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A SEMILINEAR WAVE EQUATION ASSOCIATED
WITH A NONLINEAR INTEGRAL EQUATION

Abstract. The paper deals with the initial-boundary value problem for the semilinear
wave equation
ugt — uzz + f(u,ue) =0,z € R =(0,1), 0<t<T,
uz(0,t) = P(t),u(1,t) =0,
u(z,0) = up(z), ue(z,0) = u1(z),

where ug, ui, f are given functions, the unknown function u(z,t) and the unknown bound-
ary value P(t) satisfy the following nonlinear integral equation

t

P(t) = g(t) + H(u(0,1)) - [ k(t - 5)u(0, )ds,
0

where g, H, k are given functions. We prove the existence and uniqueness of weak solutions
to the problem, and discuss the stability of the solution (u, P) with respect to the functions
g, H and k. In the proof, the Galerkin method is employed.

1. Introduction

In this paper we consider the following problem: Find a pair (u, P) of
functions satisfying

(1.1) Ut — Ugz + f(u,u) =0,z2€ Q= (0,1),0<t < T,
(12) i ’LL:,:(O, t) = P(t)’

(1.3) u(l,t) =0,

(1.4) u(z, 0) = up(x), ur(z, 0) = ui(z),

where ug, u1, f are given functions satisfying conditions to be specified later
and the unknown function u(z,t) and the unknown boundary value P(t)

Key words and phrases: Galerkin method, system of integrodifferential equations,
Schauder fixed point theorem, weak solutions, stability of the solutions.
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satisfy the following nonlinear integral equation

(1.5) P(t) = g(t) + H(u(0,2)) — [ k(t — s)u(0, s)ds,
0

where g, H, k are given functions.

In [2], Ang and Alain Pham have established unique global existence for
the initial and boundary value problem (1.1)—(1.4) with ug, u;, P are given
functions and

(1.6) f(u,ug) = |ug]|® sign(ue), (O<a<l).

By a generalization of (2], Long and Alain Pham [7], [9], [10] have con-
sidered problem (1.1), (1.3), (1.4) associated with the following nonhomo-
geneous boundary condition at z = 0 having form

(1.7) uz(0,) = g(t) + H(u(0,t)) — [ k(t — s)u(0, s)ds.
: 0

We have considered it with k = 0, H(s) = hs, where h > 0 [9] k = 0 {7]
H(s) = hs, where h > 0 [10].

In the case of H(s) = hs, where h > 0, the problem (1.1)—(1.5) is formed
from the problem (1.1)-(1.4) wherein, the unknown function u(z,t) and
the unknown boundary value P(t) satisfy the following Cauchy problem for
ordinary differential equation

(1.8) P"(t) + w?P(t) = hu(0,), 0<t<T,
(1.9) P(0)= Py, P'(0)= Py,

where w > 0, h > 0, Py, P, are given constants [10].

In [1}, N. T. An and N. D. Trieu have studied a special case of problem
(1.1)-(1.4), (1.8), (1.9) with up = w3 = P, = 0 and with f(u,u;) linear,
ie. f(u,ut) = Ku + Au; where K, A are given constants. In the later case
the problem (1.1)—(1.4), (1.8), and (1.9) is a mathematical model describing
the shock of a rigid body and a linear visoelastic bar resting on a rigid base
([1]). Our problem is thus a nonlinear analogue of the problem considered
in [1}.

In the case where f(u,u;) = |ut|” sign(u;) the problem (1.1) - (1.4),
(1.8), and (1.9) describes the shock between a solid body and a linear vis-
coelastic bar with nonlinear elastic constraints at the side, constraints asso-
ciated with a viscous frictional resistance.
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From (1.8), (1.9) we represent P(t) in terms of Py, Py, w, h,uy(0,t) and
then by integrating by parts, we have

t

(1.10) P(t) = g(t) + hu(0,t) — { k(t — s)u(0, 5)ds,
where

(1.11) () = (P — huo(0)) coswt + (Py — hul(O))S";“’t,
(1.12) k(t) = hwsinwt.

By eliminating an unknown function P(t), we replace the boundary con-
dition (1.2) by

(1.13) uz(0,t) = g(t) + hu(0, t) — [ k(t — 5)u(0, s)ds.

Then, we reduce problem (1.1)—(1.4), (1.8), (1.9) to (1.1)—(1.4), (1.10)-
(1.12) or (1.1), (1.3), (1.4), (1.11)—(1.13).

In this paper, we consider two main parts. In Part 1, we prove theorem
of global existence and uniqueness of a weak solution of problem (1.1)-
(1.5). The proof is based on a Galerkin method associated to a priori esti-
mates, weak-convergence and compactness techniques. We remark that the
linearization method in the papers {6, 11, 12] cannot be used in [2, 4, 5, 7,
9, 10]. In Part 2 we prove that the solution (u, P) of this problem is stable
with respect to the functions g, H and k. The results obtained here relatively
generalize the ones in [1, 2, 4, 7-10].

2. The existence and uniqueness theorem

We first set some notations = (0,1), Qr = Q2 x (0,T), T > 0, L? =
LP(Q), H' = H'(Q), H? = H%(f)), where H!, H? are the usual Sobolev
spaces on §2.

The norm in L? is denoted by ||-||. We also denote by (,-,) the scalar
product in L? or pair of dual scalar product of continuous linear functional
with an element of a function space. We denote by ||:||x the norm of a
Banach space X and by X’ the dual space of X. We denote by LP(0,T; X),
1 < p £ oo for the Banach space of the real functions v : (0,T) — X
measurable, such that

T 1/p
lallzooziny = (§ @l dt) ) for1<p <o,
0
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and
[ell Lo 0,7,y = esssup [[u(t)]lx,  for p=oo.
0<t<T
We put
(2.1) V={veH :v(1) =0},
Ou Ov ¢ Bu du
2.2 (o8 VN _qouov .,
(22) a(u,v) <8:E’8x> é@m@xdm
V is a closed subspace of H! and on V, ||v||g: and |||y, = \/a(v,v) are two

equivalent norms.
We then have the following lemma.

LEMMA 1. The imbedding V — C°(Q) is compact and
(2.3) [vllcoy < llvlly , Vo € V.

The proof is straightforward and we omit the details."
We make the following assumptions:
(A1) uo € H',uy € L?;
(42) g € H(0,T),¥T > 0;
(A3) k € H(0,T),VT > 0 and k(0) = 0;
(A4) The function H € C(R) satisfies H(0) = 0 and there exists a
constant hg > 0 such that
n
H(n) = SH(s)ds > —hy,
0
for all n € R;

The function f : R? — R satisfies f(0,0) = 0 and the following condi-
tions:

(Fl) (f(uav) - f(U,m) (v _'U) 2 O’Vu’v’:‘}’e R;
There are two constants a, 8 € (0,1] and two functions By, B, : Ry —
R, continuous and satisfying:

(F2) |f(w,v) = f(u,9)| < Ba(lul) v~ 9%, Yu,v,7 € R;
(Fs) |f(u,) = f(@v)| < Ba(o) u - ° Yo, %, veR.
We also use the notations v/ = u; = Ou/8t,u" = uy = 02u/0t2.
Then we have the following theorem.
THEOREM 1. Let (A;)—-(A4) and (Fy)—~(F3) hold. Then, for every T > 0,
there erists a weak solution (u, P) of problem (1.1)—(1.5) such that
(2.4) ue L*®(0,T;V),u; € L=(0,T; L?),u(0,t) € L*(0,T),
(2.5) P(t) € H(0,T).
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Furthermore, if 3 = 1 in (F3) and the functions H, By satisfying, in
addition,

(As) H € C*(R),H'(s) > -1, Vs€R;

(Fy) Ba(|v]) € L3(Qr), for all ve L*(Qr), VT >0.

Then the solution is unique.

REMARK 1. This result is stronger than that in [9]. Indeed, corresponding
to the same problem (1.1)-(1.5) with k(t) = 0 and H(s) = hs,h > 0,the
following assumptions which were made in [9] are not needed here

(2.6) 0<a<1,Bi(lu)) € L¥=NQr), Vue L®(0,T;V), VT > 0,
(2.7 B, Bs are the nondecreasing functions.

Proof. The proof consists of several steps.

Step 1. The Galerkin approrimation. Consider a special orthonormal
basis on V

w;(z) = /2/(1 + AZ) cos(A;z), A = (25 — 1)%, j=1,2,..

formed by the eigenfunctions of the Laplacian —8%/8z2. Put
(2.8) Um(t) =Y emj(t)w;,
j=1
where ¢, ;(t) satisfy the following system of nonlinear differential equations

(2.9) (U (), ws) + a(um(t), w;) + P (t)w;(0)

+{f (um(t), um(t)), w;) = 0,1 < j <m,
(2.10)  Pr(t) = g(t) + H(um(0,1)) = {k(t — 5)um(0, s)ds,

(2.11)  upR(0) = uom = Zamjwj — ug strongly in H?,
j=1
ur.(0) = Uy = Z,ijwj — u; strongly in L2
i=1

The system of equations (2.9)—(2.11) is rewritten in form

(212) e (t) + Aem;(t) = ”;.1”2 (Prm(8)w;(0) + (f (um (), upn (8)), w;))

(2.13)  Pn(t) = g(t) + H(um(0, 1)) — [ k(t — 5)um (0, s)ds,
0
(214) ij(O) = amj,c;nj(O) = ,ij, 1 < ] <m.
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The system (2.12)-(2.14) is equivalent to the following system of integro-
differential equations

(215) Cmj (t) = ij(t)

t

- . o Nt = ) (H (0, 7)50) {7, ), )
J 0
|1|UJ((|)|) SN (t— T)d’rSk(‘r — 8)um (0, s)ds,1 < j < m,
J 0
where
N;(t) = ————Sin/(\)fjt), d
(2.16) ?

Gng(®) = s N(0)+ s s8) = 12 ‘”’ (N(t = r)g(r)ar.

We then have the following lemma.
LEMMA 2. Let (A1)—(A4), and (F1)—~(F3) hold. For fited T > 0O, then, the

system (2.15)—(2.16) has solution ¢ = (Cm1,Cm2, -y Cmm) ON an interval
[0,T] C [0,T).

Proof. We omit the index m, the system (2.15), (2.16) is rewritten in the
form:

(2.17) c=Uc,
where ¢ = (c1,¢2, ..., em), Uc = ((Uc)1, (Uc)2, ..., (Uc)m),

(2.18)  (Uc);(t) =G;(t) + S N;(t —1)(Ve);(r)dr,

(2.19)  (Ve);(t) = f1;(c(t), (1)) + Sk(t — 8)f25(c(s))ds

(2.20) Gj(t) = am; N;(t) + Bm; N;(t) — |1|1)J(|Oll SNJ(t —71)g(T)dT,
Wil o

f--Rzm—»R f25 : R™ - R,

221)  fi(c,d) = T (H(Zc,wz(o Yw; (0)
J i=1

+ (f(z ciwi, _ diws), wj)>,
i=1 i=1
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wJ(O)
sl =
For every T,, > 0, M > 0, we put
S ={c€ CY([0,Tn]; R™) : |lcll, < M},
llelly = llello + ll’llo

lello = | sup_le(®)l, e, = Z es(8)]

(2.22) fai(c) = Z c;wi(0),1 < j < m.

Clearly S is a closed convex and bounded subset of Y = C'([0, T,,,}; R™).
Using the Schauder fixed point theorem we shall show that the operator
U:8S — Y defined by (2.18)—(2.22) has a fixed point. This fixed point is
the solution of system (2.15).

First we show that U maps S into itself.
i) Notice that (Ve¢); € C°([0,T]; R) for all ¢ € C*([0, T,n]; R™), hence
it follows from (2.18), and the equality

t
(2.23) (Ue)s(t) = Gj(t) + | Nj(t — T)(Vo)(r)dr

0
that U:Y — Y. Let ¢ € S, we deduce from (2.18), (2.23) that

1
(2.24) (Ue)t)ly < IG@ + -Tm [[Vello.
(2.25) [Ue)' (&), < IG' ()], + T IVello -
On the other hand, it follows from (As), (A4), (F2), (F3), and (2.19) that
(2.26) IVello <D [N1(f1j, M) + lIkll 22 0,7y No( f2, M)] = B(M, T),
=1

for all c € S, where
(2.27)  Nu(f1;, M) = sup{|f1; (¥, 2)| : lyllpm < M, ||2||pm < M},
(2.28)  No(f25, M) = sup{|f2;(v)| : lyllpm < M}
Hence, from (2.24)-(2.26) we obtain
1
(2.29) 1Uell; < 1G]l + (1 + A_I)Tmﬂ(M’ T),

where

IGll1a = IGllou + 11G’llo. = sup |G(t)l; + sup |G'(¢)];-
0<t<T 0<t<T
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Choosing M and T, > 0 such that
DITnB(M,T) < M/2.
1
Hence, ||Uc||; < M for all ¢ € S, that is, the operator U maps S the set into
itself.

ii) Next we show that this operator is continuous on S. Let ¢,d € S, we
have

(2.30) M >2|G|,, and (1+

(2.31) (Uc);(t) — (Ud);(t) = | N;(t = 7)[(Ve);(r) — (Vd);(r)]dr.
Hence

(2.32) Uc—Udlly < —Tpm Ve - Vdll, -

A1

Similarly, we also obtain from the equality
t

(233)  (UQ)i(t) — Ua)i(t) = | Nj(t = 7)[(Ve);(r) — (Vd)(r)]dr,
0
that
(2.34) I(Ue) = Ud)llo < T [[Ve = V|l -
Now, we need an estimation of the term ||Vc — Vd||,. We have

(2.35)  (Ve);(t) — (Vd);(t) = fr;(c(t), ' () — fr;(d(2), d'(2))

t

Sk(t — 8)[fas(c(s)) — fa(d(s))}ds.

From the assumptions (A4s), (44), (Fg), (F3), and (2.35), it follows that
there exists a constant Kj; > 0 such that

(2.36) Ve - V|,

< Kog (lle = al + I/ = &5 + (1L + ¥l omy) lle = o)
for all ¢,d € S.

Thus, the estimates (2.32), (2.34) and (2.36) shows that U : § — Y is
continuous.

iii) Now, we shall show that the set US is a compact subset of Y. Let
c€ S, t,t' € 0,T,,]). From (2.18), we rewrite
(2.37)  (Uc);(t) = (Ue);(t) = G;(t) — G;(t')

t t’
+§[N;(t = 7) = N;(¢' = )(Ve)(r)dr = | N;(t' = 7)(Ve)(r)dr

0 t
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Notice that from the inequality
(2.38) |N;(t) — Nj(s)| < |t —s| for all t,s € {0, Ty,
we obtain from (2.26) that

(2:39) [T9(t) - Uy < 16(O) = Gy + (T + 1) |t = 11Vl
< 16(t) = G(¥); + BOL,T)(Tm + 1) e~ 1.

Similarly, from (2.23), (2.26) and (2.30) we also obtain
(240)  |(Uo)'(t) = (Ue)' ()], < IG'(8) - G'(F),
+ ,B(M’ T)(Ame + 1) |t - tll .

By US C S and from estimates (2.39), (2.40) we deduce that the family
of functions US = {Uc, ¢ € S}, are bounded and equicontinuous with
respect to the norm ||-||; of the space Y. Applying Arzela-Ascoli’s theorem
to the space Y, we deduce that US is compact in Y. By the Schauder fixed-
point theorem, U has a fixed point ¢ € S such that ¢ = Uc, which satisfies
(2.15).

The Lemma 2 is proved completely.

Using Lemma 2, for T > 0, fixed, system (2.9) - (2.11) has solution
(um(t), Pm(t)) on an interval [0,7,,]. The following estimates allow one to
take T,,, = T for all m.

Step 2. A priori estimates. Substituting (2.10) into (2.9), then multiply-
ing the j** equation of (2.9) by Cmj(t) and summing up with respect to j,
afterwards, integrating by parts with respect to the time variable from 0 to
L by (A2)’ (F1)7 we have

(241)  Sp(t) < — 2H (um(0,t)) + 2H (uom (0)) + Sm(0) + 29(0)uom(0)
— 29(t)um(0,2) + 2 | g'(5)um(0, s)ds
0

-2 S(f(um(s)’ 0)7 u:n(s»ds
0

+2 Suﬁn(O, s)ds S k(s — T)um(0, T)dr,
0 0

where

(2.42) Sm(t) = b I + llum (@)% .
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Then, using (2.11), (2.42), (A4) and Lemma 1, we have
(243)  —2H(um(0,)) + 2H (40m(0)) + Sm(0) + 2 |g(0)om (0)]
< %C’l, for all m and t,

where C} is a constant depending only on ug,u;, H, hg and g.
Again using Lemma 1 and the inequality

(2.44) 2ab < %a2 +3b?, Va,beR,
we obtain

t
(245) | = 29(t)um(0,) + 2 { g/ (s)um (0, s)ds)

0]

t t
1 1
<3g°(t) +3 {19/ ()" ds + 3Sm(t) + 5 [ Sm(s)ds.
0 0
We still use Lemma 1, then from (F3) it follows that

(2.46) |- f(um(s) 0), o, (s)) ds|<2Bz 0)35 (5)1+A/2 g

< (14 B)B2(0) | S (s)ds + (1 — B)B2(0)t.

0
Note that the last integral in (2.41) gives after integrating by parts

(247) I=2 §u:n(0, s)ds § k(s — T)um(0, 7)dT
0 0

= 2um(0,t) S k(t — T)um(0,7)dr — 2 Sum(O, s)ds S K'(s — T)um (0, 7)dr.
0 0 0

Hence

(2.48) 1] < 2¢/Sm(t) {1k(t — 7)| V/Sm(7)dr
0
+2 S V' Sm(s)ds S |k'(s = T)| v/ S (T)dT
0 0

=1+ 1.

The first term in the RHS. of (2.48) is estimated by means of the in-
equality (2.44)
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t t

(2.49) L< %Sm(t) +3 [K2(s)ds | Sm(r)dr.
0 0

Similarly, the second term in the RHS. of (2.48

the Cauchy-Schwarz inequality

) is estimated by means of

(2.50) L < % §\/Sm(s)ds +3t § &' (s)|° ds §Sm(r)d'r

From (2.48)-(2.50) we obtain

t t t
(2.51) || < Sm(t) (% +3 {k2(s)ds + 3t K (s)|? ds) | S (7)dr.
0 0 0
It follows from (2.41), (2.43), (2.45)-(2.47) and (2.51) that
t

(2.52) Sm(t) < Dy(t) + Da(2) | Sm()dr,
where ° .
(2.53) Di(t) = C1 +3(1 — B)Ba(0)t + 9g°(t) +9 {19'(s)| ds,

0
(2.54) Da(t) =2+ 3(1 + §)B2(0) + 9 { k2(s)ds + 9t | 1K (s)|” ds.
)

Since H'(0,T) — C°(|0,T)), from the assumptions (4;), (A43) we deduce
that

(2.55) IDi(t)| < C¥),  ae. te[0,T], (i=1,2),

where Cg) is a constant depending only on T'. By Gronwall’s lemma, we
obtain from (2.52)-(2.55) that

(2.56) Sm(t) < C¥P exp(tC?) < Cr, Vte[0,T], VT > 0.

Now we need an estimation of the term Sf) ul. (0, s)ds. Put

(257)  Kn(t) =) A,

j=1 J
@59 )= D w0 [ con(01) iy 220

~va o [t o Tl S“‘[* ~ N (), (),
0

Jj=1

T
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Then u,(0,t) can be rewritten as

(2.59) Um(0,2) = Ym(t) — 2| Km(t — 7)Pr(7)dr.
0 .

We shall require the following lemma.

LEMMA 3. There ezist a constant Co > 0 and a positive continuous function
D(t) independent of m such that

t

(2.60) [l (r)*dr
0

< Cy+ D) {1 f (tm (1), ulp (1)) d7,  Vt€[0,T], VT >0.
0

The proof of Lemma 3 can be found in [2].

LEMMA 4. There ezist two positive constants C’?) and Céfi) depending only
on T such that

t 2

(261) [ds

[ K..(s = 7)Pu(r)dr

t E]
< 0P + 0 {ds||ul, 0,7 dr, Vte[0,T],¥T > 0.
0 0

Proof. Integrating by parts, we have
s t
(262) [ Kl (s = 7)Pn(r)dr = Kin(s)Pn(0) + | Km(s — 1) Pp(r)dr,
0 0
then
s 2
(2.63) Sds SK:n(s — 7)Pp(1)dr
o 1o

< 2P2%(0) §K,2n(s)ds +2 § ds S K,%l(r)dri |P. (7)]? dr
0 0 0 0
< 2| K2 (s)ds [P;(O) + gdsi |P.(7)|? dT].
0 0 0
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Noticing from (2.10) we have

Po(0) = 9(0) + H(uom(0)),
B8 pr ) = (1) + B (a0, )l (0,7) = {K(7 = 5)uum(0, 8)ds.
0

Using the inequality (a+b+c)? < 3(a®+b%+¢?),Va, b, c € R, we deduce
from (2.56), (2.64), and (A4) that

265)  (IPL(NPdr <3{lg' (") dr+3 max_|H'(s)|” | |u,(0,7)[* dr
: ; lsl<vCr ;

+3s S]k'(1~)|2 dr Sufn(O, r)dr.
0 0

Hence, it follows from (2.63)—(2.65) that

t s 2 t
(2.66) {ds|{ K., (s — 7)Pn(r)dr| <2|KZ(s)ds [(g(O) + H(uom(0)))?
0 0 0

t t s
+3t\|g (D) dr +3 max |H'(s)]*| ds ul (0,7 2dr
(S)l (ml |sls¢CF| (s)] (S) (S)l (0, 7)]

3 2t N2 0 2
+51 §)|k (") dr(S) w2, (0,r)dr|.

Noticing that for every T > 0,K,, — K strongly in L?(0,T) as m —
+00, and using the assumptions (A;) — (A4) and the results (2.11), (2.56)
and (2.66) we obtain (2.61). The lemma 4 is proved completely.

LEMMA 5. There exist two positive constants CF}S) and C}S) depending only
on T such that

t
267) | [ul,(0,7) dr < CP, vt € [0,T),¥T > 0,
0

t
2.68)  [IPL(n)*dr < CP, vt € [0,T],VT > 0.
0

Proof. Since (2.68) is consequence of (2.56) and (2.67), we only have to
prove (2.67).
From (2.59), using Lemma 3 and 4, we obtain
ot ) e T 9
(2.69) {[uln(0,9)1% ds < 2 {Inlu(s)*ds +8 gds| | Ktn(s = ) Pr(m)dr
0 0 0o 0
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< 2C; +2D(t) { If (um(7), upn (7)) | dr
0

t s
+8C) + 805 {ds | |ul,, (0, 7)" dr.
0 o
On the other hand, from (2.56) and the assumptions (F3), (F3) we obtain

(2.70) [1f (um (t), upn @®))|I* < 2 Isg%;Bf(S)llu;(t)llz" +2B3(0) |um (1)1,

since 0 < a < 1 we have ||-|| < ||:|| 2. Hence, using (2.56) and (2.70) we
have

(2.71) 1f (D), () < CF.
At last, from (2.69) and (2.71) we obtain the inequality
t t s
(2.72) {1, (0,9)* ds < CF + 8CT (ds | |ul, (0, 7) [ dr,
: 0 0 0

which implies (2.67), by Gronwall’s lemma.

Lemma 5 is proved completely.

Step 3. Passing to limit. From (2.10), (2.42), (2.56), (2.67), (2.68), and
(2.71), we deduce that, there exists a subsequence of sequence {um, Pn},
still denoted by {um, Pn}, such that

(2.73) Uy — u in L2(0,T;V) weakx,

(2.74) u! — 4 in L®(0,T; L?) weakx,

(2.75) Um(0,t) — u(0,t) in L*°(0,T) weaksx,
(2.76) u! (0,t) — u'(0,t) in L?(0,T) weak,
(2.77) f(um,ul) = x in L=(0,T; L?) weaks,
(2.78) P, — P in H'0,T) weak.

By the compactness lemma of Lions ( see [8] ), we can deduce from (2.56),
(2.67), (2.73), and (2.74) that there exists a subsequence still denoted by
{tm} such that

(2.79) um (0, 1) — u(0,t) strongly in C°([0,T)),
(2.80) Uy — u strongly in L?(Qr) and a.e.(z.t) in Q7.

Since H is continuous, from (2.10), (2.79) we have
t
(2.81) Pp(t) — g(t) + H(u(0,t)) — S k(t — s)u(0, s)ds = P(t)
0

strongly in C°([0, T)).
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From (2.78) and (2.81) we have
(2.82) P=P ae. inQr.

Passing to the limit in (2.9) by (2.73), (2.74), (2.77), (2.81), and (2.82) we
have

283 S0/(0,0)+a(u®),0) + POU0) +(x(0),0) =0,V eV,
We can prove in a similar manner as in [10] that
(2.84) u(0) = ug, u'(0)=1y.

Then, in order to prove the existence of solution of the problem (1.1)—(1.5),
we only have to prove that x = f(u,u’). We shall now require the following
lemma.

LEMMA 6. Let u be the solution of the following problem

(2.85) wup—uz+x=0 0<z<1,0<t<T,

(2.86) uy(0,t) = P(t), wu(1,t)=0,

(2.87)  u(z,0) = uo(z), ut(z,0)=u(x),

(2.88) wue€ L>®(0,T;V),« € L*(0,T;L?), and u'(0,t) € L?(0,T).

Then we have

289) 3 IW@I + 3 @I + [ PERO,s)ds + [s), ' (5))ds
0 0

1 1
2 5wl + 3 lwolly s te0,T].
Furthermore, if ug = uy = 0 there is equality in (2.89).

The proof of Lemma 6 can be found in [2].
Now, from (2.9)-(2.11) we have

t

(290)  §( (m(5), Upn (), win(5))ds = 5 lamll* + 5 leiom

=3 WO = 5 lum (O} = | P60, 0.

By Lemma 6, it follows from (2.11), (2.73), (2.74), (2.76), (2.81), and
(2.90), that
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t
(291)  limsup {(f(um(s), ur(s)), um,(s))ds
m—»+ooo

<

DO =

t
1 1 1
lasl® + 5 lluollyy = 5 Il @I = 5 @I — [ P(s)2'(0, s)ds
0

o

< S(x(s),u'(s))ds, a.e. t € [0,T].
0

By using the same arguments as in [10] we can show that x = f(u,u’)
a.e. in Qp. The existence of the solution is proved.

Step 4. Uniqueness of the solution. Assume now that 3 = 1in (F3) and H
satisfying (As). Let (uy, Py), (ug, P;) be two weak solutions of the problem
(1.1)-(1.5). Then u = uy — up, P = P, — P, satisfy the following problem

v —u,+x=00<z<1,0<t<T,

uz(0,t) = P(t),u(1,t) =0,

u(z,0) = v/(z,0) =0,

X = f(ur,u1) — flu, ug),

P(t) = Pi(t) — P(2) .

= H(uy(0,t)) — H(uz(0,t)) — Sk(t — 8)u(0, s)ds,

0

u; € L%®(0,T;V),u, € L®(0,T; L?),u}(0,t) € L*(0,T),

P, e H'(0,T), i=1,2.

By using Lemma 6 with up = u; = 0, we obtain

(292)  SIWOI + 5@ + | P}, 5)ds
0

+ S(x(s), u/'(s))ds =0 ae. t € [0,T].
0

Put

a(t) = Ilu' &) + @)}
(2:93) H(£) = H(u(0,)) — H(ua(0,2)).

Substituting P(t), x into (2.92) and noticing that the function f is non-
decreasing with respect to the second variable, we have
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(2.94)  o(t)+2 | Hi(s)u'(0,5)ds

0

< 2 [11f (u1(s), up(s)) = f(ua(s), ua())ll I (s)ll ds

+2 Su’(O, s)ds S k(s — r)u(0,r)dr.

0 0
Using the assumption (F3), we have
(2.95)  [If(ua(s),ua(s)) — f(ua(s), uap(s)Il < 1 Ba(lua(s)Dl lu(s)lly -

Using integration by parts in the last integral of (2.94), we get

(2.96) J=2 §u’(0, s)ds §k(s —r)u(0,r)dr
0 0
= 2u(0,t) [ k(t — r)u(0,r)dr — 2 {u(0, s)ds | K'(s — r)u(0,r)dr.
0 0 0
It follows from (2.93) and (2.96) that
(2.97) 1] < 2\/a(t)(5k2(r)dr) 1/2(§a(r)dr)1/2
0 0

+ 2\/2(5 k' (r)[2 dr) i fo(ryar
0 0

1t
< Bro(t) + E(S)kz(r)dr(s)a('r)dr

¢ 1/2
+ 2\/5(8 |I<:'(r)|2 dr) Sa(r)dr, VG, > 0.
0 0
Put
i . — : ! — 1
(2.98) M = max [[uil| poo 0,77y , M1 min H'(s),ms max |H"(s)] .
From the assumption (As) we have m; > —1.
On the other hand, by using integration by parts and (2.98) it follows
that

(299) 2 [Hy(s)/ (0, 5)ds = 2 §[ H(uz(0, 5) + 6u(0, s))do]u'(o,s)ds
0 0

O ey =
&| &



932 N. T. Long, T. M. Thuyet

1
= u?(0,t) | H'(42(0, 5) + 6u(0, s))dd

— {420, 5)ds | H (u2(0, 5) + 8u(0, 5)) (u5(0, 5) + 6u'(0, 5))df
0 0

t
2 m1u2(07 t) —m2 Su2(0a s) (Iull (O’ S)I + |u,2(01 S)l) ds
0
t

> m1u?(0,t) — ma [ o(s) (|44 (0, 8)| + [u5(0, 5)]) ds.
0

From (2.94)-(2.96), and (2.99), we obtain

(2.100) o (t) + m1u?(0, 1) < ma [ (s) (Juy (0, 8)| + up(0, 5)]) ds

t

+§IB2(lup(s)]) | o (s)ds + |J] = n(2).
0

Noticing from (2.98) we have

(2.101) (14 m1)u?(0,t) < a(t) + myu?(0,t) < n(t).
It follows from (2.97), (2.100) and (2.101) that

(2102) o) + [m1 + Ba(1 + m1)]u?(0,8) < (1+ B2)n(?)

< (14 B2) § [ma2 (Ju1 (0, 8)| + [u(0, 8)]) + | Ba(luz(s) D) o(s)ds

+ (1+ B2)Bro(t)

+(1+B) (i [K2(r)dr + 22 <§ K (r)? dr) 1/2) §a(s)ds,

ﬂlo 0 0
V6, > 0,V6; > 0.

Choosing 81 > 0, 82 > 0 such that mj + Bo(1+mq) > 1/2, (14 32)51 < 1/2
and denote

(2.103)  Ri(s) = 2(1+ B2) [mz (1u1 (0, )| + [uz(0, 5)1) + | B2(lua(s) D

1
5 Ikl m) + 2VT W oy |
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Then from (2.102) and (2.103) we have
t
(2.104) o(t) + u?(0,) < [ Ri(s)[o(s) + u2(0, 5)]ds.
0
i.e. o(t) + u2(0,t) = 0 by Gronwall’s lemma.
The Theorem 1 is proved completely. =

REMARK 2. The condition k(0) = 0 in (As) is technical, it can be omitted.
In the special case of H with H(s) = hs, h > 0, the following theorem is
the consequence of Theorem 1.

THEOREM 2. Let (A;)—(As) and (Fy)—(F3) hold. Then, for every T > 0, the
problem (1.1)—(1.5) has at least a weak solution (u, P) satisfying (2.4), (2.5).

Furthermore, if 8 = 1 in (F3) and the function By satisfies (Fy), then
this solution is unique.

Theorem 2 gives same result in [10] but the assumption: ” By is nonde-
creasing” used in [10] is not needed here.

In the special case with k(t) = 0, the following result is the consequence
of Theorem 1.

THEOREM 3. Let (A1), (A2),(As) and (F1)—(F3) hold. Then, for every
T > 0, the problem (1.1)~(1.4) corresponding to P = g has at least a weak
solution u satisfying (2.4).

Furthermore, if 3 = 1 in (F3) and if the functions H and By satisfy the
assumptions (As) and (Fy), respectively, then this solution is unique.

REMARK 3. Same as the remark 2, Theorem 3 also gives same result in (7]
but the assumption: ” B, is nondecreasing” used in (7] is not needed here.

3. Stability of the solutions
In this part, we assume that 8 = 1 in (F3) and the functions H, By
satisfying (As), (Fy), respectively. By Theorem 1 the problem (1.1)—(1.5)
has a unique solution (u, P) depending on g, k, H.
(3.1) v=1u(g,k,H), P=P(gk, H),
where g, k, H satisfy the assumptions (A2) — —(As) and uo, us, f are fixed
functions satisfying (A;), (F1)—(Fy). We put
S(ho, Ho) = {H € C*(R) : H(0) =0, | H(s)ds > —ho,Vz € R,
0
H'(s) > —1,Vs € R,
|S|UP (|H(s)| + |H'(s)|) < Ho(M), VM > 0},
s|I<M



934 N. T. Long, T. M. Thuyet

where hg > 0 is given constant and Hp : Ry — R, is given function.
Then we have the following theorem.

THEOREM 4. Let 8 = 1 and (A1), (F1)-(Fs) hold. Then, for every
T > 0, solutions of the problems (1.1)-(1.5) are stable with respect to the
data g,k, H, i.e.,

If (gakaH)) (gjakj’Hj) € HI(O)T) x HI(O)T) x 8(h'OrH'O)7 k(O) =
k;(0) = 0, such that

(3.2) (gjwkijj) — (g,k, H) in Hl(oa T) x HI(OaT) x Cl([—M, M])

strongly, as j — +o0, for all M > 0.
Then

(uj,u},u;5(0,t), Pj) — (u,’,u(0,t), P) in
(3.3) L=(0,T;V) x L=(0,T; L?) x C°([0, T)) x C°([0, T))
strongly, as j — +oo,  for all M,
where u; = u(gj, kj, Hj), PJ = P(gj, kj,Hj).
Proof. First, we note that, if the data (g, H, K) satisfy
(34) 191l 20,7y < Gos 1kl 10,7y < Ko, H € S(ho, Ho),

then, the a priori estimates of the sequences {um,} and {Pp,} in the proof of
the theorem 1 satisfy

(3:5) eI + lum @)l < CF, Ve € [0,T],¥T > 0,
t
(3.6) {lur,(0,8)” ds < C2,¥t € [0, T, VT > 0,
0
t
(3.7) {1PL(s) ds < C3, ¥t € 0, T),¥T > 0,
0

where Cr is a constant depending only on T, ug, u;, f, Go, Ko, ho (inde-
pendent of g, k, H).

Hence, the limit (u,P) in suitable function spaces of the sequence
{(um, Pm)} is defined by (2.9)—(2.11), which is a solution of the problem
(1.1)-(1.5) satisfying the a priori estimates (3.5)-(3.7).

Now, by (3.2) we can assume that, there exist constants Go > 0, Ko > 0
such that the data (g;, k;, H;) satisfy (3.4) with (g,k, H) = (g;,k;, Hj).
Then, by the above remark, we have that the solutions (u;, P;) of problem
(1.1)—(1.5) corresponding to (g, k, H) = (g;, k;, H;) satisfy

(3.8) 45 @|1* + llus DI < C&, vt € [0, T, VT >0,
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t
(3.9) |0, 9)|* ds < C3, ¥t € [0,T],VT >0,
0
t
(3.10) {|Pi(s)|” ds < C2, ¥t € [0,T1,¥T > 0.
0
Put
(3.11) Gi=9i—9 kj=kj—k Hj=H; - H.

Then, v; = u; —u and Q; = P; — P satisfy the following problem

’sz(O, t) = Qj(t), 'Uj(].,t) = 0,
Uj(:l:,O) = 'u;.(:z:, 0) =0,

Xj = f(ujau_lj) - f(u’ u,)a
t

(3.13) Q;(t) = gj(t) + H(x5(0,8)) — H(u(0,2)) — | k(t - 5)v;(0, s)ds,
0

W = vstxg =0, 0<z<1,0<t<T,
(3.12)

B14)  g(t)= G + Hj(w(0,8) - | &;(t — 5)u;(0, s)ds.
1]

By Lemma 6 with ug = u; =0, x = x;, P = Q; we have

(3.15) [l ®))* + o I3, +2 § Q5(5)v5(0, 8))ds + 2(x;j(s), v)(s))ds =
0 0

Let

2
(3.16) S;(®) = [5O)” + Il @I, + v3(0,8),
(3.17) my = min H'(s) > -1, my = max |H"(s)|.

|s|<Cr |s|<Cr

Then, we can prove the following inequality in a similar manner

(318) [l + llos @)} +mav}(0,2)

< JIB2(l/ (s)1)1I Sj(s)ds + 2655 (t)
0

935

0.



936 N. T. Long, T. M. Thuyet

e (53 (®)+] lﬁé(s)lzds) +2¢{5(s)ds
0 0
+ m2§ (Ju'(0,8)| + I“;‘(O’ s)|) S;(s)ds
0

1 2
+ (1 + = Ikl a0 + T nk'uLz(o,T)) }Sj(s)ds = n; ®),
0
for all e > 0 and t € [0, 7).

We remark that 'UJ? (0,t) < |lv; (t)||f, , consequently

(319)  (1+m)v?(0,2) < |[Vi@)|1” + llus @)1 + mav3(0,8) < n; ().

Multiplying two members of (3.19) by a number § > 0 and adding to
(3.18), we have

(320)  [ls @ + los I + [(1 +ma)By + ma]v3(0, t)

< @+ < (140) 2650 + £ (30 + [ [33) s

t
+ Srj(e,T, s)S;(s)ds, for alle > 0,6 >0 and t € [0, 7],
0

where

1 2
(321) (e Tos)=1+e+ - Ikl1Z 2001y + T 1K I22(0.y + B2l ()]
+mo (|u'(0,s)| + |u_lj(0) S)l) .

Choosing § > 0 and € > 0 such that (1+m1)d +m; > 1,2¢(1 +4) < 1/2.
Noting that H'(0,T) < C°([0,T), we have from (3.20) that

1~ R t
(322)  S;(t) < 201+ 0)-Cp Gl zrs oz + 21 +8) i (e, T, )8 (s)ds,
0

where 5;1) is a constant depending only on T'.

By Gronwall’s lemma, we obtain from (3.22) that
(3.23) :
T

1 51) 1~
S;(t) <2(1+ 6)205}) ||gj||§{1(o,T) exp (2(1 +9) S (e, T, s)ds),Vt € [0, T}
0
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On the other hand, we obtain from (3.9), (3.13), and (3.21) that
(329) 5;(8) < CP IG;l3 0.7Vt € [0,T),

¢ 1/2
329) 19,001 B+ max 1O /5OH Mo (1564)

We again use the embedding H!(0,T) — C°([0,T]). Then, it follows
from (3.24) and (3.25) that

A(3)
(3.26) 1Q5llcoqo.ayy < CF 113 o) -
As a final step, we only prove

. ~ 12

(3.27) jHim 195l ks o7y = 0-

Indeed, from (3.14) combined with (3.9), we deduce the following inequality
(3.28) g5l gr(o,m)

<Gl g2 0.1y + TCrNEs 0,1y + /T + C3llHjllor (107 0)-
The Theorem 4 is proved completely. m
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