
DEMONSTRATIO MATHEMATICA 
Vol. XXXVII No 1 2004 

Marek Hajdukiewicz 

ON EXISTENCE AND STABILITY OF FORCED PERIODIC 
OSCILLATIONS FOR A ROD IN THE VISCOUS FLUID 

Abstract. The paper is devoted to the development of a numerical algorithm for 
finding the time-periodic transverse oscillations of a rod under external forces. Moreover, 
the dynamical stablility of these oscillations is proved under damping properties of the 
fluid. 

1. Statement of the problem 
The problem to be solved here is to find a time periodic solution u(x, t) e 

C 4 , 2 ( P ) of the boundary value problem: 

d^u d2u ,du . , , . . _ 
(1.1) + a—z + = f(x, t) for each (x, t) 6 P, 

(1.2) . ( 0 , t) = g (0, t) = 0, t) = t) = 0, 

where P = {(x,t) G R2 : x € [0 ,l],t > 0 } , C 4 ' 2 ( P ) means the class of 
functions with continuous derivatives in x and t up to the order 4 and 2 
respectively, parameters a, b, co > 0, and the function /(x, t) is T-periodic in 
t. The main purpose below is to present a numerical algorithm for finding 
of a solution of the problem (1.1), (1.2) and to prove the uniqueness and 
dynamical stability of this solution. 

The derivation of the equation (1.1) one may find in [9] and some results 
concerning the study of transverse oscillations in question are obtained in 
[2]. Firstly, we give a numerical algorithm for finding the solution of the the 
boundary value problem (1.1), (1.2) in the simplest case f(x, t) = q(x) sin wi. 
Because the right-hand side of (1.1) is a periodic function of a special form 
with frequency u, we look for the desired solution z(x, t) to be periodic in 
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t with the same frequency u for each x € [0, I]. Exactly, we construct this 
solution z(x,t) in the form 

(1.3) z(x, t) = y(x) sin(u;t + (p(x)), 

where y(x) is amplitude of oscillations of a rod and <p(x) is its phase. 

2. Solving the reduced boundary value problem 

Rewrite the function (1.3) in the form 

(2.1) z(x, t) = v(x) sinut + w(x) cos ut, 

where 
v(x) = y(x) cos <p(x), 

w(x) — y(x) sin ip(x), 

and substitute it to equation (1.1), so that 

sinwi + w(4)(x) cos u t — au2(v(x) sineot + w(x) cos a>t)+ 
+bu(v(x) cos a>t — w(x) sinwi) = q(x) sin ut. 

Because sinwi and cos ut are linearly independent, we easily obtain the two 
relations 
^ ^ f v(4\x) — au2v(x) — buw(x) = q(x) 

\ w(4\x) — au2w(x) + buv(x) = 0. 

By virtue of boundary conditions (1.2) and relation (2.1) we have 

{„(0) sin ut + w(0) cos ut = 0, i/(0) sin ut + w'(0) cosut = 0, 
v"(l) smut + w"(l) cos ut = 0, v"'{l) sin ut + w"'(l) cos ut = 0. 

Because both of these relations are identities in t > 0, the boundary condi-
tions for v(x) and w(x) are 

«(0) = «;(0) = w'(0) = u / (0 )=0 > 

^ ' ' v"{l) = w"{l) = v"'(l) = w"'(l) = 0. 

Obviously, the existence of a solution of the two-point boundary value 
problem (2.3), (2.4) allow us to obtain the solution z(x,t) by (2.1). Reduce 
the boundary value problem (2.3), (2.4) to the corresponding one for the only 
differential equation. For that expressing v(x) from the second equation of 
the system (2.3), 

-N /x au2w(x) — w^(x) (2.5) , (*) = U - U 
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we obtain after four time differentiation of the first relation from (2.3) the 
differential equation 

(2.6) w^(x) - 2auj2w^(x) + u2(aV + b2)w(x) = -q(x)boj 

and boundary conditions 

(2 7 ) w(0) = w'(0) = wW (0) = (0) = 0, 
1 ' ' w"(l) - w"'(l) = wW(l) - w(7\l) = 0. 

The characteristic equation corresponding to the differential equation 
(2.6) is A8 - 2OUJ2\a + u>282 = 0, where 52 = a2u>2 + b2. Its roots can be write 
in the form 

(2 8) \i = a - i/3, A2 = a + i(3, A3 = - a - i/3, X4 = - a + i/3, 

= P - ia, A6 = /3 + ia, A7 = - ( 3 - ia, \ 8 = -¡3 + ia, 

where a = tyuj (\/26 + y/5 + au) 5 and ¡3 = (^25 + aw) ' . 

Clearly, a > (3 > 0, a2 - f32 = y/uj(5 + aw), and a/3 = - aw). 

Then by the Lagrange method [8] we can represent the general solution w(x) 
as 
(2.9) w(x) = eax(Ci (x) sin (3x + C2(x) cos (3x) 

+e-ax(C3(x) s in /3x + C4(x) cos /3x) 

+ e P x ( C * , ( x ) s in ax + C§(x) cos ax) 

+ e ~ P x ( C 7 { x ) s in ax + Cs(x) cos ax), 

where 

C2k-i(x) = 

(2.10) 

C2k(x) = 

Jk(x, (-l)fc+1£i, «. P) + d2k-i dla k = 1 , 2 , 

-Jk(x, ( - l ) f c + 1 6 , P , « ) + <hk-l dla k = 3,4, 

Jk{x, (~l) fc£i, a, p) + d2k dla As = 1,2, 
- Jk(x, fc, ( - l ) f c 6 , /3, a) + d2k dla k = 3 , 4 . 

Here d{ are unknown constants for i = 1,8, the given constants 
= a(a2 — 3 f 3 2 ) and £2 = P{/32 — 3a2), as well as the functions 

X 

Jk{x,t ut2,h,U) = (-l)ks\e^1)kt3iq(t)(t1cosUt + t2smUt)dt 
0 

for k = 1,4 and 
bu> 

s = 
16a/?(a 4 - /3 4 ) (a 2 + /32)2' 



94 M. Hajdukiewicz 

T h e constants d{ are determined by the boundary conditions (2.7), from 

which we can easily obtain the system of linear algebraic equations 

(2.11) Ad = B, 

where vectors d = [di, ¿2, ¿3, <¿4, ds, de, dj, ds] and B — [0,0,0,0,65,&6,67,6s], 

the matrixes A = {-A¿¿} = [C\D] (i = ITS, j = 1 ,8) , C is of the form 

0 1 0 1 
/? a (3 -a 

«1 «2 -«1 K 2 

6\ 02 01 —02 

K(Ci,C2,a,/?) K ( C x , - C 2 , « , / 3 ) ÜT(-C2,Ci, Ci, <2,-<*,/?) 

Ki-faZuct,?) K{t1,&,<*,/?) 6 , " « , / ? ) K K i , £2,-<*,/?) 

K(jii,H2,a,P) l i f ( / i 2 , - A t i , a , j 9 ) i f ( - / i i , / i 2 , - « , j 0 ) A*I.-a»/?) 

K(rn,ri2,a,(3) #(772,-771, <*,/?) K(rfr, -772, - a , / ? ) -K(i]2,m, ~<*,P) 

and D is 

0 1 0 1 
a ¡3 a —(3 

-Ki K2 k i «2 

02 01 02 

Ü T ( C 2 , - C i , A a ) - A - ( C i , C 2 , ) 9 , a ) -ÜT(C2, Ci, a ) Ci,C2 ,-/?,<*) 

K(b,Zu(3,a) -K(tuh,-P,a) K ( - 6 , £ i , - / ? , < * ) 

K(fii, ~H2, (3, a) ~K(n2, /ii, /?, a ) - i f ( / i i , /¿2, a ) " A a ) 

-K(m>m,P,<x) K(-yuV2,P,<x) K(-rb,m>-P,<x) Kivuv*,-&,<*) 

Here the constants Ci = a 2 — (32, C2 = 2a/3, k i = 2CiC2, K 2 = Ci ~ C2, 

0i = C i ò + C 2 6 , 0 2 = C26 - Ciò ,mi = c2(3Ci2 - c22), M2 = c i ( c i - 3 d ) , 
r¡\ = a/i2 - /3/ii, r]2 = a/i i + /3/í2, K(r,g, k,p) = ekl(rcospl + g sin pi), and 

8 
bi = — s C j ( l ) A i j for i — 5 , 6 , 7 , 8 . T h e determinant of the system (2.11) 

3=1 

can be write after some simplification as 

A = 2 1 0 ( a / ? ) 4 ( a 4 - (3*)3(a2 + £ 2 ) 3 ( 1 6 + + 4(cosh2aicosh2/?Z 

+ cos 2al cos 2/3/ + cosh 2al cos 2 al + cosh 2(31 cos 2/31 

+ 4 ( c o s h ( a + (3)1 c o s ( a - (3)1 + c o s h ( a - (3)1 cos(a + 0)1))). 

It follows from an elementary analysis of this expression, that A > 0. 

T h a t means the algebraic system (2.11) is uniquely solvable and its solu-
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tions can be given by the Cramer formulas. These formulas are realized via 
program MATHEMATICA 4.1 in the form of the following procedure: 

Zam[A_,B-,i-]:=Module[{now,n},For[i=l,i<8,i++, 
now[i_]:=i2eplacePart[A[[l,i]],B[[l,i]],i]];n=Table[now[i],{i,8}]]; 
For[i=l,i<8,i++,Module[{d},M[i_]:=Zam[A,B,i]; 
d[L]:=Det[M[i]]/A];di=d[i]. 

Thus, the obtained solutions di (i = 1,8) allow us to determine the 
desired periodic solution z(x, t) by virtue relations (2.10), (2.11), (2.3), (2.1). 
The obtained results, we represent by the following theorem. 

THEOREM 1. time-periodic solution u(x,t) of the boundary value problem 
(1.1), (1-2) under f ( x , t ) = g(i)sina;i exists and is unique. 

REMARK 1. The case where the right-hand side of equation (1.1) is f ( x , t ) = 
q(x) cos ait may be studied by the very similar manner, so that the boundary 
value problem corresponding to (2.3), (2.4) is 

^ ( vW (a;) - ouj2v(x) - buM{x) = 0 , 

^ïïK4)(:r) — auj2w(x) + bu>v(x) = q(x), 

V(0) = «7(0) = ^'(0) = W(0) = 0, 
v"(I) = w"{l) = v"'(l) = w"'{l) = 0, 

and the desired time-periodic solution u(x,t) = v(x) sinwi + w(x) cosu>t 
exists and is unique. 

3. The general case of forced oscillations 
Consider in the right-hand side equation of (1.1) the general T-periodic 

function f(x, t) 6 C'(P), that means to be continuous in x and t jointly and 
represent it in the form of the Fourier series 

°° 2irn Iitti 
(3.1) / (x , t) = c o s ( - j T + bn(x) s i n ( — ) i , 

n = l 

where the Fourier coefficients 
T X. 

2 ^ 27T71 2 ^ 27T7Ï-
(3.2) an(x) = - \ f ( x , t) cos — ; t d t , bn(x) = - \ f(x, t) sin — tdt. 

— T —T 
To obtain the desired T-periodic solution G(x, t) consider the sequence 

of boundary value problems (1.1)-(1.2) with the right-hand sides 
. . 27rn , . . . 2im „ „ 

an(x) cos —jrt + bn[x) sin n = l ,2 , . . 
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Denote by g n ( x , t ) the -time-periodic solution for each of those. If v n ( x ) and 
w n ( x ) are solutions of two-point boundary value problems (2.3), (2.4) under 
q(x) = bn(x) and a; = whereas v n ( x ) and Tun(x) are those corresponding 
to (2.12) with q(x) = a n ( x ) , then, according to the above procedure, we can 
write 

. . . . . _ / w . 2irn , . . . . . 2nn gn(x, t ) = (vn{x) + v n [ x ) ) sin — t + (wn(x) + wn{x)) cos — t . 
The T-periodic solution G(x,t) should be represented in the form of the 

oo 
functional series G(x,t) = J2 9n(x, t ) . 

n = l 
It is necessary to note that the both above series are only formal and 

their convergence should be justified but this is out of the paper. Hopefully, 
such a convergence fully depends on the smoothness of the function f ( x , t ) . 

4. Global asymptotic stability of time-periodic solutions 
Let G ( x , t ) be a T-periodic solution of the general boundary value prob-

lem (1.1), (1.2) and p { x , t ) be an arbitrary solution of the initial-boundary 
value problem consisting of (1.1), (1.2) and Cauchy conditions 

(4.1) p(x>0) = r7(x)>p t(x>0) = ^ ( x ) , 

where r ] ( x ) and i p ( x ) a r e know initial functions. Using the Lyapunow concept 
of the dynamic stability we introduce the following definition. 

DEFINITION 1. A time-periodic solution G ( x , t ) is asymptotically stable in 
global if for any solution p(x, t ) the relation limi_+00(G(x, t) —p(x, t ) ) = 0 is 
valid uniformly in x G [0,1]. 

THEOREM 2. Any T-periodic solution G(x, t ) of the boundary value problem 
(1.1)-(1.2) is asymptotically stable in global. 
Proof . To prove it let us introduce the function 

(4.2) u(x, t ) = p(x, t ) - G(x, t ) 
which means a deviation of an arbitrary solution of the above initial-
boundary value problem from the T — p e r i o d i c solution in question. Sub-
stituting the function (4.2) to the equation (1.1) and taking into account 
the boundary conditions (1.2) and (4.1) we obtain: 

d^u d^u du 
fa* + a W + b ~ d t ^ ° e a c h ^ 6 p' 

du d2u cftu 
(4.4) u(0, t ) = - ( 0 , i ) = 0, — 2 { l , t ) = — z { l , t ) = 0, 
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u(x, 0 ) = p(x, 0 ) - G(x, 0 ) = T](x) - G(x, 0 ) = rj(x), 
(4.5) 

ut(x, 0 ) = pt(x, 0 ) - Gt(x, 0 ) = - Gt(x, 0 ) = tj>(x), 

where u(x, t) e C4>2(P). Let un(x, t) be a particular solution of the boundary 
value problem (4.3), (4.4) for any n = 1,2,... Using the Fourier method of 
separation of variables we find it in the form un(x,t) = Tn(t)yn(x). The 
substitution of this function to the equation (4.3) and the separation of 
variables x and t give us the ordinary differential equation 

d4 

( 4 . 6 ) Lyn{x) = XnVnix), L = 

and boundary conditions 

(4.7) <,n(0) = y'n(0) = 0 and y'^l) = y ^ l ) = 0 

arising from (4.4), as well as the ordinary differential equation 
(4.8) aTn (t) + bT'n{t) + Anrn(£) = 0. 

Now we write the solution of the initial-boundary value problem (4.3)-(4.5) 
in the form of the Fourier series: 

oo 
(4.9) u(x,t) = ^ T n ( i ) y n ( x ) . 

n= 1 
He ice, by virtue of the Cauchy conditions (4.5) we can easily find the initial 
co iitions for T n ( t ) , namely 

(4.10) Tn(0) = 7?n,r:(0) = Vn, 
where rjn and ipn are Fourier coefficients of functions rj(x) and tp(x) 

1 1 
(4.11) T}n = 2 S T](x)yn(x)dx, Vn = 2 \ tjj(x)yn(x)dx, 

112/nWll 0 llynWll 0 
/ 

where ||y„(:r)|| = J y\{x)dx is bounded in n uniformly. As it is know [6], 
o 

the system {y n (x) }^ = 1 of eigenfunctions for boundary value problem is or-
thogonal and complete if the related differential operator is self-adjoint. 
Namely, we prove that the ordinary differential operator L corresponding 
to the differential equation (4.6) is self-adjoint, that is ( L y , z ) = (y,Lz) 
for any y(x), z(x) € C4[0,1] satisfying the boundary conditions (4.7), where 

i l 
(y,z) = J y ( x ) z ( x ) d x . Indeed, integrating \y^IV\x)z{x)dx four times by 

o o 
l 

parts under (4.7) we easily show this integral is equal to \y{x)z^IV\x)dx. 
o 
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According to [9] eigenvalues and corresponding eigenfunctions for the bound-
ary value problem (4.6), (4.7) are respectively: 

(4.12) Xn = ( | ( 2 n - l ) ) 4 i + o( 1), for n = 1,2,... 

(4.13) yn(x) = cosh7na: — cos + i?n(sinh7n:r — s in7 n i ) 

where o(l) —> 0 by n —> oo, 

(4.14) = - S i t 7 i t S i n 7 " r * = 
cosh t n l + cos t n l 

Obviously, the solution of the Cauchy problem (4.8), (4.10) is determined 

by two characteristic roots — ̂  ± i A n , where A n = ^Q
4aAn. One can find 

the number no such that —b + 4aAn > 0 for any n > no, in other words 
all characteristic roots for n > no are complex and their real parts are the 
same — This allows us to represent the solution of the Cauchy problem 
(4.8), (4.10) in the form 

(4.15) Tn(t) = ( 6 ! > ( i ) , „ f O r n " n 0 

{ e 2" (T)n cos (An i) + ¿ ( ^ 7 1 + ^Vn) sm(Ant)) for n > n0 , 

where \pn{t)\ < C + Dt, and C and D are some constants, 

, /l2 _ atr4 

( 4 - 1 6 ) * = ^ + 2a ^ < 0 V n - n°-
The compilation of (4.9), (4.12), (4.13), (4.15) gives us the solution in ques-
tion as 

(4.17) u(x,t) = uo(x,t) 
r 1 h T 

Vn(x), 
-M v—v 

+ e2a ¿ J 
n=no+l 

Tin COS (Ani) + -^-(^n + 7pi?n) SÌn(Ani) A n 2a 

no 
where uo(x,t) = X) Pn{t)yn{x). According to (4.15), and (4.16) we con-

n=l 
elude the asymptotic property 

(4.18) lim u0{x, t) = 0. t—•oo 
Finally, we should establish the uniform convergence of the series from 

the right-hand side of (4.17). For doing that it is necessary to study the 
asymptotic estimates of r)n,ipn, for n —• oo. The integration by parts 
of integrals from (4.11), taking into account 77(0) = 77'(0) = 0, gives us the 

00 
rough estimates r)n = SlL, ijjn = an, where by definition Y1 l a n| < +00. 

n=1 
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Using the Taylor formula one can find 

= 0(n~2) ( 0 (n - 4 ) + 0 ( 1 ) ) ^ = 0(n" 2 ) , ' 

where 0(nk) < Cnk for n —> oo. It follows from the last estimate that the 
absolute value of the general term in the series (4.17) is not greater than 
C \ a n \ n ~ l . On the strength of the trivial inequality < ^ — ) and 
the well-know Weierstrass theorem [5] we can state that the series (4.17) is 
uniformly convergent and its sum S(x,t) is continuous and bounded in P. 
This allows us to pass to the limit for t —> oo and by (4.18) to establish 
lim u(x,t) = lim uo(a;,i)+ lim. e~2^S(x,t) = 0 uniformly for x € [0, Z], i—»OO t—>0o t—> oo 
that conclude the proof of the theorem. • 

5. Physical interpretation and possible applications 
As a physical interpretation of the above problem one can consider the 

classical problem of transverse oscillations of a rod in the viscous fluid. One 
end of it is built-in (x = 0) and second is free (x — I). Moreover, the 
transverse lengthwise distributed force f ( x , t ) acts on this rod. Although 
it is clear, that the frequency of forced oscillations of the rod should be the 
same as the frequency of the force f ( x , t ) , the very important question is 
an estimation of amplitude of those oscillations. The techniques developed 
in p. 2 for finding the periodic solutions under special harmonic perturba-
tions allow one to do it very efficiently because v(x) and w(x) are ob-
tained in the explicit form (2.5), (2.10) whereas the amplitude in question 
i s v'2(x) -f w2(x). 

Under unessential alternations this techniques can be used for estimating 
the forced oscillations of the rod for others boundary conditions caused by 
various pair combinations of rod ends , namely: built-in ( u = = 0), free 
( 0 = 0 = 0) and hinged-joint ( u = 0 = 0 for all t). More exactly, 
each kind of those ends will influence only on the boundary conditions (2.4), 
but the structure of solutions to the whole boundary value problem (2.3), 
(2.4), will be very similar to (2.10). 

The obtained results have very important applications, in particular, for 
sea technology. The first kind of applications is concerned to estimating the 
transverse oscillations free-standing offshore drilling platforms for output of 
oil. Among various installations of this kind there are platforms standing 
on the only column lower end of which is built in sea floor. Then such 
a column, 100-500 m in length, can be interpreted as a fixed rod under 
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transverse lengthwise distributed perturbations caused by both sea waves 
and sea current. This means the forced periodic transverse oscillations of 
the rod can be mathematically modelled by the boundary value problem 
(1.1), (1.2). Its solutions allow one to estimate amplitudes of oscillations 
both for the platform and for each cross-section of the rod. 

As the second kind of applications consider the transverse oscillations of 
the pipe dropped from the ship onto ocean floor and intended for the extrac-
tion of terrestrial minerals. The upper end of this pipe is built in the ship 
and the lower one fixed to the train going on the ocean floor. Moreover, the 
pipe is under transverse lengthwise distributed perturbations of sea waves 
and current. The forced oscillations in question can be estimated on basis 
the mathematical model like the boundary problem (1.1) with boundary 
conditions corresponding to the both hinged-joint ends. 

More details related to these applications one can find in [1], [7], [3], [4]. 
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