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REMARKS ON ¿-SEMI-OPEN SETS 
A N D ¿-PREOPEN SETS 

Abstract. It is shown that a subset A of a topological space ( X , r ) is ¿-semi-open 
(resp. 5-preopen) in {X,T) if and only if it is semi-open (resp. preopen) in (X, T3), where 
TS denotes the semi-regularization of r . By using this fact, we can obtain several new 
characterizations of s-closed spaces, semi-connected spaces, and some separation axioms. 

1. Introduction 
Semi-open sets, preopen sets, a-open sets, ¡3-open sets and ¿-open sets 

play an important role in the study of generalizations of continuity in topo-
logical spaces. By using these sets, many authors introduced and studied 
various types of modifications of continuity. In 1963, Levine [18] introduced 
the notions of semi-open sets and semi-continuity in topological spaces. It 
is shown in [30] that semi-continuity is equivalent to quasicontinuity due to 
Marcus [20], Park et al. [34] defined and studied the notion of ¿-semi-open 
sets in topological spaces. Recently, in [17], they obtained the further prop-
erties of ¿-semi-open sets and related sets. On the other hand, Mashhour 
et al. [24] introduced the notions of preopen sets and precontinuous func-
tions. As generalizations of these notions, Raychaudhuri and Mukherjee [38] 
introduced ¿-preopen sets and ¿-almost continuous functions. 

A topological property R is said to be semi-regular [6] provided that a 
topological space (X , r) has property R if and only if (X, TS) has property 
R, where TS denotes the semi-regularization of r . In [28], Mrsevic et al. 
discussed semi-regular properties for separation axioms, connectedness and 
covering property. 

In this paper, for several topological spaces (X, r) defined by using semi-
open sets or preopen sets, we investigate the relationship between the prop-
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erties of (X,t) and those of (X, rs). As a result, it turned out that many 
properties concerning ¿-semi-open sets and ¿-preopen sets easily follow from 
known results concerning semi-open sets and preopen sets, respectively. In 
Section 3, we show that a subset A of a topological space (X, r) is i-semi-
open (resp. ¿-preopen) in (X, r) if and only if it is semi-open (resp. preopen) 
in (X,ts). In Section 4, we introduce the notion of ¿-semi-continuous func-
tions. It turns out that semi-continuity is implied by both ¿-semi-continuity 
and continuity which are independent of each other. Section 5 deals with 
¿p-closed spaces and some related functions. In the last section, we obtain 
new characterizations of s-closed spaces, semi-connected spaces and certain 
separation axioms in term of ¿-semi-open sets. Furthermore, we show that 
s-closedness, semi-connectedness and semi-Hausdorffness have semi-regular 
property. 

2. Preliminaries 
Let (X, r) be a topological space and A a subset of X. The closure of 

A and the interior of A are denoted by 0(^4) and Int(.A), respectively. A 
subset A is said to be regular closed (resp. regular open) if Cl(Int(A)) = 
A (resp. Int(Cl(A)) = ^4). A subset A is said to be 8-open [43] if for each 
x € A there exists a regular open set G such that x G G C A. A point 
x € X is called a 6-cluster point of A if Int(Cl(F))nj4 ^ 0 for every open 
set V containing x. The set of all ¿-cluster points of A is called the S-closure 
of A and is denoted by C1<J(>1). The set {x 6 X : x E U C A for some 
regular open set U of X } is called the 5-interior of A and is denoted by 
Inti(j4). 

DEFINITION 2.1. Let (X, r ) be a topological space. A subset A of X is said 
to be 

(1) semi-open [18] (resp. preopen [24], a-open [31], f3-open [1] or semi-
preopen [3]) if A C Cl(Int(^)), (resp. A C Int(Cl(^)), A C Int(Cl(Int(A))), 
A c Cl(Int(Cl(>l)))), 

(2) S-preopen [38] (resp. 6-semi-open [34]) if A C Int(Cl5(yl)) (resp. A C 
Cl(Int5(^))). 

The family of all semi-open (resp. preopen, a-open, /3-open, ¿-preopen, 
¿-semi-open) sets in X is denoted by SO(X) (resp. P 0 ( X ) , (3(X), 
¿ P 0 ( X ) , ¿ S 0 ( X ) ) . 

DEFINITION 2.2. The complement of a semi-open (resp. preopen, a-open, ¡3-
open, ¿-preopen, ¿-semi-open) set is said to be semi-closed [7] (resp. preclosed 
[24], a-closed [27], (3-closed [1] or semi-preclosed [3], 5-preclosed [38], 8-semi-
closed [34]). 
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DEFINITION 2.3. The intersection of all semi-closed (resp. preclosed, IN-
closed, (3-closed, ¿-preclosed, ¿-semi-closed) sets of X containing A is called 
the semi-closure [7] (resp. preclosure [15], a-closure [27], f3-closure [2] or 
semi-preclosure [3], 6-preclosure [38], S-semi-closure [34]) of A and is denoted 
by sCl(.A) (resp. pCl(A) , aCl(.4), /3C1(,4) or spCl(A), pCl^A), SC15(A)). 

DEFINITION 2 .4 . The union of all semi-open (resp. preopen, a-open, /3-open, 
¿-preopen, ¿-semi-open) sets of X contained in A is called the semi-interior 
(resp. preinterior, a-interior, (3-interior or semi-preinterior, 5-preinterior, 
6-semi-interior) of A and is denoted by slnt(yl) (resp. plnt(^l), alnt(A), 
^ I n t ^ ) or spInt(A), pint ¿(A), slnt^A)). 

3. ¿-semi-open sets and ¿-preopen sets 
First we recall the relationship among some generalizations of open sets. 

If a subset A of a topological space (X, r ) is semi-open and semi-closed, then 
it is said to be semi-regular [10]. The set of all semi-regular sets of (X, r) is 
denoted by SR(X). 

LEMMA 3 .1 . For a subset A of a topological space (X, r ) , the following prop-
erties hold: 

(1) If A is a semi-regular set, then it is 5-semi-open, 
(2) If A is a 6-semi-open set, then it is semi-open, 
(3) If A is a semi-open set, then sClf.Aj is semi-regular. 

P r o o f . (1) Let A be a semi-regular set. Then since A is semi-open and semi-
closed, we have Int(Cl(A)) C A C Cl(Int(A)). Since Int(Cl(A)) is regular 
open, we obtain Int(Cl(^4)) C Intj(A) and hence 

A C Cl(Int(j4)) C Cl(Int(Cl(A))) C Cl(Int5(A)). 
This shows that A is ¿-semi-open. 

(2) Since Intj( j l ) c Int(A), A C Cl^nt^A)) implies A C Cl(Int(A)). 
This shows that A is semi-open. 

(3) This is shown in Proposition 2.2 of [10]. 

By Lemma 3.1, we have the following diagram in which the converses of 
implications need not be true as shown by the three examples stated below. 

D I A G R A M I 
regular open —> ¿-open —> open —> preopen 

•I* J-
semi-regular —> ¿-semi-open —> semi-open ¿-preopen 

EXAMPLE 3.1. Let X = {a, b, c} and r = {X, 0, {a}, {6}, {a, 6}}. Then {a, b} 
is a ¿-open set of (X, r ) which is not semi-regular. A subset {a, c} is semi-
regular but not open. 
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EXAMPLE 3.2. (Park et al. [34]) Let X = {a, b, c, d} and r = { X , 0, { a } , { c } , 
{a, b}, {a, c}, {a, b, c}, {a, c, d } } . Then {a, c, d} is an open set of (X, r) which 
is not ¿-semi-open. A subset {c, d} is ¿-semi-open but not open. 

EXAMPLE 3.3. Let X = {a, b, c, d} and r = { X , 0, { c } , {a, d}, {a, c, d}}. Then 
{a, b, c} is a pre-open set of (X, r) which is not semi-open. A subset {b, c } 
is semi-open but not ¿-preopen. 

LEMMA 3.2. Let (X,r) be a topological space and A be a subset of X. 

(1) If A is open, then Cl^) = C1(A), 

(2) If A is closed, then Inti(>l) = Int(A). 

P r o o f . (1) is known in [43] and (2) follows obviously from (1). 

For a topological space (X, r ) , the family of all ¿-open sets of (X,r) 

forms a topology for X , which is weaker than r. This topology has a base 
consisting of all regular open sets in (X, r ) . We shall denote it by although 
it is usually denoted by rs. Now, we have the following interesting theorem. 

THEOREM 3.1. Let (X, R) be a topological space and A be a subset of X. 

(1) A is S-semi-open in (X , T) if and only if A is semi-open in (X,T$), 
(2) A is S-preopen in (X, r ) if and only if A is preopen in (X, rs). 

P r o o f . This follows from Lemma 3.2 and the next facts: 
(1) Cl(Int¿(A)) = Cl5 ( Int5 (A) ) = ^ - C l f o - I n t ^ ) ) , 
(2) Int (Cl5 (^ ) ) = I n t ^ C l ^ ) ) = ^ - I n t ^ - C l ^ ) ) . 

Let A be a subset of a topological space (X, r). A point x of X is called a 
semi-8-cluster point of A if sCl(t/)nA ^ 0 for every U € SO(X) containing 
x. The set of all semi-0-cluster points of A is called the semi-6-closure [10] 
of A and is denoted by sCle(yl). A subset A is said to be semi-6-closed if A 

= sClg(^l). The complement of a semi-0-closed set is said to be semi-9-open. 

The family of all semi-0-open sets of (X, r ) is denoted by 9SO(X). 

THEOREM 3.2. Let ( X , r ) be a topological space. Then every semi-regular set 

is semi-0-open and every semi-9-open set is 6-semi-open. 

P r o o f . Every semi-regular set is semi-0-open by Propostion 2.3 of [10]. Let 
A be a semi-0-open set. For each x € A, there exists Ux 6 SO (X ) such 
that x G Ux C sCl(i/x) C A. By Lemma 3.1, sC\(UX) is semi-regular and 
¿-semi-open. Therefore, A = |JxeA sCl(f7x) is ¿-semi-open. 

REMARK 3.1. For families of subsets of a topological space (X, r ) , we have 
the relations: S R ( X ) C 0SO (X ) C ¿ S O ( X ) C S O ( X ) . 

THEOREM 3.3. Let (X, R) be a topological space. Then sC l^F ) = sCl j (F ) = 
sCl(V) for any V € SO(X) . 
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Proo f . In general, we have sC\e(S) D sCl^S) D sCl(S) for any subset S of 
X. Suppose that V G SO(X) and x <£ sCl(V). Then there exists U G SO(X) 
containing x such that U n V = 0 and hence sCl([/) f lK = 0. This shows 
that x sCle(V). Hence, we have sCle(K) c sCl(F). Therefore, we obtain 
that sCl0(y) = sC\6(V) = sCl(V). 

4. ¿-semi-continuous functions 
DEFINITION 4.1. A function / : (X, r) —> (Y,cr) is said to be 

(1) super-continuous [29] if for each x G X and each V € a containing 
f(x), there exists U G R containing x such that /(Int(Cl(i7))) C V, 

(2) semi-continuous [18] if for each x G X and each V G o containing 
f(x), there exists U G SO(X) containing x such that f(U) C V. 
DEFINITION 4.2. A function / : (X,r) —» (Y ,a ) is said to be S-semi-
continuous if for each x G X and each V € a containing f(x), there exists 
U G ¿ S O ( X ) containing x such that f(U) C V. 
LEMMA 4.1 . A function f : ( X , T ) —>• (Y,A) is 6-semi-continuous (resp. 
semi-continuous, super-continuous) if and only if f~1(V) is 6-semi-open 
(resp. semi-open, 8-open) in (X,r) for each V G cr. 

THEOREM 4 .1 . A function f : {X,T) —> (Y,A) is S-semi-continuous if and 
only if f : (X , —> (Y, a) is semi-continuous. 
Proof . This is an immediate consequence of Theorem 3.1. 

REMARK 4.1. By D I A G R A M I we have the following diagram in which the 
converses of each implications need not be true as shown by the examples 
stated below. Moreover, the examples show that <5-semi-continuity and con-
tinuity are independent of each other. 

DIAGRAM II 
super-continuous continuous 

¿-semi-continuous => semi-continuous 

EXAMPLE 4.1. Let X = {a,b,c}, r = {X,0, {a}, {6}, {a,b}} and a = 
{X, 0, {a}, {6}, {a, b}, {a, c}}. Then, the identity function / : (X, r) —> (Y, a) 
is a ¿-semi-continuous function which is not continuous. 

EXAMPLE 4 .2 . L e t X = { a , b, c, d} a n d r = { X , 0, { a } , {c}, {a , 6}, {a , c} , 
{a, 6, c}, {a, c,d}}. Then the identity function / : (X, r) —> (X, r) is contin-
uous but it is not ¿-semi-continuous. 

It is shown in [30] that semi-continuity and quasicontinuity are equivalent 
of each other. The properties of these functions are investigated by many 
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authors. Therefore, by using Theorem 4.1 we can obtain properties of ¿-semi-
continuous functions. For examples, characterizations of ¿-semi-continuous 
functions are obtained by Theorem 4 of [5]. For the product function of 
¿-semi-continuous functions, we can use Theorem 5 of [32]. 
DEFINITION 4.3. A function f : ( X , T ) (Y,A) is said to be 

(1) irresolute [8] if / - 1 ( V ) <E SO(X) for every V € SO(Y), 
(2) quasi-irresolute [11] if for each x G X and each V € SO(Y) containing 

f(x), there exists U G SO(X) containing x such that f(U) C sCl(y). 
DEFINITION 4.4. A function / : (X, r ) -> (Y, a) is said to be 

(1) 6-irresolute if / _ 1 ( V ) € SSO(X) for every V G ¿SO(Y), 
(2) quasi-0-irresolute if for each x G X and each V G ¿SO(Y) containing 

f(x), there exists U G ¿SO(X) containing x such that f(U) C sCl,$(V). 
THEOREM 4.2 . For a function f : ( X , T ) (Y,A), the following properties 
hold: 

(1) / is 6-irresolute if and only if f : (X,Tg) —» (Y, as) is irresolute, 
(2) Every 5-irresolute function is quasi-S-irresolute. 

THEOREM 4.3 . For a function f : (X,r) (Y, a), the following properties 
are equivalent: 

(1) / : (X, r ) —> (Y, cr) is quasi-irresolute; 
(2) For each x 6 X and each V 6 SO(Y) containing f(x), there exists 

U e SO(X) containing x such that /(sCl([/)) C sCl(V); 
(3) For each x € X and each V € ¿SO(Y) containing f{x), there exists 

U 6 ¿SO(X) containing x such that f(sCls(U)) C sClj(V); 
(4) / : (X, T) —* (Y, cr) is quasi-S-irresolute. 

P r o o f . (1) (2): This is shown in Proposition 3.3 of [11]. 
(2) =>• (3): Let x € X and V be any ¿-semi-open set containing f(x). 

Since ¿SO(Y) C SO(Y), by (2) there exists U € SO(X) containing x 
such that /(sCl([/)) C sCl(F). It follows from Theorem 3.3 sCl(F) = 
sCl5(y). Moreover, sCl(U) G SR(X) C ¿SO(X) and sCl^sCl(U)) = sC\(U). 
Therefore, there exists a ¿-semi-open set sCl(i7) containing x such that 
/(sClj(sCl(f/))) = /(sCl(C/)) c sCls(V). 

(3) (4): This is obvious. 
(4) =ï (1): Let x € X and V G SO(Y) containing /(:r). Since sCl(F) 

is ¿-semi-open, there exists U G ¿SO(X) containing x such that f(U) c 
sCli(sCl(F)) = sCl(V). Since every ¿-semi-open set is semi-open, / is quasi-
irresolute. 
COROLLARY 4.1 . A function f : ( X , T ) —» (Y, A) is quasi-irresolute if and 
only if f : (X, RS) —• (Y, AS) is quasi-irresolute. 
P r o o f . The proof follows from Theorems 3.1 and 4.3. 
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5. ¿p-closed spaces and some functions 
DEFINITION 5.1 . A function / : ( X , T ) (Y,A) is said to be 

(1) 5-almost continuous [38] if 6 6PO(X) for each V e a, 
(2) 6*-almost continuous [37] if / - 1 ( V ) G iPO(X) for each V G <5PO(Y), 
(3) p-continuous [40] if for each x € X and each V G iPO(Y) containing 

f(x), there exists, an open set U containing x such that f(U) c pCl,$(V). 
DEFINITION 5.2. A function / : (X, r ) —> (Y, a) is said to be 

(1) almost continuous [16] or precontinuous [24] if / - 1 ( V ) G PO(X) for 
each V G a, 

(2) preirresolute [41] if / _ 1 ( V ) e PO(X) for each V G PO(Y), 
(3) p(9)-continuous [9] if for each x G X and e$ch V G PO(Y) containing 

/(x) , there exists, an open set U containing x such that f(U) C pCl(V). 

THEOREM 5.1. For a function f : (X,r) —» (Y,a), the following properties 
hold: 

(1) / is 6-almost continuous if and only if f : ( X , T$) —> (Y, a) is precon-
tinuous, 

(2) / is 6*-almost continuous if and only if f : (X, Tg) —> (Y, as) is 
preirresolute, 

(3) f is p-continuous if and only if f : (X,r) —> (Y, as) is p(6)-continu-
ous. 
P r o o f . This is an immediate consequence of Theorem 3.1. 

REMARK 5.1 . Since precontinuous functions and preirresolute functions are 
well-known, by using Theorem 5.1 we can obtain many properties of 5-
almost continuiuty and <5*-almost continuity. For instance, we can mention 
as follows: 

(1) The characterizations of ¿-almost continuous functions obtained in 
Theorem 5 of [38] follow from Theorem 5.1 and Theorem 1 of [36] or Theorem 
1 of [24], 

(2) Concerning the product function of ¿-almost continuous functions 
obtained in Theorem 10 of [38], the generalized form follows from Theorem 
5.1 and Theorem 5 of [36] or Theorem 2.6 of [26]. 

DEFINITION 5.3. A subset A of a topological space ( X , T ) is said to be 
(1) Sp-compact relative to (X, r ) if for every cover {V^ : a G A} of 

A by ¿-preopen sets of X, there exists a finite subset Ao of A such that 
A C UaeAo v a , 

(2) dp-closed relative to ( X , r ) [40] if for every cover {Va : a G A} of 
A by 5-preopen sets of X, there exists a finite subset Ao of A such that 
¿ C l U A o P C W a ) . 

If A = X, then {X,T) is said to be (1) 5p-compact (resp. (2) Sp-closed). 



1014 T. Noiri 

DEFINITION 5.4. A subset A of a topological space (X, r) is said to be 
(1) strongly compact relative to ( X , r) [25] if for every cover {Va : a € A } 

of A by preopen sets of X, there exists a finite subset Ao of A such that 
A C U q € A 0 v * , 

(2) p-closed relative to (X,r) [12] if for every cover { V a : a E A } of 
A by preopen sets of X, there exists a finite subset Ao of A such that 
^ C U a e A o P C l ( ^ ) . 

If A = X, then (X, r ) is said to be (1) strongly-compact (resp. (2) p-

closed). 

THEOREM 5.2. Let (X,T) be a topological space and A be a subset of X. 

Then the following properties hold: 

(1) A is Sp-compact relative to (X, T) if and only if it is strongly compact 

relative to (X, r j ) , 
(2) A is Sp-closed relative to (X,T) if and only if it is p-closed relative 

to (X,TS), 

(3) (X, r ) is bv-compact (resp. Sp-closed) if and only if (X, is strongly 

compact (resp. p-closed). 

P r o o f . This is an immediate consequence of Theorem 3.1. 

6. New characterizations of some topological spaces 

DEFINITION 6.1. A topological space (X, R) is said to be s-closed [10] if for 
every cover {Va : a 6 A } of X by semi-open sets of X, there exists a finite 
subset Ao of A such that X = UQgA0 SC1(K*). 

THEOREM 6.1. For a topological space (X,T), the following properties are 

equivalent: 

(1) (X, T) is s-closed; 

(2) For every S-semi-open cover {Va : a € A } of X, there exists a finite 

subset Ao of A such that X = UaeA0 

(3) For every S-semi-open cover {Va : a € A } of X, there exists a finite 

subset Ao of A such that X = UaeA0 sCl<5(V^). 

P r o o f . (1) (2): Let {Va : a € A } be a ¿-semi-open cover of X. By 
Lemma 3.1, <5SO(X) C SO (X ) and there exists a finite subset Ao of A such 
that X = L U a o s C 1 ( ^a ) . 

(2) (3): Let {V^ : a € A } be a ¿-semi-open cover of X. By Lemma 3.1, 
<5SO(X) C SO(X ) and it follows from Theorem 3.3 that SC15(Vq) = sCl(Va) 
for each a € A . 

(3) (1): Let {Va : a € A } be a semi-open cover of X. Then we have 
X = UasA s C 1 (K« ) - By Lemma 3.1, we have sC\(Va) G SR (X ) C 5SO(X) 

and there exists a finite subset Ao of A such that X = UaeA0 sCli(sCl(VrQ)). 
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By Theorem 3.3, s C l ^ s d ^ ) ) = sCl(sCl(yQ)) = s C l ^ ) . Therefore, we 
obtain X = UQeA0 SC1(VQ). This shows that X is s-closed. 

COROLLARY 6.1. A topological space (X, r ) is s-closed if and only if (X, Tg) 
is s-closed. 

Proo f . This is an immediate consequence of Theorems 3.1 and 6.1. 

THEOREM 6.2. A topological space (X, r ) is s-closed if and only if for every 

semi-9-open cover {Va : a € A } of X, there exists a finite subset Ao of A 
such that X = | J Q g A o V^. 

P r o o f . Necessity. Let {V^ : a G A } be a semi-0-open cover of X. For each 
x e X, there exists a(x) € A such that x € Va(x) • Since is semi-0-open, 
there exists Ga(x) € SO(X ) such that x e Ga(x) C SC1(Gq(x)) c Va^xy Since 
{Gq(x) : x € X} is a semi-open cover of X, there exist finite points, say, 
xi, x2, ...,xn such that X = (J?=i sCl(Ga (x. ) ) . Hence X = U?=i Va(Xi)-

Sufficiency. Let {V^ : a € A } be a semi-open cover of X. By Lemma 
3.1, {sCl(14) : o: G A } is a semi-regular cover of X and hence a semi-0-
open cover of X . Therefore, there exists a finite subset Ao of A such that 
X = Ua6A0s^K^a)- This shows that (X,r) is s-closed. 

DEFINITION 6.2. A topological space (X, r ) is said to be semi-connected [35] 
if X cannot be expressed by the disjoint union of two nonempty semi-open 
sets. 

Levine [19] called a topological space X a D-space if C1(F) = X for every 
nonempty open set V of X. In [42], D-spaces are called hyperconnected. We 
obtain several characterizations of semi-connected spaces by using 5-semi-
open sets. Here we should note that open sets and 5-semi-open sets are 
independent of each other. 

THEOREM 6.3. For a topological space (X, r), the following properties are 

equivalent: 

(1) C1(V) = X for every nonempty open set V of X; 

(2) (X,T) is semi-connected; 

(3) X cannot be expressed by the disjoint union of two nonempty 5-semi-

open sets; 

(4) sCl j (V ) = X for every nonempty V € 6SO(X). 

Proo f . (1) (2): This is shown in Theorem 4.3 of [35]. 
(2) (3): Suppose that there exist two nonempty 5-semi-open sets V\, Vi 

such that Vi n V2 = 0 and V\ U V2 = X. Since 5SO(X) C SO(X), this shows 
that (X, T) is not semi-connected. 

(3) (4): sCl5 (V) / X for some nonempty V e SSO(X). Then, X -

sCli (V) ^ 0, sCU(V) 0 and X = (X-sCl6(V))LisCls(V). Since 5SO(X) C 
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SO(X), by Theorem 3.3 and Lemma 3.1 sCl*(V) = sCl(V) € SR(X). More-
over, since SR(X) C <5SO(X), (X - sCli(V)) and sCli(V) are ¿-semi-open. 

(4) => (1): Let V be any nonempty open set of (X,r). Then C1(V) is 
regular closed and hence semi-regular. Therefore, C1(V) is ¿-semi-open and 
X = sCli(Cl(V)) = sCl(Cl(V)) = C1(V). 
THEOREM 6.4. For a topological space (X, T), the following properties are 
equivalent: 

(1) (X, T) is semi-connected; 
(2) sClj(V) = X for every nonempty V G P(X); 
(3) sCli(Vr) = X for every nonempty V E SO(X); 
(4) sCl5(y) = X for every nonempty V e PO(X); 
(5) sC la (V) = X for every nonempty V € ct(X); 
(6) sCla(V) = X for every nonempty V 6 r. 

P r o o f . (1) (2): Let V be any nonempty ¡3-open set and U any nonempty 
¿-semi-open set. Then Int(Cl(V)) ^ 0 and Int(f/) ^ 0 by Lemma 4 of [32], 
By Theorem 6.3, we have 0 ^ Int (U) n Int(Cl(V)) cUn Int(Cl(V)) C 
U f ) (V U Int(Cl(V))) = tfnsCl(V) C UDsC\s(V). Since U € ¿SO(X), 
U n V / 0. This shows that sCli(V) = X. 

(6) =>• (1): Let U, V be any nonempty ¿-semi-open sets. Since SSO(X) C 
SO(X) and Int(V) ^ 0, we have 0 ^ U n Int(V) C U n V. This shows that 
sCla(y) = X for every nonempty V € ¿SO(X). Therefore, by Theorem 6.3 
(X, r) is semi-connected. 

Other implications are obvious since r c a(X) C SO(X) DPO(X) and 
SO(X)uPO(X) C0(X). 
COROLLARY 6.2. For a topological space (X, r ) , the following properties are 
equivalent: 

(1) (X,T) is semi-connected; 
(2) U n V ^ 0 for any nonempty sets U € (3(X) and V € ¿SO(X); 
(3) U n V 0 for any nonempty sets U 6 PO(X) and V € ¿SOpf) ; 
(4) l / n V ^ U for any nonempty sets U 6 SO(X) and V € ¿SO(X); 
(5) U fl V ^ 0 for any nonempty sets U G and V € SSO(X); 
(6) U (1 V ^ 0 for any nonempty sets U € r and V 6 JSO(X); 
(7 ) [ / n F / 0 for any nonempty sets U € ¿SO(X) and V E 5SO(X). 

Proo f . This is an immediate consequence of Theorems 6.3 and 6.4. 
COROLLARY 6.3. A topological space ( X , T) is semi-connected if and only if 
(X, Ts) is semi-connected. 
Proo f . It is shown in Theorem 3.1 of [33] that (X, r) is hyperconnected if 
and only if sCl(t/) = X for every nonempty U G SO(X). The proof follows 
from this fact and Theorems 3.1 and 6.3. 
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DEFINITION 6.3. A topological space ( X , T ) is said to be SEMI-T2 [22] if 
for each pair of distinct points x,y, there exist U, V G SO(X) such that 
x G U, y G V and U n V = 0. 
THEOREM 6 .5 . For a topological space (X,T), the following properties are 
equivalent: 

(1) (X, t ) is semi-T2; 
(2) For each pair of distinct points x, y, there exist U, V G SR(X) such 

that x G U,y G V and i / f i K = 0 ; 

(3) For each pair of distinct points x, y, there exist U, V G ¿ S O ( X ) such 
that x eU,y eV and sC\5(U) n s C l ^ V ) = 0 ; 

(4) For each pair of distinct points x, y, there exist U, V G Ó S O ( X ) such 
that x eU,y eV and sCl(U) DsCl(V) = 0; 

(5) For each pair of distinct points x, y, there exist 17, V" € i S O ( X ) such 
that xeU,yeV andU DV = 0. 
P r o o f . (1) => (2): Let (X, r) is semi-T2. Then for each pair of distinct points 
x,y, there exist G,H e SO(X) such that x eG,y € H and G n H = 0. We 
havesCl(G)n# = 0. By Lemma 3.1, sCl(G) € SR(X) and sCl(G)nsCl(#) = 
0. Now set U = sCl(G) and V = sCl (H) . Then (2) is obtained. 

(2) =• (3): This follows from the facts that SR(X) c SSO(X) and 
sCls(U) = sCl (U) = U for every U e SR(X). 

(3) => (4): This follows from the fact that sCl(U) = sCl6(U) for every 
U € SSO(X). 

(4) (5): This is obvious. 
(5) => (1): This is obvious since ¿SO(X) c SO(X). 

COROLLARY 6 .4 . A topological space (X, r ) is semi-T2 if and only if (X, r^) 
is semi-Tï-
P r o o f . This is an immediate consequence of Theorems 3.1 and 6.5. 

DEFINITION 6.4. A topological space (X,r) is said to be s-Urysohn [4] if 
for each pair of distinct points x,y, there exist U, V G SO(X) such that 
x e U,y e V and Cl(U) fi Cl(V) = 0. 
THEOREM 6 .6 . A topological space (X,T) is s-Urysohn if and only if for 
each pair of distinct points x,y of X, there exist U, V G ÔSO(X) such that 
x eU,y eV and C l (U) n C 1 ( V ) = 0. 

P r o o f . Necessity. Suppose that (X,T) is s-Urysohn. Then for each pair 
of distinct points x, y, there exist U, V G SO(X) such that x G U, y G V 
and Cl(i7) n C 1 ( V ) = 0. Since U G SO(X), by Lemma 2 of [32] C1(17) = 

Cl(Int(l/)) and Cl(f/) is regular closed. Therefore, we obtain C1(C/),C1(V) G 
SR(X) C JSO(X). It is obvious that x G C1(C/), y G C1(F) and Cl(Cl(i/)) n 
a ( c i ( V ) ) = c i (U) n c i ( V ) = 0. 
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Sufficiency. The proof is obvious since ¿SO(X) C SO(X). 

DEFINITION 6.5 . A topological space ( X , r) is said to be s-regular [21] (resp. 
semi-regular [13]) if for each closed (resp. semi-closed) set F of X and each 
point x £ F, there exist U, V G SO(X) such that x G U, F C V and 
U n F = 0. 

THEOREM 6.7. For a topological space (X,T), the following properties are 
equivalent: 

(1) (X,T) is s-regular (resp. semi-regular); 
(2) For each closed (resp. semi-closed) set F and each point x £ F, there 

exist U, V G ¿SO(X) such that x € U, F C V and U (~\V = 0; 
(3) For each point x G X and each open (resp. semi-open) set V con-

taining x, there exists U G SSO(X) such that x G U C sCla([/) C V. 

P r o o f . (1) => (2): Let F be a closed (resp. semi-closed) set and x # F. 
there exist G,H G SOpiT) such that x€G,FcH and Gr\H = ®. 
By Lemma 3.1, sCl(G) is semi-regular and sCl(G) fl H = 0. Therefore, we 
obtain sCl(G)nsCl(tf) = 0. Now, we set U = sCl(G) and V = sC l (H) , then 
we obtain (2). 

(2) => (3): Let x G X and V be any open (resp. semi-open) set containing 
x. Since x £ X - V, there exist U,G G <5SO(X) such that xeU,X-V cG 
and U fl G — 0. Since X — G is ¿-semi-closed and U C X — G, we obtain 
that x G U C sCl5(f/) CX-GCV. 

(3) (1): Let F be a closed (resp. semi-closed) set X and x £ F. Then 
X — F is an open (resp. semi-open) set containing x. By (3), there exists 
U G iSO(X) such that x G U C sClS{U) C X - F. Therefore, we obtain 
XEU,F C X-sC\S(U) and C/n(X-sCl5( i / )) = 0. Since iSO(X) C SO(X), 
(X,T) is s-regular (resp. semi-regular). 

DEFINITION 6.6 . A topological space (X, r) is said to be s-normal [23] (resp. 
semi-normal [14]) if for each disjoint closed (resp. semi-closed) sets F, K of 
X, there exist U, V G SO(X) such that F C U, K C V and U n V = 0. 

THEOREM 6.8. For a topological space ( X , T), the following properties are 
equivalent: 

(1) (X,T) is s-normal (resp. semi-normal); 
(2) For each disjoint closed (resp. semi-closed) sets F, K of X, there exist 

U, V G ¿SO(X) such that F C U, K C V and U fl V = 0; 
(3) For each closed (resp. semi-closed) set F and each open (resp. semi-

open) set V containing F, there exists U G ¿SO(X) such that F C U C 
sCl6(U) C V. 

P r o o f . The proof is analogous to that of Theorem 6.7 and is omitted. 
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