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FOURIER ANALYSIS ON LOCALLY CONVEX SPACES 
OF DISTRIBUTIONS, II 

Abstract. This is the second in a series of papers, extending the theory of Fourier 
analysis to locally convex spaces of distributions (LCD-spaces). In this paper, LCD-spaces 
admitting conjugation and multiplier operators on LCD-spaces are discussed. It is also 
shown that if E is an LCD-space having C°° as a dense subset, then E*, endowed with 
the topology of precompact convergence, is an LCD-space having C°° as a dense subset. 

1. Introduction 
We continue in this paper extending the results of Fourier analysis to 

locally convex spaces of distributions (LCD-spaces) defined in [6]. 
In Section 3, we show that if ( E , 2 ) is an LCD-space having C°° as a 

dense subset, then (E* , I ° ) is also an LCD-space where 1° is the topology 
of precompact convergence on E*; further, for each / in E and each F in 
E*, anf -+fmE and anF -» F in (E*,I°) as n -> oo. 

In Section 4, we give a necessary and sufficient condition for an LCD-
space to admit conjugation. In Section 5, we give several representation 
theorems for multiplier operators. 

2. Definitions and notations 
All the notations and conventions used in [6] will be continued in this 

paper. In particular, T will denote the circle group and D will denote the 
space of all distributions on T. For the convenience of the reader, we repeat 
the following definitions given in [6]. 

2.1. DEFINITION . A locally convex space E is called an LCD-space if it can 
be continuously embedded into D (D having the weak* topology), and if, 
regarded as a subset of £), it satisfies the following properties: 

(2.1) C°° C E and the inclusion map is continuous; 
(2.2) E is translation invariant and {Tx | x € T}, the family of all trans-

lation operators on E, is equicontinuous on E; 
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(2.3) / —• /v is a continuous operator on E, where /v(u) = f(uv) for 
every u in C°° and uv(t) = u( - t ) for all t in T. 

2 . 2 . DEFINITION. An LCD-space E is said to be homogeneous if x —> Txf 
is continuous from T to E for each / € E. 

3. Homogeneous LCD-spaces and their duals 
In this section we show that if (E, I) is a homogeneous LCD-space, 

then (E',2°) is also a homogeneous LCD-space, where (E',2° ) denotes the 
space E' with the relative topology induced by 1°, and Z° is the topology 
of precompact convergence on E* (see [7, p. 179]). If C°° is dense in E, 
then E' = E* by Theorem 5.4 of [6]; in this case, we show that (E',I°) = 
(E*,I°) also has C°° as a dense subset. 

3.1. LEMMA. If E is a homogeneous LCD-space and K is a totally bounded 
set in E, then [J{TaK \ a 6 T } is totally bounded in E. 

Proof . Let V be a neighborhood of 0 in E; choose another neighborhood 
of 0, say W, such that 

(3.1) W + W C V. 

Since {T a \ a € T } is an equicontinuous family, there exists a neighborhood 
U of 0 in E such that 

(3.2) Ta(U) CW Va G T. 

Since K is totally bounded, there exist / i , . . . , fa,..., fn in K such that 

n 

(3.3) K c { j ( f i + U). 
¿=1 

Since E is homogeneous, there exists S > 0 such that, for each / in E, 

(3.4) Taf — Tbf € W whenever \a - b| < 5. 

Let {ci!,a2, . . . ,am} be a ¿-net in T. Then, by (3.3), we get 

n m 
\J{TaK | a e T } C |J ( J |J (Tafi + TaU). 

¿=1 j = l |a—â |<<5 
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Using (3.1), (3.2) and (3.4), we obtain 
71 771 

\J{TaK\aeT}c I J U | J (TJi + W) 
i—l j=l Ia—aj\<6 

71 771 

<= UU (Taji + W + W) 
t=l j=1 

71 771 

c U U ( T « / - + y ) 
i = l J = 1 

Hence \J{TaK \ a £ T } is a totally bounded set in E. • 

3 . 2 . THEOREM. If{E,X) is a homogeneous LCD-space, then (E',X°) is also 
a homogeneous LCD-space. 

P r o o f . Since E is an LCD-space, the inclusion map i : C°° —> E is con-
tinuous. Consider i' : E* D defined by, 

i'(F){u) = F{u) for all u in C ° ° and all F in E*. 

Then i' is the operator dual to the map i, so by [7, 11-1-6], i' is contin-
uous from (E*,a(E*,E)) to (D,<7(D,C°°)), and hence, from (E', 1 ° ) to 
(D, a(D, C°°)) . Also, as shown in the proof of Theorem 5.3 of [6], i' is one 
to one. Thus ( E ' , 2 ° ) is continuously embedded into D. Moreover, (E',l°) 
satisfies (2.1) because of Lemma 2.4 in [6] and the fact that C°° C E' and 
1 ° C (3(E*,E). Now, let 

T = {Ta | Ta : {E\2°) a € T } . 

Note that Ta on E* is the operator dual to the operator T _ a on E. Let U 
be a neighborhood of 0 in (E*,I°). Then there exists a totally bounded set 
B in E such that U D B°, where B° denotes the polar of B. Using 9.9.3(a) 
and 9.3.7(a) of [2], we obtain 

n izhu) => n b ° ) = n = [ u 
ae T a£T a£T a€T 

But UaeT T-a(B) is totally bounded by Lemma 3.1, which entails that 
P l a g T T ~ 1 ( ? 7 ) is a neighborhood of 0 in (E*,2°).Therefore T is an equicon-
tinuous family of operators on ( E * , l ° ) and hence on (E',l°) as Ta(E' C E' 
for each a in T . Thus (E', 1°) satisfies (2.2) of the definition of an LCD-
space. 

Now, for F eE*, define F v by 

^ V ( / ) = ^ ( / V ) for all f E E. 
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If we set L ( f ) = / v and L*(F) = F v for / in E and F in E*, then the 
map L* is dual to the map L. Hence, by [7, 11-1-6], L* is continuous from 
(E*,weak*) to (E*,weak*). Let U and B be as before. L is a continuous 
linear operator on E, so by [7, 6-4-3], L(B) is totally bounded. Hence [L(B)}° 
is a neighborhood of 0 in (E*,I°) . Now, 

He[L(B)]°=>\H(Lf) | < 1 V / e B 
=>\H*{f)\<l V / 6 J 5 
=> L*H eB° cU. 

So L* is continuous from {E*,2°) to (E*,J°). Since L*(E') C E', L* will 
also be continuous from (E ' , I ° ) to (E ' , l ° ) . Thus (E ' , I ° ) satisfies also 
(2.3), and hence, ( E ' , I ° ) is an LCD-space. 

Now we shall show that (E1,1°) is homogeneous. Let F € E*. Define 
: T E* by if>(t) = TtF Vt 6 T. 
Let U and B be as before. Now V = {F}° is a neighborhood of 0 in 

(E,a(E, E*)) and hence in (E, T). There exists a neighborhood V\ of 0 in 
(E,l) such that V\ + V\ + Vx c V. Since {Tt \ t G T} is an equicontinuous 
family, there exists a neighborhood W of 0 in (E,l) such that 

/ eW =>Ttf eVx Vt € T. 
We may suppose that W dV\. Since B is totally bounded, there exists a 
finite set A = {/i , / 2 , . . . , f n j C E such that 

BcA + W. 
As E is homogeneous, there exists S > 0 such that 

1 1 \ < 5 ^ fi-TtfiEW for i = l , 2 , . . . , n . 
Using the above relations, we can claim that, for |£| < <5, 

f€B=>f = fi + w for some fi € A and some w € W 
=> / - Ttf = fi - Ttfi + w - Ttw 6 W + W + V! C V 
=>\(F-T_tF)(f)\ = \ F ( f - T t f ) \ < l . 

Therefore (F - T-tF) € B° c U for |i| < 6] i.e., V is continuous on T. 
Hence (E*,I° ) is homogeneous. Since E' is translation invariant, (E' ,2° ) 
is homogeneous as well. • 

The following theorem generalizes Theorem 3.2 of [4]. 

3.3. THEOREM. Let (E,X) be a homogeneous LCD-space. For f in E, F in 
E* and t € T, define 

U(f,F)(t) = F(Ttfv). 
Then, 
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(i) / —> U(f,F) is a continuous operator from E to C for each F € E*. 

(ii) F —> U(f,F) is a continuous operator from (E*,X°) to C for each 

f € E. 

Further, if C°° is dense in E, U(f, F) = F * f for each f € E and 

F e E*. 

P roo f , (i) U(f,F) is in C as E is homogeneous, F € E* and / —> / v is 
continuos on E. Fix F € E* and define 

H t ( f ) = F(Ttfv) for i G T and f € E. 

Since {Tt \ t 6 T } is an equicontinuous family of operators on E, {Ht \ 

t € T } is also equicontinuous on E. By [2, 9.5.3], there exists a continuous 
seminorm pF on E such that 

\F(Ttfv)\ < pF(f) for all t £ T and all / <E E, 

that is, 

(3.5) H t / l f ^ l U ^ C f ) for a l l/ in E. 

Hence, /—•£/(/, F) is a continuous operator from E to C for each F in 
E*. 

(ii) Fix / in E. Since E is a homogeneous LCD-space, the set Aj = 

{Ttfv | t e T } is totally bounded by 3.1. Hence the polar A°f of Af is a 
neighborhood of 0 in (E* ,J° ) . 

Now, for 0 < e' < e, 
F E e'A® => |F(Tt/v)| <e'<e V i e T 

= H | E / ( / , F ) | | o o < e . 

Hence, F —> U(f,F) is a continuous operator from (E*,2°) to C. 

Now suppose C°° is dense in E. Then, by Theorem 2.5 of [6], 
(E*,P(E*, E)) is an LCD-space. Let f eE and F eE*. Find {u n } C C°° 

such that un —> / in E as n —» oo. Then, by (i), F*un = U(un, F) —> U(f, F) 

as n —> oo. But F*un^F*fasn—>oo. Hence U(f, F) — F * /. • 

3.4. THEOREM. Let (E,X) be an LCD-space having C°° as a dense subset. 
Then (E*,X°) is a homogeneous LCD-space having C°° as a dense subset. 
Moreover, for each F in E*, anF —• F in (E*,2°) as n —» oo; and, for each 
f in E, anf —> / in E as n —> oo. 

P r o o f . Since C°° is dense in E,E' = E* by Theorem 5.4 of [6]. Hence 
(E*,l°) is a homogeneous LCD-space by Theorem 3.2. 

Fix F eE*. By Theorem 3.3, f —> F* f is continuous from E to C. So, 
in view of (2.3), there exists a neighborhood W of 0 in E such that 

(3.6) x e W \\F * uv||oo < 1/5 |anF(u)| < 1/5 

for every nonnegative integer n. 
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Let U be a neighborhood of 0 in (E*,I°) and B be a totally bounded set 
in E such that B° c U. There exists a finite set A = {/i , h, - • •, fk} C E 
such that 

B c A + W. 
For 1 < i < k, there exists gi € C°° such that 

(3.7) f i - 9 i € W . 

Now, for 1 < i < k, 

gi<Ec°° =» angi -» g> as n -> oo. 
So, there exists N such that 

(3.8) n>N=>gi- angi eW for 1 < i < k. 
Now, 

f e B f = fi + u for some fo € A and some u € W 

f ~ &nf = fi ~ 9i + gi ~ crngi + angi - crnfi + u- anu. 
Therefore, for f € B and n> N, we obtain 

IF(f - anf)\ < \F(fi - 9i)\ + |F9i - an9i)\ + |<rnF{fi ~ 5i)l 
+ |F(u)| + | a n F ( u ) | < l 

using (3.6) to (3.8). Hence crnF - F € B° C U for each n> N. Therefore 
anF F in (E*,I°) as n oo, and hence C°° is dense in (E*,X°). 
Applying this result to (E* , I ° ) in place of (E ,1 ) we obtain that, for each 
/ in (E*,I°)*, anf -» / in ((E*,1°)*,1°') as n ^ oo, where I0* is the 
topology of precompact convergence on (E*,l°)*. Now (E*,2°)* D E and 
the restriction of X°• on E is I 0 0 , moreover, (see [7, 12-1-10]). 
Therefore, for each / in E, anf —> / in J5 as n —> oo. • 

4. LCD-spaces admitting conjugation 
Let / be in L1, 0 < e < ir, and 

(4.1) / . (x) = \ / ( ' + » ) - / ( ' - » ) d u . v ' J K ' ?r J 2 tan u/2 
£ 

Then 
(4.2) lim f£(x) = f(x) (say) 

exists for almost every x [9,Vol. I; Theorem 1.4, p. 252]. Also the series S[f], 
conjugate to the Fourier series S[f] of / , is (C, l)-summable to sum f(x) 
almost everywhere [9, Vol. I; Theorem 1.5, p. 253]. So if / € L1, the series 
S[f] is the Fourier series of f [1, Vol. I, 6.1.3, p. 88]. 
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When / is in L1 , a necessary and sufficient condition for / to be in L1 is 
given in [8] and in [9, Vol. I; Exercise 5(b), p. 180], which states as follows. 

4.1. If f € L1, then / € L1 if and only if f£(x) tends to a limit in L1 as 

A similar result for a continuous function is also known [9, Vol. I; Exer-
cise 5(a), p. 180], which is as follows. 

4.2. Let / be a continuous and periodic function. Then a necessary and 
sufficient condition for / to be (equivalent to) a continuous function is that 
f£(x) converges uniformly (in x) as e —> 0+. 

If / is continuous at every point in [—7r, 7r], then, by (4.2) and the above 
result, 

(4.3) lim fe(x) = f(x) for every x. 

These results are generalized to homogeneous BD- spaces in [5] and to ho-
mogeneous FD- spaces in [3]. 

4.3. If / is a distribution, then its conjugate distribution, denoted by / , is 
defined ([1, Vol. II; p. 91]) as 

f = H * f , 

where the distribution H is given by 

H -¿(sgnn)e„. 
neZ 

It is easy to see that the series conjugate to the Fourier series of a distri-
bution / is the Fourier series of its conjugate distribution / . If, for 0 < e < 7r, 
He is defined on T as follows 

He{x) = cotz/2 for e <\x\ <TT 
= 0 for 0 < |x| < e, 

then H£ € B (the class of all complex valued bounded Borel functions on 
T); and, for / e C, 

He*f(x) = fe(x). 

If / , / e C, then, by 4.2, 

(4.4) fe -» f in C as e 0+. 

Also, by [1, Vol.11, (12.8.4), p. 92], 

H(u) = lim He{u) Vu € C°°. 
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That is, 

(4.5) He^H in (D, a(D, C°°)) as e -» 0+. 

4.4. DEFINITION. An LCD-space E is said to admit conjugation if f € E 
for every / in E. 

4.5. THEOREM. Let E be a barrelled homogenous LCD-space having the 
convex compactness property. Then E admits conjugation if and only i f , for 
every f in E, 

converges in E as e —> 0 + . 

P r o o f . Necessary part: Suppose E admits conjugation. Fix / in E and take 
H£ as defined in 4.3. 

Since E is homogeneous having the convex compactness property and 
He e M, then He * / € E by Theorem 3.4 of [6]. Moreover, by (3.1) of [6], 

He*f = l-\He{t)Ttfdt 
2tr 

= 1 7 T t f - T - t f 
7T ] 2 tani /2 

= fe. 

Define U£f = He * / and Uf = f . Let F be in E*. Since E is a barrelled 
homogeneous LCD-space having the convex compactness property, C°° is 
dense in E by Theorem 3.2 of [6]. Moreover, since / € E, F * ( / ) v G C by 
Theorem 2.6 of [6]. Now 

(F * /)~ = F * ( f ) ~ = -F * ( / ) v e C. 

Hence, by (4.3), 

= - lirn F(He * / ) . 
e—>0+ 

Thus, 

lim F(H, * / ) = —(F * /)~(0) = (F * (/)v)(0) = F ( f ) . 
£-•0+ 
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Hence, 

(4.7) UEf Uf weakly in E as e -* 0+. 

Fix F € E*. Given 77 > 0, there exists £0 such that 

\F(Uef) — F(Uf)\ < 77 for 0 < £ < £ ( , • 

So, 
\F(Uef)\ < \F(Uf) \ + 7? f o r 0 < e < £ 0 . 

For e > £0, 
\F{Uef)\ = \ F { H e * f ) \ < p ( H e * f ) 

for some continuous seminorm p on E. But, 

p ( H e * f ) = p ( ± \ T t f H e ( t ) d ? ) 

< ± . \ p ( T t f ) \ H e ( t ) \ d t . 

Since {Tt | t 6 T } is an equicontinuous family of operators on E, there 
exists a continuous seminorm q on E (see [2, 9.5.3]) such that 

p ( T t f ) < q ( f ) Vi € T . 

Therefore, for £ > £0, 

i m / ) l < v(f)\\He\\i < g(/)cot(eo/2). 
Hence the set {UEf \ 0 < e < 7r} is weakly bounded in E for each / in E\ 
and, since E is barrelled, {U£ \ 0 < e < 7r} is an equicontinuous set by [7, 
9-3-4]. Since U is linear and (4.7) holds, U is continuous by [7, Lemma 9-3-6, 
p. 137] and, therefore, is bounded. 

Let denote the m-th derivative of a trigonometric polynomial t. 
Then (£(m)) € C for every nonnegative integer m. Therefore, by 4.2, 

U e t ^ -» U t ^ in C, 

for every m. Hence 

(4.8) U£t Ut in C°°, and hence, in E as £ 0+. 

Let W be a neighborhood of 0 in E and W' be another neighborhood of 0 
such that W' + W' + W C W. Since U is continuous and {Uef \ 0 < £ < 7r} 
is equicontinuous, there exists an absolutely convex neighborhood V of 0 
such that UV C W' and UEV C W' for 0 < £ < tt. 

For / 6 E, we can find t e C°° (as C°° is dense in E) such that t € f+V. 
Now, in view of (4.8), 

U£f - U f = U£(f - t ) + UEt - U t + U ( t - / ) eW' + W' + W' CW 
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for sufficiently small e > 0. So, for each / in E, 
U J ^ U f as e —> 0 + . 

Sufficient part: Suppose / G E and lime_o+ / £ exists in E. We shall 
prove that f£ —• / in E as e —» 0+ . 

Let f£ —> g in E as e —> 0+ . This implies that fE —> g in D as e —» 0+ . 
Therefore, for every k £ Z, 

g{k)= lim (HE*f)A(k) £->0+ 

= lim He(k)f(k) e-»0+ 

= H(k)f(k) 
using (4.5). Therefore, g = H*f = / is in E. Hence E admits conjugation. • 

In the above proof we have also shown that the operator U is continuous. 
Hence the following is also true. 

4.6. COROLLARY. If E is a barrelled homogeneous LCD-space having the 
convex compactness property and E admits conjugation, then the mapping 
f —> / is a continuous linear operator on E. 

5. Multiplier operators 
Throughout this section it will be assumed that each of F and G is an 

LCD-space. 
Multiplier functions <p of type (F, G) and associated multiplier operators 

Uv are defined in [1, Vol. II, p. 279]. TG will denote the set of transforms 
g of elements g of G. 

Theorem 16.2.1 of [1, Vol. II; p. 281] can be generalized to the form posed 
below by noting the fact that any sequentially closed linear map from an 
ultrabornological space to a webbed space is continuous (see [2, p. 325]). 

5 . 1 . LEMMA. Let F and G be LCD-spaces and <p a multiplier of type ( F , G ) ; 
let Uv be the associated multiplier operator. Then, (a) Uv is linear, (b) Uv 
commutes with translations, (c) commutes with convolution by trigono-
metric polynomials and (d) U,v is continuous whenever F is ultrabornological 
and G is webbed. 

The proof of the following lemma is exactly the same as that one given 
for 16.2.3(1) in [1, Vol. II]. 
5 . 2 . LEMMA. If U is a linear operator mapping F into G (F and G are 
LCD-spaces) such that 
(5.1) U(t*f) = t* Uf 
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for each trigonometric polynomial t and each f G F, then there exists a 
function ip G (F, G) such that 
(5.2) Uf = Uvf for all f € F. 
5 . 3 . DEFINITIONS. By an m-operator of type (F, G) we shall mean a linear 
operator U from F to G, which satisfies the equation (5.1) for each trigono-
metric polynomial t and each / € F. By m(F, G) we shall denote the set 
of all m-operators of type (F , G). By 5.1 and 5.2, m(F, G) if and only if 
there exists ip G ( F , G ) such that U = Uv. By mc(F,G) we shall denote 
the class of all continuous operators in m(F, G). 

5 . 4 . REMARK . Our definition of m-operators is different from that one given 
in [1, Vol. II, p. 285]- there m-operators are assumed to be continuous what 
may fail in our case. 

5 . 5 . THEOREM, (a) Let U G m(F,G), F be ultrabornological and G be 
webbed. Then U commutes with translations and is continuous from F to G. 
Hence 

m(F, G) = mc(F,G). 
(b) To any U G m ( C ° ° , D) corresponds a distribution A G D such that 

(5.3) Uf = A* f 
for each f in C°°. Conversely, if A G D, the equation (5.3) defines U as a 
member ofm(C°°,D). 

(c) m(C°°, D) = m(C°°, C°°). 
(d) If U € m(F, G) then there exists A 6 D such that Uf = A*f for 

each f G F. 
P r o o f . If U G m(F,G) then (5.2) shows that U is an associated multi-
plier operator. Hence, by 5.1(b) and (d), U commutes with translations and 
is continuous. Thus our definition of m-operators coincides with that one 
given in [1, Vol. II, p. 285] whenever F is an ultrabornological space and 
G is a webbed space. This proves (a). Since C°° is a Frechet space (hence 
ultrabornological) and D is a webbed space, the statements (b) and (c) are 
equivalent to the first two parts of 16.3.1 of [1, Vol. II, p. 287], The proof 
of the part (d) is the same as the proof of the fourth part of 16.3.1 of [1, 
Vol. II, p. 287], • 

The following two theorems generalize Theorems 16.3.5 and 16.3.6 of [1, 
Vol. II, p. 290-291], 
5 . 6 . THEOREM. Let E be a barrelled LCD-space having C ° ° as a dense 
subset and U G m(E, C). Then there exists F in E* such that 

Uf = F*f 



910 R. P. Sinha, A. N. Mohammed 

for each f G E. Conversely, if F G E* and U is defined by the above 
relation, then U G mc(E, C). Hence (E, C) = TE*. Moreover m(E, C) = 
mc{E,C). 

Proof . The converse part can obviously follow from Theorem 2.6 of [6]. 
To prove the direct assertion, we first observe that U(= for some tp G 
(E,C)) is closed (see the proof of 16.2.1(4) of [1, Vol. II]). Hence, by the 
V. Ptak's closed graph theorem [7,12-5-7, p. 201], U is continuous. Therefore 
m(E,C) = mc{E,C). 

Define the linear functional F on E by 

(5.4) F ( f ) = Uf( 0) V/eJE. 

Since E is an LCD-space and U is continuous then F € E*. Replacing / 
by T_ x / in (5.4) and using the fact that U commutes with translations we 
find that 

v 
Uf(x) = F(TX f ) for every x G T. 

Hence, by Theorem 2.6 of [6], 
Uf = F*f V/ € E, 

which proves the direct part. • 
5 . 7 . THEOREM. Let E be a weakly sequentially complete LCD-space hav-
ing C°° as a dense subset, and let U be in m(E*,C). Then there exists a 
distribution f in E such that 

UF = F * f 

for all F G E*. Conversely, if f G E and U is defined by the above relation, 
then U G mc{E*, C), where E* is endowed with the strong* topology. Hence, 
(E*, C) = TE. Moreover, m{E*, C) = mc(E*, C). 

Proof . Let U G m(E*,C). Since C°° is dense in E then (E*, strong*) is 
an LCD-space, by Theorem 2.5 of [6], By Theorem 5.5(d), there exists a 
distribution A in D such that 

UF — A* F for all F £ E*. 

Now take an approximate identity { / i } ^ consisting of trigonometric 
polynomials. Then {/¿} C E*. Set hi = Ufa for each i. Then 

hi = A* fi € E for each i. 

Notice that also 

F(hi) = hi * F(0) = fi * UF(0) -» UF(0) as i -> oo 
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for each F€E*asUF€C. Since E is weakly sequentially complete, then 
there exists / € E such that 

F(hi) —• F(J) = f * F(0) as i —• oo 
for each F € E*. Hence 

UF{0) = f * F(0) for all F € E*. 
Now, just as in the proof of Theorem 5.6, replacing F by T-XF, we can show 
that 

UF(x) = f * F(x) for all a; € T. 

This proves the direct part of the theorem. 
Conversely, let UF = f*FVF € E*. Then U G mc(E*,C) by Theorem 

2.6(ii) of [6]. This together with the direct part also shows that m(E*, C) = 
mc(E*,C). m 

The following theorem generalizes Theorem 16.3.4 of [1, Vol. II, p. 289]. 

5 .8 . THEOREM. Let E be a barrelled LCD-space having C°° as a dense 
subset and let U G m(M, E*). Then there exists a distribution A G E* such 
that 

Uy. = A* ¡j, 
for all fi G M. Conversely, if A & E* and U is defined by the above relation, 
then U € mc(M, E*), where E* is endowed with the strong* topology. 
Hence, (M,E*) = TE*. Moreover, m(M, E*) = mc(M,E*). 

Proof . Since M and E* are LCD-spaces, the direct assertion follows from 
5.5(d) and replacing / by £o (the Dirac measure at the point 0) in the 
relation Uf = A*f given therein. 

Conversely, let U be defined by 

Un = A* n V/x G M , 
where A G E*. Since C°° is dense in E then E' = E* (see [6, Th. 5.4 ]). By 
Theorem 5.8 of [6], there exists a continuous seminorm p on E such that 

I U n ( f ) \ = \A * n(f)I < M i p ( f ) for all / e E and fi G M. 
Let {/xn} be a sequence converging to ¡i in M and B be a bounded subset 
of E. Then there exists a constant k such that p(f ) < k for all / in B. Hence 

\{Uyin — Uy{f)\ < ||Hn — MI|IP(/) ~^ 0 uniformly on B as n —• oo. 

Therefore, by [7, 8-5-7, p. 120], Uyn —> Ufi in (E*, strong*) as n —• oo. 
Hence U G mc(M,E*). This together with the direct assertion also shows 
that m(M,E*) = mc(M,E*). m 
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In [1, Vol. II, 16.4.1], it is shown that ( L p , L p ) = (Lq,Lq), where 1 < 
p < oo and 1 + ^ = 1. Now we extend this result to (C, l)-perfect barrelled 
LCD-spaces as follows. 

5 . 9 . T H E O R E M . Let E be a (C, 1 )-perfect barrelled LCD-space. Then 

(E, E) = (E',E'). 

P r o o f . Let {ip(n)}nez € (E,E) and Uv be the associated multiplier oper-
ator. Then G m(E, E) and, by 5.5(b), there exists a distribution A in D 
such that Uyf = A * / for every / in E. Hence A(n) = ip{n) for each n € Z. 
Now the series 

° ° A ° ° V 
(5.5) * F ) > ) / ( - « ) = £ F(n)((A * / ) ) v ) A ( - n ) 

—oo —oo 

is (C, l)-summable for all / 6 E and F € E' since 

/ G E => /v € E A* / v G E => (^4* / v ) v G E. 

So, by Theorem 5.10 of [6], A*F E E' for every F in E'\that is, {<p(n)}neZ G 
(.E',E ') . Hence 

(5.6) (E,E) C (E',E'). 

For the reverse inclusion, let { (p(n)} n e z € (E',E'). Then again the 
series (5.5) is (C, l)-summable for all f € E and F G E'. Hence, by the 

v v 
definition of E\ A * f G E" = E for all / (and hence / ) in E] that is, 

{V(«)}nez e (E,E). Thus 

(E',E')C(E,E), 

which together with (5.6) yields the desired result. • 

The following theorem generalizes Theorem 4.3 of [6]. 
5 . 1 0 . T H E O R E M . Let E be a homogeneous LCD-space having the convex 
compactness property. Then each U G m(E, E) leaves stable on every closed 
invariant subspace of E. Equivalently, for each f G E, Uf is a limit in E 
of the set of all finite linear combinations of translates of f . 

P r o o f . Let U G m(E,E). Since E is an LCD-space, then for some A in 
D, Uf = A * f for each / in E (see 5.5(d)). Now suppose that V is a closed 
invariant subspace of E and / G V. Then 

n e Z v / ( n ) = 0 =» (C//)A(n) = 0. 

Hence Zy C Zuf. So, by Theorem 4.2 of [6], Uf G V. Thus the first assertion 
is true. 
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For the second assertion, take Vj as the closure in E of the set of all 
finite linear combinations of translates of / . Clearly, V j is a closed invariant 
subspace of E. Now the application of the first assertion yields the desired 
result. • 
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