
value problem consisting of (1.1), (1.2) and Cauchy conditions

(41) p(.’z:, 0) = n(x)apt(ma 0) = "wb(m)a

where 7(z) and (z) are know initial functions. Using the Lyapunow concept
of the dynamic stability we introduce the following definition.

DEFINITION 1. A time-periodic solution G(z,t) is asymptotically stable in
global if for any solution p(z,t) the relation lim;_,o0(G(z,t) — p(z,t)) =0 is
valid uniformly in z € [0, 1].

THEOREM 2. Any T'-periodic solution G(z,t) of the boundary value problem
(1.1)-(1.2) is asymptotically stable in global. '

Proof. To prove it let us introduce the function
(42) u(xi t) = p(IE, t) - G(.’I;, t)

which means a deviation of an arbitrary solution of the above initial-
boundary value problem from the T—periodic solution in question. Sub-
stituting the function (4.2) to the equation (1.1) and taking into account
the boundary conditions (1.2) and (4.1) we obtain:

*u 0%u  Ou

(4.3) ATt ba = 0 for each (z,t) € P,

ou 8%u &u
(44) ’U.(O, t) - 5;(07 t) = 0’ %f(lat) = B?B'E(lat) = 07
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u(z,0) = p(,0) — G(, 0) = n(z) — G(z,0) =7(z),

w(z,0) = pi(z,0) — Gi(z,0) = () — Gi(z,0) = (),
where u(z, t) € C42(P). Let u,(z,t) be a particular solution of the boundary
value problem (4.3), (4.4) for any n = 1,2, ... Using the Fourier method of
separation of variables we find it in the form u,(z,t) = T,,(t)ya(z). The
substitution of this function to the equation (4.3) and the separation of
variables z and t give us the ordinary differential equation

(4.5)

(49 Lin(@) = (o), L=y

and boundary conditions

(4.7) ¥n(0) = 9(0) = 0 and (1) = 4, (1) =0
arising from (4.4), as well as the ordinary differential equation
(4.8) aT, (£) + bT.(t) + AnTy(t) = 0.

Now we write the solution of the initial-boundary value problem (4.3)-(4.5)
in the form of the Fourier series:

o0
(49) U(IL',t) = Z Tn(t)y'n r
n=1
He 1ce, by virtue of the Cauchy conditions (4.5) we can easily find the initial

co: litions for T, (t), namely

(4'10) Tn(o) = ﬂn,T:z(O) = vYn,

where 7, and v, are Fourier coefficients of functions ﬁ(:c) and ¥(z)

(4.11) gp = i n( )”2 S"’( Jyn(z)dz, Pn= I n( )”2 Sd’(z )yn(z)dz

where ||y, (z)|> = Sy,zl(ac)dx is bounded in n uniformly. As it is know [6],

the system {yn(a:)} —; of eigenfunctions for boundary value problem is or-
thogonal and complete if the related differential operator is self-adjoint.
Namely, we prove that the ordinary differential operator L corresponding
to the differential equation (4.6) is self-adjoint, that is (Ly, 2) = (y, L2)
for any y(:z:), z(z) € C4[0,1] satisfying the boundary conditions (4.7), where

(y,2) = Sy(:c)z(:c)da: Indeed, integrating Sy(IV)(ac)z(x)da: four times by

parts under (4.7) we easily show this integral is equal to Sy(z)z(I V)(z)dz.
0
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According to [9] eigenvalues and corresponding eigenfunctions for the bound-
ary value problem (4.6), (4.7) are respectively:

(4.12) An = ( (2n — 1)) + o(1), forn=1,2,.

(4.13) Yn(z) = coshy,z — cos Y,z + By (sinhy,z — siny,z)
where o(1) — 0 by n — oo,

sinh v,l + sin ;! 4
4.14 B, =—- = /Ay,
(4.14) n cosh y,l + cos !’ T "

Obviously, the solution of the Cauchy problem (4.8), (4.10) is determined

2_
by two characteristic roots —3— +iA,, where A, @ One can find
the number ng such that —b* + 4a), > 0 for any n > no, in other words
all characteristic roots for n > ng are complex and their real parts are the

same —%. This allows us to represent the solution of the Cauchy problem
(4.8), (4.10) in the form

eetpn(t) for n < mng
e—z_it(nn cos (Apt) + Zl—n(dzn + 2—"‘177,1) sin(Ant)) for n > ng,

(4.15) To(t) = {

where |p,(t)] < C + Dt, and C and D are some constants,

-b b2 — amg

The compilation of (4.9), (4.12), (4.13), (4.15) gives us the solution in ques-
tion as

(4.17)  u(z,t) = uo(z,t)
bt e b
+e7a Z [nn cos (Ant) + (¢n 5a —1n) sin(A, t)] yn(z),
n=ng+1
where up(z,t) = ft Z Pn(t)yn(z). According to (4.15), and (4.16) we con-
clude the asymptotrc property
(4.18) tl_lglo ug(z,t) = 0.
Finally, we should establish the uniform convergence of the series from

the right-hand side of (4.17). For doing that it is necessary to study the
asymptotic estimates of 7,3, 11_,. for n — oo. The integration by parts

of integrals from (4.11), taking into account 7(0) = ' (0) = 0, gives us the

e8]
rough estimates 1, = 22, 9, = an, where by definition lom|? < +00.
n=1
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Using the Taylor formula one can find
-1

-b amt z

(80 = 0007 (g + i + 00 7Y)”

=0(n7?) (O(n—4) + 0(1)):2l =0(n7?),

where ‘O(nk) < Cn* for n — oo. It follows from the last estimate that the
absolute value of the general term in the series (4.17) is not greater than

- 2
C |an|n~1. On the strength of the trivial inequality JQT"' < w} and
the well-know Weierstrass theorem [5] we can state that the series (4.17) is
uniformly convergent and its sum S(z,t) is continuous and bounded in P.
This allows us to pass to the limit for ¢ — oo and by (4.18) to establish

tlim u(z,t) = tlim uo(z, t)+ tlim ez_«?S(:c,t) = 0 uniformly for z € [0,1],
—00 — 00 —00
that conclude the proof of the theorem. m

5. Physical interpretation and possible applications

As a physical interpretation of the above problem one can consider the
classical problem of transverse oscillations of a rod in the viscous fluid. One
end of it is built-in (z = 0) and second is free (z = [). Moreover, the
transverse lengthwise distributed force f(z,t) acts on this rod. Although
it is clear, that the frequency of forced oscillations of the rod should be the
same as the frequency of the force f(z,t), the very important question is
an estimation of amplitude of those oscillations. The techniques developed
in p.2 for finding the periodic solutions under special harmonic perturba-
tions allow one to do it very efficiently because wv(z) and w(z) are ob-
tained in the explicit form (2.5), (2.10) whereas the amplitude in question
is v/v2(z) + wi(z).

Under unessential alternations this techniques can be used for estimating
the forced oscillations of the rod for others boundary conditions caused by
various pair combinations of rod ends , namely: built-in (v = g% = 0), free

%’z‘ = g%‘é = 0) and hinged-joint ( u = g—i‘f = 0 for all t). More exactly,
each kind of those ends will influence only on the boundary conditions (2.4),
but the structure of solutions to the whole boundary value problem (2.3),
(2.4), will be very similar to (2.10).

The obtained results have very important applications, in particular, for
sea technology. The first kind of applications is concerned to estimating the
transverse oscillations free-standing offshore drilling platforms for output of
oil. Among various installations of this kind there are platforms standing
on the only column lower end of which is built in sea floor. Then such
a column, 100-500 m in length, can be interpreted as a fixed rod under
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transverse lengthwise distributed perturbations caused by both sea waves
and sea current. This means the forced periodic transverse oscillations of
the rod can be mathematically modelled by the boundary value problem
(1.1), (1.2). Its solutions allow one to estimate amplitudes of oscillations
both for the platform and for each cross-section of the rod.

As the second kind of applications consider the transverse oscillations of
the pipe dropped from the ship onto ocean floor and intended for the extrac-
tion of terrestrial minerals. The upper end of this pipe is built in the ship
and the lower one fixed to the train going on the ocean floor. Moreover, the
pipe is under transverse lengthwise distributed perturbations of sea waves
and current. The forced oscillations in question can be estimated on basis
the mathematical model like the boundary problem (1.1) with boundary
conditions corresponding to the both hinged-joint ends.

More details related to these applications one can find in [1}, [7], 3], [4].
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