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ALL PRE-SOLID VARIETIES OF SEMIRINGS 

Abstract . A semiring is an algebra with two binary associative operations + and 
• which satisfy two distributive laws. Single semirings as well as classes of semirings are 
important structures in Automata Theory. Nevertheless, not so much is known about 
varieties of semirings. An identity t ~ t' is called a pre-hyperidentity of a variety V of 
semirings if whenever the operation symbols occurring in t and in t' are replaced by 
binary terms different from variables, the identity which results, holds in V. A variety 
V of semirings is called pre-solid if every identity holds as a pre-hyperidentity in V. The 
set of all pre-solid varieties of semirings forms a complete sublattice of the lattice of all 
varieties of semirings. To get more insight into the lattice of all varieties of semirings we 
will give a complete characterization of the lattice of all pre-solid varieties of semirings. 

1. Introduction 
Let W(2,2)(^2) be the set of all binary terms of type (2, 2) built up by 

variables from the alphabet X2 = x2} and by the operation symbols F 
and G, (F for + and G for • ). Sometimes we will use the finite alphabet 
{ x i , . . . xn} or will denote the variables by x, y, z, u, etc. Hypersubstitutions 
of type r = (2,2) are mappings 

a:{F,G}->W(2t2)(X2). 

A hypersubstitution a of type (2,2) can be extended to a mapping a defined 
on the set (X) of all terms of type r , where X is an arbitrary countably 
infinite alphabet of variables, by the following steps: 

(i) a[x\ := x if x G X is a variable, and 
(ii) <r[/(ii,i2)] := £[¿2])) / £ {F, G} for composite terms. 
The hypersubstitution a of type (2,2) which maps F to t and G to s 

will be denoted by <jt)S. Together with the hypersubstitution a ^ defined by 
&id(f) — f(xi,x2), f € {F,G}, the set of all hypersubstitutions of type 
T = (2,2) forms a monoid, denoted by Hyp. 
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A hypersubstitution a € Hyp is called a pre-hypersubstitution if cr maps 
neither F nor G to a single variable. It is easy to see that the set Pre of 
all pre-hypersubstitutions of type (2,2) forms a submonoid of the monoid 
Hyp. An identity s « i in a variety V of semirings is called a hyperidentity 
in V if for every a 6 Hyp the equations <r[s] « a[t] belong to the set IdV 
of all identities satisfied in V and a pre-hyperidentity if this holds for every 
a € Pre. 

A variety V is called pre-solid (resp. solid) if all identities in V are 
satisfied as a pre-hyperidentities (resp. as hyperidentities). To reduce the 
complexity of checking, we introduce the following equivalence relation 
on the set Hyp: 

ax a2 a ^ f ) » a 2 ( f ) € IdV for / G {F, G} ([Plo;94]). 
To check whether an identity is satisfied as a hyperidentity or as a pre-
hyperidentity in a variety V, it suffices to apply only one representative 
from each ~v/-class to the identity. Moreover, we have only to consider 
the identity basis of V (if there is any). For more information see [Den-W; 
00]. We mention that a variety of semirings is pre-solid iff there exists a set 
S of equations such that V is the class of all semirings which satisfy each 
equation of E as a pre-hyperidentity. We write V = HpreModE and call V 
the pre-hyper model class of E. 

For simplicity, the variety of all semirings will be referred to as SR. If V 
is a variety of semirings and £ is a set of equations, by V(E) we denote the 
subvariety of V which is generated by the set E. For reference, below we list 
some varieties to be used in this paper: 

Vb — the variety of all distributive semirings, i.e. the variety of semirings 
satisfying also the two other distributive laws: • £3 « (xi + X2) • (^1 + 
xz) and x\ • x<z + x3 sa (xi + ¡r3) • (x2 + S3); 

VMD — the variety of all medial and distributive semirings, i.e. the 
variety of distributive semirings satisfying the two medial laws x\ + + 
x3 + x4 ~ xl + x3 + x2 + x4 and xi • x2 • 23 • £4 ~ xl • xz • x2 • x4'} 

VMID — the variety of all medial, idempotent and distributive semirings, 
i.e. 

VMID '•= VMD({X 1 • XI ~ x i , + x i « £1}); 
VBE := VMID{{(X 1 + x2) • (®2 + « XI • X2 + X2 • x i} ) ; 
RA2<2 '•= SR({Xi+x2+x3 « X1+X3, XI-X2-XZ « xi-x3 , (XI+X2)-(XZ+X4) 

w x\ • xz + x2 • X4,x\ • x\ pa xi, x\ + x\ « xi}); 
T — the trivial variety, i.e. T := Mod{x 1 « x2}. 
By PS(SR) we denote the lattice of all pre-solid varieties of semirings. 

Our first aim is to give some necessary conditions for a variety of semirings 
to be pre-solid and to determine all minimal elements in the lattice PS (SR.). 
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2. Necessary conditions for pre-solid varieties of semirings 
In this section we want to show that all identities s « t in a pre-solid, 

not idempotent variety of semirings are normal. This means that s and t 
are the same variables or neither s nor t are variables. If all identities of a 
variety are normal, we will speak of a normal variety. 

We will say that a variety V of type (2,2) satisfies the duality principle 
if for every identity s « t £ IdV, the equation arising from s « t by 
exchanging the operation symbols F and G is also satisfied as an identity 
in V. Since <7g(ii,x2),F(xi,x2) ' s a pre-hypersubstitution it follows that every 
pre-solid variety of semirings satisfies the duality principle. 

PROPOSITION 2.1. Let V be a nontrivial pre-solid variety of semirings. Then 

1. V is a variety of medial and distributive semirings, 
2. the following identities are satisfied in V: 

x\ • X2 • X3 « X\ • X2 • X3, 2x\ + x<i + 23 ~ X\ + X2 + £3,3xi w 2x\ « x\ « x\, 
3. V is either idempotent or normal. 

P r o o f . 1. As a consequence of the duality principle in V four distributive 
laws are satisfied. Applying &G(XI,X2),G(XI,X2)

 t o the distributive identity 

G(x 1, F{x2, x3)) « F(G(x 1, x2), G(xi, x3)) 

gives 
G ( x 1 , G ( x 2 , X 3 ) ) « G ( G ( X 1 , X 2 ) , G(X 1 , x 3 ) ) 

and using <TG(X2,X1),G(X2,X1) one obtains 

G(G(x3,x2),xi) « G(G(x3,xi),G(x2,a;i)), 

i.e. the identities 
xi • (x2 • x3) « (xi • x2) • (xi • X3) ( * ) 

and 
(x3 • x2) • xi « (23 • xi) • (a;2 • xi) 

are satisfied in V. This gives 

X\ • X2 • X3 • X4 « X\ • X3 • X2 • X3 • X4 « X\ • X3 • X2 • X4. 

The second medial law follows from the duality principle. 
2. Using the identity (*) and the medial law we have x\ • x2 • x3 & 

xvx2-xvx3 « xl-x2-x3. This gives x\ « x f . Applying (rG(x1,x1),G(x1,x1)
 t o t h e 

associative identity, gives xf & xf and altogether we have xf & x f . Applying 
o " F ( x i , i 2 ) , G ( x i , x i ) TO G ( X I , F ( X 2 , X 3 ) ) PH F ( G ( X 1 , X 2 ) , G ( X I , X 3 ) ) one obtains 
xf « xf+xf and the duality principle leads to £1+2:1 « (xi+a: i)-(xi+xi) « 
4xf « 2xj m xf using the identity Ax\ « 2xi which is dual to xf m x f . 
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3. Assume that V is not idempotent and that t « x\ is an identity in V. 
Using VG{XI,X2),G{Xi,i2) a n d identifying all variables in the resulting equation, 
we obtain x™ « x\ € IdV for some n > 1. If n > 1 then from xf & x\ € IdV 
we have « x\ €E IdV and then x\ « x\ 6 IdV. This is impossible since V 
is not idempotent and thus n = 1 and t = x\. This shows that V is normal. • 

From 2.1 (3.) the following proposition is clear. 

COROLLARY 2.2. The complete lattice PS(SR) of all pre-solid varieties of 
semirings splits into two complete sublattices, the sublattice PSide^SR) of 
all idempotent pre-solid varieties of semirings and the sublattice PSN(SR) 
of all normal pre-solid varieties of semirings, m 

Now we characterize the idempotent part of the lattice PS(SR). A char-
acterization of all solid varieties of semirings was given in [Den-H;00]. 

LEMMA 2.3. The lattice S(SR) of all solid varieties of semirings is the 
A-element chain T C RA(2,2) C V g ^ c VMID• • 

PROPOSITION 2.4. A pre-solid variety of semirings is idempotent i f f it is 
solid. 

P r o o f . By 2.3 the lattice S(SR) consists exactly of the four varieties T, 
RA(2^) > VBE, and VMID• Each of these varieties is idempotent and as a 
solid variety also pre-solid. 

Assume now that V is an idempotent pre-solid variety of semirings. That 
means, if s ss i G IdV and if a is an arbitrary pre-hypersubstitution, then 
cr[s] « a[t] E IdV. Because of the idempotency each of the hypersubstitu-
tions from the set {<7xlit',aX2it',at>iX1,at'iX2 | t' e ^ ( 2 , 2 ) i s equivalent 
with the pre-hypersubstitution ota x-i or ax2 ta, i = 1,2, t' £ ^(2,2) 
with respect to the relation This shows that s & t is preserved by any 
hypersubstitution of type (2,2) and therefore V is solid. • 

The previous proposition shows that the variety RAQ2) is the least non-
trivial element of PSidem(SR). Now we ask for the least variety in PSN(SR). 

PROPOSITION 2.5. The variety C = Mod{x 1 + X2 ~ £3 • £ 4 } is the least 
normal pre-solid variety of semirings. 

P r o o f . It is well-known that C is the least normal variety of type (2,2) 
(see e.g. [Mel;72]). Clearly, C is a variety of semirings and it is only to prove 
that V is pre-solid. But this is also clear and is left as an exercise to the 
reader. • 

To offer more insight into the lattice of all pre-solid varieties of semirings, 
the notions of an outermost equation and of an outermost variety are needed. 
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DEFINITION 2 . 6 . An equation s & t is outermost, if the terms s and t start 
with the same variable and end also with the same variable. A variety V is 
called outermost, if all identities of IdV are outermost. 

Clearly, the variety C is not outermost. Let V be a nontrivial pre-solid 
variety of semirings which is not outermost. Then V is not idempotent since 
all nontrivial idempotent pre-solid varieties of semirings are outermost (see 
2.3 and 2.4). Therefore, V is normal (see 2.1) and then C C V (by 2.5). 
Thus, C is the least nontrivial pre-solid variety of semirings which is not 
outermost. 

3. All non-outermost pre-solid varieties of semirings 
For n > 1, we consider the following equations: 

xi + x2 + . . . + xn&y1 + y2 + . . . + yn {Nn)i 

xxx2 . . . x n f a yi3/2 •••Vn 

THEOREM 3 . 1 . Let V be a pre-solid variety of semirings. Then the following 
conditions are equivalent: 

1. V is non-outermost. 

2. X\KXI<E. IdV. 

3. For every n>3, TVjf G IdV and G IdV. 

Proof . l.=4>2.: Since V is non-outermost, we can assume that there exists 
an identity s « i e IdV such that s starts with the variable x\ and t with 
the variable x2. Applying crG(2. l i I l )>G(l l i I1) to the identity gives xf w 
x% € IdV with m > 2, n > 2. Therefore, we get x\ « x\ G IdV, since xf & 
x\ € IdV (by 2.1). 

2.=^3.: Let n > 3. Then Proposition 2.1 and the presumption show that 
the following identities hold in V : x\x2 ... xn « x\x2 ... xn « X%X3 ... xn « 
x2%3 • • • xn « • • • « xl w yl fa . . . » yi y2 ...yn. 

By the duality principle we get also iVjf G IdV. 
3.=>1.: This implication is obvious. • 

Our next aim is to show that the variety 

y(3) := VD({N[, iV3G, 3xi « 2ai w x\ w xf}) 

is the greatest non-outermost pre-solid variety of semirings. 
To deccribe the identities of W3) we need the following concept of com-

plexity for terms. 
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D e f i n i t i o n 3.2. The complexity c(t) of a given term t is inductively defined 
by c(t) = 0 if t is a variable and by 

Tlj 
c(t) = c(fi(th...,tni)) :=$>;) + ! 

j=1 
if t is the composite term fi(ti,... ,tni). 

L e m m a 3.3. For every term t 6 W(2,2)P0 with c(t) > 2, the equation t « xf 
is an identity in V^3). 

P r o o f . If t is built up only by using one of F or G, then the defining 
equations Of y(3) show that the identity t « x\ is satisfied in If t 
contains both operation symbols, then by the distributive laws we get the 
identity t « ti + t2 + • • • + tn where t\,..., tn, (n > 3) are variables or 
products of variables. Using N[ and 3xi « 2xi w x^ w x3 we obtain 
t & ti H h tn « t\ + t2 + i3 « 3xi « 2xi « x f . • 

THEOREM 3.4. The variety V( 3 ) is the greatest non-outermost pre-solid va-
riety of semirings. 

P r o o f . We prove first that 

W3> = HPre{2<2)Mod{G(G(xi,x2),x3) » G ( x i , G ( x 2 , x 3 ) ) 

« G(UI,G(U2, u 3 ) ) , G(F(Xi, x2), x3) ss F(G(xi, x3), G(x2, ®3))} =: V. 

By the duality principle it is clear that V is a pre-solid variety of semir-
ings. Therefore, Proposition 2.1 shows that IdV^ C IdV, i.e., V C V(3\ 

For the opposite inclusion we show that the variety satisfies the 
equations 

F(F(xi, x2), x3) fa F(xu F(x2, x3)) » F(uu F(u2, u3)) (*) 

and 

G(F(xi, x2), x3) « F(G(xi, x3), G(x2, x3)), (**) 

as pre-hyperidentities. Let a be a pre-hypersubstitution. Then the terms 
cr(F) and a(G) have complexities greater or equal to 1. Moreover, the equa-
tions (*) and (**) have the property that the complexities of both terms 
of each equation are greater or equal to 2. Then applying a to (*) and to 
(**) gives equations having the property that the complexities of the terms 
are greater or equal to 2 or the terms are identical with x\ in V(3) because 
of the identity x\ « x2. By 3.3 such equations are satisfied as identities in 
F^3). Altogether we have V^ = V and F^3) is a non-outermost pre-solid 
variety of semirings. Furthermore, Proposition 3.1 ensures that is the 
greatest non-outermost pre-solid variety of semirings. • 
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To find out all non-outermost pre-solid varieties of semirings we have to 
check the subvariety lattice of V(3). The variety is not commutative. 

(3) Therefore, we consider the proper subvariety Vc defined by 

+ X2 « X2 + X i , X\X2 « X 2 X 1 ) . 

(3) 
THEOREM 3.5. The variety Vc is the greatest pre-solid variety of commu-
tative semirings. 
P r o o f . To show that vj3) 

is pre-solid, we have only to prove that the (3) 
commutative law is satisfied as a pre-hyperidentity in Vc . Considering the 
identities in 

it becomes clear that we have to substitute the binary terms 
x1,xix2 and x\ + X2 in G(x 1,22) « G(x2,xi). This gives easily equations 
which are satisfied in 

To determine all pre-solid varieties of commutative semirings, we de-
termine all elements of the free algebra generated by n variables over an 
arbitrary pre-solid variety of commutative semirings different from C. 
PROPOSITION 3.6 . Let V be a nontrivial pre-solid variety of commutative 
semirings different from C and let Fy{n) be the V-free algebra generated 
by an n-element alphabet. Then Fy{n) := {[xi]idv \ i € { l , . . . , n } } U 
{[zi • X j ] I d V , [XI + X j ] I d V | i,j € { l , . . . , n } , i < j} U {[x\]MV}-
P r o o f . It is clear that Fv(n) contains not more than the given elements. 
To show that Fv(n) contains exactly the given elements, we can prove that 
there is no collapsing of classes unless V is trivial or V = C. • 

This shows that there is no variety between C and V ^ and since C is 
an atom in the lattice of all varieties of semirings, we have 

PROPOSITION 3.7. There are exactly three nontrivial pre-solid varieties of 
(3) (3} commutative semirings: T, C, and VC^J: TcCc VT' • 

In a similar way as in the proof of 3.6 we have: 

PROPOSITION 3.8. Let V be a nontrivial non-outermost pre-solid variety of 
semirings which is not commutative. Then Fv(n) := {[xi]idv | i E {1,..., n}} 
U {[xj • X j ] I d V , [xi + X j ] i d v I i , j £ { 1 , • • • , n } , i ± j } U {[xf]/dv}. • 

COROLLARY 3.9. There are exactly three non-outermost pre-solid varieties 
of semirings: T, C, Vc

{3), and V^: TcCc Vc
{3). m 

To get more pre-solid varieties of semirings we are primarily interested 
in the normalization of a variety and its generalization. 
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4. k-normalizations of varieties 
As we learnt in Section 3, the lattice PS(SR) of all pre-solid varieties of 

semirings splits into two parts: the lattice PSideTn(SR) of all solid varieties 
of semirings and the lattice PSn(SR) of all normal varieties of semirings. To 
study the normal part we want to generalize the results of Melnik [Mel;72], 
Graczyriska [Gra;89] and other authors on normalizations of varieties to 
^-normalizations. 

Let Alg(r) be the class of all algebras of type r. Now we consider the set 

Wjf (r) := {s « t € W{T)(X)2 | c(s), c(t) >k}U {snte W{r)(X)2 | s = t} 
and define the operators N^ and N^ as follows: 

JVjf: V{WT(X)2) —> P(WT(X)2) 
E ^ E n T V f ( r ) 

AjA. A l g { r ) _ A l g { j ) 

K t—• ModNf(IdK). 
We generalize the concepts of normal equations and normal varieties in 

the following way: 

D E F I N I T I O N 4 . 1 . An equation s & t is said to be fc-normal for k 6 N , (k > 1 ) 

if s « t 6 N/?(T)\ a variety V is called k-normal if N^(V) - V. The variety 
N^(V) is called the ^-normalization of V; (normal equations or varieties are 
k-normal for k = 1). 

For a set E of equations of type r by E(E) we denote the closure of E 
under application of the five derivation rules for identities and E |= s « t 
means that there is a formal deduction of the equation s w i starting from 
the set E of equations and using the five rules of consequences. A set E of 
equations of type r is called an equational theory if E(E) = E. 

One can easily prove that 

LEMMA 4.2. Let k be a natural number and k > 1. 
1. The set is an equational theory and the operator N^ is a kernel 

operator which preserves arbitrary unions and intersections. 
2. The operator N^ is a closure operator on the lattice C(t) of all vari-

eties of type T and the class of all fixed points with respect to Nj^ forms a 
complete sublattice of the lattice £ (r ) . • 

Further, the operator N^ satisfies the following additional properties: 

PROPOSITION 4.3. Let be a family of sets of equations of type r . 
Then we have 

E I N ^ H I E ^ M C N ^ E I L J E J ) ) 
jeJ jeJ 
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and 
E(N?{\jEpj))) = Nj?(E{\JXj)), 

jeJ jeJ 

if there exists an equation x « t(x,... ,x) E U with c ( 0 > k. 

P r o o f . Let E ,E ' be two elements of the family (E j ) jeJ- Prom E(E) U 
£(E ' ) C £ ( E U E') it follows that E(Nj?(E(Z) U £(£ ' ) ) ) C Nj?(E(E U E')) 
since Nj^(E(E U E')) is an equational theory. 

Conversely, we have to prove that, if p « q 6 A ^ ( r ) and E U E' \= p ~ q, 
then jVf (J5(E) U E{E')) |= p « Without restriction of the generality 
we may assume that e := x « ¿(a;,..., x) € E. If one substitutes in j> 
and in q for every variable the term t(x 1 , . . . , xi) and denotes the resulting 
terms by p* and by q*, respectively, then from E U E' |= p « q one obtains 
E U E' |= p* « q*,p « p*,q « g*. Since p & p*,q & q* 6 iVjf (T), one has 
p ^ p * , q ^ q * e N ^ ( E ( E)). 

Assume that /o, h, • • •, h,P ~ 9 is the series of all identities which are 
needed to derive p « q from E U E'. If one substitutes in each of these 
identities for the variable x, the term t(x{, . . . , x*), i = 1 , . . . , n (where one 
assumes that each of the identities lj contains at most n variables, one 
gets a series of identities IQ, I*,..., l*,p* ~ q*, where each of these identities 
belongs to (E(T,))uN^ (£(E'))). Further, l*Q, It,..., If are all identities 
which are needed to derive p* « q* from E)) U Nj?(E(E')). (Remark 
that we use here the fact that the substitution rule can be permuted with 
applications of the other four derivation rules for identities). Altogether we 
have JVjf (JS7(E)) U iVf (£(E')) |= p « p*,q » « g* and therefore also 
Nj?(E(Y,))uNl?(E(T;')) \=PK,q. This result can be generalized to arbitrary 
families of equations. • 

It is well-known that the normalization NA(V) of any non-normal variety 
V of type r covers V in the lattice of all varieties of type r ([Mel;72]). This 
result can be generalized as follows: 

LEMMA 4.4. Let V be a non-normal variety, with a non-normal identity e of 
the form t(xi,...,xi) « i j , ThenldV = E(N^(IdV)U{e}) for anyk> 1. 

P r o o f . Since Nj?(IdV)U{e} C IdV, we have also E(Ng(IdV)U{e}) C IdV 
for every k > 1. We prove the opposite inclusion. Let c(t) — p and let 
u « v be an arbitrary identity in V. Then V satisfies also u* « v* and 
u* « v* € Np(IdV). Since u & u*,v & v* € E(N^(IdV) U {e}), we get 
u « w € E(Np(IdV) U {e}) and IdV C £( jV"/( iW) U{e}). Now let 1 < fc < 
p, then Np(IdV) C N^(IdV) and we have W = E{Nf{IdV) U {e}) C 
E(Nj?(IdV) U {e}) and this gives the equality E(N{?(IdV) U {e}) = IdV 
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for k < p. Since p can be chosen greater than any natural number, we have 
proved our lemma for arbitrary k > 1. • 
COROLLARY 4 . 5 . Let V be a nontrivial non-normal variety. Then for every 

k > 1 the operator Nf : C(V) -» C(Nf(V)) defined by U ^ Nj*(U) is an 

infective lattice homomorphism. 

Proof . First, we show that N^ is meet-preserving. Since V is not normal, 
there exists an identity e := x sa t(x,...,x) E IdV, with c(t) > k. Let 
t/i, U2 e C(V). Then x « t(x,...,x) e IdUi U IdU2 and we have the 
following equalities: 

I d ( N £ ( U x A U2)) = Nj^(Id(Ui A U2)) 

= i v f ( W i ) u M t / 2 ) ) ) 
= E(Ng{Id(Ui) U Id(U2))) b y 4 . 3 

= E(N^Id(U1))uN^(Id(U2))) 

= E{IdN£(Ul)yjIdN£(U2)) 

= Id(N£(U1)AN£(U2)). 

Hence N£(Ui A U2) = N£(Ui) A NfiUi). Clearly, Nf is join-preserving. 
Therefore, we conclude that Nj^ is a lattice homomorphism. 

A ^ i ) = N£(U2) => N^(IdUi) = N*{IdU2) 

=» N ^ I d U , ) U {e} = NZ{IdU2) U {e} 
E(N^(IdUi) U {e}) = E(Nj?(IdU2) U { e } ) . 

=• IdUi = IdU2 ( b y 4 . 4 ) 

=» Ui = U2. 

Therefore N f is injective. • 

In a similar way as we did in the proof of Corollary 4.5, we can show 

LEMMA 4.6. Let k > 1 and let V be a non-normal variety of type r. Let V' 

be a variety of type r. Then Nf(V A V') = N£(V) A N£(V'). m 

In Corollary 4.5 the operator Nj^ defines a lattice embedding of the 
lattice £(V) into the interval [N£(T), N^(V)]. The following lemma shows 
that the non-normal subvarieties of N^(V) are subvarieties of V. 

LEMMA 4.7. Let V be a non-normal variety. Let W be a subvariety of 

Nf(V). IfW is non-normal, then W C V. 

P r o o f. In V there is a non-normal identity e € IdV of the form t(xi,..., xi) 
« x\ for some term t with c(t) > k. We show at first that the variety W 
satisfies the identity e. Since W is non-normal, there is a non-normal identity 
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/ in W and / can be written in the form p ( x i , . . . , x i ) « xi , c ( p ) = r > 1. 
To show that W satisfies e, we will show that it can be deduced from the 
set N ^ ( I d V ) U {/} . This is obvious if f — e . So we assume that / ^ e and 
consider the sequence 

xi w p ( x i , . . . , x i ) , p ( x i , . . . , s i ) 

« p { t ( x 1, . . . , Xl), . . . , t ( x 1 , . . . , x i ) ) , p ( t ( x i , . . . , Xl), . . . , t ( x 1, . . . , Xl)) 

The first identity is / itself, the second one is a consequence of e e I d V 
and has complexity on each side greater or equal to r ( r > k ) , and the third 
identity is a consequence of /. So, t ( x i , . . . , x i ) « x \ can be deduced from 
N ^ { { I d V ) U { / } ) C I d W . This means, W satisfies e and using Lemma 4.4 
we have: I d V = E ( I d N f ( V ) U {e } ) C E { I d W U {e } ) C I d W and then 
W C V . m 

Given a defining set of identities for the variety V, we want to deter-
mine a defining set of identities for its k - n o r m a l i z a t i o n N ^ ( V ) . This is a 
generalization of an approach given by Melnik in ([Mel; 72]). 

DEFINITION 4 .8. Let B be an algebra of type r and let k > 1 be a natural 
number. Then we define £ l k ( B ) '•= { b € B \ there is a term t with c ( t ) > k 
and there are elements b i , . . . , b n such that t B ( b i , . . . , b n ) = 6}. 

Then we have 

LEMMA 4.9. F o r a n y a l g e b r a B w e h a v e B = f l o ( B ) > f l i ( B ) > ••• > • • •, 
w h e r e e a c h i s t h e u n i v e r s e o f a s u b a l g e b r a o f B a n d i s a 
s u b a l g e b r a o f C l k ( B ) . 

P r o o f . Let f be an operation symbol of type t of arity n. Further we assume 
that b i , . . . , b n € Then there are terms t i , . . . , t n with c ( t { ) > k and 
elements b ^ , . . . , b i n e B , i = 1 , . . . ,n such that bi = t f ( b , . . . , b i n ) . Then 

fB(b 1, ...,bn) = fB(ti(bn, •••, bin), • • • , t%(bnl, bnn)) 

and there is a term UJ of type T = f ( t i , . . . , t n ) ) such that 

U B ( b n , £>12, • • • , b n n ) = f B ( t B (fell, . . . , b i n ) , • • • , t B (6„1, . . . , b n n ) 

and this means f B ( b i , . . . , b n ) e iife(-B) since c(u>) > k . Therefore, f2jt(5) is 
the universe of a subalgebra of B . The rest is clear. • 

Now a description of algebras of the variety N £ ( V ) , where V is a non-
normal variety, will be given. 

THEOREM 4.10. L e t V b e a n o n - n o r m a l v a r i e t y o f t y p e r a n d l e t B b e a n 
d l g e b r a o f t y p e r . T h e n B € N j ^ ( V ) , w i t h k > 1 , i f f t h e f o l l o w i n g c o n d i t i o n s 
a r e s a t i s f i e d : 
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(i) nk(B) e v. 
(ii) There exists an identity u(x,..., x) « x G IdV (with c(u) > k) such 

that the mapping <p : B —• B, b i—> uB(b,... ,b), is an endomorphism of B 
which is the identity mapping on Qk(B). 

P r o o f . Suppose that B G Nj^(V). Since V is not normal, there is a 
non-normal identity x « u(x,... ,x) in V with c(u) > k. Since B G N£(V) 
and £lk(B) Q B, the algebras B and also 0,^(6) satisfy all identities s PH 
i in y with c(s),c(t) > k. If we can show that fifc(Z?) satisfies the non-
normal identity x « u(x,..., x), i.e. for any b G £lk(B), b = u 
then by 4.4, ttk(&) satisfies all identities in V. Indeed, since b G i)fc(-B) 
there is t G WT(X) with (c(t) > k) and there are £>i,..., bn e B such that 
b = tB(b\,..., bn). From x « u( x,...,x) G IdV and c(t) > k it follows 
that t(xi,..., xn) « u(t(xi,..., xn),..., t(xi,..., 

xn)) G IdN£{V). Then 
tB(bu ...,bn) = u B ( t B ( b u h ) , . . . , tB(bn,..., bn)) and b = u«(»)(6,. . . , b) 
since Ofc(S) C B and b € Clk(B). The last equality proves also that the 
mapping <p : B —> B given by b uB(b,..., b) is the identity mapping on 
nk(B). 

Now we prove that this mapping is an endomorphism on B. Let i € / , 
we have 

x & u(x,..., x) G IdV 
=> fi(u(xi,...,xi),...,u(xni,...,xn.)) « fi(xl,...xn.) 

« u{fi{x 1,... x n i ) , f i ( x 1,... xni)) G IdV 
fi(u(x i,..., xi),..., u(xni,..., xni)) • xrii)i • • • 1 fi(x 1) • • • xni 

)) G IdNftV) 

^Vbu...,bni€B, u B ( f B ( b h . . . , b n i ) , . . . , b n i ) ) 

= fB (uB(b^..., h),..., uB(bni,bni)) since B G N?(V). 
<=: Assume (i) and (ii) are satisfied. We will show that B G N%(V), that 

is, that for any identity s « t e IdV (where s and t are m-ary terms, m > 1) 
for which c(s), c(t) > k, we have s « i 6 IdB. Indeed, let b\,..., bm G B. 
Then <p(bi) G fik(B), 1 < i < m, since c(u) > fc. By (i) we have i)fc(^) G V. 
It follows that s ^ M & i ) , . . . , <p(bm)) = i^M&i),..., <p(bm)). 

Hence, we obtain the equality A ^ l ) , i p ( b m ) ) = tB(<p(b 0,..., <p(bm)) 
since flk (B) is a subalgebra of B. Moreover, we get 

<p(sB(bh...,bm)) = <p(tB(bh...,bm)) 
since y is an endomorphism (by (ii)). Then we get 

sB(b\,... ,bm) = tB(bi,.. .,bm) 
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since c(s), c(t) > k and the restriction of <p to ilk(B) is the identity mapping. 
Therefore s t G IdB. m 

Now we want to use this theorem to obtain an equational basis for N^(V) 
in terms of the identities in V. At first we consider the non-normal variety 
V = Mod{x « u(x,..., x)} where u is a term of complexity > k. Consider 
the following sets of equations of type r: 

S / i : = { f i { u ( x h . . . , x l ) , x 2 , . . . , x n i ) « fi(xi,u(x2, • •. ,X2),... ,xni) « ••• 

^ f i { x 1) • • • ) XUi — 1) U{XTli1 • • • J Xni)) 

» u ( f i ( x i , . . . , xn.),..., fi(x\,..., xni)), 

E ? : = [ J 2 / , ' 

r := {u(t(x 1,..., z n ) , . . . , t ( x i , x n ) ) « i ( x i , . . . , xn) I t 

is an n-ary term with c(t) > k}. 

Then we get 

L e m m a 4.11. Let k > 1, V = Mod({x r* u(x,..., x ) } ) with c(u) > k. Let E 

be the set E : = E r U T of equations of type r . Then iVfc(V) = M o d E . 

P r o o f . All identities of E are consequences of x « u(x,...,x) and have 
complexity > k on both sides. Therefore E C N^(IdV) and N f ( V ) C 

ModZ. 

Let B be any algebra in ModE. Define a mapping ¡pu : B —• B by 
ipu(b) = uB(b,..., b). The identities from ET are also satisfied in 0,^(8) € V. 
Using these identities it becomes clear that <pu satisfies 

VuUiiK • • •, K ) ) = uBUi{b i, • • •, K ) , • • •. f ? Q > l t b n i ) ) 

= f?(uB(b1,...,b1),...,uB(bni,...,bni)) 

The identities in T show that <pu is the identity mapping on Clk{B). Alto-
gether, by Theorem 4.10 we have B e N f ( V ) . m 

Lemma 4.11 can be generalized to non-normal varieties having an equa-
tional basis which can be divided in a normal part E and in non-normal 
identities of the form x PH UJ(X, ..., x) for terms UJ of type r. For each term 
we form the sets E ^ , E r J = U and r % E u ; = Y& U Then we 

f i iel U 

have the following theorem. 



26 K. Denecke, H. Hounnon 

THEOREM 4.12 . Let k > 1, V = Mod{E U U {x ~ uj(x, • - -, A;)} be a non-
jeJ 

normal variety where c(v.j) > k and where E consists only of k-normal 
equations. Then N£(V) = Mod{E U (J Euj'}. 

jeJ 

P r o o f . We have the equalities 

IdNA(V) = NZ(IdV) 
= N?(E(EU UW^,-^)^})) 

jeJ 
= E(NZ(E(E)) U U N^(E({Uj(x, x}))) by 4.3 

jeJ 

= £ ( £ ( E ) U IJ E ( E u 0 ) by 4.11 and since JVjf (E) = E 

= E(EU U(Su0)-jeJ 
Therefore, N£(V) = Mod(E U U (£U j))- • 

jeJ 
Theorem 4.12 can be used to obtain generating systems for the set of all 

identities for the /¿-normalizations NA(VMID),Na(VBE) and NA(RA(2,2)) 
which are helpful to determine all pre-solid varieties of semirings. Indeed, 
the generating systems given in the introduction for the varieties VMID, VBE 
and iM(2,2) satisfy the presumptions of 4.12 for k=l . We have to consider 

2 

the non-normal identities x « x + x and x « x • x and obtain E 1 = 
{x2y ss xy2 « (xy)2 & xy « (x + x)y « x(y + y) « xy + xy « xy} and 
E I + I - {2a: + y « x + 2y « 2(x + y)pyx-|-yRix2-|-y«x-|-y2«(x-|- y)2} . 
Using the distributive, associative and the medial identities and x + x « x2 

which are satisfied in any pre-solid variety of semirings we can shorten the 
sets of basis identities and obtain 
COROLLARY 4.13. The normalizations of nontrivial solid varieties of semi-
rings are defined by 

NA(VMID) - VMD({2x + y « x + y, x2y « xy, 3a; « 2x « x2 « a;3}), 
NA(VBE) = NA(VMID)({( X + y)(y + x)^xy + yx}), 
NA(RA(2,2)) = SR({x + y + z « x + z,xyz pa xz, (a: + y)(z + u) « 

xz + yu, x2 « 2a;}). • 

To determine NA(VMID) some identities are needed. 

LEMMA 4.14. Let V2 := VM£>({x2yz W xyz,2x + y + z « x + y + z, 3x « x 3 } ) . 
Then the following identities hold in Vi : 

(i) xy2z « xyz2 rs xyz, 
(ii) x3y « xy3 « (xy)3, 
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(iii) x3 + y « x + y3 « (x + y)3, 
( iv ) t 3 » t « 3 i / o r all t G W T ( X ) with c(t) > 2 . 

Proo f . To check (i), (ii) and (iii) is routine work. 
(iv) Let i be a term with c(i) > 2. Then by the distributivity, there exist 

U, i — 1,2,3 such that t « s G J d ^ with s 6 {*i*2*3,*i + *2 + *3>(*l + 
t 2 ) t 3 M t 2 + *3),*1*2 + *3,*1 + ¿2*3}. If S € {(*! + t2)t3,t1(t2 + ¿3), ¿1*2 + 
¿3, ¿1 + ^2*3}, then using again the distributivity there are terms t[, ¿ = 1,2,3 
such that t & t[ + t'2 + ¿3 G IdV2. Thus, we have to consider only the 
following cases: t m iii2*3 G IdV2 and * ~ ii + *2 + *3 G /dV2. Assume 
that t « ¿1*2*3 € iW2- Then the following identities hold in V2 : i3 ~ 
¿1*2*3*1*2*3*1*2*3 ^ * 1*2*3 ~ *i*2*3 ~ * by using the medial laws and the 
identities x2yz « xy2z « xyz2 w xyz 6 /dVij. For i ~ ii + ¿2 + *3 € /dV2, in 
a similar way as we did earlier, we obtain t3 « £ € IdV2, using i3 « i + t + i 6 
JdV2. • 
COROLLARY 4 . 1 5 . The variety N^O/mid) is determined by: 

N f ( V M I D ) = VMD({x2yz « xyz, 2x + y + z x + y + z , 3 x « x 3 } ) = : V 2 . 

P r o o f . Since all equations of the generating system of V2 are satisfied as 
identities in VMID and have the property that the complexities on both sides 
are greater or equal to 2, we conclude that IdV,1 C MN£(VMID)- For the 
opposite inclusion, we look for a generating system of IdVMiD which satisfies 
the conditions of 4.12. Let Ei be the set which contains the two associative 
laws, the 4 distributive laws and the 2 medial laws and x2yz & xyz, 2x + y + 

3 
z « x+y+z. Let E2 := {a:3 « x}, S3 {3x rs x} E := (J Ej. Now we have 

i=1 
to prove that ModE = VMID- Clearly, E C MVMID, then ModL D VMID-
It is left to show that x1 ¡=s x « 2x € -E(E). Indeed, 

x3 » x G E = > x4 ss x2 G £(E) 
=> x3&x2 e E(E) since x4 « x3 G £(E) 
= > x « x2 G -E(E) since x « x3 G E. 

In a similar way, one obtains x « x + x G E). Therefore, VMID = ModE, 
so N£(VMID ) = N^(ModE). Finally, we obtain the following equalities: 

N^ {MVMID) = N?(E(Z)) 

= i V f ( £ ( U E 0 ) 
i=l 

= £ ( E i U Ex3 U E3*) by 4.12. 

The sets E*3 and E3x are given by the identities of Lemma 4.14. Therefore 
NF (MVMID) Q /dV2. Altogether, we have proved that N£(VMID) = V*. • 
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5. The lattice of all presolid varieties of semirings 
First of all we will give an identity basis of the greatest pre-solid variety 

of semirings. Let Vgp be the class of all semirings in which the associative 
and the distributive laws are satisfied as pre-hyperidentities, that is, 

V^p = HPreMod{F(x,F(y,z)) 

« F(F(x, y), z), G(F(x, y), z) « f(G(x, z), G(y, z))}. 

Clearly, Vgp is the greatest pre-solid variety of semirings. We consider also 
the following variety: Vgp := VMDd^yz & xyz, 2x + y + zttx + y + z,3x& 

2x w x2 « x3}). 

The variety V^3) will also help us to find an equational basis for Vgp. In 
a first step we describe the identities of V ^ . 

LEMMA 5.1. We consider the following sets of equations: 

r i : = N f ( 2 , 2 ) , 
r 2 := {s w i I s,i G W(2,2)(-^0 and c ( s ) ^ 2, c(i) = 1 and t contains only one 
variable} U {s « t | s, t € and c{t) > 2, c(s) = 1 and s contains 
only one variable}, 

r3 := {s « t | s,t 6 W(2,2) (-^0 and c(t) = c(s) = 1 and each, s and t contain 

only one variable}. 
Then IdV<3) = Ti U r 2 U T3. 

2 
Proo f . By Lemma 3.3 it is clear that U I\- The identities xi « 

3=i 
3 

2xx » 2x2 ~ x\ show that T3 C IdV^l Therefore Q Q For the 
i=i 

3 
converse inclusion it is enough to show that U T j is an equational theory 

since a generating system of the set of all identities of V(3) is included in 
3 
|J i y This is left to the reader. • 

j=i 
Recall that an equation s w t i s called regular if in the terms s and t the 

same variables occur and that a variety V is called regular if IdV consists 
only of regular equations. Now we prove: 

THEOREM 5.2. The variety VMID V V^3) is the greatest pre-solid variety 

of semirings and is equal to the variety VMD({X2VZ & xyz,2x + y + z « 

x + y + z, 3x r* 2x « x2 « x 3 } ) . 

P r oo f . We show that Vgp = Vgp (see the beginning of Section 5). The 
inclusion Vgp C Vgp follows from Proposition 2.1. To prove the opposite 
inclusion, we show that Vgp is pre-solid. Here the idea is to show that Vgp = 
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VMIDVV^ . Since Vgp is the greatest pre-solid variety of semirings, this gives 
us Vgp C Vgp. From IdVgp C MVMID and IdVgp C IdV^ we obtain VMID C 
VGP and V& C VGP and therefore also VMID^V^ C VGP. Moreover, we have 

id(vMIDwW) = nvMwnidvW = idVMJDn( u r , ) - Nf(id(vMID))u 
3=1 

U (IdVMwnTj). We have also N?{M{VMID)) = M{N?{VMID)) C IdVgp 
j=2 
(see 4.15). Now we consider the intersections MVMID H Tj,j = 2 ,3 . Let 

MVMID H r 2 . Since VMID is regular, we can assume that s = x + x 
or s = x2 and t is built up only by the variable x and c(t) > 2. Therefore 
s « t € IdVgP. This proves that MVMID H r 2 C IdVgp. The inclusion 
MVMID H r 3 C IdVgp is also clear by using the regularity property of VMID 
and the identity x2 ss 2x. This finishes the proof that MVMID H IDV^ C 
IdVgp and then VGP = VMID V V^3) is pre-solid and is the greatest pre-solid 
variety of semirings. • 

The following lemmas are helpful in giving a complete description of the 
lattice Pre(SR). 

L e m m a 5.3. The pre-solid variety iL4(2,2) V V^ is determined by: 

RA(2;2) V = VD({X + y + x « 3a: « 2x sa x2 « x3 & xzx, x2yz « 
xyz, x + x + y + zttx + y + z}). 

P r o o f . Let V' := VD({X + u + x & 3x & 2x & x2 & x3 & xux, x2yz « 
xyz, x + x + y + z « x + y + z}). Clearly IdV' C 7d(iL4 (2>2) V V ( 3 ) ) and 

3 
Id{RA(2i2) V y W ) = IdNf(RA{22)) U U Id(iL4 ( 2 | 2) n r * ) . With the aim to 

i=2 
get a generating system of IDN2(RA^,2))^ we determine first a generating 
system of IdRA^fi) which satisfies the conditions of 4.12. Let fl be the union 
of t h e se t {x2yz fa xyz, x + x + y + z ^ x + y + z, xyx « x + z + x, x3 & 

x, x « 3x} and of the set which contains both associative laws and the 
four distributive laws. We will prove that E(Sl) — IdRA^^)- Clearly, all 
identities of fi hold in iL4(2 2), so E ( Q ) C IdRA(2)2). The converse inclusion 
will be true by proving that the identities x « x2, xyz & xz belong to E(Q), 
since the duality principle holds in the variety generated by fi. Indeed, 

(1) E(n) 

and 

( 2 ) xyx ttx + z + xEil => xyx ttx + x + xtaxK. xzx € E(fi). 

Then we get x4 « x3 € E(Cl). Hence x2 ~ x £ E(Q) (by using (1)). 
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We are going to prove the identity xyz fa xz. By (2) the following iden-
tities belong to E(£l): xz fa (xyzx)z fa xy(zxz) fa xyz. 

Now we form E 1 and E 3 x . We have E 1 = { x 3 y fa xy3 fa (xy)3 , x 3 + y ¡a 
x+y3 ss ( x + y ) 3 } U { i € W ( 2 , 2 ) P 0 I c ( 0 > 2 a n d i 3 ~ 0 a n d E 3 * = { ( 3 a ; ) y ~ 
x(3y) fa 3(xy), 3x + y fa x + 3y « 3(x + y ) } U { i <E W ( 2 ) 2 ) ( X ) I c(t) > 2 and 
3i « £}. 

A generating system of IdN2(RA(22^) is given by the union of the 2-
normal part of fI and E x 3 U E 3 z . Similarly as in the proof of 4.14, one can 
prove that IdN^(RA^ 2)) Q IdV'. The set fl IdRA(2,2) consists of the 
identities s fa i € IdRA^,2) such that c(s) = c(t) = 1 and the terms s and t 
are built up only by one variable. Thus, the outermost property of R A ( 2 2 ) 
guarantees that the equation s fa t is built up by the same variable x. Then 
s fa t is one of the following equations: 

o o 2 2 
X

I w i"- < / » I i» / » I ry. ry ry ' o* I n" /v." —' ry 
-p X X X, X X X , X X X, X X . 

But all of the aforementioned identities belong to IdV'. Therefore T3 n 
IdRA{2i2) C IdV'. 

Consider T 2 D I d R A ^ y Let s « x + x e r 2 n IdRA^-i) , with c(s) > 2. 
Then by distributivity, there exist variables or products of variables such 
that s fa si H l-sn € IdRA(2,2) H/dV with n > 1 and c(si H l-sn) > 2. 

If n = 1, then s = s i « x + x R i x 2 € IdRA(2>2). Moreover, we have 
s = si « i i i ! . . .ximx fa x2 € IdRA(2t2)> with m > 1, since c (s i ) > 2 and 
i?A(2 2) is outermost. Thus, we get s = s i « xx^ ... ximx fa x 2 fa x + x € 
IdV' because of xyx fa x + x € IdV'. 

If n > 2 then from si + -- - + s n ! : » x + x € IdRA^22)> it follows that 
both terms si and s n start and end with x. Moreover, using the identities 
xux fa2xfax2fax + y + xE IdV' , we get s i + sn fa x + x € IdV' and si + 
• • • -f s n fa x + x 6 IdV'. Hence s ~ s i H— • + s n ~ x + x £ IdV'. Therefore, 
we get the inclusion r 2 fl IdRA(2 2) C IdV' since x + x fa x 2 € IdV'. This 
finishes the proof of the fact that IdV' D Id (RA ( 2 i 2 ) V V ( 3 ) ) . • 

LEMMA 5.4. Let V be a pre-solid variety with V^ C F C Vgp, which is not 
regular, then V = V^ orV = RA(2,2) V V^. 

P r o o f . If V is not outermost, then by 3.9 we have V C F^3^ and V — V^3). 
If V is outermost then we will prove that V = RA(2t2) V V<-3\ Since V is 
not regular, we can assume that there is an identity p fa q e IdV such that 
the variable x 2 occurs in q and not in p. B y identification of all variables 
occurring in p with x i and by identification of all variables different from 
x 2 which occur in q by x i , we obtain the identity p' « q1 6 IdV. Since V is 
pre-solid, applying <JX1.X2>X1.X2 top' fa q', we obtain x™ fa x^x^x™3 6 IdV 
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where M > 2, mi, 7712, M^ > 1 since V is normal. Using the identities of 2.1 
we get x\ « a:2ZiZ2 € IdV and then Id{RA^2)\ZV^>) C IdV (see 5.3). For 
the opposite inclusion let s & t G IdV. By the distributive laws, there exist 
variables or products of variables ij, Sj, 1 < i < n, 1 < j < n', such that the 
identities 

t « t\ + • • • + tn 

and s m si H f- sn* belong to IdRA^fi) H IdV. Since s « t 6 IdV, we get 

¿1 H H tn « si H 1- sn> G i W . 
Using <7X?)G(X1)X2) and <ra2iG(xiiI2), we have s? « if G IdV, s2

n « i*, € w 

and si « ti e IdRA{2t2), sn ~ in/ G IdRA^fl), since V is outermost and 
Sj,ij,l < i < n, are variables or products of variables. So, we obtain in 
iM(2,2) the identities si + sn « t\ + tni and si + • • • + sn « t\ + • • • + tn>, 
since x + y + z& x + z € IdRA^,2) • Altogether, using the idempotency in 
the cases n = 1 or n' = 1, we have that s fa t G IdRA^,2)- That means that 
^4(2,2) Q V- S i n c e Q v . the inclusion 2) V V(3) C V is proved. • 

Now we prove 

LEMMA 5.5. Let V be a pre-solid variety with V ^ C V C Vgp. Then ( V A 

VMID) V F ( 3 ) = V. 

Proof . Assume that V is not regular. Then by 5.4, we have V G {V^3), V^ V 
¿L4(2)2)}- For V = V^ the equation is satisfied and for V = V^ V RAq,2) 
we have 

( (^ ( 3 ) V RA ( 2 T 2 ) ) A V M I D ) V V® = y(3) v RA{2>2) 

since RA{%2) C Vmid,RA(2>2) C V& V RA{2J2) implies RA(2>2) C (V^ V 

RA(2|2)) A VMID and then F^3) V iL4(2>2) C (W3 ) V JM (2 i2 )) A Vm/d) V y<3). 
On the other hand, (V^3 ) V RA{%2)) A VMID Q V RA(2T2)) and C 

V& V iL4(2i2) implies ( ( V ^ V ¿A ( 2 ,2 ) ) A VMID) V ^ C V® V iL4(2,2). 
Altogether this gives equality. 

Now we assume that V is regular and compare the identities satisfied 
in V and in (V A V M I D ) V V^3). It is clear that IdV = Id(V V W3 ) ) = 

IdN2(V) U U (IdVnTj), and Id{(V AVMID) VF ( 3 ) ) = IdNf(V AVMID)U 
j=2 

U {Id(V A V M I D ) n Tj). From IdN^(VMw) Q IdVgp (see 4.15) we have 
3=2 
IdNf(VMw) C IdV since V C Vg?. Moreover, we get N^(Id(VMwj) C 
N2(IdV). This means N^(V) C N}(VMID)- Then the equalities N 2 ( V ) = 
Nf(V) A N£(Vmid) = N2(V A VMID) can be derived (by 4.6). Using the 
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regularity of V and of V A VMID it is clear that IdV fl I j = Id(V A VjMID) H 
TJ, j = 2,3. This finishes the proof of IdV = Id((V A VMID) V V^). , 

It can be proved that the varieties iM(2)2) V VBE V V^ and 
VMID V V^3) are pairwise different. Now we prove our main result. 

THEOREM 5.6. Let V be a variety of semirings. Then V is pre-solid if and 
only if 

1. V is solid or V is the normalization of a solid variety of semirings, or 
2. y = Vc

(3), or 
3. there exists a solid variety S of semirings such that V = S V V"(3). 

Proof . <= is clear since all these varieties are pre-solid. 
we consider the following cases: 

(i): x2y PH xy € IdV. As a pre-solid variety of semirings, V satisfies the 
duality principle. Then we get x + x + ytzx + yE IdV. Therefore, using 
the identities of Proposition 2.1, we conclude that Id(NA(VMiD)) Q IdV, 
i.e., V C NA{VMID). 

If V is idempotent. Then V is solid (see 2.4). If not, then V is normal 
(see 2.1) and we have the equalities: 

NA{V A V M W ) = NA(V) A NA(VMW) (Lemma 4.6) 
= V A NA(VMID) since V is normal 
= V since V C NA(VMW). 

Moreover, as an idempotent pre-solid variety of semirings, V fl VMID is 
solid. Therefore, V = NA(V A VMID) is the normalization of a solid variety 
V A VMID-

(ii): x2y ~ xy (jL IdV. If V is not outermost then V = T or V = C or 
V = Vp] or V = F ( 3 ) (by 3.9). But the identity x2y « xy holds in T and C 
and does not hold in Vc

(3) and Therefore V = Vc
{3) or V = V(3). If 

V is outermost then we will show that V^ C V, and by 5.5 there exists a 
solid variety S := V A VMID of semirings such that V = Now let 
s « t 6 IdV. The variety V is normal, since otherwise V is idempotent and 
this contradicts x2y « xy 0 IdV. Thus we have to consider the following 
possibilities: 

(a) c(s) > 2, c(t) > 2. s w i G Ti C IdV®. 
(b) c(s) > 2 and c(t) = 1, or c(t) > 2 and c(s) = 1. 

We can assume that c(s) > 2 and c(t) = 1. If t = xy then identifying all 
variables in ¿rXy,xy[s] ~ P x y , x y \ t } which are different from x and y by x we 
get xmyn & xy with m + n > 3 since V is outermost and c(s) > 2. Since V 
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VMID V W 3 ) 
VMID V C 

VBE V V® 
VMID 

VBE 

% 2 ) W < 3 

^ 4 ( 2 , 2 ) 

V(3) 

T 
Figure 1 

is pre-solid, we get the contradiction x2y « xmyn « xy e IdV. Therefore s 

Since V is outermost and regular, we can assume that S R J Î e {x + y ~ 
x + y, x + y Pt xy, xy « xy, xy « x + y, x + x « x + x, x + x ss xx, xx « 
a; + x, xx « xx} . If x + y « xy € IdV then this leads to the contradiction 
V = C since x2y ^ xy $ IdV. The same goes for xy « x + y e IdV. Then 
s « t € r 3 Ç IdV^\ Altogether, IdV Ç IdV^. m 

In summary, the lattice of all pre-solid varieties of semirings is the lattice 
represented by the Figure 1. 
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