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UNIFORM STRUCTURES ON HYPERSPACES 
A N D UNIFORM TOPOLOGIES 

ON SPACES OF MULTIFUNCTIONS 

Abstract. The aim of this paper is to study uniform and topological structures on 
spaces of multifunctions. Uniform structures on hyperspaces compatible with the Fell, the 
Wijsman and the HausdorfF metric topology respectively are studied and the links between 
them are explored. Topologies induced by the above uniformities on spaces of multifunc-
tions are considered and compared. Also connections between uniform convergence of 
multifunctions and their equi-semicontinuity are investigated. 

Continuing the investigation of [Mcl], [Mc2] of uniform topologies on 
compacta on spaces of multifunctions, we realized that the study of uniform 
structures on hyperspaces allows us to find relationships between uniform 
topologies on compacta on spaces of multifunctions and also sheds more 
light on definitions of equi-semicontinuity (for multifunctions) scattered in 
the literature [Pa2], [Ko], [BW], [DDH]. For this we first deal with uniform 
structures on hyperspaces. 

We concentrate upon three important uniformities: a uniformity com-
patible with the Fell, the Wijsman and the Hausdorff metric topologies 
respectively. In the literature [Be] we can find complete results concerning 
relations between the Fell, Wijsman and Hausdorff metric topology, how-
ever necessary and sufficient conditions for the coincidence of uniformities 
are not known. In our paper we clarify also the relationships between the 
uniformities. 

Then we utilize the results concerning uniformities on hyperspaces in the 
study of uniform topologies on compacta on spaces of multifunctions. 
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In the last part, using uniformities on hyperspaces, we point out that the 
definitions of equi-semicontinuity for multifunctions known in the literature 
[Pa2], [Ko], [BW], [DDH] are nothing else that the classical equicontinuity 
notion with respect to corresponding uniformities on the range space. We 
also mention a connection between uniform convergence on compacta of 
multifunctions and their equi-semicontinuity. 

1. Terminology and notation 
In this section we recall definitions and results that we shall use later 

on. The basic references are [Mi] and [Be]. Let Y be a Hausdorff topological 
space. Denote by 2Y (CL(Y ) ) the family of all closed (closed and non empty) 
subsets of Y and by K(Y) the family of all compact non empty subsets of 
Y. We are interested in hyperspace topologies (topologies on the hyper-
space 2y) , which in the last years were intensively studied, since they found 
applications in many different fields of mathematics (optimization, approxi-
mations, convex analysis, measure theory) [Be]. In our paper we mainly deal 
with uniformities compatible with the Fell, Wijsman and Hausdorff topolo-
gies. For the reader's convenience we start with definitions of mentioned 
topologies [Be]. 

Let £ be a subset of Y. Corresponding to E are these families of closed 
subsets 

E~ = {A € CL(Y) : A n E ± 0} and E+ = {A G CL{Y) : A C E}. 
One of the most well-studied hyperspace topology is the Vietoris 

topology. The Vietoris topology on CL(Y) has as a subbase all sets of the 
form V~, where V is a nonempty open set in X, and all sets of the form 
W+, where W is open in X. 

Further very important hyperspace topology is the Fell topology. The 
Fell topology T on CL(Y) has as a subbase all sets of the form V~, where 
V is a nonempty open set in X plus all sets of the form W+, where W is 
a nonempty open subset of X with compact complement. A local base for 
the extended Fell topology T on 2 y at the empty set consists of all sets of 
the form {A G 2 y : A n K = 0} where K G K(Y). 

It is worth noticing that the topological space (2Y, !F) is always compact 
and it is Hausdorff iff Y is locally compact. 

Let (Y, d) be a metric space. The Wijsman topology W on CL(Y) (cor-
responding to d) is the weak topology determined by the family {d(y, •) : y G 
F}. To define the Wijsman topology on we adopt the convention that 
d(x, 0) = oo. We declare a net in 2 Wijsman convergent to A € 2y 

provided for each y G Y we have 
limd(y, Ax) = d(y,A). 
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The sets of the form {A € 2Y : d(y,A) > a} plus all sets of the form 
{A G 2y : d(y, A) < <*} where y € Y and a > 0 form a subbase of a 
Hausdorff topology on 2Y compatible with the above convergence, called 
the extended Wijsman topology [Be], which we denote also by W. If (Y, d) 
is bounded then 0 is an isolated point of (2y , W). 

The Hausdorff metric H on is defined by 

H(A,B) = max{supd(a, B),supd(6, A)} = sup|d(z, A) - d(z, B)\ 
a€A beB zeY 

if A and B are non empty, while #(0,0) = 0 and H(A, 0) = #(0 , A) = +oo. 
The generated topology is denoted by Tí and is called the Hausdorff metric 
topology. It is well known [Be] that f c W c H while the Vietoris topology 
and the Hausdorff one are not comparable in general. 

2. Uniform structures on hyperspaces 
Since we are interested in uniform topologies on spaces of multifunc-

tions and these can have empty values we need to define reasonable uniform 
structures on 

If (Y,U) is a uniform space, let us recall that: 
- the common uniformity U on 2y is generated by 

{ ( A , B) € 2 y x 2 y : A C U[B] and B C U[A}} = [U] 

where U € U. Notice that [U] [0] = {0}. The same uniformity was used by 
E. Michael on CL(Y) [Bo], [Mi]. 

- the topology induced on the hyperspace of compact sets by U coincides 
with the Vietoris topology [Mi]. 

This uniformity was used in papers of Papadopoulos [Pa2], Morales [Mo], 
Smithson [S]. 

In this section we mention uniform structures corresponding to other 
known hyperspace topologies. We will work with three important uniformi-
ties: a uniformity compatible with the Fell, the Wijsman and the Hausdorff 
metric topologies. 

We start with a uniformity corresponding to the Fell topology. It is known 
[Be] that for (Y, U) locally compact Hausdorff uniform space, the sets of the 
form 

[K, U] = { ( A , B) G CL(Y) x CL{Y) : A n K C U[B] and B n K C U[A}} 

with K € K(Y) and U EU, form a base for a uniformity compatible with 
the Fell topology on CL(Y). In a natural way we can extend this uniformity 
also on 2y. It is easy to verify that the sets of the form 

[K, U} = {(.4, B) e 2y x 2y : A n K c U[B] and B n K C U[A]}, 
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with the same choice of K and U form also a base for a uniformity compatible 
with the Fell topology on Denote this uniformity by Up. Since (2Y,Jr) 
is a compact space, Ujr is the unique uniformity on 2V corresponding to 
the Fell topology and thus is generated by T x T open neighbourhoods of 
the diagonal in 2Y x 2Y. (We will use the same notation also for the above 
uniformity on CL(Y)). 

Notice that for every K € K(Y) and for every U Eli 

[K,U][Q] = {B €2y :BnK = ®}. 

Let (Y, d) be a metric space. If e > 0, denote by S(x, s) the open ball , 
C(x, e) the closed ball, with center x and radius e, and S(B, e) = Ut,S(b, e) 
the £-enlargement of B. In this metric case the uniformity U (mentioned 
above) is generated by the sets of the form 

A(e) = {(A,B) e 2y x 2Y : A C S(B, e) andB c S(A,e)}, 

where e > 0, while Up is generated by the sets of the form 

[K, e] = {(A, B) G 2y X 2y : A N K C S(B, e) and B n K C S(A, e)}, 

with K € K(Y) and e > 0. Notice that in the correspondence with the 
definition of the Hausdorff distance H (recall that H(A, B) = inf {e > 0 : 
A C S(B,e) and B C S(A,e)} for A, Be CL(Y)) we have 

A ( 0 = {(A,B) E 2y x 2y : H{A,B) < e}. 

Further we will denote the uniformity generated by the sets A(e) (e > 0) by 
Uu (to express that it is a uniformity generated by the Hausdorff metric). 

Since the Wijsman topology on CL(Y) is the weak topology generated 
by the family {d(y, •) : y 6 Y}, a natural uniformity on CL(Y) can be 
constructed with the sets of the form 

W(F,e) = {(A,B) € CL(Y) x CL{Y) : \d(y, A) — d(y,B)\ < e Vy € F}, 

where F is a finite subset of Y and e > 0. We will denote this uniformity by 
Uw-

Now we introduce a uniformity on 2Y, for which the corresponding uni-
form topology is the extended Wijsman topology on 2Y. 

We will define for every finite set F, 0 < e < 1, 1 < a, the sets of the 
form 

W*(F,e,a) = {(A,B) e 2y X 2y : \d{y,A) - d(y,B)\ < e Vy G F}U 

{(A,B) € 2y x 2y : d(y,A) > a, d(y,B) > a Vy € F}. 

The family 

{W*(F,s,a) :FcY finite, 0 < e < 1, 1 < a} 



Uniform structures on hyperspaces 989 

form a base for a uniformity Uy^ on 2Y that generates the extended Wijsman 
topology on 

REMARK. Notice that the uniformity Uy^/CLiY) which is induced by Ufo on 
CL(Y) coincides with the uniformity Uyj in bounded metric spaces, but in 
unbounded ones these two uniformities are different. Altough, both topolo-
gies induced by the uniformities Uyy and Uyy on CL(Y) coincide. 

If Y is unbounded, the uniformity U^/CL{Y) is weaker than U\v, since 
for every F C Y finite, every 0 < e < 1, 1 < a we have W(F,e) C 
W*(F,e,a) (see also [SZ]). 

The following two propositions can be found for CL(Y) in [SZ]. 

2.1 PROPOSITION. Let (Y,d) be a metric space. If K € K(Y), 0 < e < 1, 
1 < a and D is the gap (D(A, B) = infaeA d(a, B)), the family described by 
the sets 

L(K, e) = {(A, B) e CL(Y) x CL(Y) : \D(K, A) - D(K, £)| < e} 

is also a base for the uniformity Uyj on CL(Y). 
The family described by the sets 

L*(K,e,a) = { ( A , B ) 6 2 y x 2 y : \D(K,A) — D(K,B)\ < e}U 

{(A, B) G 2 y x 2y : D(K, A) > a, D(K, B) > a} 

is also a base for the uniformity Uy^ on 2Y. 

P r o o f . We prove only the part concerning the uniformity Uy^ on 2Y. The 
proof for Uw on CL(Y) is contained in it. It is sufficient to prove that if 
K is a compact subset of Y, 0 < e < 1, 1 < a then L*(K,e,a) contains 
an element from Uyj- There is a finite {xi , . . . , xn} subset of K such that 
K C U"= 15(a; j ,e/3). We claim that W*{{x\,..,xn},e/3, 2a) c L*(K,e,a). 

We prove that for (A, B) € W*({xi,.., xn}, e/3, 2a) satisfying d(xi, A) > 
2a and d(xi,B) > 2a for every i € {1,2, . ,n} , it results D(K,A) > a and 
D(K,B) > a . 

If k e K is such that D(K,A) = d(k,A) there is i € {1,2, . ,n } with 
d(k,X{) < e/3. Since 

D(K, A) = d(k, A) > d(xit A) - e/3 > 2a - e/3 > a, 

we have (A, B) € L*(K, e, a). 

Now we prove that if (A,B) € W*({xi, . . , x n } , e /3 , 2a) is such that 

\d(xi, A) - d(xi,B)\ < e/3 for every i € {1 ,2 , . . , n} , 

then also |D(K,A) - D(K,B)\ < e. 
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We distinguish two possibilities: 
1. D(K,A) < D(K,B). It suffices to observe that if k is the element of 

K for which D(K, A) = d(k, A) we have: 

D(K, A) < D(K, B) < d(xi, B) < d{xu A) + e/3 

< d(k, A) + 2e/3 = D(K, A) + 2e/3 

where Xj 6 K is such element from K that k G S(xi,e/3). 
2. D(K, B) < D(K, A). The proof is the same. 

2.2 PROPOSITION. Let (Y,d) be a metric space. If K G K(Y), 0 < e < 1, 
1 < a and e is the excess (e(A,B) = sup{d(a ,B) : a G A}), the family 
described by the sets 

G(K, e) = B) e CL{Y) x CL(Y) : |e(/iT, A) - e(K, B)\ < e) 

is also a base for the uniformity Uyy on CL(Y). 
The family described by the sets 

G*(K, e, a) = {(A,B) e 2y X 2 y : \e(K, A) - e(K,B)\ < e}U 

{ ( A B) € 2y x 2y : A) > a, 5 ) > a } 

is also a base for the uniformity Uy^ on 2Y. 

P r o o f . We prove only the part concerning the uniformity Uyy on since 
the proof for Uyy on CL(Y) is contained in it. 

It is sufficient to prove that if K is a compact subset of Y 0 < e < 1, 
1 < a then G*(K,e,a) contains an element from Uyy- There is a finite 
{xi,..,xn} subset of K such that K C U" = 1 5(xi ,e/3) . We claim that 
W*({xi,..,xn},£/3, 2a) C G*(K,e,a). 

Let (A,B) G W*( {x i , . . ,£„} , e/3, 2a) with d(Xi,A) > 2a and d(Xi,B) > 
2a, for every i € {1 ,2 , . . , n} . We prove that e(K, A) > a and e(K, B) > a. 

If k € K is such that e(K,A) = d(k,A) there is i 6 {1,2, . ,n } with 
d(k,xi) < e/3. We have 

e(K, A) = d(k, A) > d{xh A) - e/3 > 2a - e/3 > a. 

The case e(K, B) > a is the same. Thus (A, B) € G*(K, e, a). 
Suppose that (A ,B) e W*( {x i , , . , x n } , e /3 , 2a) is such that 

\d(xi, A) — d(xi, B)\ < e/3 for every ¿ e { l , . , n } . 

We prove that |e(K, A) — e(K, B)\ < e. We distinguish two possibilities: 
1. e(K, B) < e(K, A). If fc is the element of K for which e(K, A) = d(k, A) 

we have: 
e(K, B) < e(K, A) = d(k, A) < d(xh A) + e/3 

< d(xi, B) + 2e/3 < e(K, B) + 2e/3 

where Xi € K is an element from K such that k G S(xi,e/3). 
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2. e(K, A) < e(K, B). The proof is similax. 
Thus we have (A, B) G G*(K, e, a) . 

3. Comparison of uniform structures on hyperspaces 
In this part we describe the relationships between the uniformities that 

we introduced. 

3 . 1 PROPOSITION. Let (Y,d) be a metric space. Then 

Uw C Uh on 2y x 2y and Uw C Un on CL(Y) x CL(y). 
// y is locally compact, then 

UrCU^C Un on 2y
 X 2y

 and UT cWw C Un on CL(Y) x CL(y). 
P r o o f . To prove that Ŵ r c ¿ ^ on 2 r x 2 y {Ujr c on CL(y) x CL(y) ) 
it is sufficient to show that for every K G K(Y) and e > 0 

[K, e]eUh ( [K, s] n CL(Y) x CL(Y) € 

Thus let K e K(Y) and e > 0. The compactness of K implies that there 
are finitely many points fci,.., knE K such that K C Uf_1C(fci,£:/4). 

For every i € {1,2. .n} put Ci = K D C(ki,e/4), which are compact of 
course. We claim that 

f)L*(Ci,e/4,2)c[K,e] 
i=1 

f ) L(Ci,e/4) C n ( C L ( Y ) X C L ( y ) ) . 
¿=1 

Let (>1,5) G nf = 1 L*(Ci ,e /4 ,2 ) . If A, B are such that A n K = 0 and 
B fl K = 0 we are done. Thus suppose that there exists a point a G A Pi K. 
There must exist i € { l , 2 . . , n } with a G Cj and D(Ci,B) < e/4, i.e. a G 
5 ( 5 , e). Since for every e > 0, 

A ( e ) = {(A,B) e CL{Y) x CL{Y) : < e } 

is contained in 

{(A,B) G CL(Y) x C L ( y ) : - d(y,B)\ < e Vy G y } , 

we have that Uyy C Un-
To prove that Uy^ C Un it is sufficient to realize that for every 0 < e < 1, 

y G y , 1 < a the set 

{ ( A B) G CL(Y) x CL(Y) : H(A, B) < e) U { (0 ,0) } 
is contained in 

{(A,B) € 2 y x 2 y : \d(y,A) - d(y,B)\ < s} 

U { ( A , B ) G 2 y x 2 y : d(y,A) > a,d(y,B) > a}. 
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3 . 2 PROPOSITION. Let (Y,d) be a metric space. Then the following are 
equivalent: 

(i) Uw = UH on CL(Y) x CL(Y); 
(ii) Y is totally bounded. 

P r o o f . Let Y be totally bounded, we need only to prove that Un C Uy\>. Let 
e > 0 and consider A(e). There exists a finite set F = {yi,j/2> • •, yn} such 
that Y C U r = i 5 ( y i !

£ / 3 ) - W e P r o v e t h a t W(F,e/3) C A(e). Let (A,B) € 
W(F,e/3). If z eY there is yi € F such that d(z,yi) < e/3. Being 

\d(z,A)-d(z,B)\ 
< |d(z, A) - d(yu A)| + |d(z, B) - d(yu B)\ + \d(yu A) - d(yh B)\ < e 

we obtain that H(A,B) < e. Thus W(F,e) C A(e). 
Now if Uyj = Ufi on CL(Y) x CL(Y), then also the corresponding gene-

rated topologies on CL(Y) coincide. Thus by [Be] (Theorem 3 .2 .3) Y must 
be totally bounded. 

3 . 3 PROPOSITION. Let (Y,d) be a metric space. Then the following are 
equivalent: 

(i) Ufa = UH on 2y x 2 k ; 
(ii) Y is totally bounded. 

P r o o f . If Wfo = Un on 2 y x 2 y , they coincide also on CL{Y) x CL(Y). 
Thus also the corresponding generated topologies on CL(Y) coincide. By the 
Remark on page 989 both topologies induced by the uniformities Uyj and 
Uyj coincide too. Thus by [Be], Theorem 3.2.3, Y must be totally bounded. 

Suppose now that Y is totally bounded. To prove that Un C Uy^ it 
is sufficient to show that for every e > 0 A(e) U {(0,0)} € Uy^. Since Y is 
bounded there is yo € Y and M > 1 such that Y c S(yo, M). Being Y totally 
bounded, there are points {yi, j/2, •, Un} C Y such that Y c U?=i S(yi, e/3). 
It is easy to verify that 

W*({y0, yi, to, Vn}, e/3, M) C A(e) U {(0,0)}. 

Let us recall that a metric space (y, d) is boundedly compact when every 
closed bounded subset is compact. By Beer in [Be] (exercise 5.1.12) the 
property of being boundedly compact characterizes those metric spaces for 
which Fell and the Wijsman topologies coincide on Using this result w-
prove the following: 

3 . 4 PROPOSITION. Let (Y, d) be a locally compact metric space. Then the 
following are equivalent: 

(i) Uj- = Ufo on 2y x 2y; 
(ii) Y is boundedly compact. 
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P r o o f . Suppose that (Y, d) is boundedly compact. To prove that Ujr = Uyy 
on it is sufficient to prove that for every K € K(Y), 0 < £ < 1, 1 < a 
we have 

L*({K},e,a)€Ur. 

For K,s,a as above, put 

L = {yeY :d(y,K)<a}. 

The boundedly compactness of Y implies that L is compact. We claim that 

H=[L,e} C L*{K,e,a). 

Let {A, B) € H. If D(K, A) > a and D(K, B) > a we are done. Also 
if D(K,A) = D(K,B). Now suppose that the above does not hold. If 
D(K, A) < D(K,B), take a € A n L such that D(K, A) = d(a,K). Since 
(A, B) € H there is 6 6 5with d(a, b) < e. Thus we have 

D{K, a) — £ < D(K, A) < D(K, B) < d{b, K) < d(a, K) + d(a, b) 

< D(K, A) + e. 

If D(K, B) < D(K, A) the proof is similar. 
The converse follows now from [Be] since from Uyj = Up we obtain that 

the corresponding generated topologies coincide. 

Let us recall that a metric space (Y, d) has nice closed balls provided 
that whenever B is a closed ball in Y which is a proper subset of Y then B 
is compact. 

Beer in [Be] proved that the property of having nice closed balls char-
acterize those metric spaces for which Fell and Wijsman topologies coincide 
on CL(Y). Using this result we prove the following: 

3 . 5 PROPOSITION. Let (Y,d) be a metric space. Then the following are equi-
valent: 

(i) Uw = UT on CL{Y) x CL{Y)\ 
(ii) Y is bounded and has nice closed balls. 

P r o o f . Let us observe first that from Uyj = Up it follows that the cor-
responding generated topologies coincide, therefore Y has nice closed balls 
[Be]. Suppose now that Y is not bounded and y 6 Y. We can find a se-
quence {yn : n 6 N} such that d(y, yn) converges to +oo and d(y, yn+\) > 
d(y, yn) + 1 for every n 6 N. Since Uyy = Up there must exist a compact set 
K C Y and 

a > 0 such that [K, a] C W({y}, 1/2), but this is a contradic-
tion. Infact, there must exist no € N such that yn $ K for every n > no and 
therefore ( {y„ 0 + i } , {yn 0 +2» e [K, a]. But ( {y„ 0 + i } , {yno+2» 0 W({y} , 1/2) 
since |d(y, yno+l) - d(y,yno+2)\ > 1. 
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Suppose now that (ii) is true. To prove that U\\> C Up, let y € Y, 
e > 0 and consider W({y}, e). It is sufficient to find a compact set K and 
r}> 0 such that [ K , rj\ C W({y}, e). Put a = 5upzeyd(y, z). Without loss of 
generality we can suppose that e < a. Put H = C(y,a — e/2). We claim 
that 

[H,e/2]cW({y},e). 

If (A, B) € [H, e/2 ] are such that d(y, A) = d(y, B), we are done. So suppose 
that d(y, A) < d(y, B). If H n A = 0, then also H D B = 0. In this case 
we have a — e/2 < d(y,A) < a and also a — e/2 < d(y,B) < a, thus 
\d(y,A)-d(y,B)\ < e. 

Suppose now that H fl A ^ 0. Let a € A be such that d(y, A) = d(y, a). 
There must exist b € B with d(a, b) < e/2. Thus we have 

A) - d(y, 5)| < d(y, b) - d(y, a) < d(y, a) + d(a, b) - d(y, a) < e/2. 

4. Uniform topologies on compacta on & = 2Y) 
Let us consider the set F(X, Z), of all functions from X to Z. To define 

a uniform topology on F(X, Z), we need a uniform structure on Z, so let fi 
be a diagonal uniformity on Z. The basic open sets in the uniform topology 
on compact sets relative to ji are 

< / , C, M >= {g € F ( X , Z ) : (f(x),g(x)) e M , V x e C} 

where / e F(X, Z),Ce K(X) and M e /x. 
In what follows let X and Y be Hausdorff topological spaces and & = 

<&(X, 2y) be the set of all functions from X to 2Y (the elements of ¿P are 
called also multifunctions). Starting from the above mentioned uniformities 
on one can define uniform topologies on ¿P(X, 2Y). 

First we define the Fell uniform topology T(Uf ) on compact sets on 
2y). 

The basic open sets < <f>, A, [K, U] > in this space are 

{ip e 2y) : ip(x) D K C U[<f>(x)] a n d <f>(x) n K C U[i>(x)] Vx € A}, 

where K 6 K(Y), A € K(X), U is a uniformity on Y and U e U ([Mcl], 
[Mc2]). 

Further we will define the Hausdorff uniform topology T(U-h) on compact 
sets on 2y). The basic open sets < A, A(e) > in this space are 

{V € J?(X,2y) : H(ip(x),<l>(x)) <e,Vxe A}, 

where A € K(X) and e > 0 (see [Mcl], [Mc2]). 
Finally we will define the Wijsman uniform topology T(Ww) on compact 

sets on CL(Y)). The basic open sets < </>, A, W(F, e) > are 
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{ V € J?(X, CL(Y)) : | d(y, </>(*)) - d(y, tj>(x)) | < e, Vx € A and Vy 6 Fj, 

where F is a finite subset of Y, A € K(X) and s > 0. 
For the Wijsman uniform topology T(Uyy) on compact sets on ^(X, 2Y) 

the basic open sets < <j), A, G*(K, s, a) > are 

n i e A ( { V < G &(X,2y) : e(K,iP(x)) > a if e(K,<f>(x)) > a }U 

{ V 6 J?(X,2r) : \e(K^(x))-e(K,<fi(x))\ < e } ) 

where K € K(Y), A e K(X), 0 < e < 1, and 1 < a. 

NOTE. Note that when U is a uniformity on 2Y we get a uniformity U' on 
2y) taking the sets {(</>, ip) : (<f>(x), V>(x)) 6 U, Vx 6 K} for K € K(X) 

and U eU. 
If U\, U2 are uniformities on 2Y then U\ C U2 if and only if U'\ C U'z-

Observe that except of the coincidence Up = ¿4v on CL(Y) we have 
that the above uniformities on 2Y coincide if and only if the corresponding 
topologies on 2Y coincide. 

Notice also that if topologies on 2Y generated by uniformities are differ-
ent, then also corresponding uniform topologies on compacta on 2Y) 
must be different. 

Thus the following four Propositions are immediate consequence of the 
above note and of results of section 3. 

4.1 PROPOSITION. Let (Y,d) be a metric space. Then 

T(UW) C T{Un) on CL(Y)) and T(Uft,) C T(Un) on 2Y). 

If (Y, d) is a locally compact metric space, then 

T{Ur) c TQUw) c T (W w ) on CL{Y)) 

and 

T{Ur) C T(Wft,) C T(UH) on &{X,2Y). 

The following results provide a complete answer to the question of what 
circumstances induce the above uniform topologies to coincide. 

4.2 PROPOSITION. Let (Y,d) be a metric space. Then the following are 

equivalent: 

(i) T(Un) = T(Uw) on CL(Y)); 

(ii) Y is totally bounded. 

4.3 PROPOSITION. Let (Y,d) be a metric space. Then the following are 

equivalent: 

(i) T{UH) = T{Uh) on 

(ii) Y is totally bounded. 
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4 . 4 P R O P O S I T I O N . Let (Y,d) be a locally compact metric space. Then the 
following are equivalent: 

(i) T(Uf) = T(1Uw) on&(X,2Y)-, 
(ii) Y is boundedly compact. 
For what it concerns the links between T(Uj?) and T(Uw) on 
X, CL(Y)), we can say that: 
- If Y is bounded and has nice closed balls, then from 3.5 we obtain 

T(Ujr) = T(UW). 
- If T{Ujr) = T(UW), then Y has nice closed balls [Be] (Theorem 5.1.10). 
Concerning necessary and sufficient conditions we have the following 

results: 

4 . 5 P R O P O S I T I O N . Let X be discrete and (Y,d) be a locally compact metric 
space. Then the following are equivalent: 

(i) T{Ujr) = T(Uw) on CL{Y)); 
(ii) Y has nice closed balls. 

P r o o f . It follows directly from the coincidence of Fell and Wijsman topolo-
gies and from the discretness of X. 

4 . 6 P R O P O S I T I O N . Let X be a non discrete first countable space and (Y,d) 
a locally compact metric space. Then the following are equivalent: 

(i) T(Ujr) = T(Uw) on CL(Y)); 
(ii) Y is bounded and has nice closed balls. 

P r o o f . It is sufficient to prove that from (i) it follows that Y is bounded. 
Suppose that Y is not bounded and y 6 Y. We can find an unbounded 
sequence (yn) satisfying d(y,yn+1) > d(y,yn) + 1. Let x e X be a non 
isolated point and let {xn} be a sequence of different points of X converging 
to x. 

Thus K = {a;}U{rcn : n 6 N} is compact. Define on X the multifunction 
F(x) = {y}, F(xn) = {yn}, F(z) = {y} otherwise. For every n € N put 
Fn{xn) = {j/n+i} and Fn(z) = F(z) otherwise. The sequence {Fn : n € N} 
T(Up) converges to F, but does not T(Uw) converge to F. Indeed 

Fn $ {4> € J?(X,CL(Y)) : (<f>(z),F(z)) € W({y}, 1/2) Vz e K} 

since 
|d(y,Fn(xn)) - d(y,F(xn)\ = d(y,yn+1) - d(y,yn) > 1. 

5. Connections with equicontinuity 
It goes back to Smithson (1971) [Sm] the definition of equicontinuity for 

a family Q of compact valued multifunctions from a topological space (X, T) 
to a uniform one (Y,U ) . The family Q is equicontinuous in XQ € X if for 
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every U £U there is a neighbourhood O of XQ such that for every F G G, 

F(0) c U[F(xo)] 

and 
F(z) fl U[y] 0 for every z G O and for every y G F(xo). 

In 1989 Papadopoulos [Pal], [Pa2] showed that this definition is nothing 
else that the usual definition of equicontinuity for a family of functions 
from (X,T) to (2Y,ti), where U is the uniformity on 2Y induced by U (see 
section 2.). 

Notice that also other definitions of equicontinuity for multifunctions 
known in the literature [Mo], [Ko], [BW],[DDH] correspond to equicontinuity 
for functions with an appropriate uniformity on 2Y. 

Recalling that a base of Up are the sets [K, U], from the equicontinuity 
for a family Q of functions from a topological space (X, T) to (2 Y ,Up) we 
can deduce the definition of equi-semicontinuity , given in [BW] and [DDH]. 

Splitting the equi-semicontinuity in two parts we obtain the following 
definitions given in [BW]. 

A net {F„ : o G £ } C 2 y ) is 
- equi-outer-semicontinuous at XQ if for every compact set B C Y and 

every U EU there is a neighborhood O of XQ and OQ G S such that for every 
x € O and every a > OQ 

Fa(x) i l B c U[F(T(XO)]; 

- equi-inner-semicontinuous at XQ if for every compact set B C Y and 
every U €.U there is a neighborhood O of XQ and <to G I! such that for every 
x G O and every a > CTQ 

F^xo) n B C UiF^x)}. 

Thus from the classical result we can immediately deduce that if X and 
Y are locally compact spaces, Y a uniform one, then T(Up) convergence of 
a net {Fa : a e £ } to a ^"-continuous function F in ^ ( X , 2Y) implies the 
equi-semicontinuity of {Fa : a G £}. But we can say even more. 

We say that a multifunction F from X to Y is c-upper semicontinuous 
[BHN] at x G X if for every open set V in Y such that F(x) c V and 
the complement of V is compact there is a neighbourhood U of x with 
F(U) C V. F is c-upper semicontinuous if it is c-upper semicontinuous at 
every point x G X. 
5 . 1 PROPOSITION. Let X,Y be locally compact spaces and (Y,U) be a uni-
form one. T{Uj:) convergence of a net {F,^ : a G E} to a c-upper semi-
continuous multifunction F in 2 y ) implies that the net is equi-outer-
semicontinuous. 
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P r o o f . Suppose that this is not true for a point x € X. Thus there is U G U 
and K G K(Y) such that for every neighbourhood O of x and every a G E 
there is r](0, a) G E, r)(0, a) > a and xv(o,cr) £ O for which 

Fv(o,<r)(xv(o,*)) n K <£ U[Fn{0^)(x)]. 

This allows us to choose a net 

yv(o,<r) e ^ ( ^ J n ^ y ^ i i ) . 
It is easy to verify that L = { r / ( 0 , a ) : O G B(x),a G E} (where B{x) 
denotes the family of all neighbourhoods of x) is a cofinal family in E. 

Thus {i^(o,<7) : O G B(x),a € E} is a subnet of {F„ : a € E}, i.e. also 
T(Z^)-converges to F. 

We can suppose that {{x^o^y^o^)) O G B(x),a G E} converges 
to (x,y) for y 6 7 . We prove that y G F(x). Otherwise there would exist 
an open set G containing y such that G n F(x) — 0. Put G fl K = C. 
There must be a symmetric element L €U such that L[C] is compact and 
F(x)C\L[C] = 0. There is an open set V in X such that x G V, V is compact 
and F{z) n L\C] = 0 for every z 6 V. 

Observe that T(Ujr) convergence of {Fv(0,a) '• O G B(x),a € E} to F 
implies that 

F „ ( ( V ) G {</> G J?(X,2V) : (<fi(z),F(z)) G [C,L] Vz € V}, 

eventually and this is a contradiction. 
Now let U\ G U be symmetric, open and U\oU\ c U. Then Fv^o ,a)(x) H 

Ui[y] / 0 eventually and also yv(o,<r) € Ui[y] eventually, a contradiction. 

5.2 PROPOSITION. Let X,Y be locally compact spaces and (Y,U) be a uni-
form one. If a net {Fa : a G E} T{Uj:) converges to a lower semicontinuous 
multifunction F in J?(X,2y), then the net is equi-inner-semicontinuous. 

P r o o f . Suppose that this is not true for a point x G X. Thus there is U G U 
and K G K(Y) such that for every neighbourhood O of x and every a G E 
there is rj(0, a) G E, r/(0, a) > a and xv(o,<r) £ O for which 

Fn{0,«){x) HK <£ U[Fv{0t<T)(Xr,(0,a))]-

We can choose a net { £77(0,a)} and a net {y^o^)} such that yv{o,c) £ 
FV{Oto){?) n K b u t 2/77(0,0-) £ ^[^(0,<X)K(0,<T))]-

Thus {Fn(0,cr) '• O G B(x),a G E} is a subnet of {Fa : a G E}, which 
T{Uj:) converges to F . We can suppose that 

(K(0,<r), yr,(0,*)) • o G B(x),a G E} 

converges to (x, y) for y €Y. 
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We prove that y € F(x); otherwise there would exists an open set G 
containing y such that G fl F(x) — 0. Put C = G CI K. There is a symmetric 
element L € U such that F(x) n L[C] = 0. 

Observe that T{Ujr) convergence of {î (o,<r) : O € B(x),a 6 S} to F 
implies that (Fv(o,a)(x)i F(x)) belongs to [C, L] eventually, i.e. 1 

C = 0 eventually, a contradiction. Thus y e F(x). 
Now let Ui € U be symmetric, open such that U\oU\oUi C U and U\[y] 

is compact. 
Since y 6 F(x) the lower semicontinuity of F at x implies that there is 

a neighbourhood O of x (O compact) such that F(z) fl U\[y] / 0 for every 
2 6 0 . Then 

F ^ a ) e W e J?(X,2V) Mz),F(z)) e [UM,u,} Vz e 0} 

eventually. This is a contradiction since yv(o,TT) & U[Fv(Q,O) (^(O.tr))] • 
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