
DEMONSTRATIO MATHEMATICA 
Vol. XXXVI No 4 2003 

Nguyen Thanh Long, Tran Minh Thuyet 

A SEMILINEAR WAVE EQUATION ASSOCIATED 
WITH A NONLINEAR INTEGRAL EQUATION 

Abs t rac t . The paper deals with the initial-boundary value problem for the semilinear 
wave equation 

utt - uxx+f(u,ut) = 0,® € ii = (0,1), 0 < t < T, 
ux(0,t) = P(t),u(l,t) = 0, 

u(x,0) = uo(x),ut(x,0) = ui(z), 

where uo,u\,f are given functions, the unknown function u(x, t) and the unknown bound-
ary value P(t) satisfy the following nonlinear integral equation 

t 
P(t) = g(t) + H{u{0,t)) - \ k ( t - a)ds. 

0 
where g, H, k are given functions. We prove the existence and uniqueness of weak solutions 
to the problem, and discuss the stability of the solution (u, P) with respect to the functions 
g, H and k. In the proof, the Galerkin method is employed. 

1. Introduction 
In this paper we consider the following problem: Find a pair (u, P) of 

functions satisfying 

(1.1) utt ~ uxx + f(u, ut) = 0, x € n = (0 ,1 ) , 0 < t < T, 

(1.2) ux(0,t) = P{t), 

(1.3) « ( 1 , 0 = 0, 

(1.4) u ( x , 0 ) = u0(x),ut(x, 0) = i i i (x ) , 

where UQ,U\, f are given functions satisfying conditions to be specified later 
and the unknown function u(x,t) and the unknown boundary value P(t) 

Key words and phrases: Galerkin method, system of integrodifferential equations, 
Schauder fixed point theorem, weak solutions, stability of the solutions. 
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satisfy the following nonlinear integral equation 

t 
(1.5) P(t) = g(t) + H(u(0,t)) -\k(t- s)u(0,s)ds, 

o 

where g, H, k are given functions. 
In [2], Ang and Alain Pham have established unique global existence for 

the initial and boundary value problem (1.1)—(1.4) with UQ,U\,P are given 
functions and 

(1.6) f(u, ut) = \ut\a sign(ut), (0 < a < 1). 

By a generalization of [2], Long and Alain Pham [7], [9], [10] have con-
sidered problem (1.1), (1.3), (1.4) associated with the following nonhomo-
geneous boundary condition at x = 0 having form 

t 
(1.7) 14,(0,t) = g(t) + H(u(0,t)) -\k(t- s)u(0,s)ds. 

o 

We have considered it with k = 0, H(s) = hs, where h > 0 [9] k = 0 [7] 
H(s) = hs, where h > 0 [10]. 

In the case of H(s) = hs, where h > 0, the problem (1.1)—(1.5) is formed 
from the problem (1.1)—(1.4) wherein, the unknown function u(x,t) and 
the unknown boundary value P(t) satisfy the following Cauchy problem for 
ordinary differential equation 

(1.8) P"(t) + uj2P(t) = hutt(0,t), 0 < t < T, 

(1.9) P(0) = P0 , P'(0) = Pi, 

where TO > 0, h > 0, PQ, Pi are given constants [10]. 
In [1], N. T. An and N. D. Trieu have studied a special case of problem 

(1.1)—(1.4), (1.8), (1.9) with UQ — U\ — PQ — 0 and with f(U,ut) linear, 
i.e. f(u, ut) = Ku + Xut where K, A are given constants. In the later case 
the problem (1.1)—(1.4), (1.8), and (1.9) is a mathematical model describing 
the shock of a rigid body and a linear visoelastic bar resting on a rigid base 
([1]). Our problem is thus a nonlinear analogue of the problem considered 
in [1], 

In the case where f(u,ut) = \ut\a sign(ut) the problem (1.1) - (1.4), 
(1.8), and (1.9) describes the shock between a solid body and a linear vis-
coelastic bar with nonlinear elastic constraints at the side, constraints asso-
ciated with a viscous frictional resistance. 
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Prom (1.8), (1.9) we represent P(t) in terms of PQ,PI,U>, h, u t t(0, t) and 
then by integrating by parts, we have 

t 
(1.10) P(t) = g(t) + hu(0,t) - \ k ( t - s)u(0,s)ds, 

o 
where 

sinu>i 
(1.11) g(t) = ( P 0 - huo(0)) cosujt + (Pi - hu^O)) , 

LO 
(1.12) k(t) = husinut. 

By eliminating an unknown function P{t), we replace the boundary con-
dition (1.2) by 

t 
(1.13) u x (0 , t ) = g(t) + hu(0,t) ~\k(t~ s)u(0,s)ds. 

o 

Then, we reduce problem (1.1)-(1.4), (1.8), (1.9) to (1.1)-(1.4), (1.10)-
(1.12) or (1.1), (1.3), (1.4), (1.11)—(1.13). 

In this paper, we consider two main parts. In Part 1, we prove theorem 
of global existence and uniqueness of a weak solution of problem (1.1)-
(1.5). The proof is based on a Galerkin method associated to a priori esti-
mates, weak-convergence and compactness techniques. We remark that the 
linearization method in the papers [6, 11, 12] cannot be used in [2, 4, 5, 7, 
9, 10]. In Part 2 we prove that the solution (u, P) of this problem is stable 
with respect to the functions g, H and k. The results obtained here relatively 
generalize the ones in [1, 2, 4, 7-10]. 

2. The existence and uniqueness theorem 
We first set some notations ii = (0,1), QT = fi x (0,T), T > 0, Lp = 

LP(Q), H1 = H1 (ft), H2 = H2 (Q), where H\ H2 are the usual Sobolev 
spaces on fi. 

The norm in L2 is denoted by || | |. We also denote by (, •,) the scalar 
product in L2 or pair of dual scalar product of continuous linear functional 
with an element of a function space. We denote by ||-||x the norm of a 
Banach space X and by X' the dual space of X. We denote by Lp(0, T; X), 
1 < p < oo for the Banach space of the real functions u : (0, T) —> X 
measurable, such that 

I M I l p ( o , i v o = ( \ IK*) I I* d t ) ' for 1 < p < oo, 
o 
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and 

I M I L T O TX) = e s s s u P L L U ( O I I X ' for p = oo. K ' ' ' o<t<T 
We put 

(2.1) V = {veH1:v( 1) = 0}, 

V 

is a closed subspace of H* and on V, and ||f||y — t j a{v, v) are two 
equivalent norms. 

We then have the following lemma. LEMMA 1. The imbedding V > C°(fi) is compact and (2-3) IMIc°(n) — IMIv i Vw e V. 
The proof is straightforward and we omit the details. 
We make the following assumptions: (Ai) u0 € 

H1 L2; 
(A2)g€H1(0,T),W>0; 
(.A3) k € ^ ( O j T ) , VT > 0 and Jfe(0) = 0; 
{Ai) The function H € Cl(R) satisfies H(0) = 0 and there 

exists a 
constant ho > 0 such that 

v 
H(r]) = \H(s)ds>-h0, 

o for all r) € R; 
The function / : R2 —> R satisfies /(0,0) = 0 and the following condi-

tions: 
(Fi) (/(tx, v) - f(u, v))(v-v)>0, Vu, v,v e R-, 
There are two constants a, F3 € (0,1] and two functions B\, B2 : R+ —• 

R+ continuous and satisfying: 
( F 2 ) \F(U,v) - f(u,V)\ < B^UDLV -V\A ,VU,V,V € R; 

( F 3 ) \F(u,v) - f(u,v)\ < B2{\V\)\u -uf ,\/U,u, VER. 
We also use the notations u' = ut = du/dt,u" = uu = d2u/dt2. 
Then we have the following theorem. 

THEOREM 1. Let ( A I ) - ( A I ) and ( F I ) - ( F 3 ) hold. Then, for every T > 0 , 
there exists a weak solution (u,P) of problem (1.1)—(1.5) such that 

(2.4) u e L°°(0,T;V),ut € L°°(0, T; L2),ut(0, t) e L2(0,T), 
(2.5) P(t)eH\0,T). 
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Furthermore, if (3 = 1 in (F3) and the functions H, B2 satisfying, in 

addition, 

(As) H G C2(R), H'(S) > - 1 , Vs e R; 
(F4) B2(\V\) € L 2 ( Q t ) , for all V E L2(Qt), VT > 0. 

T/ien i/ie solution is unique. 

REMARK 1. This result is stronger than that in [9]. Indeed, corresponding 
to the same problem (1.1)—(1.5) with k(t) = 0 and H(s) = hs,h > 0,the 
following assumptions which were made in [9] are not needed here 

(2.6) 0 < a < l , B i ( | n | ) € L 2 / ( 1 - a ) ( < 5 T ) , Vu € L ° ° ( 0 , T ; F ) , VT > 0, 

(2.7) B\,B2 are the nondecreasitig functions. 

P r o o f . The proof consists of several steps. 
Step 1. The Galerkin approximation. Consider a special orthonormal 

basis on V 

wj(x) = ^2/(1 + A2) cos(Ajx), Xj = (2j - j = 1,2,... 

formed by the eigenfunctions of the Laplacian —d2/dx2. Put 
m 

(2.8) Um{t) = Y^cmj{t)wj, 

3=1 
where cmj (t) satisfy the following system of nonlinear differential equations 

(2.9) ( i £ ( t ) , W j ) + a ( u m ( i ) , ^ ) + Pm(t)t« j (0) 

+(f(um(t),u'm{t)),wj) = 0,1 < j < m, 
t 

(2.10) Pm(t) = g(t) + H{um(0,t)) -\k(t- s)um(0,s)ds, 

o 
m 

(2.11) ttm(0) = u0m = amjWj u0 strongly in H1, 

j=i 
m 

urn(°) = ui m = ^PmjWj «1 strongly in L2. 
j=l 

The system of equations (2.9)-(2.11) is rewritten in form 

(2.12) c ^ . ( i ) + A 2 c m j ( t ) = {Pm(t)v,j{0) + (f(um(t), u'm(t)),Wj)), 

IK" II 

t 

(2.13) Pm(t) = g(t) + H(um{0,t)) -\k(t- s)um(0,s)ds, 

o 

(2.14) cmj (0) = amj, c'mj(0) = (3mj, 1 <j<m. 
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The system (2.12)-(2.14) is equivalent to the following system of integro-
differential equations 

(2.15) cmj(t) = Gmj(t) 

1 * 
" (#K>(0,T)H(0) + {f{um{T),u'm{T)),Wj))dT 

iFin o 

+ 

where 

- T)dr\k(T - s)um(0,s)ds,l <j<m, 
\w3 II o 

N j ( t ) = f È m t and 
Xj 

(2-16) t 
Gmj(t) = amjN'j(t) + PmjNjit) - ^ U \ Nj(t - r)g(T)dr. 

M o 
We then have the following lemma. 

LEMMA 2. Let (^4I)-(A4), and (Fi)-(Fz) hold. For fixed T > 0, then, the 
system (2.15)-(2.16) has solution cm = {Cm\ ) on an interval 
[0 ,Tm] C [0, T). 

P r o o f . We omit the index m, the system (2.15), (2.16) is rewritten in the 
form: 

(2.17) C = Uc, 

where c = (ci, c 2 , . . . , c m ) , f / c = {(Uc)i, (Uc)2, ..., (Uc)m), 
t 

(2.18) (Uc)j(t) = Gj(t) + J Nj(t - T)(Vc)j(T)dT, 
0 

t 
(2.19) (Vc)j(t) = fij(c(t),<W)) + S - s)f2Ms))ds, 

0 

( 2 . 2 0 ) Gj(t) = amjN'j(t) + ^N^t) - J Nj(t - r)g(r)dT, 
libili o 

A. r>2m . T> f . Dm n j . It —yK,j2j-ri —> it, 
^ m 

(2.21) f1:i(c, d) = ( f f CiWi(0))wj(0) 
Ml V SÌ 

771 771 

i=i ¿=1 
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( 2 . 2 2 ) f2j(c) = J i E £ CiWi(0), 1 < j < m . 
IK-II s i 

For every Tm > 0, M > 0, we put 

S = {ceC1([0,Tm};Rm)-\\c\\1<M}, 

IMIi = l|c||0 + llc'llo, 
m 

| |c | |0= sup K i J I ^ K t ) ! ! =531^(4)1. 
o <t<Tm ~ 

Clearly 5 is a closed convex and bounded subset of Y = C1([0, Tm]; Rm). 
Using the Schauder fixed point theorem we shall show that the operator 
U : S Y defined by (2.18)-(2.22) has a fixed point. This fixed point is 
the solution of system (2.15). 

First we show that U maps S into itself. 
i) Notice that (Vc)j 6 C°([0,Tm];R) for all c G C 1 ( [ 0 , h e n c e 

it follows from (2.18), and the equality 
t 

(2.23) (UcYjit) = G'j(t) + J Nj(t - T){Vc)j{r)dT, 
o 

that U : Y -> Y. Let c € S, we deduce from (2.18), (2.23) that 

(2.24) 1(^(4)1, <10(4)1! + ^ r m | | V c | | 0 l 

(2.25) K ^ ' W I i < |G ,(t)|1 + r m | |Vc | | 0 . 

On the other hand, it follows from (A3), (yl4), (F2), (F3), and (2.19) that 
m 

(2.26) ||Vc||o < ( f a , M) + \\k\\LH0,T)N2(f2j,M)} = /?(M,T), 
3 = 1 

for all c € S, where 

(2.27) i V i f e M ) = sup{|/ij(y, z)\ : ||y||Km < M, ||z||flra < M}, 
(2.28) N 2 ( f 2 j , M ) = sup{|/2j-(y)| : \\y\\^ < M}. 

Hence, from (2.24)-(2.26) we obtain 

(2.29) \\UcW, < ||G||1+ + (1 + ± - ) T m f t M , T ) , 

where 

l|G||u = | |G|L + | | G ' | L = sup 10(4)1!+ sup |G'(4)|J . 
0 <t<T 0 <t<T 
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Choosing M and Tm > 0 such that 

(2.30) M > 2 \\G\\U and (1 + ±.)Tm/3(M,T) < M/2. 
Ai 

Hence, HL̂cH x < M for all c 6 S, that is, the operator U maps S the set into 
itself. 

ii) Next we show that this operator is continuous on S. Let c,d € S, we 
have 

t 
(2.31) (Uc)j(t) - (Ud)j(t) = \ Nj(t - r)[(Vc)j-(r) - {Vd^dr. 

o 
Hence 

(2.32) \\Uc-Ud\\0 <±-Tm\\Vc-Vd\\0. 
M 

Similarly, we also obtain from the equality 
t 

(2.33) (Uc)'j(t) - (UdYjit) = \ N f r - T)[(Vc)j(T) - ( V d ^ d r , 
o 

that 

(2.34) \\(Uc)' - (Ud)'\\0<Tm\\Vc-Vd\\0. 

Now, we need an estimation of the term \\Vc — Vd\\Q . We have 
(2.35) (Vc)^) - (Vd)j(t) = / ^ ( i ) , ^ ) ) ~ fiM^d'(t)) 

t 
+ J - a)[/2j-(c(s)) - /2i(d(s))]ds. 

0 
Prom the assumptions (A3), (A4), (F2), (F3), and (2.35), it follows that 

there exists a constant Km > 0 such that 

(2.36) \\Vc-Vd\\0 

< Km (||C - d\f0 + ||c' - d t + (1 + ||fc||Li(o ir)) ||C - D||0) , 

for all c,d€ S. 

Thus, the estimates (2.32), (2.34) and (2.36) shows that U : S Y is 
continuous. 

iii) Now, we shall show that the set US is a compact subset of Y. Let 
ceS,t,t' e [0,Tm], From (2.18), we rewrite 

(2.37) (Uc)j(t) - (Uc)j(t') = Gj(t) - Gj(t') 
t t' 

+ \Wj(t - r ) - Nj(t' - r ) ] (yc) j ( r )dr - J - r^Vc^dr. 
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Notice that from the inequality 

(2.38) | N j ( t ) - N j ( s ) | < \ t - s \ for all t , s € [0, T m ] , 

we obtain from (2.26) that 

(2.39) | ( U c ) ( t ) - ( U c ) ( t % < |G(t) - G ( t % + (Tm + 1 ) 1 1 - t'\ \\Vc\\0 

< \G(t) - 0 ( 0 1 ! + /3(M,T)(Tm + \t - f |. 

Similarly, from (2.23), (2.26) and (2.30) we also obtain 

(2.40) | ( U c ) ' ( t ) - ( U c ) ' ( t % < |C(t) - C ( f ) l i 
+ I 3 ( M , T ) ( X m T m + l ) \ t - t ' \ . 

By US C 5 and from estimates (2.39), (2.40) we deduce that the family 
of functions US = { U c , c € S}, are bounded and equicontinuous with 
respect to the norm ||-1| x of the space Y. Applying Arzela-Ascoli's theorem 
to the space Y, we deduce that US is compact in Y. By the Schauder fixed-
point theorem, U has a fixed point c 6 <5 such that c = Uc, which satisfies 
(2.15). 

The Lemma 2 is proved completely. 
Using Lemma 2, for T > 0, fixed, system (2.9) - (2.11) has solution 

( u m ( t ) , P m ( t ) ) on an interval [0, T m \ . The following estimates allow one to 
take Tm = T for all m. 

Step 2. A p r i o r i estimates. Substituting (2.10) into (2.9), then multiply-
ing the j t h equation of (2.9) by c ' m j ( t ) and summing up with respect to j , 

afterwards, integrating by parts with respect to the time variable from 0 to 
t, by (¿2), (-Fi), we have 

(2.41) S m ( t ) < - 2 H ( u m ( 0 , t)) + 2 H ( U O m ( 0 ) ) + Sm(0) + 2g(0)uOm(0) 

t 

- 2 g ( t ) u m ( 0 , t ) + 2 5 5 ' (s)« m (0 , s)ds 

0 
t 

- 2 \ ( f ( u m ( s ) , 0 ) , u ' m ( s ) ) d s 

0 
t s 

+ 2 \ u ' m ( 0 , s ) d s \k(s - T ) u m ( 0 , T ) d T , 

0 0 
where 

(2.42) 5 m ( i ) = |K(i)||2 + ||Um(i)||2v. 
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Then, using (2.11), (2.42), (Aj) and Lemma 1, we have 

(2.43) - 2 H ( u m ( 0 , t)) + 2ff(n0m(0)) + 5 m (0 ) + 2 | s(0)«om(0)| 

< \ c \ , for all m and t, 

O 
where C\ is a constant depending only on uo, u\,H, ho and g. 

Again using Lemma 1 and the inequality 
1 

(2.44) 

we obtain 

2ai> < ^ a 2 + 3b2, Va, b 6 R, 
o 

(2.45) - 2 g ( t ) u m ( 0 , t) + 2 \ g'(s)um(0, s)ds 

t 1 1 t 
< 3 g \ t ) + 3 J | f l ' ( S) | 2 ds + - S m ( t ) + - J S m ( s ) d s . 

0 0 
We still use Lemma 1, then from (Fs) it follows that 

t t 

(2.46) | - 2 \ ( f ( u m ( s ) , 0), t4(a))(fo| < 2B2(0) J S m ( s ) ^ / 2 d s 

o o 
t 

< (1 + /5)jB2(0) 5 S m ( s ) d s + (1 - ( 3 ) B 2 ( 0 ) t . 

o 
Note that the last integral in (2.41) gives after integrating by parts 

t s 

(2.47) I = 2 \ u'm(0, s)ds \ k(s - T ) u m ( 0 , r ) d r 

= 2um(0, t) \ k(t - T)um(0, r )dr - 2 J um(0, s)ds \ k'(s - r ) « m ( 0 , r ) d r . 

Hence 

(2.48) | / | < 2 ^ S j t ) j |k(t - t ) | y / S U ^ d r 

+ 2 \ y / S ^ ( s ) d s j | k ' ( s - r ) | 

0 0 
= h + h . 

The first term in the RHS. of (2.48) is estimated by means of the in-
equality (2.44) 
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1 t t 

(2.49) h < 3 S m ( t ) + 3 J k2{s)ds \ Sm(T)dr. 
0 0 

Similarly, the second term in the RHS. of (2.48) is estimated by means of 
the Cauchy-Schwarz inequality 

1 t t t 

(2.50) I2 < - J y/SJ^ds + 31 J \k'(s)\2 ds \ 5 m (r )dr . 
0 0 0 

Prom (2.48)-(2.50) we obtain 

(2.51) |J| < ^Sm(t)+U + 3\k2(s)ds + 3t\\k'(s)\2ds] \Sm(T)dr. 
\ 0 0 / 0 

It follows from (2.41), (2.43), (2.45)-(2.47) and (2.51) that 
t 

(2.52) Sm(t) < D\{t) + D2{t) J Sm(r)dT, 
o 

where 
t 

(2.53) D^t) = Cx + 3(1 - ¡3)B2(0)t + 9 g 2 { t ) + 9 \ |</(s)|2 ds, 
o 

t t 
(2.54) D2{t) = 2 + 3(1 + P)B2(0) + 9 \ k2(s)ds + 9i \ |fc'(s)|2 ds. 

0 0 
Since H1(0,T) ^ C°([0,T]), from the assumptions (,4i), (A3) we deduce 
that 

(2.55) \Di(t)\ < a.e. t 6 [0,T], (» = 1,2), 

where eft is a constant depending only on T. By Gronwall's lemma, we 

obtain from (2.52)-(2.55) t h a t 

(2.56) Sm(t) < CJP exp(iC^2)) < CT, Vt € [0, T], VT > 0. 

Now we need an estimation of the term ^ u'm(0, s)ds. Put 

(2.57) Km(t) = 
j=1 
m 

(2.58) 7m(t) = 
i = i 

.. _ sin(A,i) 
a m j cos(A jt) + /3mj- — 

A, 

j = l o " J " 
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Then um(0, t) can be rewritten as 

t 
(2.59) Um(0, t) = 7 r o(t) - 2 \ Km(t - T)Pm(r)dT. 

o 

We shall require the following lemma. 

LEMMA 3. There exist a constant Ci > 0 and a positive continuous function 
D(t) independent of m such that 

(2.60) \\im{r)\2dr 
0 

< C2 + D(t) J ||/(um(r), *4(r))||2 dr, Vt € [0,T], VT > 0. 
o 

The proof of Lemma 3 can be found in [2]. 

LEMMA 4 . There exist two positive constants Cj^ and C^ depending only 
on T such that 

t 
(2.61) \ds \K'm(s-r)Pvl(r)dT 

o 
t 

< <43) + <44) J ds J r)|2 dr, Vt e [0, T], VT > 0. 
t a 

0 0 

Proof . Integrating by parts, we have 

s t 

(2.62) j K'm{a ~ r)Pm(T)dr = Km(s)Pm(0) + J Km(s - r)P'm{r)dT, 
0 0 

then 

(2.63) \ds \K'm{s - r)Pm{r)dT 
o 

< 2Pl(0) | K2m(s)ds + 2 J ds J K2m(r)dr \ |P^(r)|2 dr 
0 0 0 0 

< 25Kl(s)ds[j* (0) + \ds\ Ip'm{r)I2dr . 

t 5 

0 0 
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Noticing from {2.10) we have 

Pm( 0) = 5(0) + H(u 0m(0)), 

(2'64) P'm{r) = g'(r) + H'(um{0, r ) ) ^ ( 0 , r) - J k'(r - s)um(0, s)ds. 
o 

Using the inequality (a + 6+c)2 < 3(a2 + b2 + c2), Va, b, c 6 R, we deduce 
from (2.56), (2.64), and (A4) that 

(2.65) j \P'm{r)\2 dr < 3 J \g'(r)\2 dr + 3 max |ii '(S) |2 J K , (0 , r) |2 dr 

-<vCt q 
s s 

+3« $|fc'(r)|2dr J ^ ( 0 , r ) d r . 

o o Q 

Hence, it follows from (2.63)-(2.65) that 

(2.66) \ ds \K'm(s-T)Pm(r)dr 
i 

<2\K2
m(s)ds [(g(0) + H(uOm(0))f 

t s 
¡2 | + 3t t \g'{T)\ dr + 3 max \H'(s)\2\ ds \ |*4(0, r) |2 dr 

3 4 

--t2\\k'(r)\2dr\ul(0,r)dr]. 
o o 

Noticing that for every T > 0 , K m —> K strongly in L2(0, T) as m —> 
+oo, and using the assumptions (j4i) — (Ai) and the results (2.11), (2.56) 
and (2.66) we obtain (2.61). The lemma 4 is proved completely. 

LEMMA 5. There exist two positive constants C^ and C^ depending only 
on T such that 

t 
(2.67) J 1*4(0, r ) | 2 d r < 4 5 ) , V t € [0,T], WT > 0, 

o 
t 

(2.68) J \P'm{r)\2 dr < Vi € [0,T], VT > 0. 
o 

P r o o f . Since (2.68) is consequence of (2.56) and (2.67), we only have to 
prove (2.67). 

From (2.59), using Lemma 3 and 4, we obtain 
t t t s 

(2.69) J |<4(0, s ) f d s < 2 \ Wm(s) |2 da + 8 J da\ J K'm{s - r)Pm(r)d7 
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t 

<2C2 + 2D(t)\\\f(uTn(r),u'm(r))\\dr 
o 

t 
+ 8<43) + 8<44) J ds J t ) I 2 dr. 

On the other hand, from (2.56) and the assumptions ( ) , (P3) we obtain 

(2.70) \\f(um(tUmm2 < 2 ma^.^(s)||u'm(i)||2« + 2B22(0)||Um(i)||2vf, 

since 0 < a < 1 we have ||-|| < ||-||i2a. Hence, using (2.56) and (2.70) we 
have 

(2-71) ||/(um ( i ) ,^(t ) )||<47 ) . 

At last, from (2.69) and (2.71) we obtain the inequality 
t t s 

(2.72) J \u'm(0, s)\2 ds < 4 8 ) + 8 4 4 ) J ds \ | < ( 0 , r) | 2 dr, 
0 0 0 

which implies (2.67), by Gronwall's lemma. 
Lemma 5 is proved completely. 
Step 3. Passing to limit. Prom (2.10), (2.42), (2.56), (2.67), (2.68), and 

(2.71), we deduce that, there exists a subsequence of sequence {«m,-Fm}, 
still denoted by {um, P m } , such that 

(2.73) um u in L°°(0, T\ V) weak*, 
(2.74) u'm -> v! in L°°(0, T; L2) weak*, 
(2.75) um(0,i) u(0, t) in L°°(0,T) weak*, 
(2.76) t) u'(0, t) in L2(0, T ) weak, 
(2.77) f(um, u'J - X in L°°(0, T; L2 ) weak*, 

(2.78) Pm P in i/^O.T) weak. 

By the compactness lemma of Lions ( see [8]), we can deduce from (2.56), 
(2.67), (2.73), and (2.74) that there exists a subsequence still denoted by 
{um} such that 

(2.79) um(0, t) u(0, t) strongly in C°([0, T]), 

(2.80) um —• u strongly in L2(QT) and a.e.(a;.i) in QT-

Since H is continuous, from (2.10), (2.79) we have 
t 

(2.81) Pm{t) - f g(t) + H(u{0,«)) -\k(t- s)u{0,s)ds = P(t) 
0 

strongly in C°([0,T]). 
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Prom (2.78) and (2.81) we have 

(2.82) P = P a.e. in QT. 

Passing to the limit in (2.9) by (2.73), (2.74), (2.77), (2.81), and (2.82) we 
have 

(2.83) ^ ( " ' ( i ) , " ) + a(u(t),v) + P(t)v(0) + (x(t),v) = 0, to G V. 

We can prove in a similar manner as in [10] that 

(2.84) u(0) = uo, «'(0) = ux. 

Then, in order to prove the existence of solution of the problem (1.1)—(1.5), 
we only have to prove that x = f(u>u ' ) - We shall now require the following 
lemma. 

LEMMA 6 . Let u be the solution of the following problem 

(2.85) utt - uxx + X = 0, 0 < x < 1,0 < t < T, 
(2.86) tix(0,i) = P(t), it(l, t) = 0, 
(2.87) U(x, 0) = UQ(X), Ut(x, 0) = UI(x), 

(2.88) u € L°°(0, T; V),u' e L°°(0,T;L2), and u'(0,t) € L2(0,T). 

Then we have 

(2.89) ^ | K ( i ) | | 2 + l\Ht)fv+ \p(s)U'(0,s)ds+ \(x(s),u'(s))ds 
0 0 

> ^ l l u i | | 2 + ^ I M I v a.e. t e [0,T]. 

Furthermore, if uo = u\ — 0 there is equality in (2.89). 

The proof of Lemma 6 can be found in [2]. 
Now, from (2.9)-(2.11) we have 

4 1 1 
(2.90) \(f(um(s),u'm(s)),u'm(s))ds = - ||Ulm||2 + - |Km||v 

- \ lltCWII2 - \ ll«m(t)||J - \Pm(s)u'Tn(0,s)ds. 

By Lemma 6, it follows from (2.11), (2.73), (2.74), (2.76), (2.81), and 
(2.90), that 
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t 

(2.91) l i m s u p \ ( f ( u m ( s ) , u'm(s)), u'm(s))ds 
m—>+oo Q 

< I h i l l 2 + I I K f y - \ \\u'(t)\\2 - I IHi)llv - \P(s)u'(0,s)ds 

0 
t 

<\(x(s),u'(s))ds, a.e. t 6 [0,T]. 
o 

By using the same arguments as in [10] we can show that x = f ( u , u ' ) 
a.e. in Qt• The existence of the solution is proved. 

Step 4• Uniqueness of the solution. Assume now that /? = 1 in (F3) and H 

satisfying (A5). Let (1x1, Pi) , (1x2, P2) be two weak solutions of the problem 
(1.1)-(1.5). Then u = ui — u2, P = Pi — P2 satisfy the following problem 

u" - uxx + X = 0 ,0 < x < 1 ,0 < t < T, 

ux(0,t) = P ( i ) , u ( l , f ) = 0, 
ti(x,0) = u'(x,0) = 0 , 

X = f(ui,u[) - f(u2,u'2), 

P(t) = P1(t)-P2(t) 

= H(ui(0,t)) - H(U2(0,T)) -\K(T- s)u(0,s)ds, 

0 
m € L ° ° ( 0 , T ; F ) , « : € L ° ° ( 0 , T ; L 2 ) , ^ ( 0 , i ) <E L 2 (0 ,T) , 

PI EII^T), I = 1,2. 

By using Lemma 6 with uq = u\ = 0, we obtain 

(2.92) I ||U'(i)||2 + \ ||u(t)||Jr + \P(s)u'(0,s)dS 

t 

+ \(X(s), u'(s))ds = 0 a . e . t G [0, T ] , 

0 

Put 

( 2 Q 3 ) a ( i ) = |K(i)||2 + |Ki)llv, 
H1(t) = H(u1(0,t))-H(u2(0,t)). 

Substituting P(t ) , x into (2.92) and noticing that the function / is non-
decreasing with respect to the second variable, we have 
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t 

(2.94) a(t) + 2\H1(s) u'{ 0, s)ds 
o 

t 
< 2 5II f (ui(s) ,u' 2(s)) - / M * ) , <400)11 ||«'(s)||da 

o 
t s 

+ 2 J u'(0, s)ds \ k(s - r)u{0, r)dr. 
0 0 

Using the assumption (F3), we have 

(2.95) | | / K ( S ) , ^ ( S ) ) - / ( U 2 ( 5 ) , U ' 2 ( S ) ) | | < l l f laiKWDIIIIt iWIIv 

Using integration by parts in the last integral of (2.94), we get 

(2.96) J = 2 \ u'(0, s)ds \ k{s - r)u{0, r)dr 
0 0 

t t s 

= 2it(0, t) \ k(t - r)u(0, r)dr - 2 J u(0, s)ds \k'(s- r)u( 0, r)dr. 

It follows from (2.93) and (2.96) that 

1/2 f \ a / 2 
(2.97) \J\ < 2V/^i)(Sfc2(r)dr) ($<7(r)dr) 

0 0 

+ 2>/t( j |fc'(r)|2 dr j V 2 J a(r)dr 
0 0 

1 t t 
< Pia(t) + — J fc2(r)dr J a(r)dr 

0 0 

+ 2\/iQ |fc'(r)|2 drj J a(r)dr, V/?i > 0. 
0 0 

Put 

(2.98) M = max||tii||Loo(0 r v ) ,mi = m i n H ' ( s ) , m 2 = max \H"(s)\. 

Prom the assumption (As) we have m 1 > —1. 
On the other hand, by using integration by parts and (2.98) it follows 

that 
t t 1 , 

(2.99) 2 \Hi(s)u'(0,s)ds = 2 \ [ \ — H(u2(0, s) + 0u(O, s))<w]«'(0, s)ds 
0 0 0 
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1 
= u2{0, t) \ H'(u2(0, s) + 0u{0, s))d,0 

o 
t l 

- j ti2(0, s)ds \ H"(U2(0, s) + 9u(0, s))(u2(0, s) + 6u'(0, s))d0 
0 0 

t 
> miu2(0,t) - m2\u2(0, s) ( K ( 0 , s)| + |u2(0, s)\)ds 

o 
t 

> miu2(0, t)-m2\ a(s) ( K (0, s)| + s)|) ds. 
o 

Prom (2.94)-(2.96), and (2.99), we obtain 

t 
(2.100) a{t) + m ^ O , t) < m2 \ a(s) (|«i (0, s)| + |tt2(0, s)\) ds 

o 

+ i 11̂ 2 ( K 001) II a(s)ds + \J\ = T](t). 
o 

Noticing from (2.98) we have 

(2.101) (1 + mi)u2(0, t) < a(t) + mlu2{0, t) < r]{t). 

It follows from (2.97), (2.100) and (2.101) that 

(2.102) a(t) + [ m i + /J2(l + mi)]u2(0, t) < (1 + /?2)r?(i) 
t 

< (1 + ft) S [m2 (|«i(0, S)I + |u2(0,5)1) + ||B2(l4(s)l)ll] °(s)ds 
o 

+ (1 + /32)/31<t (t) 

+ (1 + ft) ( j - J k2{r)dr + 2Vi ( \ \k'(r)f dr) ^ j <r(s)ds, 

Vft > 0,Vft > 0. 

Choosing ft > 0, ft > 0 such that mi + ft(l + mi) > 1/2, (1 + ft)ft <1/2 
and denote 

(2.103) R ^ s ) = 2(1 + ft) [m2 (|«i(0, s)| + |u'2(0, s)|) + ||B2(K(s)|)|| 

+ ^ P H 2 L 2 ( 0 , T ) + 2v/T||fe'||L2(0iT) 
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Then from (2.102) and (2.103) we have 
t 

(2.104) a(t) + u2(0,t) < \R1(s)[cr(s) + u2(0,s)}ds. 
o 

i.e. a(t) + u2(0,t) = 0 by Gronwall's lemma. 
The Theorem 1 is proved completely. • 

REMARK 2 . The condition fc(0) = 0 in (A3) is technical, it can be omitted. 
In the special case of H with H(s) = hs,h> 0, the following theorem is 

the consequence of Theorem 1. 

THEOREM 2. Let ( A i ) - ( A 3 ) and ( F i ) - ( F 3 ) hold. Then, for every T > 0 , the 
problem ( 1 . 1 ) - ( 1 . 5 ) has at least a weak solution (u,P) satisfying ( 2 . 4 ) , ( 2 . 5 ) . 

Furthermore, if f3 = 1 in (F3) and the function B2 satisfies (F4), then 
this solution is unique. 

Theorem 2 gives same result in [10] but the assumption: " Bi is nonde-
creasing" used in [10] is not needed here. 

In the special case with k(t) = 0, the following result is the consequence 
of Theorem 1. 

THEOREM 3. Let (Ai), (A2), (A4) and (Fi)-(F3) hold. Then, for every 
T > 0, the problem (1.1)—(1.4) corresponding to P = g has at least a weak 
solution u satisfying (2.4). 

Furthermore, if (3 — 1 in (F3) and if the functions H and B2 satisfy the 
assumptions (A$) and (F4), respectively, then this solution is unique. 

REMARK 3. Same as the remark 2, Theorem 3 also gives same result in [7] 
but the assumption: " B\ is nondecreasing" used in [7] is not needed here. 

3. Stability of the solutions 
In this part, we assume that f3 = 1 in (F3) and the functions H, B2 

satisfying (A5), (F4), respectively. By Theorem 1 the problem (1.1)—(1.5) 
has a unique solution (u, P) depending on g, k, H. 

(3.1) u = u(g, k, H), P = P(g, k, H), 

where g,k,H satisfy the assumptions (A2) (A5) and uo,u\,f are fixed 
functions satisfying (Ai), (F i ) - (F4) . We put 

X 

3(/io, H0) — {H € C2{R) : H(0) = 0, \ H(s)ds > -h0,Vx G R, 
0 

H\s) > —1, Vs € R, 
sup (\H(s)\ + |ff'(s)|) < H0(M), VM > 0}, 

|s|<M 
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where ho > 0 is given constant and Ho : R+ —> R+ is given function. 
Then we have the following theorem. 

THEOREM 4. Let ¡3 = 1 and (A\), (FI)-(F4) hold. Then, for every 
T > 0, solutions of the problems (1.1) —(1.5) are stable with respect to the 
data g, k, H, i.e., 

If (g, k, H), ( g j ^ H j ) G H ^ T ) x H\0,T) x ^(h0,H0), k(0) = 
kj (0) = 0, such that 

(3.2) ( f f j , k j , H j ) - (g,k,H) inH\<d,T) x H\^T) x C\[-M,M}) 

strongly, as j —> +oo, for all M > 0. 
Then 

(uj,u'j, Uj(0, t), Pj) —• (u, u', u(0, i), P) in 
(3.3) L°°(0,T-,V) x L°°(0,T;L2) x G°([0,T]) x C°([0,T]) 

strongly, as j —> +oo, /or all M, 

w/iere Uj = i t^- , k]} Hj), Pj = P(gj, kj, Hj). 

P r o o f . First, we note that, if the data (g ,H,K) satisfy 
(3-4) IMI„i(o,t) ^ Go, ||fc|lHi(o,r) <Ko,He Z(h0,H0), 

then, the a priori estimates of the sequences {um} and {Pm} in the proof of 
the theorem 1 satisfy 

(3.5) ||<4(i)H2 + ll«m(i)llv < C h V i € [0,T],VT > 0, 

t 
(3.6) \\u'm(0,s)\2ds<C^\/te[0,T],\/T>0, 

o 

t 
(3.7) j \ P M f d s < Vt e [0,T],VT > 0, 

o 
where CT is a constant depending only on T, iio, ui, / , Go, i^oj ^o (inde-
pendent of fc, i i ) . 

Hence, the limit (u, P) in suitable function spaces of the sequence 
{(um,Pm)} is defined by (2.9)—(2.11), which is a solution of the problem 
(1.1)—(1.5) satisfying the a priori estimates (3.5)-(3.7). 

Now, by (3.2) we can assume that, there exist constants Go > 0, KQ > 0 
such that the data ( g j , k j , H j ) satisfy (3.4) with ( g , k , H ) = (g0, kj, Hj). 
Then, by the above remark, we have that the solutions (Uj,Pj) of problem 
(1.1)—(1.5) corresponding to ( g , k , H ) = ( g j , k j , H j ) satisfy 

(3.8) |m( i ) | | 2 + \\uj(t)FV < C2T,Vt € [0,T],VT > 0, 
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t 

(3.9) \ m(0 , s ) | 2 ds < C^.Vi € [0,T],VT > 0, 
0 
t 

(3.10) \ \P-{s)\2ds < C£,Vt € [0,T],VT > 0. 

Put 

(3.11) gj = gj - g, kj = kj - k, Hj = Hj - H. 

Then, vj = Uj —u and Qj — Pj — P satisfy the following problem 

(3.12) < 
v'J - v j x x + X j = 0 , 0 < x < 1 , 0 < t < T , 

vjx(0 ,t) = Qj(t), Vj(l,t) = 0 , 

Vj(x,0) = v'j(x,0) = 0 , 

Xj = f{uj,u'j) - f(u,u'), 

t 

(3.13) Qj(t) = gj(t) + H(uj(0,t)) - ff(u(0,t)) - \ k(t - s)vj(0,s)ds, 

o 
t 

(3.14) gj (t) = gj (t) + Hj (Uj (0, t)) - j kj (t - s)Uj (0, s)ds. 

o 

By Lemma 6 with uo = tti = 0, x = Xj> P = Qj w e have 

t t (3.15) |K(*) | |2+ IMOIIy + 2 \ Q j ( s ) v ' j ( 0 , s ) ) d s + 2\{Xj(s),v'j(s))ds = 

0 0 

Let 

(3.16) Sj(t) = \\v'j(t)\\2 + \\vj(t)fv + v}(0 ,t), 

(3.17) m i = min tf'(s) > - 1 , m2 = max |#"(s)| . 

|s|<CT M<Ct 

Then, we can prove the following inequality in a similar manner 

(3.18) |K( t ) | | 2 + I M O f y + m i ^ M 
t < ¡1152(1^(5)1)115,(5)^ + 2 ^ ( 0 
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t 
+ m2 \ (|u'(0, s)I + |U;.(0, s)|) Sj^ds 

+ 1 + 7 \\k\\2mo,T) + T\W\\2
l2(0^ j s ^ d * = 

for all s > 0 and t € [0,T]. 

We remark that Vj(0,t) < | |vj(i)||y , consequently 

(3.19) (1 + mi)vj(0, t) < \ W i i t ) f + 1^(1)111 +miv](0,t) < ^ ( i ) . 

Multiplying two members of (3.19) by a number S > 0 and adding to 
(3.18), we have 

(3.20) ||t/<(t)||2 + ll«i(i)llv + [(1 + m i ) A + m 1 ] V ? ( 0 > t ) 

^ ( O + V g W + S K M l 2 * <(l + S)Vj(t)<(l + 5) 

t 
+ J rj(e,T, s)Sj(s)ds, for all e > 0,6 > 0 and t <£ [0,T], 

0 
where 

(3.21) rj(e,T,s) = 1 + £+ I ||fc||2L2(0,T) +T | | fc' | |2
L 2 ( 0 ) r ) + ||£2(K(S 

+ m2 ( |u'(0 ls)| + |u;.(0,a)|). 

Choosing <5 > 0 and £ > 0 such that (1 + mi)5 + mi > 1,2e(l + 5) < 1/2. 
Noting that H^O,T) ^ C°([0,T), we have from (3.20) that 

1 t 

(3.22) Sj(t) < 2(1 + +- 2(1 + <5) J T, S)S,(S)dS , 
£ o 

where C^ is a constant depending only on T. 
By Gronwall's lemma, we obtain from (3.22) that 

(3.23) 
1 T 

Sj(t) < 2(1 + T) e x P ( 2 ( ! + 6) S rj(e,T,s)ds),^t € [0,T\. 
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On the other hand, we obtain from (3.9), (3 .13) , and (3.21) that 

(3 .24) S ^ t ) < C<?> ||S, ||2H1(0>T) ,Vt € [0 ,T] , 

/ / * \ 1 / 2 

(3 .25) |Q,.(t)| < fo^^max \H'(s)\^(t)+||fc||La(0iT) ^ S ^ d s j . 

We again use the embedding / ^ ( O , T) C ° ( [ 0 , T ] ) . Then, it follows 
from (3 .24) and (3 .25) that 

(3-26) WQj llc°([0,T]) - Cp \\9j\\2Hi(0tT) • 

As a final step, we only prove 

(3.27) ^ i m J | y J 2 H 1 ( 0 = 0. 

Indeed, from (3 .14) combined with (3.9) , we deduce the following inequality 

(3 .28) ||ftj|lni(o,r) 

^ ll&lltfi(o,T) +TCT\\kj\\HHo,T) + y T + C^\\Hj\\c^[-cT ,cT])-

The Theorem 4 is proved completely. • 
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