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CONVOLUTION PROPERTIES OF A CLASS 
OF ANALYTIC FUNCTIONS 

Abstract. In this paper we consider convolution properties of a class of bounded 
analytic functions investigated by J. Stankiewicz and Z. Stankiewicz in [6], We give some 
examples which verify a conjecture connected with this paper. 

1. Introduction 
We are interested in the class 7i of functions which are regular in the 

open unit disc A = {z £ C : \z\ < 1}. Let M be the family of functions of 
the class H normalized by the condition / (0 ) = 1, and let fi denote the 
family of functions defined on A such that u>(0) = 0 and |w(,z)| < 1 for 
2 6 A. 

Let f,g E.H are of the form 

oo oo 

n=0 n = 0 

The convolution f*g or Hadamard product of the functions / and g is defined 
as follows: 

00 

n=0 For the classes Qi, Q2 C H the convolution Q\ * Q2 is defined by: Qi*Q2 = {heH; h = f *g, f € Qi, g€Q2}-
J. Hadamard [1] proved, that the radius of convergence of / * g is the 

product of radii of convergence of the coresponding series / and g. In par-
ticular if / , g € H, then also / * g G H. 

The convolution has many interesting properties. Very often there was 
investigated problem of connection between functions / , g and their convolu-
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tion f * g . An important classical example of such problem is characterizing 
functions which preserve the geometric properties of the image domains. 
G. Polya and I. J. Schoenberg [3] conjectured in 1958, that the Hadamard 
product of convex mappings is again a convex mapping. This very impor-
tant conjecture and more results of this type has been verified in 1973 by 
St. Ruscheweh and T. Sheil-Small [5]. Their result has many applications. 
Some geometric properties of functions can be described by subordination. 

We say, that a function / is subordinate to a function g in A (and 
write / -< g or f(z) -< g(z)) if there exist a function w e f t , such that 
f ( Z ) = g (OJ(Z)) ; z € A. Subordination principle says that if / -< g in A and 
g is univalent in A, then for each A r = {z € C : \z\ < r}, where r 6 [0,1], 
we have / (A r ) C g(Ar). 

For the given complex numbers A, B, such that A + B ^ 0 and |5 | < 1 
let us denote 

P(A,B) = i [ f e M ; / ( z H l ± i £ } . 

The class P(A,B) was introduced by W. Janowski in [2]. He considered it 
for - 1 < B < A < 1. 

If \B\ < 1, then the class P(A, B) is the class of bounded functions and 

P(A,B) = \ f e t f - , ft \ 1 + A B 

1 - \B\2 

\A + B\ .} 

<hw;zeA\ 
If A = B — 1, then the class P(A,B) is the class of functions with 

positive real part (Caratheodory functions). 
In 1988 J. Stankiewicz and Z. Stankiewicz [6] investigated convolution 

properties of the class P(A, B) and proved the folloving theorem. 

THEOREM A . If A, B, C, D e C, A + B ± 0, C + D ± 0, | S | < 1, | D | < 1, 
then 

P(A, B) • P(C, D) c P(AC + AD + BC, BD). 

Moreover, if |5| — 1 or |£)| = 1, then 

P(A, B) * P(C, D) = P(AC + AD + BC, BD). 

The equality of classes P(A, B) * P(C, D) and P(AC + AD + BC, BD), 
in the case when \B\ < 1 and |D| < 1 was an open problem. 

The main aim of this paper, that to give an answer for this problem for 
\B\ = \D\ < 1. 

2. Main results 
First we consider the class fl of Schwarz functions and give an example 

of polynomial in this class which is not convolution of two functions from Q. 
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PROPOSITION 1. There exist functions in the class fi, which do not belong 
to the class i2 • Q. 

Proo f . Let CJ(Z) = c\z + c2Z2, where 

|ci| + |c2| = l and c\c-i / 0. 

It is cleary that |w(z)| < 1 for z € A so u 6 ii. Now suppose that there are 
some u>\ G i) and u>2 € Q such that 

(1) Vl(z) *UJ2(z) = C\Z + C2Z2. 

Let wi, U)2 be represented by following power series 
OO 00 

(2) U>1 (z) = E anzn and u2(z) = E bnzn. 
n=l n=1 

It is known [4] that if OJ\{Z) -< z and OJ2(Z) -< 2 in A, then 
OO OO 

(3) £ K l 2 < 1 and £ | 6 „ | 2 < 1 . 
n=1 n=l 

From (1) and (2) we have 

a\b\ = ci, 0262 = c2 and anbn = 0 for n > 2, 

and using (3) we obtain 
OO OO 

(4) £ ( K l 2 + IM2) = E [ (Kl - IM)2 + 2KI IM] < 2. 
n=1 n=1 

Hence 
OO OO 

(5) £ ( K I - M 2 + 2 £ K M 
n=1 n=l 

OO 
= E(K|-|&nl)2 + 2(lCll + N)<2-

n= 1 
Because |ci| + \c2\ = 1 then (5) gives 

OO 
E ( K l - M ) 2 ^ 
n=1 

Hence 
|On| = IM for n > 1 

and 
an = bn = 0 for n > 3. 
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According to the above condition we have 

h = ^ ^ ( a r g c i - v O b2 = ^ ¡ e i ( a r g c 2 - V 2 ) 

where 951 and tp2 are some real numbers. Hence we have 

= + 

which holds for z = e^i-w) 

| W 1 = Y/FAFY = y j ^ i > 1. 

Therefore u>i 0 ÎÎ which is a contradiction. • 

We are now in position to show the following 

COROLLARY 1. There exist functions in the class P(AC, 0) which do not 
belong to the class P(A, 0) * P(C, 0). 

P r o o f . Let h € P(AC,0) and 

h(z) = 1 + ACCJ(Z) = 1 + AC(CÎZ + c2z2), 

where |ci| + |c21 = 1, and C1C2 ^ 0. Suppose, that 
(6) f(z)*g{z) = h(z) 
where / £ P(A,0), g € P(C,0), and f ( z ) = 1 + AUJX(Z), g(z) = 1 + Cu2(z), 
uj\,u>2 € i l Thus = c\z + c2z2 € fl and from (6) we get (1) which is 
impossible by Proposition 1. • 

To prove the next theorem we need two lemmas. 
LEMMA 1. If there exist functions u>\,u>2 G iî such that 

A (z) _ w(z) 
1 — au>i(z) 1 — a.uj2{z) 1 — a2u>(z)' 

where a € [0,1), w(z) = j ^ f a = E ^ , j ^ f e = g > z » 
n=l n=l 

then 
I (1 + a2)"-1 

(8) |aw| = |bn| = y ^ + , for n > 1. 

P r o o f . A simple calculation gives 
U(z) - (1 + a y - 1

 n > 1 

v ' ra=l 
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Because 

1 — au>i(z) 1 — az 

then from [4] we obtain 
OO 1 OO 1 

E K I 2 < r ^ 2 ' E N 2 < T i b -n=l n=l 
By the above we have 

OO OO ty 
(10) £ ( K L 2 + |6n |2) = £ [(|ON| - \bn\)2 + 2|O»||M] < j — j . 

n=l n=l 
oo 

By (7) we have anbn = Cn and by (9) J2 °n = Hence from (10) 
n=l 

£ ( K l - \bn\)2 < 0 . 
n=l 

This proves (8). • 

REMARK. It is easy to verify, that u(z) = € fi, but it is not easy to 
check if u)\, u>2 € ii. 
LEMMA 2 . There exist functions ui € fl, suc/i that there are no functions 
u)i,u>2 6 i), which satisfy (7) /or a G [0,1). 
P r o o f . Such a function may be a;(z) = ^r^ from Lemma 1 if u>i,u>2 satis-
fying (7) and (8) do not belong to the class ii. If the other way is then the 
function UJ such that 

( U ) 1 - a M z ) ~ h V 2" Z 

v ' n=l 
belongs to the class ft. Suppose, contrary to our claim, that there exist 
wi,cj2 € ii which satisfy (7). Let 

1 - auji(z) ~ ' 1 - <**(*) " ¿ A * " 

In the same manner as in the proof of Lemma 1 we can see that 
2 

(12) £ ( K l 2 + M 2 ) = £ [(|°n| - \bn\)2 + 2\an\\bn\] < 
n=l n=l 

Prom (7) and (11) we have anbn = \J - , n > 1. Since 

g / ( l + a 4 ) " - 1 _ 1 

t=i 2n v / 2 - V T + ^ 4 
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then (12) shows that 
1 2 0 0 

< 1 3 ) 

The left side of (13) is negative for a G [0,1) and we have a contradiction. • 
Now we can prove the following 

THEOREM 1. IfA,B,C,De C, A + B ± 0 + 0, | B | = | D | < 1, then 

P(A, B) * P(C, D) ± P(AC + AD + BC, BD). 

Proof . We have 

geP(a,(3) 9 ( z ) = H-(a + / 3 ) r ^ l - y , 

Let f € P(AC + AD + BC, BD) and 
u{z) 

f ( z ) = l + (A + B)(C + D), 
1 -BDu(z)' 

where oj £ f l . Suppose that there exist f \ € P(A,B), f i € P(C,D) such 
that 
(14) / ( * ) = / i CO * / a ( * ) . 

If fi, h a r e °f the form 

where u>\,u>2 6 fi, then a simple calculation gives from (14) that 

1 - BUJI ( z ) 1 - DU2(Z) 1 - BDu(z)' 

Because |B| = |£)| < 1 then (15) is equivalent to (7). Using Lemma 2 we 
complete the proof of the theorem. • 
REMARK. It seems to be probable, that Theorem 1 is true also for all 
|B| < 1 and \D\ < 1. 
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