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ALL PRE-SOLID VARIETIES OF SEMIRINGS

Abstract. A semiring is an algebra with two binary associative operations + and
- which satisfy two distributive laws. Single semirings as well as classes of semirings are
important structures in Automata Theory. Nevertheless, not so much is known about
varieties of semirings. An identity ¢t ~ t' is called a pre-hyperidentity of a variety V of
semirings if whenever the operation symbols occurring in t and in t’ are replaced by
binary terms different from variables, the identity which results, holds in V. A variety
V of semirings is called pre-solid if every identity holds as a pre-hyperidentity in V. The
set of all pre-solid varieties of semirings forms a complete sublattice of the lattice of all
varieties of semirings. To get more insight into the lattice of all varieties of semirings we
will give a complete characterization of the lattice of all pre-solid varieties of semirings.

1. Introduction

Let W(3,2)(X2) be the set of all binary terms of type (2,2) built up by
variables from the alphabet Xy = {z1,z2} and by the operation symbols F
and G, (F for + and G for - ). Sometimes we will use the finite alphabet
{z1,...z,} or will denote the variables by z,y, z, u, etc. Hypersubstitutions
of type 7 = (2, 2) are mappings

o : {F,G} = W(5,9)(Xa).

A hypersubstitution o of type (2,2) can be extended to a mapping & defined
on the set W5 9)(X) of all terms of type 7, where X is an arbitrary countably
infinite alphabet of variables, by the following steps:

(i) 6[z] := z if z € X is a variable, and

(ii) 6[f(t1,t2)] := o(f)(6[t1], 6[t2]), f € {F, G} for composite terms.

The hypersubstitution o of type (2,2) which maps F to t and G to s
will be denoted by oy ;. Together with the hypersubstitution o;4 defined by

0:d(f) = f(z1,29), f € {F,G}, the set of all hypersubstitutions of type
T = (2,2) forms a monoid, denoted by Hyp.
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A hypersubstitution ¢ € Hyp is called a pre-hypersubstitution if o maps
neither F' nor G to a single variable. It is easy to see that the set Pre of
all pre-hypersubstitutions of type (2,2) forms a submonoid of the monoid
Hyp. An identity s = t in a variety V of semirings is called a hyperidentity
in V if for every o € Hyp the equations &[s] ~ &[t] belong to the set IdV
of all identities satisfied in V' and a pre-hyperidentity if this holds for every
o € Pre.

A variety V is called pre-solid (resp. solid) if all identities in V are
satisfied as a pre-hyperidentities (resp. as hyperidentities). To reduce the
complexity of checking, we introduce the following equivalence relation ~y
on the set Hyp:

o1 ~y 02 & 01(f) = o2(f) € IdV for f € {F,G} ([Plo;94]).

To check whether an identity is satisfied as a hyperidentity or as a pre-
hyperidentity in a variety V, it suffices to apply only one representative
from each ~y-class to the identity. Moreover, we have only to consider
the identity basis of V' (if there is any). For more information see [Den-W;
00]. We mention that a variety of semirings is pre-solid iff there exists a set
¥ of equations such that V is the class of all semirings which satisfy each
equation of ¥ as a pre-hyperidentity. We write V = Hp,.ModX and call V
the pre-hyper model class of %.

For simplicity, the variety of all semirings will be referred to as SR. If V
is a variety of semirings and X is a set of equations, by V(X) we denote the
subvariety of V' which is generated by the set X. For reference, below we list
some varieties to be used in this paper:

Vp — the variety of all distributive semirings, i.e. the variety of semirings
satisfying also the two other distributive laws: z1 + 22 23 =~ (z1+2) - (z1 +
z3) and 1 - To + 23 = (T1 + 23) - (T2 + 23);

VMp — the variety of all medial and distributive semirings, i.e. the
variety of distributive semirings satisfying the two medial laws z; + o +
T3+ T4~ T+ 23+ 22+ 24 and Ty - To - T3 - Ty R T1 - T3 - T2 - Ty,

Vumip — the variety of all medial, idempotent and distributive semirings,
i.e.

Vmip = Vup({z1 - 71 = 71,21 + 711 = 11});

Ve = Vuip({{z1+z2) - (x2 + 1) R 21 - 22 + 22 - 21});

RA2,2 = SR({:L‘1+.’L‘2+:1:3  r1+1T3,T1°T2 T3 R T1-I3, (:1:1+z2)-(:v3+a:4)
N Ty T3+ To T4, T T1 R T, T+ T R T1});

T — the trivial variety, i.e. T := Mod{z) = z2}.

By PS(SR) we denote the lattice of all pre-solid varieties of semirings.

Our first aim is to give some necessary conditions for a variety of semirings
to be pre-solid and to determine all minimal elements in the lattice PS(SR).
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2. Necessary conditions for pre-solid varieties of semirings

In this section we want to show that all identities s = t in a pre-solid,
not idempotent variety of semirings are normal. This means that s and t
are the same variables or neither s nor t are variables. If all identities of a
variety are normal, we will speak of a normal variety.

We will say that a variety V of type (2,2) satisfies the duality principle
if for every identity s ~ t € IdV, the equation arising from s =~ t by
exchanging the operation symbols F' and G is also satisfied as an identity
in V. Since 0g(z, z,),F(z1,22) 1S & pre-hypersubstitution it follows that every
pre-solid variety of semirings satisfies the duality principle.

PROPOSITION 2.1. Let V' be a nontrivial pre-solid variety of semirings. Then

1. V is a variety of medial and distributive semirings,
2. the following identities are satisfied in V:

w%~x2-m3 RT1-Tp T3, 2x1+Tot+xT3 ™ T1+To+ 123,321 21~ T
3. V is either idempotent or normal.

2 o 3
1 ~.CL‘1,

Proof. 1. As a consequence of the duality principle in V four distributive
laws are satisfied. Applying 0¢(q; z,),G(z1,22) tO the distributive identity

G(z1, F(zg, x3)) = F(G(z1, z2), G(z1, 3))
gives

G(z1,G(z2, z3)) =~ G(G(z1, z3), G(z1, 3))
and using 0g(z,,2,),G(z2,z;) ON€ Obtains

G(G(z3,12),z1) = G(G(z3, x1), G(z2, 71)),
i.e. the identities

2 (z2-z3) = (1 - z2) - (x1 - 23) (%)
and
(z3-122) - 21 =~ (z3-71) - (T2 - T1)
are satisfied in V. This gives
T1-To T3 T4~ T1 T3 Ty T3 T4~ T1-T3 Tg- I4.

The second medial law follows from the duality principle.

2. Using the identity (*) and the medial law we have 7 - 79 - z3 =
T1-T9-T1-T3 & T3-To-x3. This gives r} ~ z3. Applying OG(z1,21),G(z1,21) tO the
associative identity, gives z} ~ x? and altogether we have z? =~ 3. Applying
OF(z1,22),G(z1,71) to G(:Bl,F(:IIQ,:Z:3)) ~ F(G(:I:l,:rg),G(:Bl,:Eg)) one obtains
1% ~ z2+2? and the duality principle leads to z; +z; =~ (z14+1)-(x1+21) ~

422 ~ 22?3 ~ 22 using the identity 4z1 ~ 2x; which is dual to =} ~ z3.
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3. Assume that V is not idempotent and that ¢ ~ z; is an identity in V.
Using 06z, z,),G(z1,2) @0d identifying all variables in the resulting equation,
we obtain 27 ~ x; € IdV for some n > 1. If n > 1 then from z3 ~ z? € IdV
we have 27 ~ z? € IdV and then 2? ~ z; € IdV. This is impossible since V
is not idempotent and thus n = 1 and ¢t = z;. This shows that V is normal.

From 2.1 (3.) the following proposition is clear.

COROLLARY 2.2. The complete lattice PS(SR) of all pre-solid varieties of
semirings splits into two complete sublattices, the sublattice PS;gem(SR) of
all idempotent pre-solid varieties of semirings and the sublattice PSn(SR)
of all normal pre-solid varieties of semirings. m

Now we characterize the idempotent part of the lattice PS(SR). A char-
acterization of all solid varieties of semirings was given in [Den-H;00].

LEMMA 2.3. The lattice S(SR) of all solid varieties of semirings is the
4-element chain T C RA(39) C Vpe C VMmID. »

PROPOSITION 2.4. A pre-solid variety of semirings is idempotent iff it is
solid.

Proof. By 2.3 the lattice S(SR) consists exactly of the four varieties T,
RA(39), VBE, and Vyrp. Each of these varieties is idempotent and as a
solid variety also pre-solid.

Assume now that V' is an idempotent pre-solid variety of semirings. That
means, if s = t € IdV and if o is an arbitrary pre-hypersubstitution, then
G(s] = 6[t] € IdV. Because of the idempotency each of the hypersubstitu-
tions from the set {0y, ¢, 02y, 0 z;, 00 2y | £/ € W(2 2)(X)} is equivalent
with the pre-hypersubstitution 0,2 ;2 or o 222y © = 1 2, ' € Wpa(X)
with respect to the relation ~v . This shows that s ~ ¢ is preserved by any
hypersubstitution of type (2,2) and therefore V is solid. =

The previous proposition shows that the variety RA, 9 is the least non-
trivial element of PS;gem(SR). Now we ask for the least variety in PSy(SR).

PRrRoOPOSITION 2.5. The variety C = Mod{z; + o = z3 - 24} is the least
normal pre-solid variety of semirings.

Proof. It is well-known that C is the least normal variety of type (2,2)
(see e.g. [Mel;72]). Clearly, C is a variety of semirings and it is only to prove
that V is pre-solid. But this is also clear and is left as an exercise to the
reader. =

To offer more insight into the lattice of all pre-solid varieties of semirings,
the notions of an outermost equation and of an outermost variety are needed.
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DEFINITION 2.6. An equation s = t is outermost, if the terms s and ¢ start
with the same variable and end also with the same variable. A variety V is
called outermost, if all identities of IdV are outermost.

Clearly, the variety C is not outermost. Let V be a nontrivial pre-solid
variety of semirings which is not outermost. Then V is not idempotent since
all nontrivial idempotent pre-solid varieties of semirings are outermost (see
2.3 and 2.4). Therefore, V is normal (see 2.1) and then C C V (by 2.5).
Thus, C is the least nontrivial pre-solid variety of semirings which is not
outermost.

3. All non-outermost pre-solid varieties of semirings

For n > 1, we consider the following equations:

Ty +xe+ ...+ Ry1+y2+...+Yn (Nf),

T1Ty.. . Tn R Y1Y2- . Yn (N5).

THEOREM 3.1. Let V' be a pre-solid variety of semirings. Then the following
conditions are equivalent:

1. V is non-outermost.
2. 22 ~ 23 € IdV.
3. For everyn >3, NF € IdV and NS € IdV.

Proof. 1.=2.: Since V is non-outermost, we can assume that there exists
an identity s ~ t € IdV such that s starts with the variable z; and ¢ with
the variable zo. Applying 0¢(z,,21),G(z1,2,) t0 the identity s ~ ¢, gives zT* =
=% € IdV with m > 2,n > 2. Therefore, we get 3 ~ z3 € IdV, since z3 ~
z? € IdV (by 2.1).

2.=3.: Let n > 3. Then Proposition 2.1 and the presumption show that

the following identitiesholdin V : ziz5...z, =~ m%xg e Ty R mgzg N
rdzs. . TR R RYI R RYIY. . Yn
By the duality principle we get also Nf € IdV.

3.=1.: This implication is obvious. m

Our next aim is to show that the variety
VO .= Vp({Nf,N§, 3z; ~ 221 ~ 22 ~ 23})

is the greatest non-outermost pre-solid variety of semirings.

To deccribe the identities of V(3) we need the following concept of com-
plexity for terms.
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DEFINITION 3.2. The complezity c(t) of a given term t is inductively defined
by c(t) = 0 if t is a variable and by
C(t) = c(fi(tl’ cee ’tni)) = Z c(tj) +1
j=1
if ¢ is the composite term f;(t1,...,tn;).

LEMMA 3.3. For every term t € Wy 9)(X) with c(t) > 2, the equation t ~ z?
is an identity in VO,

Proof. If ¢t is built up only by using one of F or G, then the defining
equations of V) show that the identity t ~ z? is satisfied in V). If ¢
contains both operation symbols, then by the distributive laws we get the
identity t ~ t; + t2 + --- + t, where t1,...,t,,(n > 3) are variables or
products of variables. Using N¥ and 3z; ~ 2z; ~ z? ~ z} we obtain

tzt1+---+tnzt1+t2+t3z3x1z2x1zz%.-

THEOREM 3.4. The variety V® is the greatest non-outermost pre-solid va-
riety of semirings.

Proof. We prove first that
V) = Hp, (92 Mod{G(G(z1, 22), 73) ~ G(z1, G(x2, 73))
~ G(ul, G('U.g, U3)), G(F(:L‘l, 2:2), :l:3) ] F(G(.’L‘l, .’1:3), G(.’ltz, 2:3))} =V
By the duality principle it is clear that V is a pre-solid variety of semir-
ings. Therefore, Proposition 2.1 shows that IdV® C IdV, ie., V C V3,

For the opposite inclusion we show that the variety V(3 satisfies the
equations

F(F(Q:1,II.‘2),.’L‘3) ~ F($1,F(.’L‘2,$3)) ~ F(Ul,F(UQ,Ug)) (*)
and
G(F (21, T2), z3) = F(G(z1, 73), G(22, 73)), (#x)

as pre-hyperidentities. Let o0 be a pre-hypersubstitution. Then the terms
o(F) and o(G) have complexities greater or equal to 1. Moreover, the equa-
tions (*) and (**) have the property that the complexities of both terms
of each equation are greater or equal to 2. Then applying ¢ to (*) and to
(**) gives equations having the property that the complexities of the terms
are greater or equal to 2 or the terms are identical with z? in V® because
of the identity z? ~ z3. By 3.3 such equations are satlsﬁed as identities in
V3, Altogether we have V® = V and V® is a non-outermost pre-solid
variety of semirings. Furthermore, Proposition 3.1 ensures that V) is the
greatest non-outermost pre-solid variety of semirings. m
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To find out all non-outermost pre-solid varieties of semirings we have to
check the subvariety lattice of V®). The variety V(® is not commutative.

Therefore, we consider the proper subvariety Vc(3) defined by
Vc(3) =Vv0O (z1 + 22 = 29 + 71, T1T2 = ToT1).

THEOREM 3.5. The variety 0(3) is the gredtest pre-solid variety of commu-
tative semirings.

Proof. To show that Vc(a) is pre-solid, we have only to prove that the
commutative law is satisfied as a pre-hyperidentity in Vc(a). Considering the
identities in V¥ it becomes clear that we have to substitute the binary terms
z?, 7122 and ) + 2 in G(z1,22) ~ G(z2,x;). This gives easily equations
which are satisfied in Vc(s). .

To determine all pre-solid varieties of commutative semirings, we de-
termine all elements of the free algebra generated by n variables over an
arbitrary pre-solid variety of commutative semirings different from C.

PROPOSITION 3.6. Let V' be a nontrivial pre-solid variety of commutative
semirings different from C and let Fy(n) be the V -free algebra generated
by an n-element alphabet. Then Fy(n) := {[zilfav | ¢ € {1,...,n}} U
{lzi - zj]1av, [z + z5lav | 5,5 € {1,...,n}i < 5} U {[z]1av}.

Proof. It is clear that Fy/(n) contains not more than the given elements.

To show that Fy(n) contains exactly the given elements, we can prove that
there is no collapsing of classes unless V is trivialor V=C. »

This shows that there is no variety between C and Vc(a) and since C is
an atom in the lattice of all varieties of semirings, we have

PROPOSITION 3.7. There are exactly three nontrivial pre-solid varieties of
commutative semirings: T, C, and Vc(3) :TcCc Vc(s) .

In a similar way as in the proof of 3.6 we have:

PROPOSITION 3.8. Let V be a nontrivial non-outermost pre-solid variety of
semirings which is not commutative. Then Fy(n) := {[z;]1av | 1€{L,...,n}}
U {lzi - zjlnav, [oi + z5]rav 14,5 € {1,...,n} i # 5} U {[zf]1av}. =

COROLLARY 3.9. There are ezactly three non-outermost pre-solid varieties
of semirings: T,C, V&, and V®: Tcccv®. a

To get more pre-solid varieties of semirings we are primarily interested
in the normalization of a variety and its generalization.
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4. k-normalizations of varieties

As we learnt in Section 3, the lattice PS(SR) of all pre-solid varieties of
semirings splits into two parts: the lattice PS;gem(SR) of all solid varieties
of semirings and the lattice PSy(SR) of all normal varieties of semirings. To
study the normal part we want to generalize the results of Melnik [Mel;72],
Graczyniska [Gra;89] and other authors on normalizations of varieties to
k-normalizations.

Let Alg(7) be the class of all algebras of type 7. Now we consider the set

NE(r) = {s mt € Wiy (X)? | els),elt) 2 k} Ufs m £ € Winy(X)? | s =)
and define the operators NF and N as follows:
N P(W(X)?) — P(W(X)?)
)Y — TN NE(T)
N Alg(r) — Alg(r)
K — ModNE(IdK).
We generalize the concepts of normal equations and normal varieties in

the following way:

DEFINITION 4.1. An equation s = t is said to be k-normal for k € N, (k > 1)
if s ~ t € NF(r); a variety V is called k-normal if NA(V) = V. The variety
NA(V) is called the k-normalization of V; (normal equations or varieties are
k-normal for k = 1).

For a set ¥ of equations of type 7 by E(X) we denote the closure of ¥
under application of the five derivation rules for identities and ¥ = s =~ ¢
means that there is a formal deduction of the equation s = t starting from
the set ¥ of equations and using the five rules of consequences. A set ¥ of
equations of type 7 is called an equational theory if E(X) = X.

One can easily prove that

LEMMA 4.2. Let k be a natural number and k > 1.

1. The set NE(7) is an equational theory and the operator NF is a kernel
operator which preserves arbitrary unions and intersections.

2. The operator N{ is a closure operator on the lattice L(1) of all vari-
eties of type T and the class of all fized points with respect to N,;‘1 forms a
complete sublattice of the lattice L(T). m

Further, the operator N, ,f: satisfies the following additional properties:
PROPOSITION 4.3. Let (£;)jcs be a family of sets of equations of type T.

Then we have
E(NE(JEE;))) € NEEW =)
jeJ jeJ
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and
E(Ng (U B(Z)) = NE(E =),
jeJ jed
if there exists an equation z = t(z,...,z) € U X;, with c(t) > k.
jeJ

Proof. Let X,%' be two elements of the family (Z;);es. From E(X) U
E(X) C E(ZUY) it follows that E(NF(E(Z)UE(X))) € NE(E(ZuUX"))
since NF(E(X UY')) is an equational theory. _

Conversely, we have to prove that, if p~ ¢ € NE(7) and TUY' = p =g,
then NZ(E(Z) U E(X)) | p ~ g. Without restriction of the generality
we may assume that e := = = t(z,...,z) € . If one substitutes in p
and in g for every variable the term t(z1,...,z1) and denotes the resulting
terms by p* and by g*, respectively, then from ¥ UY' = p = ¢ one obtains
TUY E p* ~ ¢*,p ~ p*,q = ¢*. Since p ~ p*,q ~ ¢* € NF(7), one has
pp* g~ g* € NE(E(Z)).

Assume that lg,l1,...,l;,p = ¢ is the series of all identities which are
needed to derive p &~ ¢ from ¥ U X'. If one substitutes in each of these
identities for the variable z; the term t(z;,...,z;), i =1,...,n (where one
assumes that each of the identities [; contains at most n variables, one
gets a series of identities I3, (], ..., !, p* = ¢*, where each of these identities
belongs to E(NE(E(Z))UNE(E(L"))). Further, 3,13, . .., 1} are all identities
which are needed to derive p* ~ ¢* from NF(E(Z)) U NF(E(Y')). (Remark
that we use here the fact that the substitution rule can be permuted with
applications of the other four derivation rules for identities). Altogether we
have NE(E(Z)) UNE(E(Z")) & p ~ p*,q ~ ¢*,p* ~ ¢* and therefore also
NE(E(Z))UNE(E(X)) k= p ~ ¢. This result can be generalized to arbitrary
families of equations. m

It is well-known that the normalization N4 (V') of any non-normal variety
V of type 7 covers V in the lattice of all varieties of type 7 ([Mel;72]). This
result can be generalized as follows:

LEMMA 4.4. Let V be a non-normal variety, with a non-normal identity e of
the formt(z1,...,x1) ~ 1. Then IdV = E(NE(IdV)U{e}) for anyk > 1.
Proof. Since NZ(IdV)u{e} C IdV, we have also E(NE(IdV)u{e}) C IdV
for every k > 1. We prove the opposite inclusion. Let c¢(t) = p and let
u = v be an arbitrary identity in V. Then V satisfies also u* =~ v* and
u* ~ v* € NE(IdV). Since u ~ u*,v = v* € E(NE(IdV) U {e}), we get
umv € E(NF(IdV)U{e}) and IdV C E(NE(IdV)U{e}). Nowlet 1 < k <
p, then Nf(IdV) C NE(IdV) and we have IdV = E(NI;E(IdV) U{e}) C
E(NE(IdV) U {e}) and this gives the equality E(NF(IdV) U {e}) = IdV
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for k < p. Since p can be chosen greater than any natural number, we have
proved our lemma for arbitrary £ > 1. u

COROLLARY 4.5. Let V' be a nontrivial non-normal variety. Then for every
k > 1 the operator NA : L(V) — L(NA(V)) defined by U — NA(U) is an
injective lattice homomorphism.

Proof. First, we show that N, ,;4 is meet-preserving. Since V is not normal,'
there exists an identity e := z = t(z,...,z) € IdV, with ¢(t) > k. Let
Uy, Uy € L(V). Then z = t(z,...,z) € IdU; U IdU; and we have the
following equalities:
Id(Néq(U]_ A U2)) = NkE(Id(Ul A UQ))
= NE(E(Id(U1) U 1d(U)))
= E(NE(Id(U1) U Id(Uz))) by 4.3
= E(NE(Id(U1)) U NE(1d(Uy)))
= E(IdNA(Uy) U IdNA(US))
= Id(Ng(U1) A NgH(U2)).
Hence NA(Uy A Up) = NA(Uy) A NA(U,). Clearly, N is join-preserving.
Therefore, we conclude that N, ,;4 is a lattice homomorphism.
NAUY) = NA(Us) = NE(1dUy) = NE(IdUs)
= NE(IdUy) U {e} = NE(IdUs) U {e}
= E(NE(IdU1) U{e}) = E(NE(IdUs) U {e}).
= I1dU; = IdU; (by 4.4)
= U1 = U2.
Therefore N{ is injective. u
In a similar way as we did in the proof of Corollary 4.5, we can show
LEMMA 4.6. Let k > 1 and let V be a non-normal variety of type 7. Let V'
be a variety of type . Then NA(V AV') = NAV)ANA(V'). »

In Corollary 4.5 the operator N,;‘1 defines a lattice embedding of the
lattice £(V) into the interval [NA(T), NA(V)]. The following lemma shows
that the non-normal subvarieties of N{(V) are subvarieties of V.

LEMMA 4.7. Let V be a non-normal variety. Let W be a subvariety of
NA(V). If W is non-normal, then W C V.
Proof. In V there is a non-normal identity e € IdV of the form t(zy,...,z1)

~ z; for some term t with c(t) > k. We show at first that the variety W
satisfies the identity e. Since W is non-normal, there is a non-normal identity
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fin W and f can be written in the form p(z1,...,z1) ® z1, ¢(p) =7 > 1.
To show that W satisfies e, we will show that it can be deduced from the
set NF(IdV) U {f}. This is obvious if f = e. So we assume that f # e and
consider the sequence

=~ p(mla (RRN) xl)ap(zla s 7$1)
~p(t(z1,...,21), ..., (21, ..., 21)),p(t(z1, ..., 21), ..., t(Z1,. .., 1))
~t(z1,...,T1)-

The first identity is f itself, the second one is a consequence of e € IdV
and has complexity on each side greater or equal to » (r > k), and the third
identity is a consequence of f. So, t(z1,...,%1) ~ z; can be deduced from
NE((IdV) U {f}) C IdW. This means, W satisfies e and using Lemma 4.4
we have: IdV = E(IdNA(V)U {e}) € E(IdW U {e}) C IdW and then
WCV. m

Given a defining set of identities for the variety V, we want to deter-

mine a defining set of identities for its k-normalization NZ(V). This is a
generalization of an approach given by Melnik in ([Mel; 72]).

DEFINITION 4.8. Let B be an algebra of type 7 and let £ > 1 be a natural
number. Then we define Qx(B) := {b € B | there is a term ¢ with c(t) > k
and there are elements by, ..., b, such that t5(b,...,b,) = b}.

Then we have

LEMMA 4.9. For any algebra B we have B = Qo(B) > 4 (B) > --- > -+,
where each Q41(B) is the universe of a subalgebra of B and Qi41(B) is a
subalgebra of Qx(B).

Proof. Let f be an operation symbol of type 7 of arity n. Further we assume
that by,...,b, € Qg(B). Then there are terms t1,...,t, with c¢(t;) > k and
elements b;,,...,b;, € B,i=1,...,n such that b; = t3(b;,,...,b;,). Then
FB(ba, .., ba) = B (b1, .- b1n)y -, 8B (bt - -, bun))

and there is a term w of type 7 (w = f(t1,...,t,)) such that

wB(blly blZ’ ce ,bnn) = fB(tlB(blla Ty bl’n)) cee 7t5(bnly feey bn’n)
and this means fB(by,...,b,) € Qk(B) since c(w) > k. Therefore, Qi (B) is
the universe of a subalgebra of B. The rest is clear. =

Now a description of algebras of the variety NZ(V), where V is a non-
normal variety, will be given.

THEOREM 4.10. Let V' be a non-normal variety of type T and let B be an
algebra of type 7. Then B € N,f(V), with k > 1, iff the following conditions
are satisfied:



24 K. Denecke, H. Hounnon

(i) (B) e V.

(ii) There ezists an identity u(z,...,z) ~ z € IdV (with c(u) > k) such
that the mapping ¢ : B — B, b uB(b,...,b), is an endomorphism of B
which is the identity mapping on Q(B).

Proof. =: Suppose that B € N,;“(V). Since V is not normal, there is a
non-normal identity = ~ u(z,...,z) in V with c(u) > k. Since B € N (V)
and Qx(B) C B, the algebras B and also Q;(B) satisfy all identities s ~
t in V with c(s),c(t) > k. If we can show that §(B) satisfies the non-
normal identity z =~ u(z, . ..,z), i.e. for any b € Qx(B), b= u*B)(b, ... b),
then by 4.4, Q(B) satisfies all identities in V. Indeed, since b € Qi(B)
there is t € W, (X) with (c¢(t) > k) and there are by, ...,b, € B such that
b= tB(by,...,bs). From z =~ u(z,...,z) € IdV and c(t) > k it follows
that t(z1,...,2Zn) = u(t(21,...,Tn),.- ., t(T1,...,20)) € IdNA(V). Then
tB(by,...,by) = uB(tB(by,...,b1),...,t5(bn,...,by)) and b = uf§(3)(b, ...,b)
since Qx(B) C B and b € Q(B). The last equality proves also that the
mapping ¢ : B — B given by b— uB(b,...,b) is the identity mapping on
Qr(B).

Now we prove that this mapping is an endomorphism on B. Let ¢ € I,
we have

z~u(z,...,z) € IdV

= fi(u(z, .., z1)y. s WZnyy - -+, Zny)) = filz1, ... Tny)
~u(fi(z1,...Tn)y ..., filz1,... Tp,)) € IdV
= filu(z, ..., 21)y s u(ZTnyy - - -y Zny))

~u(fi(z1,...Tn,), ..., filz1,...2,)) € IANL (V)
=Y bi,... b, € B, WB(fE(b1,...,bs), ..., fBb1,...,bn))
= fPWBb1,...,b1),...,u5(bn,, ..., ba,)) since B € NE(V).
<: Assume (i) and (44) are satisfied. We will show that B € N3 (V), that
is, that for any identity s ~t € IdV (where s and t are m-ary terms, m > 1)
for which ¢(s), ¢(t) > k, we have s =t € IdB. Indeed, let by,...,b, € B.
Then ¢(b;) € Qk(B),1 < i < m, since c(u) > k. By (i) we have Qx(B) € V.
It follows that s*®B)(p(by), ..., @(bm)) = t%*B)(p(by),.. ., @(bm)).
Hence, we obtain the equality
Bp(B1), -, @ (bm)) = B((b1) - -, 9(bm)
since x(B) is a subalgebra of B. Moreover, we get
o(sB(b1,...,bm)) = @(tB(by,...,bm))
since ¢ is an endomorphism (by (3z)). Then we get
sB(b1, ..., bm) =tB(by,...,bm)
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since ¢(s), ¢(t) > k and the restriction of ¢ to Qx(B) is the identity mapping.
Therefore s~ t € IdB. =

Now we want to use this theorem to obtain an equational basis for NA(V)
in terms of the identities in V. At first we consider the non-normal variety
V = Mod{z ~ u(z,...,z)} where u is a term of complexity > k. Consider
the following sets of equations of type 7:

%= {filw(zr, ... 21), 20, .- T, = fizr, u(@e, o, 22), .y Tn) R
~ fi(Z1,y .y Bni=1, U(Zny, - - o Tny))
~u(fi(zy, ... Zn), .-, filZ1, .. Zny)),
Y= U %,
i€l

L= {u(t(z1,...,2Zn), .., t(z1,...,2Z0)) R t(z1,...,2Zn) | L

is an n-ary term with c(t) > k}.
Then we get

LEMMA 4.11. Let k > 1,V = Mod({z = u(z, ...,z)}) with c(u) > k. Let &
be the set ¥ := X UT of equations of type 7. Then Ni(V) = Mod¥.

Proof. All identities of ¥ are consequences of z ~ u(z,...,z) and have
complexity > k on both sides. Therefore ¥ C NEZ(IdV) and NA(V) C
ModX.

Let B be any algebra in Mod¥. Define a mapping ¢, : B — B by
wu(b) = uB(b, ..., b). The identities from I, are also satisfied in Q4 (B) € V.
Using these identities it becomes clear that ¢, satisfies

Ou(fB(b1y. .. b)) = uB(fB (b1, ... bn), ..., fB(b1,. .., b))
= fBuB(by,...,b1),...,uB(bn,,...,b0;))
= fiB(‘Pu(bl)v .- -:‘Pu(bni))-

The identities in I" show that ¢, is the identity mapping on Q(B). Alto-
gether, by Theorem 4.10 we have B € NA(V). =

Lemma 4.11 can be generalized to non-normal varieties having an equa-
tional basis which can be divided in a k—normal part ¥ and in non-normal
identities of the form z ~ u;(z, ..., z) for terms u; of type 7. For each term

we form the sets 2}‘?‘,2‘,” = U 21;," and %, X% = ¥ UT%. Then we
k3 ’ieI ?
have the following theorem.
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THEOREM 4.12. Let k > 1,V = Mod{X U U {z =~ uj(z,...,z)} be a non-
jeJ

normal variety where c(u;) > k and where ¥ consists only of k-normal
equations. Then NA(V) = Mod{Z U |J T%}.
jeJ

Proof. We have the equalities
IdNA(V) = NE(14v)
= NE(E(T Ung{uj(z, S Z) R T}))
= E(NZ(E(D)) UjLGJJNf(E({Uj(-’B, .-+, z) = z}))) by 4.3
= E(E(X)U | E(Z%)) by 4.11 and since NF(Z) =%
jeJ
= E(XU | (E%)).
jeJ
Therefore, NA(V) = Mod(Z U | (Z%)). =
jeJ

Theorem 4.12 can be used to obtain generating systems for the set of all
identities for the k-normalizations N#(Vaip), NP (Vae) and NP (RA(22)
which are helpful to determine all pre-solid varieties of semirings. Indeed,
the generating systems given in the introduction for the varieties Visrp, Vage
and RA(y9) satisfy the presumptions of 4.12 for k=1. We have to consider
the non-normal identities z ~ z + 2 and = ~ z - ¢ and obtain ¥ =
{tly~zy’ ~ (zy)? ~zy ~ (z+2)y =~ z(y + y) = zy + ry ~ zy} and
D = {2ty m e+ 2y~ 2z ty) Rty ty ety x (2 +y)?)
Using the distributive, associative and the medial identities and z + = ~ 22
which are satisfied in any pre-solid variety of semirings we can shorten the
sets of basis identities and obtain

COROLLARY 4.13. The normalizations of nontrivial solid varieties of semi-
rings are defined by

NA(Vumip) = Vup({2z +y ~ z + y, 2%y = zy, 3z ~ 2z ~ 22 ~ 23}),

N4(Vgg) = N4(Vuip)({(z + y)(y + z) = zy + yz}),

NA4RAp2) = SR{z+y+zm z+ z,2yz = 32, (T + y)(z + u) =
Tz + yu,z? ~ 2z}). =

To determine N4'(Varp) some identities are needed.

LEMMA 4.14. Let V3 := Vi p({z?yz =~ zyz,2z+y+2 =~ +y+2,3z ~ z3}).
Then the following identities hold in Vy:

(i) zy%z =~ zy2? ~ zyz,

(it) 2y ~ zy® = (zy)?,
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(i) 2° +y ~ 2+ ~ (2 +9)%,

(iv) 8 = t ~ 3t for all t € W, (X) with c(t) > 2.
Proof. To check (i), (ii) and (iii) is routine work.

(iv) Let t be a term with ¢(¢) > 2. Then by the distributivity, there exist
t;, 1 = 1,2,3 such that t =~ s € IdV with s € {t1t2t3,t1 + s + t3,(t1 +
to)ts, t1(ta + t3),t1ta + t3,t1 + tata}. If s € {(t1 + ta)ts, t1(t2 + 3), tat2 +
t3, t1+tat3}, then using again the distributivity there are terms ¢,z = 1,2, 3
such that ¢ =~ t] + t;, + t5 € IdVa. Thus, we have to consider only the
following cases: t = titotz € IdVy and t = t; + t2 + t3 € IdV,. Assume
that t ~ titats € IdV,. Then the following identities hold in V5 : 3 ~
titotstitatstitats ~ t3t3t3 ~ titots ~ t by using the medial laws and the
identities z?yz ~ ry?z ~ zy2? ~ zyz € IdV;. For t ~ t; +ty + t3 € IdVs, in
a similar way as we did earlier, we obtain t3 ~ t € IdV3, using t3 ~ t+t+t €
IdVe. m

COROLLARY 4.15. The variety N§(Vasrp) is determined by:
N2A(VM1D) = VMD({:J:2yz rryz,2r+y+zrr+y+2z,3r = xs}) =: V5.

Proof. Since all equations of the generating system of Vs are satisfied as
identities in Vjs;p and have the property that the complexities on both sides
are greater or equal to 2, we conclude that IdVy C IdN4#(Vasrp). For the
opposite inclusion, we look for a generating system of IdVjs;p which satisfies
the conditions of 4.12. Let ¥; be the set which contains the two associative
laws, the 4 distributive laws and the 2 medial laws and 2%yz ~ zyz, 2z +y+

3
zr zty+z. Let Ty = {z¥ ~ 2}, T3:= {8z =z} ¥ := | Z;. Now we have

i=1
to prove that ModY. = Vyrp. Clearly, ¥ C IdVpp, then ModX O Vyrp.
It is left to show that z? ~ z ~ 2z € E(X). Indeed,

Prrel = ri~2?ec E(X)
= 73 = 2% € E(T) since z* ~ 23 € E(X)
=> r~z2? € E(X) sincez =~ 2% € L.

In a similar way, one obtains z ~ z + = € E(Z). Therefore, Visrp = Mod%,
so N§(Vaip) = Nst(ModZ). Finally, we obtain the following equalities:

N§(IdVmip) = N§(E(Z))
3
= Nrf(E(,gJ1 i)
= E(Z,UX® U L¥) by 4.12.

The sets £*° and £3° are given by the identities of Lemma 4.14. Therefore
NZE (IdVp1p) C IdVs. Altogether, we have proved that NZA(VMID) =Vo. m
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5. The lattice of all presolid varieties of semirings

First of all we will give an identity basis of the greatest pre-solid variety
of semirings. Let Vg'p be the class of all semirings in which the associative
and the distributive laws are satisfied as pre-hyperidentities, that is,

Vg'p = Hp,e Mod{F(z, F(y, z))
~ F(F(z,y),2), G(F(z,y), 2) = f(G(z, 2), G(y, 2)) }.
Clearly, Vg'p is the greatest pre-solid variety of semirings. We consider also
the following variety: Vg, := Virp({z%yz = zyz,2z+y+z~ 2+ y+2,3z =
2z ~ % ~ 13}).
The variety V® will also help us to find an equational basis for Vg'p. In
a first step we describe the identities of V(3.

LEMMA 5.1. We consider the following sets of equations:

I := NF(2,2),

Py:={s~t]|s,t € Wgpy(X) andc(s) > 2,c(t) =1 and t contains only one
variable} U {s = t | s,t € W(39)(X) and c(t) > 2,c¢(s) = 1 and s contains
only one variable},

IPy:={s~t]|s,t € Wyo(X) andc(t) = c(s) = 1 and each, s and t contain
only one variable}.

Then IdV® =T UT, UTs.

2
T; C IdV®). The identities z} ~
Jj=1

Proof. By Lemma 3.3 it is clear that

3
2z ~ 219 &~ x% show that ['s C IdV®). Therefore Ur;Ccr dV®) . For the
=1
3
converse inclusion it is enough to show that (J I'; is an equational theory
=1
since a generating system of the set of all identities of V(3 is included in

3
T';. This is left to the reader. »
=1

J

Recall that an equation s & t is called regular if in the terms s and ¢ the
same variables occur and that a variety V is called regular if IdV consists
only of regular equations. Now we prove:

THEOREM 5.2. The variety Varrp V V) is the greatest pre-solid variety
of semirings and is equal to the variety Vyyp({z?yz = zyz,2z+y+ 2z =
T +y+ 23z~ 2~ 2’ ~3}).

Proof. We show that Vg, = Vj, (see the beginning of Section 5). The

inclusion Vg’p C V,p follows from Proposition 2.1. To prove the opposite
inclusion, we show that Vg, is pre-solid. Here the idea is to show that Vy, =
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VurpVV®, Since V,p is the greatest pre-solid variety of semirings, this gives
us Vgp C V. From IdVg, C IdVip and IdVy, C IdV® we obtain Varp C
Vep and Ve ¢ Vy4p and therefore also Varrp vV e c Vy4p- Moreover, we have

3
Id(VM[DVV(s)) = IdVypNIdV® = IdVymipn(U Ty) = N2E(Id(VM[D))U
j=1

3
U (IdVarp NT;). We have also NE¥(Id(Vaip)) = Id(N{(Vimip)) C IdVy,

j=2

(see 4.15). Now we consider the intersections IdVarp NT;,5 = 2,3. Let
st € IdVyp NTy. Since Vysrp is regular, we can assume that s=z+z
or s = 22 and ¢ is built up only by the variable z and c(t) > 2. Therefore
s =~ t € IdVy,. This proves that IdViyp N Ty C IdVy. The inclusion
IdVyip NT'3 C IdVg, is also clear by using the regularity property of Vi rp
and the identity z2 ~ 2z. This finishes the proof that IdVasp NI dv® c
I1dVy, and then Vg, = Viyyp vV V@) is pre-solid and is the greatest pre-solid
variety of semirings. m

The following lemmas are helpful in giving a complete description of the
lattice Pre(SR).

LEMMA 5.3. The pre-solid variety RA(3 ) V V® is determined by:
RApy VVO = Vp({z+y+1z ~ 3z ~ 2z ~ 2° m 2% m 22z, 22 ~

zyz, z+rc+y+zxz+y+z}).

Proof Let V! := Vp({z+u+z ~ 3z ~ 2z ~ 2% ~ 23 ~ zuz, 22yz ~
Tyz,t+ T +y+2 = z+y+ 2}). Clearly IdV’ C Id(RA(3,2) V V@) and

3
Id(RA@g5) vV V®) = IdN§ (RA(9.9)) U U Id(RA(52)NT;). With the aim to
=2

get a generating system of I dN{*(RA(m)), we determine first a generating
system of IdRA , 2y which satisfies the conditions of 4.12. Let {2 be the union
of the set {z2yz~ zyz, z+c+y+z2~rzc+y+z sy +z+z, 2° ~
z, ¢ ~ 3z} and of the set which contains both associative laws and the
four distributive laws. We will prove that E(Q2) = IdRA(y ). Clearly, all
identities of {2 hold in RA 9y, so E(Q?) C IdRA 3 4. The converse inclusion

will be true by proving that the identities = ~ 22, zyz ~ zz belong to E(f),
since the duality principle holds in the variety generated by 2. Indeed,

(1) P rzre Q= '~z c EQ)

and

(2) zyrmz+z+zeQ=zyz~zr+r+zr=z=~z22€ E(Q).
Then we get z* =~ 23 € E(Q). Hence 22 ~ z € E() (by using (1)).
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We are going to prove the identity zyz =~ zz. By (2) the following iden-
tities belong to E(Q): z2z = (zyzr)z = zy(zz2) ~ zyz.

Now we form £*° and £37. We have £=° = {z%y ~ 1y® ~ (zy)?, 2 +y ~
z+y3 & (+y)3 Ut € Wig2)(X) | c(t) > 2 and ¢* ~ t} and T3 = {(Bz)y ~
z(3y) ~ 3(zy),3z+y =+ 3y = 3(z+y)} U{t € W9 (X) | c(t) > 2 and
3t~ t}.

A generating system of I dN2A(RA(2,2)) is given by the union of the 2-
normal part of 2 and ¥y ¥, Similarly as in the proof of 4.14, one can
prove that I dNé“(RA(m)) C IdV'. The set I's N IdRA(59) consists of the
identities s = t € IdRA 9 9) such that c(s) = c(t) = 1 and the terms s and ¢
are built up only by one variable. Thus, the outermost property of RA(3 9)
guarantees that the equation s ~ t is built up by the same variable z. Then
s = t is one of the following equations:

m+xwx+m,z+mzm2,m2zm+x, 72 ~ 22
But all of the aforementioned identities belong to IdV’. Therefore I's N
IdRA(g9) C IdV'.

Consider 'y N IdRA (g 9)- Let s = z+z € 2N IdRA(y ), with c(s) > 2.
Then by distributivity, there exist variables or products of variables such
that s~ s;+---+s, € IdRA(u)ﬂIdV’ withn > 1 and ¢(s1+---+55) > 2.

Ifn=1thens=s~z+z~2z¢€ IdRA, 9). Moreover, we have
§=8 N ITy... T, TR I2E IdRA(39), with m > 1, since c¢(s1) > 2 and
RA(y9) is outermost. Thus, we get s = 51 = zz;, ...2;,T ~ ?xr4zc
IdV’' because of zyz ~ =z + z € IdV".

Ifn>2thenfromsi+---+s, z+z € IdRA (3 9), it follows that
both terms s; and s, start and end with z. Moreover, using the identities
Tur~ 2z~ ~r4y+z € ldV’, weget si+s,~z+z € IdV' and s+
o+ sp,~r+x € IdV'. Hence s~ s1+-+-+ 8, ~ x+x € IdV'. Therefore,
we get the inclusion I'y N IdRA(g 9y C IdV’ since z + z ~ z? € IdV'. This
finishes the proof of the fact that IdV' D Id(RA(z2) V VE). a

LEMMA 5.4. Let V be a pre-solid variety with V3 CV C Vp, which is not
reqular, then V =V® or V = RAp2) vV Ve,

Proof. If V is not outermost, then by 3.9 we have V C V®) and V = V),
If V is outermost then we will prove that V = RA(39) V V@, Since V is
not regular, we can assume that there is an identity p ~ q € IdV such that
the variable zo occurs in ¢ and not in p. By identification of all variables
occurring in p with z; and by identification of all variables different from
z9 which occur in g by z;, we obtain the identity p’ = ¢’ € IdV. Since V is

pre-solid, applying 0z, .45 21z, t0 ' & ¢/, we obtain zJ* ~ 25" 27225 € IdV
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where m > 2,mj, mg, m3 > 1 since V is normal. Using the identities of 2.1
we get x3 ~ zoz172 € IdV and then Id(RA(39) VV®) C IdV (see 5.3). For
the opposite inclusion let s ~ t € IdV. By the distributive laws, there exist
variables or products of variables ¢;,s;,1 <7 < n,1 < j <7/, such that the
identities
taty 4+t
and s & 51+ - + sy belong to IdRA(3 9y NIdV. Since s ~ t € IdV, we get
ti+- - +tpaxs1 4+ 5y € IdV.

Using 022 G(z1,27) and 022 G(z1,a2)r WE have s? ~ t? € IdV, s2 ~ t2, € IdV
and s1 = t; € IdRA(p9), sn = tw € IdRA(39), since V is outermost and
si,ti;,1 < 4 < n, are variables or products of variables. So, we obtain in
RA(y ) the identities 51 + s, ® t1 + 1t and 81+ - +sp 1 + -+ + tr,
since z +y + 2z & = + z € IdRA(y 5). Altogether, using the idempotency in
the cases n = 1 or n’ = 1, we have that s ~ t € IdRA(y ). That means that
RApy CV. Since V) C V, the inclusion RA@ 9V VB CV is proved. u

Now we prove

LEMMA 5.5. Let V' be a pre-solid variety with V®) C V C Vgp- Then (V A
VMID) \% ve =v,

Proof. Assume that V is not regular. Then by 5.4, we have V € {V(3), 17480V,
RA(39)} For V = V® the equation is satisfied and for V= VO v RA@9)
we have

(VO VRAL2) AVup) VVE) =V v R4y,

since RA(52) € Vmip, RApg) C V® V RA( ) implies RAp2) C (VO v
RA(39) AVpmip and then V® vV RA 9y € (V® vV RA(99)) AVamip) VVE.
On the other hand, (V¥ vV RA(52)) A Vmip € (V® V RA(y9)) and V) C
V® v RA(y9) implies (V®) Vv RA@g9)) A Virp) VVE) C VO v R4 ).
Altogether this gives equality.

Now we assume that V is regular and compare the identities satisfied
in V and in (V A Vayrp) V VO, It is clear that IdV = Id(V v V) =

3
IdN£(VYU U (IdV NT;), and Id((V AVarp) VV®) = TIdANS(V AVarp) U
=2

3

U (Zd(V A Vumip) NTy). From IdN£ (Viip) C IdV, (see 4.15) we have
=2
IdN{(Vpip) € IdV since V C Vgp- Moreover, we get NQE(Id(VMID)) C
NE(IdV). This means N§(V) C Ns'(Varp). Then the equalities N§'(V) =
N£(V) A N (Vpip) = N§(V A Virp) can be derived (by 4.6). Using the
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regularity of V and of V A Vipp it is clear that IdV NT'; = Id(V AVpyrp) N
T}, j = 2,3. This finishes the proof of IdV = Id((V A Viyp) vV V). u

It can be proved that the varieties V3, RAp 9V VO Vv V® and
Viurp V V®) are pairwise different. Now we prove our main result.

THEOREM 5.6. Let V be a variety of semirings. Then V is pre-solid if and
only if
1. V is solid or V is the normalization of a solid variety of semirings, or
2. V= VC(3), or
3. there exists a solid variety S of semirings such that V = Sv V3,

Proof. < is clear since all these varieties are pre-solid.

=>: we consider the following cases:

(i): %y ~ zy € IdV. As a pre-solid variety of semirings, V satisfies the
duality principle. Then we get x + z + y = = + y € IdV. Therefore, using
the identities of Proposition 2.1, we conclude that Id(N4(Vyp)) C 1dV,
ie,V C NA(VMID).

If V is idempotent. Then V is solid (see 2.4). If not, then V is normal
(see 2.1) and we have the equalities:

NAV AVyrp) = NAV)ANA(Virp) (Lemma 4.6)
=VA NA(VMID) since V is normal
=V since V C NA(VM[D).

Moreover, as an idempotent pre-solid variety of semirings, V N Vyrp is
solid. Therefore, V = N4(V A Vjyrp) is the normalization of a solid variety
V AVyurp.

(ii): 2%y ~ zy ¢ IdV. If V is not outermost then V=T or V = C or
V=vVPorv=v0 (by 3.9). But the identity 22y ~ zy holds in T and C
and does not hold in V) and V®. Therefore V = V& or V = VO, If
V is outermost then we will show that V(® C V| and by 5.5 there exists a
solid variety S := V A Virp of semirings such that V = S v V), Now let
s ~t € IdV. The variety V is normal, since otherwise V is idempotent and
this contradicts 22y ~ zy & IdV. Thus we have to consider the following
possibilities:

(a) c(s) > 2,¢(t) >2. s~tel CIdV®,

(b) ¢(s) > 2 and ¢(t) =1, or ¢(t) > 2 and ¢(s) = 1.

We can assume that c(s) > 2 and ¢(t) = 1. If t = zy then identifying all
variables in 62y gy[s] & Gzy,zy[t] Which are different from z and y by z we
get z™y" ~ zy with m + n > 3 since V is outermost and ¢(s) > 2. Since V
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Figure 1

is pre-solid, we get the contradiction z2y ~ z™y" ~ xy € IdV. Therefore s
contains only one variable, and s~t €I’y C I dv®,

(c) ¢(s) = ¢(t) = 1.
Since V is outermost and regular, we can assume that s~ t € {z +y =~
r+yrt+yrRry,ry Ry, ry~rr+y,r+rxr+xr+r N Ir,Ir1r
z+z,z2z ~ zz}. If £ + y = zy € IdV then this leads to the contradiction
V = C since z?y ~ zy ¢ IdV. The same goes for zy ~ = +y € IdV. Then
s~tel3 CIdV®. Altogether, IdV C IdV®), u

In summary, the lattice of all pre-solid varieties of semirings is the lattice
represented by the Figure 1.

References

[Den-W; 00] K. Denecke, S. L. Wismath, Hyperidentities and Clones, Gordon and
Breach Science Publishers, 2000.

[Den-H; 99] K. Denecke, H. Hounnon, Solid Varieties of Normal ID-Semirings, in:
General Algebra and Discrete Mathematics, Proceedings of the 59th Workshop on
General Algebra, 15th Conference for Young Algebraists, Potsdam 2000, Shaker Verlag
Aachen 2000, pp. 25-40.

[Den-H; 00] K. Denecke, H. Hounnon, Solid Varieties of Semirings, in: Proceedings of
the International Conference on Semigroups, Braga (Portugal) 1999, World Scientific,
2000, pp. 69-86.

[Den-H; 00] K. Denecke, H. Hounnon, All solid varieties of semirings, J. Algebra 248
(2002), 107-117.

[Gra;89] E. Graczyiiska, On Normal and regular identities and Hyperidentities, in: Uni-
versal and Applied Algebra, Proceedings of the V Universal Algebra Symposium, Tu-
rawa (Poland), 1988, World Scientific, 1989, pp. 107-135.



34 K. Denecke, H. Hounnon

[Mel;72] I. 1. Melnik, A description of certain lattices of varieties of semigroups, (Russian)
Izv. Vys. Ucebn. Zaved. Matematika 7(122) (1972), 65-74.

[Plo;94] J. Plonka, Proper and inner hypersubstitutions of varieties, in: Proceedings of
the International Conference: Summer School on General Algebra and Ordered Sets,
Palacky University Olomouc 1994, pp. 106-115.

[Pas-R;82] F. Pastijn, A. Romanowska, Idempotent distributive semirings, 1., Acta Sci.
Math. 44 (1982) pp. 239-253.

{Pos-R;93] R. P6schel, M. Reichel, Projection Algebras and Rectangular Algebras and
Applications, Research and Exposition in Mathematics, Vol. 20, Heldermann-Verlag
Berlin, 180-195.

UNIVERSITY OF POTSDAM

INSTITUTE OF MATHEMATICS

PF 601553

D-14415 POTSDAM, GERMANY

e-mail: hounnon@rz.uni-potsdam.de
kdenecke@rz.uni-potsdam.de

Recetved June 6, 2008.



