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CONVOLUTION PROPERTIES OF A CLASS
OF ANALYTIC FUNCTIONS

Abstract. In this paper we consider convolution properties of a class of bounded
analytic functions investigated by J. Stankiewicz and Z. Stankiewicz in [6]. We give some
examples which verify a conjecture connected with this paper.

1. Introduction

We are interested in the class H of functions which are regular in the
open unit disc A = {z € C: |z| < 1}. Let M be the family of functions of
the class H normalized by the condition f(0) = 1, and let 2 denote the
family of functions defined on A such that w(0) =0 and |w(2)] < 1 for
z€A.

Let f,g € H are of the form

f(z)= Z anz", g(z)= Z bp2".

n=0 n=0
The convolution fxg or Hadamard product of the functions f and g is defined
as follows:

(f*9)(2) = 3 anbn2™
n=0

For the classes @1, Q2 C H the convolution @ x Q3 is defined by:

Q*xQe={h€H; h=f*g, f€Q1, g€Q}
J. Hadamard [1] proved, that the radius of convergence of f x g is the
product of radii of convergence of the coresponding series f and g. In par-
ticular if f,g € H, then also fxg € H.

The convolution has many interesting properties. Very often there was
investigated problem of connection between functions f, g and their convolu-
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tion f*g. An important classical example of such problem is characterizing
functions which preserve the geometric properties of the image domains.
G. Polya and I. J. Schoenberg [3] conjectured in 1958, that the Hadamard
product of convex mappings is again a convex mapping. This very impor-
tant conjecture and more results of this type has been verified in 1973 by
St. Ruscheweh and T. Sheil-Small [5]. Their result has many applications.
Some geometric properties of functions can be described by subordination.

We say, that a function f is subordinate to a function g in A (and
write f < g or f(z) < g(z)) if there exist a function w € €, such that
f(2) = g(w(2)); z € A.Subordination principle says that if f < g in A and
g is univalent in A, then for each A, = {z € C: |z| < r}, where r € [0,1],
we have f(A;) C g(A,).

For the given complex numbers A, B, such that A+ B # 0 and |B| <1

let us denote 144
+ Az
PUB)={feN; f)<15}.
The class P(A, B) was introduced by W. Janowski in [2]. He considered it
for - 1< B< A<
If |B| < 1, then the class P(A, B) is the class of bounded functions and

1+ AB| |A+ B
- ; Ay,
If A = B = 1, then the class P(A, B) is the class of functions with
positive real part (Caratheodory functions).

In 1988 J. Stankiewicz and Z. Stankiewicz [6] investigated convolution
properties of the class P(A, B) and proved the folloving theorem.

THEOREM A. IfA,B,C,DeC,A+B#0,C+D#0, |B|<1,|D|<1,
then

P(A,B) = {feN;

P(A,B)x P(C,D) c P(AC + AD + BC,BD).
Moreover, if |B|=1 or|D|=1, then
P(A,B)x P(C,D)=P(AC + AD + BC,BD).
The equality of classes P(A, B)x P(C,D) and P(AC + AD + BC, BD),

in the case when |B| < 1 and |D| < 1 was an open problem.

The main aim of this paper, that to give an answer for this problem for
|B| = |D} < 1.

2. Main results
First we consider the class Q of Schwarz functions and give an example
of polynomial in this class which is not convolution of two functions from Q.
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PROPOSITION 1. There ezist functions in the class ), which do not belong
to the class 2 x 2.

Proof. Let w(z) = c1z + cg2?, where
|c1| + |(:2| =1 and cjep 7& 0.

It is cleary that |w(z)| < 1 for 2z € A so w € Q. Now suppose that there are
some wj € §) and wg € €2 such that

(1) w1 (2) x wa(2) = c12z + 22,

Let wy, we be represented by following power series

00 o0
(2) wi(z) = Z a,z" and wy(z) = Z bnz".
n=1 n=1
It is known [4] that if wi(2) < z and we(z) < z in A, then
oo oo
(3) dlaa?<1 and D P <L
n=1 n=1

From (1) and (2) we have
aiby =c;, asbo=cy and ayb, =0 for n>2,

and using (3) we obtain

@ Y (lanl + [bal?) = 3 [(lanl = 5al)? + 2lan|[bal] < 2.
n=1 n=1
Hence
(5) > (anl = [bal)® +2 Y lanbnl
n=1 n=1

= 3" (lanl = [bal) + 2(Jc1| + lea) < 2.

n=1

Because |c1| + |c2| = 1 then (5) gives

o0
Y (lanl = [ba])* < 0
n=1
Hence
|an| = |bp] for n>1

and
an=b,=0 for n>3.
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According to the above condition we have
a1 = {/|c1|e®?, ag = Mei‘”,
b = |01|ei(argcl—so1), by = |c2|ei(arg«:z—soz)
where ¢; and @9 are some real numbers. Hence we have
w1(2) = flale®z + \fleale 2,
wo(z) = \/Eei(argcl_‘pl)z + \/@ei(arg@—w)z?,

which holds for z = ei{¥1-¥2)
|w1 (ei(w—m))I: (\/E_*_ |c2|) ei2p1-p2)| _ \/E+\/-|C_2|> L

Therefore w; & 2 which is a contradiction. m

We are now in position to show the following

COROLLARY 1. There ezist functions in the class P(AC,0) which do not
belong to the class P(A,0)* P(C,0).

Proof. Let h € P(AC,0) and
h(z) =14+ ACw(z) = 1+ AC(c12 + c22?),
where |c1| + |c2| = 1, and c¢1ecp # 0. Suppose, that
®) £(2) % g(2) = h(2)
where f € P(A,0), g € P(C,0), and f(2) =1+ Aw;(2), g(2) = 14 Cwsy(2),

wy,we € . Thus w(z) = c12 + c22? € Q and from (6) we get (1) which is
impossible by Proposition 1. =

To prove the next theorem we need two lemmas.
LEMMA 1. If there ezist functions wy,ws € Q) such that

) w1(z) . wo(z)  w(2)

1—awi(z) 1-ows(z) 1-a2w(z)’

(o] o5}
where o € [0,1), w(z) = %, 228 = 2 anz", 2l = X bna™,
n= n=

then

1 +ag n—1
(8) |an| = |ba]| = %, for n>1.
Proof. A simple calculation gives
w(z) oo (1 + ag)n—l
9 T 5 T~y ™ =-— > 1.
©) 1 — a?w(z2) ;cnz, Cn on o M2
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Because @
wilz .
A, 1=1,2
1-owi(z) 1-az2’ FEL =05
then from [4] we obtain
> 1 1
2 ¢
2 lanf* < 1- ~1-a?
n=1

By the above we have

10) 3 (lonl +16a2) = 3 [(ln] ~ [ba)? + 2aallpa] < -

n=1 n=1

2

— a2

By (7) we have a,b, = ¢, and by (9) § Cn = 1__—1ag Hence from (10)
n=1

oo
> (lan| — Bal)? <0
n=1

This proves (8). =

REMARK. It is easy to verify, that w(z) = 5% € Q, but it is not easy to
check if wq,ws € Q.

LEMMA 2. There ezist functions w € 2, such that there are no functions
wy,ws € 2, which satisfy (7) for a € [0, 1)

Proof. Such a function may be w(z) = 3% from Lemma 1 if wy,wy satis-
fying (7) and (8) do not belong to the class Q. If the other way is then the
function w such that

(11) w(z) — Z (1 + a4)‘n—1 n

o C

belongs to the class . Suppose, contrary to our claim, that there exist
wi,wq € Q2 which satisfy (7). Let

wl(z) Zanz , —ﬂ anz

1—ow (2) 1 — aws(2)
In the same manner as in the proof of Lemma 1 we can see that

(12) Z (ool + ) = 3= [l ~ o+ 2] < =2

n=1

From (7) and (11) we have apb, = -(H'—‘;:K-, n > 1. Since

i (1+ot)* ! 1
n=1 2" \/-2- -V 1 + a4
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then (12) shows that
2 2 =
- 2> n| bn 2

The left side of (13) is negative for a € [0, 1) and we have a contradiction. m

(13)

Now we can prove the following
THEOREM 1. If A,B,C,D e C, A+ B#0,C+D#0, |B|=|D| <1, then
P(A,B)x P(C,D) # P(AC + AD + BC,BD).
Proof. We have
geP(0,f) = g(z)=1+(a+P—por ©@)__ ,eq
—Bu(z) ¢
Let f € P(AC+ AD + BC, BD) and
z
f(z) =1+ (A+ B)( C+D)B(—D)w(z)

where w € Q. Suppose that there exist fi € P(A, B), fo € P(C, D) such
that

(14) f(2) = fi(z) * fa(2).
If fi1, fo are of the form

AR =1+ @A+ B)—22_ ey 14(04 D)_“’?(Z)

1— Buwy(2)’ Duws(2)’
where wy,w; € §2, then a simple calculation gives from (14) that
(15) w1 (2) wa(z) _ _ w(2)

1 — Buws( z) 1—Duwy(z) 1-BDw(z)’
Because |B| = |D| < 1 then (15) is equivalent to (7). Using Lemma 2 we
complete the proof of the theorem. m

REMARK. It seems to be probable, that Theorem 1 is true also for all
|B| <1and |D| < 1.
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