

Ivan Chajda, Helmut Länger

A NOTE ON CONGRUENCE UNIFORMITY FOR SINGLE ALGEBRAS

Abstract. It is proved that though for varieties congruence uniformity implies congruence regularity this is not the case with infinite algebras.

DEFINITION 1. Let $\mathcal{A} = (A, F)$ be an algebra.

\mathcal{A} is called congruence uniform if $a, b \in A$ and $\Theta \in \text{Con}\mathcal{A}$ imply $|(a)\Theta| = |(b)\Theta|$.

\mathcal{A} is called congruence regular if $a \in A$, $\Theta, \Phi \in \text{Con}\mathcal{A}$ and $(a)\Theta = (a)\Phi$ imply $\Theta = \Phi$.

\mathcal{A} is called congruence permutable if $\Theta \circ \Phi = \Phi \circ \Theta$ for all $\Theta, \Phi \in \text{Con}\mathcal{A}$.

\mathcal{A} is called congruence distributive if $(\Theta \vee \Phi) \cap \Psi = (\Theta \cap \Psi) \vee (\Phi \cap \Psi)$ for all $\Theta, \Phi, \Psi \in \text{Con}\mathcal{A}$.

A class of algebras is called congruence uniform, congruence regular, congruence permutable or congruence distributive, respectively, if each of its members has the corresponding property.

It is well-known (see [4]) that congruence uniform varieties cannot be characterized by a Maltsev type condition. In contrast to this, conditions of such type characterizing congruence regularity were presented by B. Csákány [2], G. Grätzer [3] and R. Wille [5] (see also [1]).

In [4] the following was proved:

PROPOSITION 1. Congruence uniform varieties are congruence regular.

Unfortunately, the proof of Proposition 1 is based on the fact that factor algebras of algebras belonging to a congruence uniform variety are congruence uniform. This does not carry over to algebras not belonging to such a

Key words and phrases: congruence uniformity, congruence regularity, congruence permutability, congruence distributivity, variety, unary algebra, subdirectly irreducible.

AMS Subject Classification: 08A30, 08B99, 08A60.

Research supported by ÖAD, Cooperation between Austria and Czech Republic in Science and Technology, grant No. 2003/1.

variety. Hence the question arises if Proposition 1 remains valid for single algebras.

THEOREM 1. *Finite congruence uniform algebras are congruence regular.*

P r o o f. Let $\mathcal{A} = (A, F)$ be a finite congruence uniform algebra, $a \in A$ and $\Theta, \Phi \in \text{Con}\mathcal{A}$ and assume $[a]\Theta = [a]\Phi$. Let Ψ denote the least congruence on \mathcal{A} having the class $[a]\Theta$. Then, evidently, $\Psi \subseteq \Theta, \Phi$. Thus every class of Ψ is a subset of a class of Θ and a subset of a class of Φ . Since all classes of Θ, Φ, Ψ are finite and of the same cardinality (equal to $|[a]\Theta|$), it follows $\Theta = \Psi = \Phi$ proving congruence regularity of \mathcal{A} . ■

The following example shows that there exists a finite congruence regular, congruence permutable, congruence distributive and subdirectly irreducible unary algebra of finite type which is not congruence uniform. Here and in the following, for every set M let ω_M denote the smallest equivalence relation $\{(x, x) \mid x \in M\}$ on M .

EXAMPLE 1. If $A = \{a, b, c, d, e\}$, $B := \{a, b, c\}$, $C := \{d, e\}$, $f, g : A \rightarrow A$ are defined by $f(a) = g(e) := b$, $f(b) := c$, $f(c) = g(d) := a$, $f(d) = g(b) = g(c) := e$ and $f(e) = g(a) := d$ and $\mathcal{A} := (A, f, g)$ then $\text{Con}\mathcal{A} = \{\omega_A, B^2 \cup C^2, A^2\}$, $(\text{Con}\mathcal{A}, \subseteq)$ is a chain and \mathcal{A} is finite, congruence regular, congruence permutable, congruence distributive, subdirectly irreducible and of finite type, but not congruence uniform since $|B| = 3 \neq 2 = |C|$.

For infinite algebras the following can be proved:

THEOREM 2. *For every infinite cardinal κ there exists a congruence uniform and subdirectly irreducible unary algebra of cardinality κ having κ fundamental operations which is not congruence regular.*

P r o o f. Let A_1, A_2, A_3 be pairwise disjoint sets of cardinality κ , put $A := A_1 \cup A_2 \cup A_3$, for every $a, b \in A$ define $f_{ab} : A \rightarrow A$ by $f_{ab}(a) := b$ and $f_{ab}(x) := x$ otherwise, for $i = 1, 2, 3$ let f_i be an injective mapping from A to A_i , put $\mathcal{A} := (A, \{f_{ab} \mid (a, b) \in A_1^2 \cup A_2^2 \cup A_3^2\} \cup \{f_1, f_2, f_3\})$ and let $\Theta \in \text{Con}\mathcal{A} \setminus \{\omega_A\}$, $j \in \{1, 2, 3\}$ and $(c, d) \in A_j^2$. Then there exists $(e, f) \in \Theta$ with $e \neq f$ and therefore

$$\begin{aligned} c &= f_{f_j(e), c}(f_j(e)) \Theta f_{f_j(e), c}(f_j(f)) \\ &= f_j(f) = f_{f_j(e), d}(f_j(f)) \Theta f_{f_j(e), d}(f_j(e)) = d \end{aligned}$$

showing $(c, d) \in \Theta$ and hence $A_1^2 \cup A_2^2 \cup A_3^2 \subseteq \Theta$. Therefore $\text{Con}\mathcal{A} = \{\omega_A, A_1^2 \cup A_2^2 \cup A_3^2, A_1^2 \cup (A_2 \cup A_3)^2, A_2^2 \cup (A_1 \cup A_3)^2, A_3^2 \cup (A_1 \cup A_2)^2, A^2\}$. Hence \mathcal{A} is congruence uniform, but not congruence regular. Since $\text{Con}\mathcal{A}$ has just one atom, namely $A_1^2 \cup A_2^2 \cup A_3^2$, \mathcal{A} is subdirectly irreducible. Finally, \mathcal{A} is unary and has κ fundamental operations. ■

References

- [1] I. Chajda, G. Eigenthaler and H. Länger, *Congruence Classes in Universal Algebra*, Heldermann, Lemgo 2003.
- [2] B. Csákány, *Characterizations of regular varieties*, Acta Sci. Math. (Szeged) 31 (1970), 187–189.
- [3] G. Grätzer, *Two Mal'cev-type theorems in universal algebra*, J. Combin. Theory 8 (1970), 334–342.
- [4] W. Taylor, *Uniformity of congruences*, Algebra Universalis 4 (1974), 342–360.
- [5] R. Wille, *Kongruenzklassengeometrien*, Springer Lecture Notes Math. 113, Berlin 1970.

Ivan Chajda

DEPARTMENT OF ALGEBRA AND GEOMETRY
PALACKÝ UNIVERSITY OLOMOUC

Tomkova 40
CZ-77900 OLOMOUC
E-mail: chajda@risc.upol.cz

Helmut Länger

INSTITUTE OF ALGEBRA AND COMPUTATIONAL MATHEMATICS
VIENNA UNIVERSITY OF TECHNOLOGY
Wiedner Hauptstraße 8-10
A-1040 WIEN
E-mail: h.laenger@tuwien.ac.at

Received April 22, 2003.

