

Piotr Slanina

ON SOME FREE GROUPS, GENERATED BY MATRICES

Abstract. The interest to free groups generated by 2×2 matrices

$$A_\lambda = \begin{bmatrix} 1 & \lambda \\ 0 & 1 \end{bmatrix}, \quad C_\lambda = \begin{bmatrix} 1 & 0 \\ \lambda & 1 \end{bmatrix}$$

is known since 1947 when Sanov proved that for $\lambda = 2$ the group $G_\lambda = gp(A_\lambda, C_\lambda)$ is a free group [22]. For $|\lambda| \geq 2$ the proof of this fact can be found in [3]. The aim of this paper is to show that if λ is outside of four unit circles $|\lambda \pm 1| \geq 1$ and $|\lambda \pm i| \geq 1$ then also G_λ is a free group.

Let

$$A_\lambda = \begin{bmatrix} 1 & \lambda \\ 0 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}, \quad C_\lambda = \begin{bmatrix} 1 & 0 \\ \lambda & 1 \end{bmatrix}.$$

There are known papers concerning the parameter λ , for which $gp(B, C_\lambda)$ is not a free (nonabelian) group ([23], [2], [7]); e.g: for $\lambda = \frac{k}{l}$, $l \in \mathbb{Z} \setminus \{0\}$, $k < 6$ [10] and [17] independently, $k = 6, 7$ [10] and [14] independently, $k=8$ [11], [14], $k=9$ [14] and $k=10$ [12]; for λ a root of unit [19], [5], [9].

In [4], [16], [8] and [13] are described new λ 's which make $gp(B, C_\lambda)$ free. Some areas for complex λ were found by means of computer for $gp(B, C_\lambda)$ not to have a free subgroup [1]. However for λ transcendental the group $gp(A_\lambda, C_\lambda)$ itself is free [6]. It is clear that $gp(A_\lambda, C_\lambda)$ always contains a free subgroup generated by A_λ^k, C_λ^k for big enough k [22], [3]. The group $gp(B, C_\lambda)$ also contains a free subgroup, since it is conjugate to $gp(A_\lambda, C_\lambda)$ [4].

The aim of this paper is to show that if λ is outside of four unit circles $|\lambda \pm 1| \geq 1$ and $|\lambda \pm i| \geq 1$ then G_λ is a free group. This result adds some additional areas outside the four unit circles to the result of Brenner for $|\lambda| \geq 2$ [3].

Let $C^* = C \cup \infty$ be an extended complex plane. It is known [20] that homographic functions $f(z) = \frac{az+c}{bz+d}$, $a, b, c, d \in \mathbb{C}$; $ad - cb \neq 0$; $z \in C^*$, which

map $\mathbb{C}^* \rightarrow \mathbb{C}^*$ form a group under superposition $f_1(z) \circ f_2(z) = f_2(f_1(z))$. We denote this group by H . It is known that the group H is isomorphic to the group $PSL(2, \mathbb{C})$, which implies that there exists an epimorphism

$$\varphi : SL(2, \mathbb{C}) \rightarrow H, \quad \varphi : \begin{bmatrix} a & b \\ c & d \end{bmatrix} \rightarrow \left(z \rightarrow \frac{az + c}{bz + d} \right)$$

with $\text{Ker } \varphi$ equal to the center of $SL(2, \mathbb{C})$, generated by $\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$. If denote $\alpha := z + \lambda$, $\gamma := \frac{z}{\lambda z + 1}$, then φ maps $A_\lambda \rightarrow \gamma$, $C_\lambda \rightarrow \alpha$ and $\varphi : G_\lambda \rightarrow gp(\gamma, \alpha)$. To show that G_λ is a free group it is enough to prove that $gp(\alpha, \gamma)$ is a free group.

We introduce a transformation $\beta := \frac{1}{z}$. Then one can see that $\gamma = \beta^{-1}\alpha\beta$. We shall prove that $gp(\alpha, \beta) = \langle \alpha \rangle * \langle \beta \rangle$. So we get

$$(1) \quad gp(\alpha, \gamma) = gp(\alpha, \beta^{-1}\alpha\beta) \subseteq \langle \alpha \rangle * \langle \beta \rangle,$$

and hence by [18] 4.1 problem 10, $gp(\alpha, \gamma)$ is a free group equal to $\langle \alpha \rangle * \langle \gamma \rangle$. To prove that $gp(\alpha, \beta) = \langle \alpha \rangle * \langle \beta \rangle$ we have to check (in view of $\beta^2 = id$) that none of the following products is the identity:

- a) $\alpha^{k_1}\beta\alpha^{k_2}\dots\alpha^{k_s}\beta$,
- b) $\alpha^{k_1}\beta\alpha^{k_2}\dots\alpha^{k_s}$,
- c) $\beta\alpha^{k_1}\beta\alpha^{k_2}\dots\alpha^{k_s}$,
- d) $\beta\alpha^{k_1}\beta\alpha^{k_2}\dots\alpha^{k_s}\beta$.

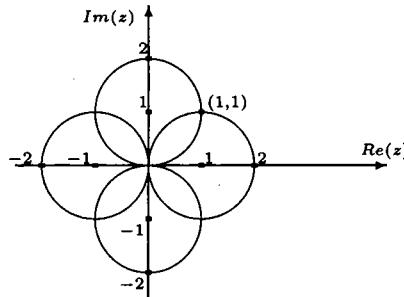
Since elements of the form b), c), d) are conjugate to elements of the form a), we should check only that

$$(2) \quad w := \alpha^{k_1}\beta\alpha^{k_2}\dots\alpha^{k_s}\beta \neq id.$$

The proof is based on the Lemma of Macbeath [15, pages 167–168]. The idea is the following: we denote by Ω_1 the open unit circle $|z| < 1$ and by Ω_2 – the outside of it, that is $|z| > 1$. Our word (2) is a sequence of transformations. If $w = id$ then $\Omega_1 w = \Omega_1$. We show that it is impossible if

$$(3) \quad |\lambda \pm 1| \geq 1 \quad \text{and} \quad |\lambda \pm i| \geq 1,$$

that is if λ is outside of four circles

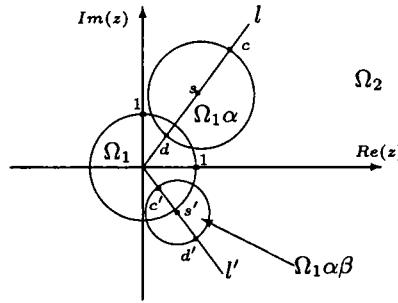


We note that if λ satisfies (3) then $|\lambda| \geq \sqrt{2}$.

LEMMA 1. $\Omega_1\alpha^{\pm 1}\beta$ is a circle with center s' where $|s'| = \frac{|\lambda|}{|\lambda|^2-1}$ and radius $r = \frac{1}{|\lambda|^2-1}$.

Proof. $\Omega_1\alpha$ is the unit circle with center $s = \lambda$, obtained by translation of Ω_1 for the vector λ .

The image $\Omega_1\alpha\beta$ is by [21, page 84], also a circle with center s' which is not an image of s . Let l and l' be the lines defined by vectors λ and $\bar{\lambda}$ respectively. Let c, d define the intersection points of l and $\Omega_1\alpha$:



$$c = \lambda + \frac{\lambda}{|\lambda|} = \left(\frac{|\lambda|+1}{|\lambda|}\right)\lambda, \quad d = \lambda - \frac{\lambda}{|\lambda|} = \left(\frac{|\lambda|-1}{|\lambda|}\right)\lambda.$$

Note that $|c| = |\lambda| + 1$, $|d| = |\lambda| - 1$. Let c' and d' be the images of c, d , then the center s' of $\Omega_1\alpha\beta$ can be found as $s' = \frac{1}{2}(c' + d')$. We have

$$c' = \frac{1}{|c|^2}c = \frac{1}{(|\lambda|+1)^2} \left(\frac{|\lambda|+1}{|\lambda|}\right) \cdot \bar{\lambda} = \frac{1}{(|\lambda|+1)|\lambda|} \cdot \bar{\lambda},$$

$$d' = \frac{1}{(|\lambda|-1)|\lambda|} \cdot \bar{\lambda}.$$

Then the center is $s' = \frac{1}{2|\lambda|} \left(\frac{1}{|\lambda|+1} + \frac{1}{|\lambda|-1}\right) \cdot \bar{\lambda} = \frac{1}{|\lambda|^2-1} \cdot \bar{\lambda}$ and $|s'| = \frac{|\lambda|}{|\lambda|^2-1}$. The radius is:

$$r(\Omega_1\alpha\beta) = |s' - c'| = \left(\frac{1}{|\lambda|^2-1} - \frac{1}{(|\lambda|+1)|\lambda|}\right) |\lambda| = \frac{1}{|\lambda|^2-1}.$$

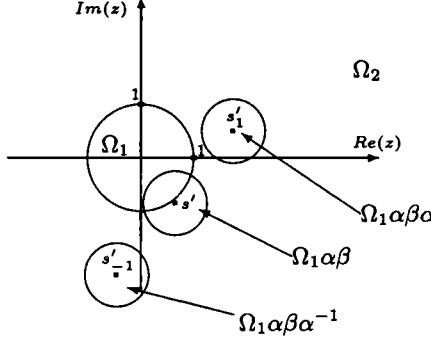
For the circle $\Omega_1\alpha^{-1}\beta$, the proof is similar. \square

COROLLARY 1. Since $|s'| > |r|$ the circle $\Omega_1\alpha^{\pm 1}\beta$ does not contain $(0, 0)$ and hence is not equal to Ω_1 .

In the next Lemma we consider the circles $\Omega_1\alpha\beta\alpha^{\pm 1}$. To find their centres, we write a complex number $u + iv$ as $[u, v]$.

LEMMA 2. Let $\lambda = [a, b]$. The radius of the circles $\Omega_1\alpha\beta\alpha^{\pm 1}$ is equal to $\frac{1}{|\lambda|^2-1}$ and their centers are s'_1, s'_{-1} :

$$(4) \quad \begin{aligned} s'_1 &= \frac{|\lambda|^2}{|\lambda|^2 - 1} [a|\lambda|^2, b(|\lambda|^2 - 2)], \\ s'_{-1} &= \frac{|\lambda|^2}{|\lambda|^2 - 1} [-a(|\lambda|^2 - 2), -b|\lambda|^2]. \end{aligned}$$



Proof. The circles $\Omega_1\alpha\beta\alpha^{\pm 1}$ are obtained from $\Omega_1\alpha\beta$ by translation for $\pm\lambda$, so the radius does not change and their centers are

$$\begin{aligned} s'_1 &= s' + \lambda = \frac{1}{|\lambda|^2 - 1} [a, -b] + [a, b] = \frac{|\lambda|^2}{|\lambda|^2 - 1} [a|\lambda|^2, b(|\lambda|^2 - 2)], \\ s'_{-1} &= s' - \lambda = \frac{1}{|\lambda|^2 - 1} [a, -b] - [a, b] = \frac{|\lambda|^2}{|\lambda|^2 - 1} [-a(|\lambda|^2 - 2), -b|\lambda|^2]. \end{aligned} \quad \square$$

LEMMA 3. *The inclusion $\Omega_1\alpha^{\pm 1}\beta\alpha^k\beta \subset \Omega_1$, $k \in \mathbb{Z} \setminus \{0\}$, is strict.*

Proof. To get the inclusion it is enough to show that the circles $\Omega_1\alpha^{\pm 1}\beta\alpha^k$ and Ω_1 are disjoint. Because of symmetry, we consider only $\Omega_1\alpha\beta\alpha^k$ and start with $k = \pm 1$.

The open circles are disjoint if distance between theirs centres is greater or equal to a sum of their radia, so we have to check that $|s'_{\pm 1}| \geq r(\Omega_1) + r(\Omega_1\alpha\beta\alpha^{\pm 1})$, which is equivalent to

$$(5) \quad |s'_{\pm 1}|^2 \geq (r(\Omega_1) + r(\Omega_1\alpha\beta\alpha^{\pm 1}))^2.$$

We calculate now

$$(6) \quad |s'_1|^2 = \frac{a^2|\lambda|^4}{(|\lambda|^2 - 1)^2} + \frac{b^2(|\lambda|^2 - 2)^2}{(|\lambda|^2 - 1)^2} = \frac{|\lambda|^6 + 4b^2(1 - |\lambda|^2)}{(|\lambda|^2 - 1)^2},$$

$$(7) \quad |s'_{-1}|^2 = \frac{a^2(|\lambda|^2 - 2)^2}{(|\lambda|^2 - 1)^2} + \frac{b^2|\lambda|^4}{(|\lambda|^2 - 1)^2} = \frac{|\lambda|^6 + 4a^2(1 - |\lambda|^2)}{(|\lambda|^2 - 1)^2}.$$

By Lemma 2, $r(\Omega_1\alpha\beta\alpha^{\pm 1}) = \frac{1}{|\lambda|^2 - 1}$, so the right side of (5) is $(1 + \frac{1}{|\lambda|^2 - 1})^2 =$

$\frac{\lambda^4}{(|\lambda|^2-1)^2}$, and for s'_1 (5) is equivalent to

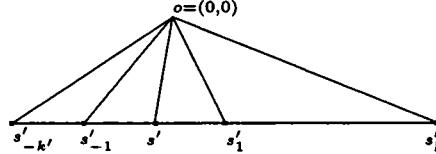
$$(8) \quad \frac{|\lambda|^6 + 4b^2(1 - |\lambda|^2)}{(|\lambda|^2 - 1)^2} \geq \frac{|\lambda|^4}{(|\lambda|^2 - 1)^2}.$$

This gives $|\lambda|^6 - |\lambda|^4 + 4b^2(1 - |\lambda|^2) \geq 0$, which is $(|\lambda|^2 - 1)(|\lambda|^4 - 4b^2) \geq 0$. Since $|\lambda| > \sqrt{2}$, (8) is equivalent to $|\lambda|^4 - 4b^2 \geq 0$. Because $|\lambda|^2 = a^2 + b^2$, we have $|\lambda|^4 - 4b^2 = (a^2 + b^2)^2 - 4b^2 = (a^2 + b^2 + 2b)(a^2 + b^2 - 2b) = (a^2 + (b+1)^2 - 1)(a^2 + (b-1)^2 - 1) = (|\lambda + i|^2 - 1)(|\lambda - i|^2 - 1)$. So (5) is equivalent to

$$(|\lambda + i|^2 - 1)(|\lambda - i|^2 - 1) \geq 0$$

and hence holds under assumption (3).

Similarly, $|s'_{-1}|^2 \geq (r(\Omega_1) + r(\Omega_1 \alpha \beta \alpha))$ is equivalent to $|\lambda + 1| \geq 1$ and $|\lambda - 1| \geq 1$, so we get $\Omega_1 \alpha \beta \alpha^{\pm 1} \cap \Omega_1 = \emptyset$ and hence $\Omega_1 \alpha \beta \alpha^{\pm 1} \subset \Omega_1$.



Because the circles $\Omega_1 \alpha \beta \alpha$ and $\Omega_1 \alpha \beta \alpha^{-1}$ are disjoint with Ω_1 and $\Omega_1 \alpha \beta$ is not, then their centers satisfies $|s'| < |s'_1|$ and $|s'| < |s'_{-1}|$. From the picture above the angles $os'_{-1}s'$ and os'_1s' are acute and hence $|s'_k| > |s'_1|$ for $k > 1$ and $|s'_k| > |s'_{-1}|$ for $k < -1$. It follows that for every $k \in \mathbb{Z}$, $|k| > 1$ circles $\Omega_1 \alpha \beta \alpha^k$ are disjoint from Ω_1 , and hence we have strict inclusion:

$$\Omega_1 \alpha \beta \alpha^k \beta \subset \Omega_1, \quad k \in \mathbb{Z} \setminus \{0\}.$$

Similarly, we get $\Omega_1 \alpha^{-1} \beta \alpha^k \beta \subset \Omega_1$.

THEOREM 1. *Let $\alpha := z + \lambda$, $\beta := \frac{1}{z}$, $|\lambda \pm 1| \geq 1$ and $|\lambda \pm i| \geq 1$. Then*

$$gp(\alpha, \beta) = \langle \alpha \rangle * \langle \beta \rangle.$$

P r o o f. As we have shown above it is enough to prove that a nontrivial transformation $w = \alpha^{k_1} \beta \alpha^{k_2} \dots \alpha^{k_s} \beta$ is not the identity, that is $\Omega_1 w \neq \Omega_1$. The word w can be written as a product of subwords $\alpha^{k_1} \beta$, $|k_1| > 1$, $\alpha^{\pm 1} \beta \alpha^{k_2} \beta$ and (possibly at the end) $\alpha^{\pm 1} \beta$.

Let $w_i \in \{\alpha^{k_1} \beta, \alpha^{\pm 1} \beta \alpha^{k_2} \beta\}$, $k_i \in \mathbb{Z} \setminus \{0\}$, $|k_1| > 1$. Then either $w = w_1 w_2 \dots w_s$ or $w = w_1 w_2 \dots w_s \alpha^{\pm 1} \beta$. We prove that in each case $\Omega_1 w \neq \Omega_1$.

Since by (3), $|\lambda| \geq \sqrt{2}$, then for $|k| > 1$ we have $|k\lambda| > 2$. Then $\alpha^k = z + k\lambda$ translates Ω_1 strictly into Ω_2 and the inclusion $\Omega_1 \alpha^k \subset \Omega_2$ implies that $\Omega_1 \alpha^k \beta \subset \Omega_1$. By Lemma 3, $\Omega_1 \alpha^{\pm 1} \beta \alpha^k \beta \subset \Omega_1$ is also strict. So we have

for each w_i

$$(9) \quad \Omega_1 w_1 w_2 w_3 \dots w_s \subset \Omega_1 w_2 w_3 \dots w_s \subset \Omega_1 w_3 \dots w_s \subset \dots \subset \Omega_1.$$

If $w = w_1 w_2 \dots w_s \alpha^{\pm 1} \beta$, then by (9) and Corollary 1, $\Omega_1 w \subset \Omega_1 \alpha^{\pm 1} \beta$ is not equal to Ω_1 , which finishes the proof.

References

- [1] J. Bamberg, *Non-free points for groups generated by a pair of 2×2 matrices*, London Math. Soc. (2) 62, (2000), 795–801.
- [2] A. F. Beardon, *Pell's equation and two generator free Moebius groups*, London Math. Soc. (1993), 527–532.
- [3] J. L. Brenner, *Quelques groupes libres de matrices*, C. R. Acad. Sci. Paris 241, (1955), 1689–1691.
- [4] B. Chang, S. A. Jennings, R. Ree, *On certain matrices which generate free groups*, Canadian J. Math. (1958), 279–284.
- [5] R. J. Evans, *Non-free groups generated by two parabolic matrices*, J. Res. Nat. Bur. Standards, vol 84, no. 2, (1979), 179–180.
- [6] D. I. Foux-Rabinowitch, *On a certain representation of a free group*, Leningrad State Univ. Annals (Uchennye Zapiski). Math. Ser., 10 (1940), 154–157.
- [7] A. Grytczuk, M. Wojtowicz, *The problem of freeness for Euler monoids and Moebius groups*, Semigroup Forum 61 (2000), 277–282.
- [8] Yu. A. Ignatov *Free and nonfree subgroups of $PSL_2(\mathbb{C})$ that are generated by two parabolic elements*, Mat. Sb. (N.S.) 106 (148), (1978), 372–379.
- [9] Yu. A. Ignatov, *Roots of unity as nonfree points of the complex plane*, Mat. Zametki 27, (1980) no. 5, 825–827.
- [10] Yu. A. Ignatov, *Rational nonfree points of the complex plane*, Tulsk. Gos. Ped. Inst., Tula, (1986), 72–80.
- [11] Yu. A. Ignatov, *Rational nonfree points of the complex plane*, Tulsk. Gos. Ped. Inst., Tula, (1990), 53–59.
- [12] Yu. A. Ignatov, *Rational nonfree points of the complex plane, part III*, Tulsk. Gos. Ped. Inst., Tula, (1995), 78–84.
- [13] Yu. A. Ignatov, T. N. Gruzdeva, I. A. Sviridova, *Free groups of linear-fractional transformations*, Tulsk. Gos. Univ. Ser. Mat. Mekh. Inform. 5, (1999), 116–120.
- [14] M. I. Kabieniuk, *Groups generated by two transitive matrices*, Kemerovo State University, (1988).
- [15] R. C. Lyndon, P. E. Schupp, *Combinatorial Group Theory*, Springer-Verlag, Berlin-New York, (1977).
- [16] R. C. Lyndon, J. L. Ullman, *Groups generated by two parabolic linear fractional transformations*, Canadian J. Math. (1969), 1388–1403.
- [17] S. W. Lysenkov, *Groups generated by two 2×2 matrices*, Kemerovo State University, (1983), 27–31.
- [18] W. Magnus, A. Karrass, D. Solitar, *Combinatorial Group Theory*, Dover Publications, Inc. New York, (1976).
- [19] M. Newman, *A conjecture on a matrix group with two generators*, J. Res. Nat. Bur. Standards, vol 78B, no. 2, (1974), 69–70.
- [20] D. J. S. Robinson, *A Course in the Theory of Groups*, New York: Springer Verlag, (1996).

- [21] S. Saks, A. Zygmund, *Analytic Functions*, PWN Warszawa, (1965).
- [22] I. N. Sanov, *Swojstwo odnowo przedstawienia swobodnej grupy*, Dokl. Akad. Nauk SSSR 57 (7), Moskwa, (1947), 657–659.
- [23] A. I. Skuratskii, *The problem of the generation of free groups by two unitriangular matrices*, Mat. Zametki 24. (1978), 411-414.

INSTITUTE OF MATHEMATICS
SILESIAN UNIVERSITY OF TECHNOLOGY
Kaszubska 23
44-100 GLIWICE, POLAND
e-mail: slanina@skrzynka.pl

Received September 16, 2002; revised version May 19, 2003.

