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AFFINE GEOMETRY OF SPINE SPACES 

Abstract. The parallelity relation and the group of dilatations in the geometry of 
spine spaces are investigated. Fundamental theorems of affine geometry are proved and 
the analytical representation of dilatations is given. 

Introduction 

The paper is a continuation of the theory of spine spaces originated in 
[2] and developed in [4] and [3]. It seems that there are two approaches to 
the geometry of spine spaces, the projective one, with no parallelity relation 
involved, and the affine, where the parallelity is defined. While [4] deals 
with projective aspects of spine spaces, and [3] deals with affine aspects of a 
narrow class of spine spaces of linear complements only, this paper gives an 
account for general properties of spine spaces common to affine geometry. 

Most of results and constructions provided for spine spaces do not make 
use of the natural parallelity of spine spaces. The geometry of spine spaces 
with parallelity defined, however, resembles the affine geometry in many 
aspects. In order to utilize the parallelity it is necessary to make distinction 
between affine and projective lines. The parallelity is an equivalence relation 
in the set of affine lines, and two parallel lines which intersect each other 
coincide. It is only partial, not Euclidean, i.e. directions do not cover the 
point-set, but affine variants of the Veblen condition hold (3.2), as well as the 
stronger parallel triangle completion condition (3.3). It also turns out that 
the geometry of a spine space equipped with the natural parallelity satisfies 
fundamental theorems of affine geometry, that is Desargues theorem (3.4) 
holds true, and Pappus axiom holds iff the ground field is commutative (3.5). 
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Keywords: affine space, dilatation, slit space, spine space, automorphism. 
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1. Basics 
Let K be at least 3-element, not necessarily commutative field (division 

ring) and let F b e a vector space over K. Fix a natural number k such that 
0 < k < dim V. We will denote by Sub^(f/) the set of all fc-subspaces of 
some subspace U, and by Supfe(i7) the set of all fc-subspaces that contain 
U. To every pair ( H , B ) , where B e Subfc+i(F) and H G Sub f c_i(B), we 
associate a k-pencil P ( H , B ) , that is, the set of all fc-subspaces U such that 
H C U C B. The geometry with /c-subspaces as its points and fc-pencils as 
its lines, in symbols, 

y = -pk(v) = (Subk(v),vk(v)), 

is called a space of pencils of index k (cf. [2]). Spaces of pencils are connected, 
irreducible, Veblenian partial linear spaces. 

In V we fix a subspace W, not necessarily finite-dimensional, and m 
such that max(0, k — codim W) =: mm,n < m < m m a x := min(fc, dimW). 
Following the notation of [2], we have the set Tk,m(W) °f points U of such 
that d imf/ fl W = m, and the family Gk,m(W) of all at least two-element 
sections g = p fl ^ ^ ( I V ) , where p is a fc-pencil of For such a line g we use 
notation g = p, and denote by g°° the point of the set g\g, which in fact is at 
most one-element. The family Gk,m(W) is the union of the family -4fc)7n(W) 
of affine lines, i.e. those g with g \ g ^ 0, and the family of projective lines, 
i.e. those g with g = g, which in turn is the union of C%m(W) and C^m(W) 
(cf. Table 1 in Addendum). 

The relation ||, called (natural) parallelity, is defined on Ak,m(W) s o that 
91 II 92 iff = g f - The geometry 

21 = Afc,m(V; W) = (Fk,m(WlGk,m(W), ||), 
introduced in [2], is called a spine space of index k and the level of meet m. 

We call a set of points of a partial linear space a subspace if it is closed 
with respect to lines. Strong subspaces are subspaces where every two points 
are collinear. Let us recall the concept of a segment subspace of and SI. 
Every set of the form [Z,Y]k = Supfc(Z) fl Subfc(y) is a subspace of Cp, 
called a segment. In the spine space 21, segment subspaces are restrictions 
[Z,Y]k fl Fk^miW) denoted shorter by [Z, Y]jr if no confusion arises. Each 
strong subspace of as well as 21, is a segment subspace. In view of [2, p. 178] 
every strong subspace of 21 is a strong subspace of restricted to Fk,m(W). 

In the class of strong subspaces we distinguish two types of subspaces: 
stars, and tops. In 21 each of these types falls into two sorts: a and o>-
subspaces (cf. Table 2 in Addendum). Recall that each maximal strong sub-
space of 21 is actually a slit space obtained by removing a subspace V from 
a projective space P . 
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Every line of 21 can be uniquely extended to some maximal star and top. 
Maximal a-stars S^m(lV) and maximal a-tops T k m (W) are extensions of a-
lines, maximal u;-stars <S^m(W) and maximal u>-tops Tkm(W) are extensions 
of w-lines. An affine line extends to an a-star and an w-top. 

We call a set X of points of a partial linear space non-trivial when X 
contains a line and a point that do not incide. 

2. Connected components 
Following [4] we write TrcD = D n W, Ctr D = D + W for arbitrary 

subspace D of V. For X C Sub(V), TicX = {Trc D:D € X} and Ct rX = 
{Ctr D: D e X}. To 21 we associate, the space of traces of 21 Trc21, which is 
a space of pencils with point-set Trc(.Ffc>m(W)), and the space of co-traces of 
21, in symbols Ctr 21, which is a space of pencils with point-set Ctr(^rfciTn(iV)). 
It is easily seen that Trc21 = P m (W) and Ctr 21 = P k - m ( V / W ) . 

A polygonal path that joins two points U\, U2 of 21 is said to be an a-
path (ui-path) if all its sides are a-lines (a>-lines) or affine lines. If a suitable 
path exists, or U\ = U2, we write U\ ~ a U2 (U\ l^)- Additionally, 
~ T : = ~ a n Clearly, and ~ T are equivalence relations. 

Let us recall after [4] that CompQ(i7), Compa;(C/), CompT(i7) are a,- ui-
and r-connected components of a point U in 21, i.e. the equivalence classes 
of U under ~ a , and ~ T respectively. 
FACT 2 .1 ([4, p. 63]). Let U be a point of 21. Then 

(i) Compa(U) = [Trc U, V = { 7 6 F^miW): Trc Y = Trc U}, and it 
is a subspace of 21 isomorphic to Afc_mjo(VyTrci7, W/TrcU), 

(ii) CompW{U) = [©, Ctr U]jr = {y G Fk,m(w): C t r y = Ctri7} and U 

is a subspace of 21 isomorphic to AjtiTn(Ctr U, W), where k — m = 
codimctr u W, 

(iii) CompT(i7) = [Trc U, Ctr U]jr, and it is a subspace of 21, isomorphic 
to the spine space of linear complements Afc_mjo(Ctr U/ Trc U, W/ Trc U). 

By © we denote the null-subspace of V. 
THEOREM 2.2 . Let 21 = Aktm(V, W). 

(i) 2l/~Q and the space of traces Trc21 = P m (W) are isomorphic under 
the map Compa(f/) Trc U, 

(ii) 2t/~w, the space of co-traces Ctr 21 and Pk-m(V/W) are isomorphic 
under the maps CompU(U) ^ Ctr U K-» (Ctr U)/W, 

(iii) 2l/~T and the Segre product Pm(W)<S)Pk-m(V/W) are isomorphic 
under the map CompT(U) ^ (Trc U, (Ctr U)/W). 
Proo f . According to [4, p. 61] p is a line in Trc21 iff p = Trc<7 for some 
u;-line g in 21. This gives (i). Analogously, p is a line in Ctr 21 iff p = Ctr g 
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for some a-line g in 21, which yields (ii). In (iii), it is enough to note that 
for the map 

p: ,m(w) BU^(Trc U, Ctr U) 

we have Kerp = ~ r , and then use (i) and (ii). • 

If an automorphism / of 21 is type-preserving, that is, / maps stars 
onto stars, then / induces two automorphisms: / t tC € Aut(Trc2l) and 
/ctr <E Aut(Ctr2l), respectively by the conditions: Trc / ( [ / ) = /iVc(TrcC/) 
and Ctr f(U) = /ctr(Ctrf/) , U being a point of 21 (cf. [4, p. 67]). 

3. Parallelity, projective and affine subspaces 
We say that a subspace X of 21 is projective (affine), if X contains only 

projective (affine) lines. Recall that a subspace Compa(£/) includes a-lines 
or affine lines, Compaj(C/) includes uplines or affine lines, and CompT(t/) is 
an affine subspace. 

It is known that the minimal strong subspace spanned by a triangle in 
is a plane, i.e. a projective plane up to an isomorphism. In 21 those planes 

are simply restricted to Tk,m(W). 

LEMMA 3.1. If two sides of a triangle in 21 are affine, then the triangle spans 
an affine plane. 

P r o o f . Let gi,i = 1,2,3 be sides of a triangle in 21, such that <71,52 are affine 
lines, and let X be the minimal strong subspace of 21 spanned by gi. Then gl 
span some (projective) plane II in with X C II. Note that <?i°, 6 II. 
Evidently, there is a line q through <?2° in Prom [2] it is known that 
the line q is the horizon of II. Since for every line g C X, g intersects q we 
are through. • 

Similarly to the case of affine geometry we have the following variants of 
the (affine) Veblen Condition: 

PROPOSITION 3.2. Let gi, hi, i = 1,2, be lines in 21 such that gi-
(i) Ifgi,hi,h2 form a triangle, g\ || <72, and <72 intersects hi, then <72 

intersects h2 as well. 
(ii) If <71 || g2, hi || /12 hi, <71 intersects hj and <72 intersects hi, then 

g2 intersects /12 as well. Moreover, gi,hj lie on an affine plane. 
(iii) //<?i,<72 intersect lines hi,h2 in 21, and either, hi || h2, or /ii,/i2 

share a point outside gi U <72 then, either, gi || <72* or 9l intersects <72-

P r o o f , (i) The space of pencils Cp is Veblenian, and ~gi intersects <72 in 
hence <72 intersects /12. The common point of 52, h^ is proper since otherwise 
<71 || /12, which is impossible. 
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(ii) Reasoning similar as above. Lines gi,hj lie on a plane in 9Jt since 
projectively closed parallelogram lies on some projective plane in ip. The 
plane is affine by 3.1. 

(iii) Note that hi, /i2,5i always span some plane II in and <72 lies on 
II. Therefore, <71,52 share a proper or improper point. • 

A stronger property of the parallelity of 21, sometimes called parallel 
triangle completion, can be proved. 

P R O P O S I T I O N 3 . 3 . If lines gi,i = 1 , 2 , 3 form a triangle in 21, hi || gi for 
i = 1,2, hi,h2 intersect, and U is a point on hi, then there is a line h$ 
through U parallel to <73, intersecting h^. 

Proo f . The triangle gi,i = 1,2,3 lies on some projective plane III in Cp, 
while lines hj, j = 1,2 on some II2. The improper points g°° lie on the line 
contained in III fl II2. The line through U and is the projective closure 
of the line in question. • 

R E M A R K 3 . 4 . Spine space 21 with the natural parallelity || satisfies the Minor 
and Major Desargues axioms. 

Proo f . For the argument it suffices to note that the configuration from 
assumption to any of two axioms lies in some strong subspace X of 21. 
After completing X with directions an analytical projective space P arises 
where the projective closure of the configuration satisfies assumptions of the 
projective Desargues axiom. • 

R E M A R K 3 . 5 . The ground field of a spine space 21, with the natural parallelity 
||, is commutative i f f 21 satisfies the Major Pappus axiom. 

Proo f . The reasoning runs similar way as in 3.4. • 

We shall now investigate projective and affine subspaces of 2t in more 
details. 

L E M M A 3 . 6 . For U e [Z, Y]F E , we have 

dim U OW = m i f f dim(u/Z n (Z + (Y n W))/Z) = m - dimZ (1W. 

Proo f . Let U € [Z,Y]k. Note that 
D -.= viz n (z + {Y n w))/z =(z + (un w))/z, 

and hence dimD = dim(J7 fl W) — dim(Z fl W), which justifies our claim.• 

A segment subspace X = [Z, Y]? is non-empty if Z C Y, dimZ < 
k < dimY and dim Trc Z < m < dimTrcY. It is a single point if Z C Y 
and either, Z is a point, or, Y is a point, or, dim Trc Y = m and dimZ — 
dim Trc Z = k — m, or dim Trc Z = m and dimY — dim Trc Y = k — m. 
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PROPOSITION 3 .7 . A segment subspace [Z,Y]k (1 Pk,m(W) is isomorphic to 
a spine space A.k—dim z.m— 

Proof . In view of 3.6 isomorphism is given by the map U U/Z. • 

We denote by A(V) the affine space over a vector space V. 

PROPOSITION 3 .8 . A strong subspace X of 21 is affine i f f : 
(i) X is an a-star [H,Y]jr and codimctrY Ctr H = 1, or, 

(ii) X is an u}-top [Z,B]jr and codimivc B Trc Z = 1. 

REMARK 1. If X is a strong affine subspace of 21, then respectively to the 
above: 

(i) X corresponds to the affine space A = A((Y fl (H + W))/H). It is 
maximal if W C Y. Then dim Y/W = k — m, A = A{(H + W)/H), and A 
has dimension dim W — m. 

(ii) X corresponds to the affine space A = A (T((Z + ( 5 f l W))/Z)), 
where T is the annihilator of B/Z onto the space (B/Z ) * of linear func-
tional, dual to B/Z. In particular, X is maximal if Z E Subm(W). Then, 
A = A(T((B n W)/Z)) and A has dimension k - m . 

Proof . Only a-stars and w-tops contain affine lines, hence two cases arise: 
(i) =>: According to 3.7 an a-star X = [H, Y]? is an affine subspace if the 

hole (H+(YnW))/H has co-dimension 1 in Y/H, that is if codimy(#+(yn 
W)) = 1, which is equivalent to our claim, as (H + (Y n W)) D W = Y fl W. 

•4=:Suppose that P(H, B)r\Jrk,m(W) is an a-line in X, that is, H C B C Y 
and B € Fk+i ,m{w)- T h e n C t r ^ C Ctr B C Ctr Y and H C\W = B nW, 
while codirtiB H = 2. Hence 2 < codimctrK Ctr H. 

(ii) =»: Again, in view of 3.7 an w-top X = [Z, B]jr is isomorphic to the 
spine space Ak-dimZ,m-dimZnw(B/Z, (Z + (B (1 W))/Z) which in turn is 
isomorphic to A i f i ( ( B / Z ) * , T ( (Z + (B n W))/Z)). This observation makes 
our claim clear. 

<£=:Similarly to (ii), if there is an a;-line in X , then 2 < codim-jvc B Trc Z .• 

PROPOSITION 3 .9 . A non-empty strong subspace X of 21 is projective i f f : 
(i) X is an a-star [H, Y w i t h Trc H = Trc Y, 

(ii) X is an uj-star, 
(iii) X is an a-top, or, 
(iv) X is an u-top [Z, B]jr with Ctr Z = Ctr B. 

Proof . X is projective if all its lines are projective, in other words, when X 
is a space of pencils. Prom 3.7 we obtain a general condition for a segment 
[Z, Y]j-: either, k — dim Z = m — dim Trc Z, or, k — dimZ = dim Trc Y — 
dim Trc Z, which suffices for the argument. • 
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We will denote by X°° the horizon of a subspace X of 21, in other 
words, the set of directions of lines contained in X. By definition X°° = 
{9°°• 9 Q X, g <E Akm(W)}. If X is a strong subspace, then X°° ± 0 only 
iovXeS^m(W)uT^m(W). 

F A C T 3 . 1 0 . If g is an affine line of 21 such that g = P ( H , B ) n F k , m ( W ) , 
then g°° — H + (B r\ W), T r c ( g ° ° ) = T rcB and Ctr(5°°) = Ctr H. 

LEMMA 3 . 1 1 . Let X be a strong subspace in 21, which contains affine lines, 
then either: 

(i) X is an a-star [H, Y ] r , and X°° = [H,H+(YC) W)]k, or 
( i i) X is an uj-top [Z, B]r, and X°° = [Bn(Z + W), B]k. 

P r o o f . Note that = (W), where X is [H,Y]k or [Z,B]k 

respectively. In other words X°° is the set of all improper points g°° for all 
affine lines g in X. Then apply 3.10. • 

4. Dilatations 
In this section we deal with dilatations of spine spaces, that is, automor-

phisms / of 21 with the property that g || f(g) for every affine line g of 21. 
As there are no affine lines, and the parallelity relation is empty in spaces 
of pencils, further we assume that m < m m a x if it is not explicitly stated 
otherwise. The group of dilatations of 21 will be denoted by Dil(2l). 

The horizon H(2l) of 21 equipped with || is defined classically. Points of 
this horizon are equivalence classes [<7]||, or ideal points g°°, where g is an 
affine line of 21. Lines of H(2l) are defined to be sets X°° = {g°°: g C X}, 
where X is an affine plane in 21. Observe that X°° is a projective line of 
A fc,m+i (V,W). 

F A C T 4 . 1 . 

(i) 9 e Ct>m+l{W) i f f g = U°° for some plane U c X e 7%m(W). 

(ii) g € C%tm+l(W) i f f g = II°° for some plane U c X e S£m(W). 

It was proved in [2, p. 185] that 

U ( A k t m ( V , W ) ) = Ak ,771+1 

Let us recall, following [2, p. 185], that every automorphism / of 21 
determines some automorphism f°° of H(2l), given by the equation 

Z 0 0 ^ 0 0 ) = (f(g))°° for all affine lines g of 21. 

Clearly, whenever / is a dilatation of 21, then f°° is the identity on H(2l), 
and conversely. By the results of [4, p. 75], if 21 is not a space of pencils (i.e. 
m i mmax)> then every automorphism / of 2t can be extended to some au-
tomorphism F of that is, / = F\Tktm{W). We have f°° = F\FKrn+l{W), 
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therefore, whenever / is a dilatation then F is the identity on Jrfc,m+i(W). 
The extension of / is unique for m = mmin (cf. [2, p. 186]). 

PROPOSITION 4 .2 . If m = d imly - 1 = k — 1, then Aut(a) = Dil(a). 

P roo f . It suffices to observe that W is invariant under all automorphisms 
of a, and for such k,m we have Fk,m->r\{W) = {VF}, which means that W 
is the only point of H(a) . • 

Before we start discussing dilatations in more details, we give an analysis 
of some rigidity of the set Fk,m(W) under the action of automorphisms of 

It would be meaningless in case is one-element, so from now on 
we assume that k = m = dim W does not hold (cf. Table 3). 

For a non-degenerate sesqui-linear form £ on V we write x^ for the cor-
relation determined by and — xf |Subfc(^). 

LEMMA 4.3. Let f — x^kl^k^iW) for some non-degenerate sesqui-linear 
form on V, dimV = 2k, and W be a subspace of V such that dimW = k 
and = W. If f = idj-fc m(w)> then dim V = 2. 

P roo f . Let S be a maximal strong subspace of a . We may assume that S is 
a star. Note that T = f(S) = is a restriction of some T' = 
to Tk,m{W), where S is a maximal star in Pfc(V) which contains S. But T" 
is a top, so T is a top as well. By our assumptions S = T, which is possible 
only when both S, T are lines. In this way only lines are maximal strong 
subspaces of a . Consequently, a is at most a line. Following Table 3 we are 
through. ' • 

For a semi-linear map <p on V the map is the action of v? on Subfc(F). 
To shorten notation, we write </> « idy if (p = a idy for some non-zero scalar 
coefficient a G K. 

LEMMA 4.4. Let f = V' i t l^fc .miW) for some semi-linear bijection <p of V. 
(i) If mm i n <m<k, dim W, then f - i d i f f <P ~ idV• 

(ii) If m — dim W < k, then f = m(w) iff ip/W fa idy/w-
(iii) If m = k < dim W, then f = m(w) iff <P\W ~ i d ^ . 

Proo f . First, we give several auxiliary facts. Assume that / = id. 

(1) If 0 < m < dim W, then fa idw • 
Indeed, for every two linearly independent u,v € W there is U G Fk^miW) 
such that u € U and v U. Hence, <p(w) € (w) for all w 6 W, since 
otherwise, we U and <p(w) £ U while <p(U) = U. Thus we showed that 
ipl = idSubl(vy), which suffices in view of [1, Th. 2.26]. 

(2) If k — codim W < m < k, then <p/W fa idy /w • 
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Indeed, if v, w € V \ W are linearly independent over W, then there is 
U 6 rk,m{W) such that v € U and w £ U. By the same argument as in the 
proof of (1), ip(u) + W € (u + W) for all u G V \ W, and hence we have our 
assertion. 

Generally, 
(3) if m = mmin, then / = id iff <p & idy . 
Now, the map / can be uniquely extended to the automorphism / of $ (cf. 
[2, p. 186]). Thus / = id yields id = f = tp*k, which, by [1, Th. 2.26], [4, 
Th. 3.20], gives our claim. 

(i) =>:By (3) we may assume that mmin < m. Then, by (2), <p/W & 
i d v / W i s o /ire = id. Take any point U in 21. By [4, p. 64] the connected 
component Compw({7) is non-trivial, and hence, 971 = Afcjm(Ctr U, W) is 
non-trivial by 2.1(ii). The map fu = /|Compu(i7) is an automorphism 
of 9Jt. Since k — codimctrY W = m, we can extend fu uniquely to an 
automorphism fu of Pfc(CtrU). Evidently, fu is the identity, and thus, 
fu = (idctri/)fc|Compw([/). In consequence, (/j|Ctr U « idctri/ f°r all points 
U of 21. This suffices to state our claim. 

: Straightforward. 
(ii) In this case k — codim W < m < k, since otherwise we would have 

dimV = k or again m — k = dim W. Thus => follows by (2), and <= is 
immediate, since ^/¿^(VF) = Supfc(VF) here. 

(iii) Note that 0 < m < dim W, for if not, we would have k = 0, or 
m = k = dim W which is not possible. Then is a consequence of (1), and 
to prove it is enough to observe that Fk^miW) = Subfc(VT). • 

Using 4.4 we can now strengthen the results of [4, Th. 3.24] in that the 
extension of an automorphism of a spine space 21 to an automorphism of the 
underlying space of pencils ^ is unique, provided that the spine space 21 is 
non-trivial and is not a space of pencils itself. 
REMARK 4 . 5 . Let 21 = Ak<m(V, W) be a non-trivial spine space, which is not 
a space of pencils, that is m ^ mmax, and let f be an automorphism of 21. 
If F is an automorphism of ty = Pfc(^) such that f = F^k^miW)' then F 
is unique. 

Proof . Let Fi, F2 be automorphisms of ip. Assume that i7i|.7:fc,m(Vr) = f — 
F2\Fk,m(W). Note that F^ 1 Fi\Fk,m{W) = idjrkm{w)- Since F ^ F i is an au-
tomorphism of 93, in view of [4, Th. 3.24] it determines some automorphism 
h of 21, that is, h = F2~1Fi|Jrfcim(W/). On the other hand, by [5] there is ei-
ther a semi-linear bijection (p on V such that F^1Fi = <p*k or & sesqui-linear 
form £ on V such that F^^Fi = In the later case, by 4.3 we get that 
dimF = 2 which contradicts that 21 is non-trivial. Hence, the former case 
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remains valid. We have also assumed that m ^ mmax, ie. m / dim W and 
m^k. Therefore we can apply 4.4(i) which gives that ip « idy. This means 
that F\ = F? and the proof is complete. • 

By 4.2, we can assume in the sequel that m ^ dim W — l o r m ^ f c — 1. 
Considering that m < rnmax, H(2l) is at least a line. Since the analytical 
representation of automorphisms is available for non-trivial spine spaces 
only, we need to assume additionally that there is a line g and a point U in 
21 such that U £ g (cf. Table 3 in Addendum). 

LEMMA 4.6. If f is a dilatation of 21, then f is type-preserving. Accordingly, 
there is a semi-linear bijection ip of V such that f — Vk^k^iW) and 
tpiW) = W. 
P r o o f . Suppose that / is type-exchanging. Then dimV = 2k, d imW = k, 
and / is given by a sesqui-linear form on V. By 4.3 we have dim V = 2 which 
leads to contradiction with the general assumption that 21 is non-trivial. 
Thus [4, Th. 3.24] gives our claim. • 

Taking into account that / is a dilatation iff f°° = id, we obtain an 
analytical representation of dilatations of 21. 

COROLLARY 4.7 . A map f is a dilatation of 21 i f f either, 
(i) m = dim W — 1 = k — 1 and f is an automorphism of 21, or, 

(ii) m = dim W — 1 < k — 1 and f is given by a semi-linear bijection <p 
on V such that tp/W « idv/w> o r 

(iii) m = k — 1 < dim W — 1 and f is given by a semi-linear bijection <p 
on V such that y?|W « id^, or, 

(iv) m + 1 < k, dim W, and f is given by a semi-linear bijection tp on 
V such that ip idy. 
P r o o f . If / e Dil(2l), then by 4.6, / = ip*k\Tk,m(W) for some semi-linear bi-
jection ip of V. Then f°° = f = \Fk,m+i{W), and by 4.4 we are through.• 

LEMMA 4.8. Let f be an automorphism of 21 given by a semi-linear bijection 
ip of V, that is, f = <p*k\Fk,m(W). 

(i) If 0 < m < dim then /ire = id i f f <p\W k, id. 
(ii) If k — codim W < m < k, then /ctr = id i f f <p/W « idy/w-

P r o o f , (i) Recall that fxrC = (vl^)m- Under our assumptions the space 
P m ( W ) is at least a line. The claim follows by [1, Th. 2.26], [4, Th. 3.20], 

(ii) As above, note that /ctr = (<p/W)*k_m. • 
This enables us to give some more "geometrical" characterization of 

Dil(2t). 

PROPOSITION 4 .9 . Let f be an automorphism of 21. 
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(i) If m — dim W — 1 = k — 1, then f is a dilatation. 
(ii) If k — codim W < m = dim W — 1 < k — 1, then f is a dilatation 

iff /ctr = id-
(iii) If 0 < m = k — 1 < dim W — 1, then f is a dilatation iff /ivc = id. 
(iv) Finally, if m +1 < k, dim W, the identity map is the only dilatation 

of 21. 

Proo f , (i) is immediate in view of 4.7(i). (ii) is a direct consequence of 
4.7(ii) and 4.8(ii). (iii) follows by 4.7(iii) and 4.8(i). To prove (iv) note that 
by 4.7(iv), / = ( id v) t \Fk,m(W) = • 

In the following two cases: 

(4) k — codim W = m = dim W — 1 < k — 1, or 
(5) 0 = m = fc — 1 < dim W — 1 

we have only analytical characterization of dilatations of 21 available. 
In every specific case 4.7(i) - 4.7(iv) we can find a spine space of linear 

complements, that is, a spine space 21 = Ajt)m(V, W) such that m = 0, k = 
codim W (cf. [3]), where that case occurs. In particular, for dimW = 1 and 
any k > 0 the condition (4) holds, and for k = 1 and any W with dim W > 0 
the condition (5) is satisfied. The group Dil(2l) is trivial if 21 does not arise 
from a projective space If a spine space of linear complements arises from 
a projective space, it is an affine space. Indeed 21 is an affine space if k — 1, or 
dually, dimW = 1. Then, respectively, (5) holds, and consequently, 4.7(iii), 
or (4) and hence 4.7(ii). 

We shall now give the final characterization of the group Dil(2l) of di-
latations of an arbitrary spine space 21 = AjtiTn(Vr, W), which is not a space 
of pencils, i.e. mm¡n < m < mm a x . As an immediate consequence of 4.9(i), 
and 4.9(iv) we have 

P r o p o s i t i o n 4.10. If m = d imly - 1 = k - 1, then Dil(2l) = Aut(2l), and 
if m + 1 < k, dim W, then the group Dil(2l) is trivial. 

Non-trivial group Dil(2l) is described in the following proposition. 

P r o p o s i t i o n 4.11. If m = k - 1 < dimW - then Dil(2l) is isomor-
phic to the pointwise stabilizer of W in the linear group L(V). If m = 
dimW — 1 < k — 1, then the group Dil(2l) is isomorphic to the subgroup 
W e L ( ^ ) : I m ( ^ - i d v ) C W} of L(V). 

Proof . Let / € Dil(2l). Then / = <fi*k\̂ k,m(W) and, in view of 4.7(ii), 
4.7(iii), in both two cases ip is proportional to a linear map. If (i): m = 
k — 1 < dim W — 1, then <p\W = a '\&w- Then <p is associated with an inner 
automorphism determined by a, and the map ip' = a_1ip has the following 
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properties: 
(6) ip'\W = iAw a n d <p'€L{V). 

Thus, without loss of generality we can assume that <p satisfies (6). 
If (ii): m — dim W — 1 < k — 1, then, analogously, we can assume that 

(7) <p(W) = W, <p/W = idv/w, a n d <p e L ( V ) . 

Now, suppose that / = tpl\^Fk,m(W) = i>k\Fk,m(W), where ip,ijj € L(V). 
This gives = i d ^ m(W)- By the assumptions of the theorem m < 
k, dim W. We conclude from 4.4(i) that <p~lip & idy. Thus <p = of) for c 6 K. 
If (i) holds we apply (6), in case (ii) we apply (7), hence c = 1, or ip = ip. 
To close the proof it suffices to note that for a linear map ip the condition 
ip/W = idy /w is equivalent to <p(u) — u G W for every u G V. • 

Addendum 
The intention of this addendum is to gather a detailed and complete 

description of critical notions that appear in the study of spine spaces. Ad-
ditionally, we present the set of parameters for which a spine space is trivial. 

class representative line g = P ( H , B) fl ^fc)m(W) g°° 
Akim(W) H G rk.1>m{W), B 6 Tk+1<m+1(W) H + (BnW) 

£k,m(W) H e ,m(W), B 6 Fk+l,m(W) 
Clm(W) H e (W), B 6 5fc+i.ro+1(W) -

Table 1. Lines of a spine space A^ m(V, W). 

class representative subspace dim P dim V 
Slm{W) [H,H + W]k:He^k-i,m-i(W) dim W — m -1 

SlmW) [H,V}k nrkim(W):H G Tk-^miW) dim V — k dim W — m. — 1 
Tk

a
m(W) [BnW,B]k:B€^k+1,m(W) k — m -1 

[e, B]k n Fk>m(W): B € ?k+hm+1(W) k k — m — 1 

Table 2. Maximal stars and tops in a spine space Afcim(V,W). P is a corresponding 
projective space and T> its subspace removed. 

single point affine line a-line online 

k — 0 or k — n n _ 2 ] c = i = w m = Q m = w = k — 1 = n — 2 k = 1 = m,w = 2 
or m = k = w 

Table 3. Trivial spine space Afcim(V, W). 
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