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UNIFORM STRUCTURES ON HYPERSPACES
AND UNIFORM TOPOLOGIES
ON SPACES OF MULTIFUNCTIONS

Abstract. The aim of this paper is to study uniform and topological structures on
spaces of multifunctions. Uniform structures on hyperspaces compatible with the Fell, the
Wijsman and the Hausdorff metric topology respectively are studied and the links between
them are explored. Topologies induced by the above uniformities on spaces of multifunc-
tions are considered and compared. Also connections between uniform convergence of
multifunctions and their equi-semicontinuity are investigated.

Continuing the investigation of [Mcl], [Mc2] of uniform topologies on
compacta on spaces of multifunctions, we realized that the study of uniform
structures on hyperspaces allows us to find relationships between uniform
topologies on compacta on spaces of multifunctions and also sheds more
light on definitions of equi-semicontinuity (for multifunctions) scattered in
the literature [Pa2], [Ko], [BW], [DDH]. For this we first deal with uniform
structures on hyperspaces.

We concentrate upon three important uniformities: a uniformity com-
patible with the Fell, the Wijsman and the Hausdorff metric topologies
respectively. In the literature [Be] we can find complete results concerning
relations between the Fell, Wijsman and Hausdorff metric topology, how-
ever necessary and sufficient conditions for the coincidence of uniformities
are not known. In our paper we clarify also the relationships between the
uniformities.

Then we utilize the results concerning uniformities on hyperspaces in the
study of uniform topologies on compacta on spaces of multifunctions.
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In the last part, using uniformities on hyperspaces, we point out that the
definitions of equi-semicontinuity for multifunctions known in the literature
[Pa2], [Ko], [BW], [DDH] are nothing else that the classical equicontinuity
notion with respect to corresponding uniformities on the range space. We
also mention a connection between uniform convergence on compacta of
multifunctions and their equi-semicontinuity.

1. Terminology and notation

In this section we recall definitions and results that we shall use later
on. The basic references are [Mi] and [Be|. Let Y be a Hausdorff topological
space. Denote by 2¥ (CL(Y)) the family of all closed (closed and non empty)
subsets of Y and by K(Y') the family of all compact non empty subsets of
Y. We are interested in hyperspace topologies (topologies on the hyper-
space 2¥), which in the last years were intensively studied, since they found
applications in many different fields of mathematics (optimization, approxi-
mations, convex analysis, measure theory)[Be]. In our paper we mainly deal
with uniformities compatible with the Fell, Wijsman and Hausdorff topolo-
gies. For the reader’s convenience we start with definitions of mentioned
topologies [Be].

Let E be a subset of Y. Corresponding to E are these families of closed
subsets

E-={A€CLY):ANE#0} and Et ={Ae€CL(Y): AC E}.

One of the most well-studied hyperspace topology is the Vietoris
topology. The Vietoris topology on CL(Y') has as a subbase all sets of the
form V—, where V is a nonempty open set in X, and all sets of the form
W+, where W is open in X.

Further very important hyperspace topology is the Fell topology. The
Fell topology F on CL(Y') has as a subbase all sets of the form V~, where
V is a nonempty open set in X plus all sets of the form W, where W is
a nonempty open subset of X with compact complement. A local base for
the extended Fell topology F on 2¥ at the empty set consists of all sets of
the form {A € 2Y : AN K = 0} where K € K(Y).

It is worth noticing that the topological space (2Y, F) is always compact
and it is Hausdorff iff Y is locally compact.

Let (Y, d) be a metric space. The Wijsman topology W on CL(Y") (cor-
responding to d) is the weak topology determined by the family {d(y,-): y €
Y'}. To define the Wijsman topology on 2Y . we adopt the convention that
d(z,0) = co. We declare a net {A,} in 2¥ Wijsman convergent to A € 2Y
provided for each y € Y we have

limd(y, A\) = d(y, 4).
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The sets of the form {4 € 2¥ : d(y,A) > «} plus all sets of the form
{A € 2Y : d(y,A) < o} where y € Y and a > 0 form a subbase of a
Hausdorff topology on 2Y compatible with the above convergence, called
the extended Wijsman topology [Be], which we denote also by W. If (Y, d)
is bounded then @ is an isolated point of (2Y, W).

The Hausdorff metric H on 2Y, is defined by

H(A, B) = max{supd(a, B),supd(b, A)} = sup |d(z, A) — d(z, B)|
acA beB zeY

if A and B are non empty, while H(,0) = 0 and H(A,0) = H(0, A) = +oo.
The generated topology is denoted by H and is called the Hausdorff metric
topology. It is well known [Be] that F C W C H while the Vietoris topology
and the Hausdorff one are not comparable in general.

2. Uniform structures on hyperspaces

Since we are interested in uniform topologies on spaces of multifunc-
tions and these can have empty values we need to define reasonable uniform
structures on 2Y .

If (Y,U) is a uniform space, let us recall that:

- the common uniformity Uon?2"is generated by

{(A4,B) € 2¥ x2¥ : Ac U[B] and B c U[A]} = [U]

where U € U. Notice that [U][0] = {0}. The same uniformity was used by
E. Michael on CL(Y) [Bo], [Mi].

- the topology induced on the hyperspace of compact sets by U coincides
with the Vietoris topology [Mi].

This uniformity was used in papers of Papadopoulos [Pa2], Morales [Mo],
Smithson [S].

In this section we mention uniform structures corresponding to other
known hyperspace topologies. We will work with three important uniformi-

ties: a uniformity compatible with the Fell, the Wijsman and the Hausdorff
metric topologies.

We start with a uniformity corresponding to the Fell topology. It is known
[Be] that for (Y,U) locally compact Hausdorff uniform space, the sets of the
form

[K,U] = {(4,B) € CL(Y) x CL(Y) : ANK c U[B] and BNK c U[A]}

with K € K(Y) and U € U, form a base for a uniformity compatible with
the Fell topology on CL(Y'). In a natural way we can extend this uniformity
also on 2Y. It is easy to verify that the sets of the form

[K,U] = {(4,B) € 2¥ x2¥ : ANK c U[B] and BN K c U[A]},
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with the same choice of K and U form also a base for a uniformity compatible
with the Fell topology on 2Y. Denote this uniformity by Uz. Since (2Y, F)
is a compact space, Ur is the unique uniformity on 2¥ corresponding to
the Fell topology and thus is generated by F x F open neighbourhoods of
the diagonal in 2Y x 2Y. (We will use the same notation also for the above
uniformity on CL(Y)).

Notice that for every K € K(Y') and for every U € U

[K,U)0]={Be€2Y:BnK =0}.

Let (Y,d) be a metric space. If € > 0, denote by S(z,¢) the open ball ,
C(z,¢) the closed ball, with center z and radius ¢, and S(B, €) = UpS(b, €)
the e-enlargement of B. In this metric case the uniformity I/ (mentioned
above) is generated by the sets of the form

Ae) = {(4,B) € 2¥ x 2Y¥ : A Cc S(B,e)and B C S(4,¢)},
where € > 0, while Ur is generated by the sets of the form

[K,e] = {(4,B) € 2¥ x2Y : ANK c §(B,¢) and BNK C S(4,¢)},

with K € K(Y) and € > 0. Notice that in the correspondence with the
definition of the Hausdorff distance H (recall that H(A, B) = inf{e > 0 :
AC S(B,e)and B C S(A,¢€)} for A,B € CL(Y)) we have

A(e) = {(A,B) e 2¥ x2Y : H(A,B) < ¢}.

Further we will denote the uniformity generated by the sets A(e) (e > 0) by
Uy (to express that it is a uniformity generated by the Hausdorff metric).

Since the Wijsman topology on CL(Y) is the weak topology generated
by the family {d(y, ) : vy € Y}, a natural uniformity on CL(Y) can be
constructed with the sets of the form

W(F,e) = {(A,B) € CL(Y) x CL(Y) : |d(y, A) — d(y, B)| < ¢ Vy € F},

where F' is a finite subset of Y and € > 0. We will denote this uniformity by
Uw.

Now we introduce a uniformity on 2Y, for which the corresponding uni-
form topology is the extended Wijsman topology on 2Y .

We will define for every finite set F, 0 < e <1, 1< a, the sets of the
form

W*(F,e,a) = {(4,B) € 2¥ x2¥ : |d(y, A) — d(y,B)| < ¢ Vy € F}U
{(A,B) € 2¥ x2Y : d(y,A) > qa, d(y,B) > a Vy € F}.
The family
{W*(F,e,a): FCY finite, 0<e<1, 1<a}
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form a base for a uniformity U, on 2¥ that generates the extended Wijsman
topology on 2Y.

REMARK. Notice that the uniformity i},,/CL(Y’) which is induced by U5, on
CL(Y) coincides with the uniformity Uy in bounded metric spaces, but in
unbounded ones these two uniformities are different. Altough, both topolo-
gies induced by the uniformities U4y, and Uhy on CL(Y") coincide.

If Y is unbounded, the uniformity i4,/CL(Y") is weaker than Uy, since
for every F C Y finite, every 0 < € < 1, 1 < «a we have W(F,e) C
W*(F,e, a) (see also [SZ]).

The following two propositions can be found for CL(Y) in [SZ].

2.1 PROPOSITION. Let (Y,d) be a metric space. f K € K(Y),0<e < 1,
1 < a and D is the gap (D(A, B) = inf,e4 d(a, B)), the family described by
the sets

L(K,e)={(A,B) e CL(Y) x CL(Y) : |D(K,A) - D(K,B)| < €}
is also a base for the uniformity Uy on CL(Y).

The family described by the sets '

L*(K,e,a) = {(4,B) € 2¥ x 2¥ : [D(K, A) - D(K, B)| < €}U
{(4,B) € 2¥ x2¥ : D(K, A) > o, D(K, B) > a}

is also a base for the uniformity Uy,, on oY,
Proof. We prove only the part concerning the uniformity Uy, on 2Y . The
proof for Uy on CL(Y) is contained in it. It is sufficient to prove that if
K is a compact subset of Y, 0 < € < 1, 1 < « then L*(K, ¢, a) contains
an element from Uy). There is a finite {z1,...,z,} subset of K such that
K c Ul S(zi,e/3). We claim that W*({z1,..,zn},¢/3, 20) C L*(K, ¢, a).

We prove that for (4, B) € W*({z1, .., zn},€/3, 2a) satisfying d(z;, A) >
2a and d(z;, B) > 2a for every ¢ € {1,2,.,n}, it results D(K, A) > o and
D(K,B) > a.

If kK € K is such that D(K, A) = d(k, A) there is ¢ € {1,2,.,n} with
d(k, ;) < /3. Since

D(K,A) =d(k,A) > d(z;,A) —€/3>2a—€/3 > q,

we have (A4, B) € L*(K, ¢, a).

Now we prove that if (4, B) € W*({z1, .., zn},€/3, 2a) is such that

|d(z;, A) — d(z;, B)| < /3 for every i€ {1,2,..,n},

then also |D(K, A) — D(K, B)| < e.
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We distinguish two possibilities:
1. D(K, A) < D(K, B). It suffices to observe that if k is the element of
K for which D(K, A) = d(k, A) we have:
D(K,A) < D(K,B) <d(z;,B) <d(z;,A)+¢/3
< d(k,A)+2¢/3=D(K,A)+2¢/3
where z; € K is such element from K that k € S(z;,€/3).
2. D(K,B) < D(K, A). The proof is the same.

2.2 PROPOSITION. Let (Y,d) be a metric space. If K € K(Y),0< e < 1,
1 < o and e is the excess (e(A,B) = sup{d(a,B) : a € A}), the family
described by the sets

G(K,e) ={(A,B) e CL(Y)x CL(Y) : le(K,A) — e(K, B)| < €}

is also a base for the uniformity Uy on CL(Y).
The family described by the sets

G*(K,e,a) = {(A,B) € 2¥ x 2Y : |e(K, A) — e(K, B)| < e}U
{(A4,B) € 2¥ x 2Y 1 e(K, A) > a, e(K,B) > o' }
is also a base for the uniformity Uy, on 2Y,

Proof. We prove only the part concerning the uniformity U3, on 2Y since
the proof for Uy on CL(Y') is contained in it.

It is sufficient to prove that if K is a compact subset of Y 0 < ¢ < 1,
1 < o then G*(K,e,a) contains an element from Uy,,. There is a finite
{z1,..,zn} subset of K such that K C UX,S(zi,e/3). We claim that
W*({z1,..,zn},€/3, 20) C G*(K, ¢, ).

Let (4, B) € W*({z1, .., zn},€/3, 2a) with d(z;, A) > 2a and d(z;, B) >
2a, for every i € {1,2,..,n}. We prove that e(K, A) > o and e(K, B) > a.

If £ € K is such that e(K, A) = d(k, A) there is i € {1,2,.,n} with
d(k,z;) < €/3. We have

e(K,A) =d(k,A) > d(z;,A) — /3> 20— /3> .
The case e(K, B) > a is the same. Thus (4, B) € G*(K, ¢, a).
Suppose that (4, B) € W*({z1, .., Zn },€/3, 2a) is such that
|d(zx;, A) — d(zi, B)| < €/3 for every i€ {l,.,n}.
We prove that |e(K, A) — e(K, B)| < €. We distinguish two possibilities:
1. e(K, B) < e(K, A). If k is the element of K for which e(K, A) = d(k, A)

we have:
e(K, B) < e(K, A) = d(k, A) < d(z;, A) +¢/3

< d(z;,B) +2¢/3 <e(K,B)+2¢/3
where z; € K is an element from K such that k € S(z;,€/3).
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2. e(K, A) < e(K, B). The proof is similar.
Thus we have (4, B) € G*(K, ¢, a).

3. Comparison of uniform structures on hyperspaces
In this part we describe the relationships between the uniformities that
we introduced.

3.1 PROPOSITION. Let (Y, d) be a metric space. Then

Uy ClUy on2¥ x2¥ and Uy C Uy on CL(Y) x CL(Y).
IfY is locally compact, then
Ur CUy ClUy on2Y x2¥ and Ur C Uy C Uy on CL(Y) x CL(Y).
Proof. To prove that Ur C U, on 2¥ x 2¥ (U C Uy on CL(Y) x CL(Y))
it is sufficient to show that for every K € K(Y) and € > 0

[K,e]l eUyy ([K,e]NnCL(Y) x CL(Y) € Uw).

Thus let K € K(Y) and € > 0. The compactness of K implies that there
are finitely many points ki, .., k, € K such that K C U2 ,C(k;,e/4).

For every i € {1,2..n} put C; = K N C(ki,e/4), which are compact of

course. We claim that
n

m L*(Ci’6/4’ 2) c [K? 5]

i=1

() L(Ci,£/4) C [K,e] N (CL(Y) x CL(Y)).
i=1
Let (A,B) € N, L*(C;,e/4,2). If A, B are such that AN K = () and
BN K = we are done. Thus suppose that there exists a point a € AN K.
There must exist ¢ € {1,2..,n} with a € C; and D(C;,B) < ¢/4, i.e. a €
S(B,€). Since for every € > 0,
A(e)={(A,B) e CL(Y)x CL(Y) : H(A,B) < ¢}
is contained in
{(A,B) e CL(Y) x CL(Y) : |d(y, A) — d(y, B)| < e Vy e Y},

we have that Uy C Uy.
To prove that Uy, C Uy it is sufficient to realize that for every 0 < € < 1,
y€Y,1< atheset

{(A,B) € CL(Y) x CL(Y) : H(A, B) <} U{(0,0)}
is contained in
{(4,B) €2" x 2" :|d(y, 4) - d(y, B)| < ¢}
U{(4, B) € 2¥ x 2V : d(y, A) > a,d(y, B) > a}.
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3.2 PROPOSITION. Let (Y,d) be a metric space. Then the following are
equivalent:

(i) Uw = Uy on CL(Y) x CL(Y);

(ii) Y is totally bounded.

Proof. Let Y be totally bounded, we need only to prove that Uy C U . Let
e > 0 and consider A(e). There exists a finite set F' = {y1,¥2, .., yn} such
that Y C Ul=; S(yi,€/3). We prove that W(F,e/3) C A(e). Let (A,B) €
W(F,e/3). If z € Y there is y; € F such that d(z,y;) < /3. Being

|d(2, A) — d(z, B)|
< |d(z, A) = d(ys, A)| + |d(2, B) — d(yi, B)| + |d(yi, A) — d(y:, B)| < ¢

we obtain that H(A, B) < €. Thus W(F,e) C A(e).

Now if Uyy = Uy on CL(Y) x CL(Y), then also the corresponding gene-
rated topologies on CL(Y") coincide. Thus by [Be] (Theorem 3.2.3) Y must
be totally bounded.

3.3 PRrOPOSITION. Let (Y,d) be a metric space. Then the following are
equivalent:

(1) Upy = Up on 2Y x 2Y;

(il) Y is totally bounded.

Proof. If Uy, = Uy on 2¥ x 2Y, they coincide also on CL(Y) x CL(Y).
Thus also the corresponding generated topologies on CL(Y') coincide. By the
Remark on page 989 both topologies induced by the uniformities ¢4y, and
Uw coincide too. Thus by [Be], Theorem 3.2.3, Y must be totally bounded.

Suppose now that Y is totally bounded. To prove that Uy C Uy, it
is sufficient to show that for every € > 0 A(e) U {(8,0)} € Uy . Since Y is
bounded thereis yo € Y and M > 1such that Y C S(yo, M). Being Y totally
bounded, there are points {y1,¥2,.,yn} C Y such that Y C U S(y:,€/3).
It is easy to verify that

W* ({Yo, y1, Y2, - Yn}, €/3, M) C A(e) U {(8,0)}.

Let us recall that a metric space (Y, d) is boundedly compact when every
closed bounded subset is compact. By Beer in [Be] (exercise 5.1.12) the
property of being boundedly compact characterizes those metric spaces for
which Fell and the Wijsman topologies coincide on 2Y. Using this result w-
prove the following:

3.4 PROPOSITION. Let (Y,d) be a locally compact metric space. Then the
following are equivalent:

(i) Ur = U}, on 2Y x 2V

(i1) Y is boundedly compact.
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Proof. Suppose that (Y, d) is boundedly compact. To prove that Ur = U4},
on 2Y, it is sufficient to prove that for every K € K(Y),0<e <1, 1< a
we have
L*({K},e,a) € Ur.
For K, ¢, a as above, put
L={yeY:dyK)<a}.
The boundedly compactness of Y implies that L is compact. We claim that
H=][Le] Cc L*(K,¢, ).

Let (A,B) € H. If D(K,A) > a and D(K,B) > « we are done. Also
if D(K,A) = D(K,B). Now suppose that the above does not hold. If
D(K,A) < D(K, B), take a € AN L such that D(K, A) = d(a, K). Since
(A, B) € H there is b € Bwith d(a,b) < €. Thus we have

D(K,a) —e < D(K, A) < D(K, B) < d(b,K) < d(a, K) + d(a,b)
<D(K,A)+e.

If D(K, B) < D(K, A) the proof is similar.
The converse follows now from [Be] since from U3, = Ur we obtain that
the corresponding generated topologies coincide.

Let us recall that a metric space (Y,d) has nice closed balls provided
that whenever B is a closed ball in Y which is a proper subset of Y then B
is compact.

Beer in [Be] proved that the property of having nice closed balls char-
acterize those metric spaces for which Fell and Wijsman topologies coincide
on CL(Y). Using this result we prove the following:

3.5 PROPOSITION. Let (Y, d) be a metric space. Then the following are equi-
valent:

(i) Uw =UFr on CL(Y) x CL(Y);

(il) Y is bounded and has nice closed balls.

Proof. Let us observe first that from Uy = Ur it follows that the cor-
responding generated topologies coincide, therefore Y has nice closed balls
[Be]. Suppose now that Y is not bounded and y € Y. We can find a se-
quence {y, : n € N} such that d(y, yn) converges to +oo and d(y, yn+1) >
d(y,yn)+ 1 for every n € N. Since Uyy = Ur there must exist a compact set
K CY and a > 0 such that [K, o] C W({y},1/2), but this is a contradic-
tion. Infact, there must exist ng € N such that y, & K for every n > ng and
therefore ({yng-+1}, {Yng-r2}) € [K; o). But ({yng1}, {mo+2}) € W({y},1/2)
since |d(y, Yno+1) — d(y, Yno+2)| > 1.
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Suppose now that (ii) is true. To prove that Uhy C Ur, let y € Y,
e > 0 and consider W ({y}, ). It is sufficient to find a compact set K and
n > 0 such that [K,n] C W({y},€). Put @ = sup,cyd(y, z). Without loss of
generality we can suppose that € < a. Put H = C(y,a — €/2). We claim
that

[H,e/2] C W({y},e).

If (A, B) € [ H,e/2] are such that d(y, A) = d(y, B), we are done. So suppose
that d(y, A) < d(y,B). If HN A = @, then also HN B = . In this case
we have a — €/2 < d(y,A) < a and also a — ¢/2 < d(y,B) < «, thus
|d(y, 4) - d(y, B)| <e.

Suppose now that H N A # 0. Let a € A be such that d(y, A) = d(y, a).
There must exist b € B with d(a,b) < £/2. Thus we have

ld(y, A) — d(y, B)| < d(y,b) — d(y,a) < d(y,a) + d(a,d) — d(y,a) < /2.

4. Uniform topologies on compacta on & = #(X,2Y)

Let us consider the set F(X, Z), of all functions from X to Z. To define
a uniform topology on F(X, Z), we need a uniform structure on Z, so let p
be a diagonal uniformity on Z. The basic open sets in the uniform topology
on compact sets relative to u are

<f,C,M>={geF(X, 2): (f(z),g9(z)) € M,Vz € C}

where f e F(X,Z),C € K(X) and M € p.

In what follows let X and Y be Hausdorff topological spaces and & =
Z(X,2Y) be the set of all functions from X to 2¥ (the elements of & are
called also multifunctions). Starting from the above mentioned uniformities
on 2V one can define uniform topologies on #(X,2Y).

First we define the Fell uniform topology 7 (Ur) on compact sets on
F(X,2Y).

The basic open sets < ¢, A, [K, U] > in this space are

{$ € £(X,2¥) : ¢(z) N K C Ul¢(z)] and ¢(z) N K C Up(z)] Vz € A},

where K € K(Y), A € K(X), U is a uniformity on Y and U € U ([Mcl],
[Mc2]).

Further we will define the Hausdorff uniform topology 7 (U%) on compact
sets on Z(X,2Y). The basic open sets < ¢, A, A(¢) > in this space are

{¥ e £(X,2¥) : HW(z), d(z)) < &,Vz € A},

where A € K(X) and € > 0 (see [Mcl], [Mc2]).
Finally we will define the Wijsman uniform topology 7 (Uy) on compact
sets on F(X,CL(Y)). The basic open sets < ¢, A, W(F,¢) > are
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{¢ € Z(X,CL(Y)) : | d(y,%(z)) - d(y, ¢())| <e, Vz € AandVy € F},

where F' is a finite subset of Y, A € K(X) and € > 0.
For the Wijsman uniform topology 7 (I43;) on compact sets on & (X, 2Y)
the basic open sets < ¢, A, G*(K,¢,a) > are

nmeA(w € F(X,2Y): e(K,¥(2)) > a if e(K, $(z)) > U

{ € F(X,2Y) 1 [e(K, ¥(2)) - e(K, ¢())| < £})
where K €e K(Y), A€ K(X),0<e<1l,and 1< a.

NOTE. Note that when I is a uniformity on 2¥ we get a uniformity &’ on
Z(X,2Y) taking the sets {(¢,%) : (#(z),¥(z)) € U,Vz € K} for K € K(X)
and U € U.

If Uy, Us are uniformities on 2Y then i) C Uy if and only if U’y C U's.

Observe that except of the coincidence Ur = Uy on CL(Y) we have
that the above uniformities on 2Y coincide if and only if the corresponding
topologies on 2Y coincide.

Notice also that if topologies on 2¥ generated by uniformities are differ-
ent, then also corresponding uniform topologies on compacta on % (X, 2Y)
must be different.

Thus the following four Propositions are immediate consequence of the
above note and of results of section 3.

4.1 PROPOSITION. Let (Y,d) be a metric space. Then
T(Uw) C T(Uy) on F(X,CL(Y)) and TUy) C T(Usy) on F(X,2Y).
If (Y,d) is a locally compact metric space, then

TUF) C T(Uw) CTUn) on F(X,CL(Y))

and

TUF) Cc TUy) € TUy) on F(X,2Y).

The following results provide a complete answer to the question of what
circumstances induce the above uniform topologies to coincide.

4.2 PROPOSITION. Let (Y,d) be a metric space. Then the following are
equivalent:

(i) T(Un) = T(Uw) on F(X,CL(Y));

(ii) Y is totally bounded.

4.3 PROPOSITION. Let (Y,d) be a metric space. Then the following are
equivalent:

(i) T(Ur) = TWU) on F(X,2Y);

(ii) Y is totally bounded.



996 I. Del Prete, M. Di Iorio, L. Hol4

4.4 PROPOSITION. Let (Y,d) be a locally compact metric space. Then the
following are equivalent:

(i) T(Ur) = T(Uy) on F(X,2Y);

(ii) Y is boundedly compact.

For what it concerns the links between 7 (Ur) and 7 (lhy) on
F(X,CL(Y)), we can say that:

- If Y is bounded and has nice closed balls, then from 3.5 we obtain
T(Ur) = TUw).

-If T(Ur) = T (Uw), then Y has nice closed balls [Be] (Theorem 5.1.10).

Concerning necessary and sufficient conditions we have the following
results:

4.5 PROPOSITION. Let X be discrete and (Y, d) be a locally compact metric
space. Then the following are equivalent:

(i) T(tr) = T(Uw) on F(X,CL(Y));

(i) Y has nice closed balls.

Proof. It follows directly from the coincidence of Fell and Wijsman topolo-
gies and from the discretness of X.

4.6 PROPOSITION. Let X be a non discrete first countable space and (Y,d)
a locally compact metric space. Then the following are equivalent:

(i) T(WUs) = T(Uw) on F(X,CL(Y));

(i) Y is bounded and has nice closed balls.

Proof. It is sufficient to prove that from (i) it follows that Y is bounded.
Suppose that Y is not bounded and y € Y. We can find an unbounded
sequence (yn) satisfying d(y,yn+1) > d(y,yn) + 1. Let z € X be a non
isolated point and let {z,} be a sequence of different points of X converging
to z.

Thus K = {z}U{z, : n € N} is compact. Define on X the multifunction
F(z) = {y}, F(zn) = {yn}, F(z) = {y} otherwise. For every n € N put
Fo(zn) = {yn+1} and Fr(z) = F(z) otherwise. The sequence {F, : n € N}
T (Ur) converges to F', but does not 7 (L) converge to F. Indeed

Fo g {¢ € F(X,CLY)): (¢(2), F(2)) € W({y},1/2) Vz € K}

since

|d(y, Fu(2n)) — d(y, F(za)| = d(y, yn+1) — d(y,yn) > 1.

5. Connections with equicontinuity

It goes back to Smithson (1971) [Sm] the definition of equicontinuity for
a family G of compact valued multifunctions from a topological space (X, T)
to a uniform one (Y,U). The family G is equicontinuous in xo € X if for
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every U € U there is a neighbourhood O of zg such that for every F € G,
F(0) C U[F (o))
and
F(z)NUly] #0 for everyz € O and for everyy € F(zo).

In 1989 Papadopoulos [Pal], [Pa2] showed that this definition is nothing
else that the usual definition of equicontinuity for a family of functions
from (X, 7) to (2Y,U), where I is the uniformity on 2¥ induced by U (see
section 2.).

Notice that also other definitions of equicontinuity for multifunctions
known in the literature [Mo], [Ko}], [BW],[DDH] correspond to equicontinuity
for functions with an appropriate uniformity on 2Y.

Recalling that a base of U are the sets [K, U], from the equicontinuity
for a family G of functions from a topological space (X,T) to (2Y,Ur) we
can deduce the definition of equi-semicontinuity , given in [BW] and [DDH].

Splitting the equi-semicontinuity in two parts we obtain the following
definitions given in [BW].

Anet {F,:0€Z}Cc F(X,2")is

- equi-outer-semicontinuous at ¢ if for every compact set B C Y and
every U € U there is a neighborhood O of z¢ and o¢ € X such that for every
z € O and every o > 0y

F,(z) N B C U[F,(z0)];

- equi-inner-semicontinuous at xy if for every compact set B C Y and
every U € U there is a neighborhood O of z¢ and oy € X such that for every
z € O and every o > 0y

Fy(z0) N B C U[F,(z)].

Thus from the classical result we can immediately deduce that if X and
Y are locally compact spaces, Y a uniform one, then 7 (Ur) convergence of
a net {F, : ¢ € £} to a F-continuous function F in &F(X,2Y) implies the
equi-semicontinuity of {F; : o € ¥}. But we can say even more.

We say that a multifunction F' from X to Y is c-upper semicontinuous
[BHN] at z € X if for every open set V in Y such that F(z) C V and
the complement of V is compact there is a neighbourhood U of z with
F(U) c V. F is c-upper semicontinuous if it is c-upper semicontinuous at
every point z € X.

5.1 PROPOSITION. Let X,Y be locally compact spaces and (Y,U) be a uni-
form one. T(Ur) convergence of a net {F, : 0 € £} to a c-upper semi-
continuous multifunction F in F(X,2Y) implies that the net is equi-outer-
semicontinuous.
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Proof. Suppose that this is not true for a point z € X. Thus there is U € U
and K € K(Y) such that for every neighbourhood O of z and every o € ¥
there is 7(0,0) € &, n(0,0) > 0 and z,(p ) € O for which

Fh0,0)(Tn0,0)) N K & UlFy0,0)()]-

This allows us to choose a net

Yn(0,0) € F3(0,0)(Z4(0,0)) N K\U[F}y0,0)().-
It is easy to verify that L = {n(O,0) : O € B(z),0c € L} (where B(z)
denotes the family of all neighbourhoods of z) is a cofinal family in X.

Thus {F0,0) : O € B(z),0 € X} is a subnet of {F, : 0 € L}, i.e. also
T (Us)-converges to F.

We can suppose that {(z,(0,0), ¥n(0,0)) : O € B(z),0 € L} converges
to (z,y) for y € Y. We prove that y € F(z). Otherwise there would exist
an open set G containing y such that GN F(z) = . Pt GNK = C.
There must be a symmetric element L € U such that L[C] is compact and
F(z)NL[C] = 0. There is an open set V in X such that z € V, V is compact
and F(2) NL[C] = 0 for every z € V.

Observe that 7 (Ur) convergence of {Fy o) : O € B(z),0 € L} to F
implies that

Fyo,0) € {¢ € Z(X,2"): (8(2), F(2)) € [C, L) Vz € V},

eventually and this is a contradiction.
Now let U; € U be symmetric, open and U o Uy C U. Then Fy(p 5)(z) N
Uily] # 0 eventually and also y, 0,0y € U1[y] eventually, a contradiction.

5.2 PROPOSITION. Let X,Y be locally compact spaces and (Y,U) be a uni-
form one. If a net {F, : 0 € £} T(Ux) converges to a lower semicontinuous
multifunction F in F(X,2Y), then the net is equi-inner-semicontinuous.

Proof. Suppose that this is not true for a point « € X. Thus there is U € U
and K € K(Y) such that for every neighbourhood O of z and every o € £
there is (0, 0) € L, n(0,0) > 0 and z,(0 ) € O for which

Fy0,0)(x) N K & UF;0,0)(Tn(0,0))]-
We can choose a net {z,0)} and a net {yy0,.)} such that y, 0, €
Fv,(O,a) (x) N K but Yn(0,0) ¢ U[Fn(O,a) (mn(O,a))]'
Thus {F,0,6) : O € B(z),0 € L} is a subnet of {F, : ¢ € X}, which
T (Ux) converges to F. We can suppose that
{(xn(O,a)a yn(O,a)) 10 € B(:L‘),O’ € 2}
converges to (z,y) fory € Y.
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We prove that y € F(z); otherwise there would exists an open set G
containing y such that GN F(z) = . Put C = GN K. There is a symmetric
element L € U such that F(z) N L[C] = 0.

Observe that 7 (Ux) convergence of {Fy0.) : O € B(z),0 € £} to F
implies that (Fy(0,0)(z), F(z)) belongs to [C, L] eventually, i.e. Fy0,4)(z) N
C = () eventually, a contradiction. Thus y € F(z).

Now let U; € U be symmetric, open such that UjoU;oU; C U and m
is compact.

Since y € F(z) the lower semicontinuity of F' at  implies that there is
a neighbourhood O of = (O compact) such that F(z) N Ui[y] # @ for every
z € O. Then

Fy0,0) € {¢ € F(X,2") : (4(2), F(2)) € [Th[y], U] Vz € O}
eventually. This is a contradiction since ¥p(0,0) & U[Fy(0,0)(%n(0,0))]-
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