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AFFINE GEOMETRY OF SPINE SPACES

Abstract. The parallelity relation and the group of dilatations in the geometry of
spine spaces are investigated. Fundamental theorems of affine geometry are proved and
the analytical representation of dilatations is given.

Introduction

The paper is a continuation of the theory of spine spaces originated in
[2] and developed in [4] and [3]. It seems that there are two approaches to
the geometry of spine spaces, the projective one, with no parallelity relation
involved, and the affine, where the parallelity is defined. While [4] deals
with projective aspects of spine spaces, and [3] deals with affine aspects of a
narrow class of spine spaces of linear complements only, this paper gives an
account for general properties of spine spaces common to affine geometry.

Most of results and constructions provided for spine spaces do not make
use of the natural parallelity of spine spaces. The geometry of spine spaces
with parallelity defined, however, resembles the affine geometry in many
aspects. In order to utilize the parallelity it is necessary to make distinction
between affine and projective lines. The parallelity is an equivalence relation
in the set of affine lines, and two parallel lines which intersect each other
coincide. It is only partial, not Euclidean, i.e. directions do not cover the
point-set, but affine variants of the Veblen condition hold (3.2), as well as the
stronger parallel triangle completion condition (3.3). It also turns out that
the geometry of a spine space equipped with the natural parallelity satisfies
fundamental theorems of affine geometry, that is Desargues theorem (3.4)
holds true, and Pappus axiom holds iff the ground field is commutative (3.5).
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1. Basics

Let K be at least 3-element, not necessarily commutative field (division
ring) and let V be a vector space over K. Fix a natural number k such that
0 < k < dimV. We will denote by Subg(U) the set of all k-subspaces of
some subspace U, and by Sup,(U) the set of all k-subspaces that contain
U. To every pair (H, B), where B € Subg;1(V) and H € Subi_y(B), we
associate a k-pencil P(H, B), that is, the set of all k-subspaces U such that
H C U C B. The geometry with k-subspaces as its points and k-pencils as
its lines, in symbols,

P= Pk(V) = (Subk(V)7Pk(V)>a

is called a space of pencils of index k (cf. [2]). Spaces of pencils are connected,
irreducible, Veblenian partial linear spaces.

In V we fix a subspace W, not necessarily finite-dimensional, and m
such that max(0,k — codim W) =: mpin, < m < mpax := min(k,dim W).
Following the notation of [2], we have the set Fj ,,(W) of points U of 9 such
that dimU NW = m, and the family Gi (W) of all at least two-element
sections g = p N Fi (W), where pis a k-pencil of . For such a line g we use
notation g = p, and denote by ¢* the point of the set g\ g, which in fact is at
most one-element. The family Gy ,»(W) is the union of the family Ay (W)
of affine lines, i.e. those g with g\ g # @, and the family of projective lines,
i.e. those g with g = g, which in turn is the union of £ (W) and L}, (W)
(cf. Table 1 in Addendum). , ,

The relation ||, called (natural) parallelity, is defined on Ak (W) so that
g1 || g2 iff ¢5° = ¢3°. The geometry

A = Ak,m(‘/, W) = <fk,m(W)a gk,m(W)7 “)a

introduced in [2], is called a spine space of indez k and the level of meet m.

We call a set of points of a partial linear space a subspace if it is closed
with respect to lines. Strong subspaces are subspaces where every two points
are collinear. Let us recall the concept of a segment subspace of P and 2.
Every set of the form [Z,Y], = Supi(Z) N Subk(Y) is a subspace of B,
called a segment. In the spine space 2, segment subspaces are restrictions
[Z,Y ]k N Fi,m(W) denoted shorter by [Z,Y]r if no confusion arises. Each
strong subspace of B, as well as 2, is a segment subspace. In view of [2, p. 178]
every strong subspace of 2 is a strong subspace of B, restricted to Fi m(W).

In the class of strong subspaces we distinguish two types of subspaces:
stars, and tops. In 2 each of these types falls into two sorts: o and w-
subspaces (cf. Table 2 in Addendum). Recall that each maximal strong sub-
space of 2 is actually a slit space obtained by removing a subspace D from
a projective space P.
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Every line of % can be uniquely extended to some maximal star and top.
Maximal a-stars Sg,,,(W) and maximal a-tops 7,2, (W) are extensions of a-
lines, maximal w-stars 8¢ m(W) and maximal w-tops T, (W) are extensions
of w-lines. An affine line extends to an a-star and an w-top.

We call a set X of points of a partial linear space non-trivial when X
contains a line and a point that do not incide.

2. Connected components

Following [4] we write TrcD = DNW, CtrD = D + W for arbitrary
subspace D of V. For X C Sub(V), Trc X = {TrcD:D € X} and Ctr X =
{Ctr D: D € X}. To « we associate, the space of traces of A Trc 2, which is
a space of pencils with point-set Trc(F »(W)), and the space of co-traces of
2, in symbols Ctr 2, which is a space of pencils with point-set Ctr(Fi .»(W)).
It is easily seen that Trc % = P, (W) and Ctr % = Py_,,(V/W).

A polygonal path that joins two points Uy, Us of 2 is said to be an a-
path (w-path) if all its sides are a-lines (w-lines) or affine lines. If a suitable
path exists, or Uy = U, we write Uy ~* U, (U; =~ U,). Additionally,
~Ti=~® N o~ Clearly, ~®, ~“, and ~" are equivalence relations.

Let us recall after [4] that Comp*(U), Comp®(U), Comp” (U) are a,- w-
and 7-connected components of a point U in 2, i.e. the equivalence classes
of U under ~%, ~“ and ~" respectively.

Fact 2.1 ([4, p. 63]). Let U be a point of A. Then
(i) Comp*(U) = [TrcU,V]r ={Y € Fxm(W): TrcY = TrcU}, and it
is a subspace of U isomorphic to Ag_p, o(V/ TrcU, W/ TrcU),

(i) Comp“(U) = [0,CtrU)r = {Y € Fgm(W):CtrY = CtrU} and it
is a subspace of A isomorphic to Ay, (CtrU,W), where k — m =
codimce,y W,

(iii) Comp”(U) = [Trc U, Ctr U], and it is a subspace of ¥, isomorphic
to the spine space of linear complements Ag_p, o(CtrU/ Trc U, W/ TrcU).

By © we denote the null-subspace of V.

THEOREM 2.2. Let % = A m(V, W).
(i) A/~* and the space of traces Trc U = P,,(W) are isomorphic under
the map Comp*(U) v Trc U,

(ii) A/~“, the space of co-traces Ctr U and Py_,,(V/W) are isomorphic
under the maps Comp®(U) ~ CtrU & (CtrU)/W,

(iii) 2A/~" and the Segre product P (W) ® Pi_n(V/W) are isomorphic
under the map Comp” (U) w (Tre U, (Ctr U)/W).

Proof. According to [4, p. 61] p is a line in Trc? iff p = Trcg for some
w-line g in 2. This gives (i). Analogously, p is a line in Ctr2 iff p = Ctrg
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for some a-line g in A, which yields (ii). In (iii), it is enough to note that
for the map
P: Frem(W) 3 U v (TrcU, CtrU)

we have Ker p = ~7, and then use (i) and (ii). O

If an automorphism f of 2 is type-preserving, that is, f maps stars
onto stars, then f induces two automorphisms: fr,. € Aut(Trc) and
fotr € Aut(Ctr2), respectively by the conditions: Tre f(U) = fryc(TreU)
and Ctr f(U) = fou(CtrU), U being a point of A (cf. [4, p. 67]).

3. Parallelity, projective and affine subspaces

We say that a subspace X of % is projective (affine), if X contains only
projective (affine) lines. Recall that a subspace Comp*(U) includes a-lines
or affine lines, Comp®(U) includes w-lines or affine lines, and Comp”(U) is
an affine subspace.

It is known that the minimal strong subspace spanned by a triangle in
P is a plane, i.e. a projective plane up to an isomorphism. In 2 those planes
are simply restricted to F, ,, (W).

LEMMA 3.1. If two sides of a triangle in ¥ are affine, then the triangle spans
an affine plane.

Proof. Let g;,7 = 1,2, 3 be sides of a triangle in 2, such that g1, gs are affine
lines, and let X be the minimal strong subspace of % spanned by g;. Then g;
span some (projective) plane II in 9, with X C II. Note that ¢§°, g5° € II.
Evidently, there is a line ¢ through ¢5°, g5° in . From [2] it is known that
the line q is the horizon of II. Since for every line ¢ C X, g intersects g we
are through. |

Similarly to the case of affine geometry we have the following variants of
the (affine) Veblen Condition:

PROPOSITION 3.2. Let g;, h;, i = 1,2, be lines in A such that g; # go.

(i) If g1, h1,he form a triangle, g1 || g2, and go intersects hi, then ga
intersects ho as well.
(ii) Ifg1 |l g2, h1 || h2 # h1, g1 intersects h; and go intersects hy, then
g2 intersects ho as well. Moreover, g;, h; lie on an affine plane.
(i) If g1, 92 intersect lines hy, ha in A, and either, hy || hg, or hi, ho
share a point outside g; U go then, either, g1 || g2, or g1 intersects ga.

Proof. (i) The space of pencils P is Veblenian, and g7 intersects gz in B,
hence g3 intersects hz. The common point of g3, hy is proper since otherwise
g1 || he, which is impossible.
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(ii) Reasoning similar as above. Lines g;, h; lie on a plane in 9 since
projectively closed parallelogram lies on some projective plane in 8. The
plane is affine by 3.1.

(iii) Note that hy, ho, g7 always span some plane II in ¢ and g3 lies on
II. Therefore, g1, gz share a proper or improper point. O

A stronger property of the parallelity of 2, sometimes called parallel
triangle completion, can be proved.

ProvposITION 3.3. If lines g;,i = 1,2,3 form a triangle in A, h; || g; for
t = 1,2, hy,hy intersect, and U is a point on hy, then there is a line hg
through U parallel to g3, intersecting hs.

Proof. The triangle g;,7 = 1,2, 3 lies on some projective plane II; in B,
while lines h_j, j = 1,2 on some II. The improper points g lie on the line
contained in II; N IIa. The line through U and ¢§° is the projective closure
of the line in question. |

REMARK 3.4. Spine space 2 with the natural parallelity || satisfies the Minor
and Major Desargues azioms.

Proof. For the argument it suffices to note that the configuration from
assumption to any of two axioms lies in some strong subspace X of .
After completing X with directions an analytical projective space P arises
where the projective closure of the configuration satisfies assumptions of the
projective Desargues axiom. O

REMARK 3.5. The ground field of a spine space 2, with the natural parallelity
I, is commutative iff A satisfies the Major Pappus aziom.

Proof. The reasoning runs similar way as in 3.4. m]

We shall now investigate projective and affine subspaces of 2 in more
details.

LEMMA 3.6. For U € [Z,Y]i, we have
dmUNW = m iff im(U/Z 0 (Z + (Y NW))/Z) =m - dimZ NW.
Proof. Let U € [Z,Y]i. Note that
D:=U/ZN(Z+({YNW))/Z=(Z+(UnNW))/Z,
and hence dim D = dim(U N W) — dim(Z N W), which justifies our claim.O

A segment subspace X = [Z,Y]r is non-empty if Z C Y, dimZ <
k <dimY and dimTrcZ < m < dimTrcY. It is a single point if Z C Y
and either, Z is a point, or, Y is a point, or, dimTrcY = m and dim Z —
dimTrcZ =k —m,ordimTrcZ =m and dimY —dimTrcY =k —m.
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PROPOSITION 3.7. A segment subspace [Z,Y |k N Fim(W) is isomorphic to
a spine space Ak—dimZ,m—dim an(Y/Z, (Z + (Y @ W))/Z)

Proof. In view of 3.6 isomorphism is given by the map U ~ U/Z. m]
We denote by A(V') the affine space over a vector space V.

PROPOSITION 3.8. A strong subspace X of 2 is affine iff:

(i) X is an a-star [H,Y]r and codimcy y Ctr H = 1, or,
(ii) X is an w-top [Z, B|r and codimmy.pTrc Z = 1.

REMARK 1. If X is a strong affine subspace of 2, then respectively to the
above:

(i) X corresponds to the affine space A= A((Y N(H +W))/H). It is
maximal if W C Y. Then dimY/W =k —m, A= A((H+ W)/H), and A
has dimension dim W — m.

(ii) X corresponds to the affine space A = A(T((Z + (BN W))/Z)),
where T is the annihilator of B/Z onto the space (B/Z)* of linear func-
tionals, dual to B/Z. In particular, X is maximal if Z € Sub,,(W). Then,
A=A(Y((BNW)/Z)) and A has dimension k — m.

Proof. Only a-stars and w-tops contain affine lines, hence two cases arise:
(i) =:According to 3.7 an a-star X = [H, Y]r is an affine subspace if the
hole (H+(YNW))/H has co-dimension 1in Y/H, that is if codimy (H+(Y N
W)) = 1, which is equivalent to our claim, as (H+ (Y NW)NW =Y NnW.
<=:Suppose that P(H, B)NFj (W) is an a-linein X, thatis, H CBCY
and B € Fii1m(W). Then CtrH CCtrBC CtrY and HNW =BnW,
while codimgp H = 2. Hence 2 < codimcy,y Ctr H.

(if) =:Again, in view of 3.7 an w-top X = [Z, B]# is isomorphic to the
spine space Ak_dim Z,m—dimznw(B/Z,(Z + (B N W))/Z) which in turn is
isomorphic to Ay o((B/Z)*, T((Z + (BN W))/Z)). This observation makes
our claim clear.

<«:Similarly to (ii), if there is an w-line in X, then 2 < codimyy, g Trc Z.0

PROPOSITION 3.9. A non-empty strong subspace X of U is projective iff:
(i) X is an a-star [H,Y]r with Trc H = TrcY,
(ii) X is an w-star,
(iii) X is an a-top, or,

(iv) X is an w-top [Z, B]x with Ctr Z = Ctr B.

Proof. X is projective if all its lines are projective, in other words, when X
is a space of pencils. From 3.7 we obtain a general condition for a segment
[Z,Y]5: either, k —dimZ = m — dimTrc Z, or, k — dimZ = dimTrcY —
dim Trc Z, which suffices for the argument. ]
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We will denote by X°° the horizon of a subspace X of 2, in other
words, the set of directions of lines contained in X. By definition X*° =
{9°:9 C X, g € A m(W)}. If X is a strong subspace, then X # @ only
for X € S¢,, (W)U T, (W).

Fact 3.10. If g is an affine line of ™ such that g = P(H, B) N Frm(W),
then ¢ = H + (BN W), Trc(¢™) = Trc B and Ctr(¢g™) = CtrH.

LEMMA 3.11. Let X be a strong subspace in U, which contains affine lines,
then either:

(i) X is an a-star [H,Y]x, and X*®° = [H,H + (Y N W)]i, or

(ii) X is an w-top [Z, Blr, and X*° = [BN(Z + W), Bi.

Proof. Note that X*®° = X N Fy m+1(W), where X is [H,Y]; or [Z, Bl
respectively. In other words X is the set of all improper points g* for all
affine lines g in X. Then apply 3.10. ]

4. Dilatations

In this section we deal with dilatations of spine spaces, that is, automor-
phisms f of 2 with the property that g || f(g) for every affine line g of 2.
As there are no affine lines, and the parallelity relation is empty in spaces
of pencils, further we assume that m < mpax if it is not explicitly stated
otherwise. The group of dilatations of 2 will be denoted by Dil(%).

The horizon H(2) of A equipped with || is defined classically. Points of
this horizon are equivalence classes [g]), or ideal points g>, where g is an
affine line of 2. Lines of H(2) are defined to be sets X = {¢g*:g C X},

where X is an affine plane in 2. Observe that X is a projective line of

FAcT 4.1.
(i) g€ Ly (W) iff g=TI* for some plane I C X € Ty, (W).
(i) g€ Ly, (W) iff g =TI for some plane I C X € Sg,, (W).
It was proved in [2, p. 185] that
H(Akm(V, W)= Agmir(V, W).

Let us recall, following [2, p. 185], that every automorphism f of 2
determines some automorphism f* of H(2), given by the equation

F(g%) = (f(g))* for all affine lines g of 2.

Clearly, whenever f is a dilatation of %, then f* is the identity on H(%),
and conversely. By the results of [4, p. 75], if 2 is not a space of pencils (i.e.
m # Mmax), then every automorphism f of % can be extended to some au-
tomorphism F of B, that is, f = F|Fj m(W). We have f* = F|Fi mi1(W),
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therefore, whenever f is a dilatation then F' is the identity on Fj my1(W).
The extension of f is unique for m = mupi, (cf. [2, p. 186]).

PROPOSITION 4.2. If m =dimW — 1=k — 1, then Aut(2) = Dil(2).

Proof. It suffices to observe that W is invariant under all automorphisms
of 2, and for such k,m we have Fi p,41(W) = {W}, which means that W
is the only point of H(2). O

Before we start discussing dilatations in more details, we give an analysis
of some rigidity of the set Fj ,,(W) under the action of automorphisms of
B. It would be meaningless in case F (W) is one-element, so from now on
we assume that k = m = dim W does not hold (cf. Table 3).

For a non-degenerate sesqui-linear form £ on V we write s, for the cor-
relation determined by £, and s = s |Subg(V).

LEMMA 4.3. Let f = s¢i|Fim(W) for some non-degenerate sesqui-linear
form on V, dimV = 2k, and W be a subspace of V such that dimW =k
and xg (W) =W. If f=idg,  (w), then dimV = 2.

Proof. Let S be a maximal strong subspace of 2. We may assume that S is
a star. Note that T = f(S) = ¢ (9), is a restriction of some T” = s¢ x(S)
to Fkm(W), where S is a maximal star in Py (V') which contains S. But 7"
is a top, so T is a top as well. By our assumptions S = T', which is possible
only when both S,T are lines. In this way only lines are maximal strong
subspaces of 2. Consequently, 2 is at most a line. Following Table 3 we are
through. ' |

For a semi-linear map ¢ on V the map ;. is the action of ¢ on Subg (V).
To shorten notation, we write ¢ = idy if ¢ = aidy for some non-zero scalar
coefficient a € K.
LEMMA 4.4. Let f = p}|Fim(W) for some semi-linear bijection ¢ of V.

(1) If mmin <m <k, dimW, then f =idg, . w) iff ¢ =idy.

(i) If m=k <dimW, then f =idg, , w) iff ¢|W ~idw.
Proof. First, we give several auxiliary facts. Assume that f = id.
(1) If 0<m<dimW, then ¢|W ~idw.

Indeed, for every two linearly independent u,v € W there is U € Fi (W)
such that u € U and v ¢ U. Hence, p(w) € (w) for all w € W, since
otherwise, w € U and p(w) ¢ U while ¢(U) = U. Thus we showed that
¢} = idsub, (w), which suffices in view of [1, Th. 2.26).

(2) If k—codimW <m <k, then o/W ~idy,w .
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Indeed, if v,w € V \ W are linearly independent over W, then there is
U € Fim(W) such that v € U and w € U. By the same argument as in the
proof of (1), p(u) + W € (u+ W) for all u € V' \ W, and hence we have our
assertion.

Generally,

(3) if m=mp,, then f=id iff p=idy.

Now, the map f can be uniquely extended to the automorphism f of P (cf.
[2, p. 186]). Thus f = id yields id = f = ¢}, which, by [1, Th. 2.26], [4,
Th. 3.20], gives our claim.

(i) =:By (3) we may assume that mpyi, < m. Then, by (2), ¢/W =~
idy/w, so fre = id. Take any point U in 2. By [4, p. 64] the connected
component Comp“(U) is non-trivial, and hence, M = Ay, (CtrU, W) is
non-trivial by 2.1(ii). The map fy = f|Comp“(U) is an automorphism
of M. Since k — codimc,,y W = m, we can extend fy uniquely to an
automorphism fyy of Px(CtrU). Evidently, fy is the identity, and thus,
fv = (idcerv);|Comp®?(U). In consequence, ¢|Ctr U = idct, v for all points
U of 2. This suffices to state our claim. '

<«=:Straightforward.

(ii) In this case k — codim W < m < k, since otherwise we would have
dimV = k or again m = k = dimW. Thus = follows by (2), and < is
immediate, since Fj (W) = Sup, (W) here.

(iii) Note that 0 < m < dim W, for if not, we would have k = 0, or
m = k = dim W which is not possible. Then = is a consequence of (1), and
to prove <= it is enough to observe that Fj, ,,(W) = Subg(W). m|

Using 4.4 we can now strengthen the results of [4, Th. 3.24] in that the
extension of an automorphism of a spine space A to an automorphism of the
underlying space of pencils 9 is unique, provided that the spine space 2 is
non-trivial and is not a space of pencils itself.

REMARK 4.5. Let % = A m(V, W) be a non-trivial spine space, which is not
a space of pencils, that is m # mpax, and let f be an automorphism of 2.
If F is an automorphism of P = Py(V) such that f = F|Fim(W), then F

s unique.

Proof. Let Fy, F5 be automorphisms of 8. Assume that F1|Fi (W) = f =
Fy|Fim(W). Note that Fy ' F1|Fim(W) = ids, _(w). Since F; 'F} is an au-
tomorphism of B, in view of [4, Th. 3.24] it determines some automorphism
h of 2, that is, A = Fy ' F1|Fj m(W). On the other hand, by [5] there is ei-
ther a semi-linear bijection ¢ on V such that Fy g = @} or a sesqui-linear
form ¢ on V such that Fy P = s#¢ k- In the later case, by 4.3 we get that
dimV = 2 which contradicts that 21 is non-trivial. Hence, the former case
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remains valid. We have also assumed that m # mpyax, ie. m # dimW and
m # k. Therefore we can apply 4.4(i) which gives that ¢ = idy. This means
that F} = Fy and the proof is complete. 0O

By 4.2, we can assume in the sequel that m # dimW —1orm # k — 1.
Considering that m < mmpax, H(2) is at least a line. Since the analytical
representation of automorphisms is available for non-trivial spine spaces
only, we need to assume additionally that there is a line g and a point U in
2 such that U ¢ g (cf. Table 3 in Addendum).

LEMMA 4.6. If f is a dilatation of ¥, then f is type-preserving. Accordingly,
there is a semi-linear bijection ¢ of V such that f = ¢}|Fim(W) and
p(W)=W.

Proof. Suppose that f is type-exchanging. Then dimV = 2k, dim W =k,
and f is given by a sesqui-linear form on V. By 4.3 we have dim V' = 2 which

leads to contradiction with the general assumption that 2 is non-trivial.
Thus [4, Th. 3.24] gives our claim. m

Taking into account that f is a dilatation iff f>° = id, we obtain an
analytical representation of dilatations of .

COROLLARY 4.7. A map [ is a dilatation of AU iff either,
(i) m=dimW — 1=k —1 and f is an automorphism of «, or,
(ii) m=dimW —1< k—1 and f is given by a semi-linear bijection ¢
on V such that o/W = idy,w, or
(ili) m=k—-1<dimW -1 and f is given by a semi-linear bijection ¢
on V such that o|W = idw, or,
(iv) m+1< k,dimW, and f is given by a semi-linear bijection ¢ on
V such that ¢ = idy.
Proof. If f € Dil(%), then by 4.6, f = ¢}|Fi m(W) for some semi-linear bi-
jection p of V.. Then f*° = f = ¢}|Fim+1(W), and by 4.4 we are through.O
LEMMA 4.8. Let f be an automorphism of % given by a semi-linear bijection
@ of V, that is, f = ¢}|Frem(W).
(i) If 0<m < dimW, then fr =id iff o|W =~ id.
(i) If k—codimW <m <k, then for =id iff o/W = idyw.
Proof. (i) Recall that fry. = (¢|W)},. Under our assumptions the space

P,,(W) is at least a line. The claim follows by [1, Th. 2.26], (4, Th. 3.20].
(ii) As above, note that fou = (¢/W)i_ - 0

This enables us to give some more ”geometrical” characterization of

Dil(%).
PROPOSITION 4.9. Let f be an automorphism of 2.
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(i) If m=dimW — 1=k -1, then f is a dilatation.
(ii) If k—codimW <m =dimW — 1< k—1, then f is a dilatation
iff fou =id.
(iii) If 0<m=k—-1<dimW —1, then f is a dilatation iff fry. = id.
(iv) Finally, if m+1 < k,dim W, the identity map is the only dilatation
of 2.

Proof. (i) is immediate in view of 4.7(i). (ii) is a direct consequence of
4.7(ii) and 4.8(ii). (iii) follows by 4.7(iii) and 4.8(i). To prove (iv) note that

by 4.7(iv), f = (idv )i |Fe,m(W) = idg, . (w)- a
In the following two cases:

4) k—codmW =m=dimW -1<k-1, or

(5) 0=m=k-1<dmW -1

we have only analytical characterization of dilatations of 2 available.

In every specific case 4.7(i) — 4.7(iv) we can find a spine space of linear
complements, that is, a spine space % = Ay ,,(V, W) such that m = 0,k =
codim W (cf. [3]), where that case occurs. In particular, for dimW =1 and
any k > 0 the condition (4) holds, and for kK = 1 and any W with dimW > 0
the condition (5) is satisfied. The group Dil(%) is trivial if 2 does not arise
from a projective space . If a spine space of linear complements arises from
a projective space, it is an affine space. Indeed 2 is an affine spaceif k = 1, or
dually, dim W = 1. Then, respectively, (5) holds, and consequently, 4.7(iii),
or (4) and hence 4.7(ii).

We shall now give the final characterization of the group Dil() of di-
latations of an arbitrary spine space % = Ay ,(V, W), which is not a space
of pencils, i.e. Mpin < M < Mpax- As an immediate consequence of 4.9(i),
and 4.9(iv) we have

PROPOSITION 4.10. If m =dim W — 1 = k — 1, then Dil(¥) = Aut(2), and
ifm+1<k,dimW, then the group Dil(%) s trivial.

Non-trivial group Dil(2) is described in the following proposition.

ProrosITION 4.11. If m = k-1 < dimW — 1, then Dil() is isomor-
phic to the pointwise stabilizer of W in the linear group L(V). If m =
dimW —1 < k — 1, then the group Dil() is isomorphic to the subgroup
{r € L(V):Im(p —idv) C W} of L(V).

Proof. Let f € Dil(%). Then f = ¢}|Fim(W) and, in view of 4.7(ii),
4.7(iii), in both two cases ¢ is proportional to a linear map. If (i): m =
k—1<dimW —1, then ¢|W = aidw. Then ¢ is associated with an inner
automorphism determined by a, and the map ¢’ = a~ !¢ has the following
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properties:
(6) ¢IW=idw and ¢ e€L(V).
Thus, without loss of generality we can assume that ¢ satisfies (6).

If (ii): m = dim W — 1 < k — 1, then, analogously, we can assume that
(7) e(W)=W, ¢/W=idyyw, and ¢eL(V).

Now, suppose that f = @}|Frm(W) = 5| Fim(W), where ¢, 9 € L(V).
This gives (¢ 1)} = idg, ,.(w)- By the assumptions of the theorem m <
k,dim W. We conclude from 4.4(i) that ¢ ™14 =~ idy. Thus ¢ = ¢y for c € K.
If (i) holds we apply (6), in case (ii) we apply (7), hence ¢ = 1, or ¢ = ¢.
To close the proof it suffices to note that for a linear map ¢ the condition
/W =idy,w is equivalent to p(u) —u € W for every u € V. m]

Addendum

The intention of this addendum is to gather a detailed and complete
description of critical notions that appear in the study of spine spaces. Ad-
ditionally, we present the set of parameters for which a spine space is trivial.

class  representative line g = P(H, B) N Fi (W) g%
Ak,m(W) He Fr_1,m(W), B € Fry1,m+1(W) H+(BnW)
km (W) H € Fy-1,m(W), B € Fry1,m(W) -

em(W)  H € Fr_1m-1(W), BE€ Fry1ms1(W) -

Table 1. Lines of a spine space Ay ,,(V,W).

class representative subspace dimP dim D
S m(W) [H,H + Wi: H € Fi_1.m—1(W) dimW — m -1
SemW)  [H VN Fem(W): H € Fro1,m(W) dimV -k dimW -m-1
T m(W) [BNW, Blg: B € Fry1,m(W) k—m -1
k(W) [0, Bk N Fie m(W): B € Fryyme1(W) k k—-m-1

Table 2. Maximal stars and tops in a spine space Ay ,,(V,W). P is a corresponding
projective space and D its subspace removed. '

single point affine line o-line w-line

k=0ork=n

orm=k=w

n=2k=1=w,m=0 m=w=k—-1=n-2 k=1l=mw=2

Table 3. Trivial spine space Ay, (V,W).
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