

R. P. Sinha, A. N. Mohammed

## FOURIER ANALYSIS ON LOCALLY CONVEX SPACES OF DISTRIBUTIONS, II

**Abstract.** This is the second in a series of papers, extending the theory of Fourier analysis to locally convex spaces of distributions (*LCD-spaces*). In this paper, *LCD*-spaces admitting conjugation and multiplier operators on *LCD*-spaces are discussed. It is also shown that if  $\mathbf{E}$  is an *LCD*-space having  $C^\infty$  as a dense subset, then  $\mathbf{E}^*$ , endowed with the topology of precompact convergence, is an *LCD*-space having  $C^\infty$  as a dense subset.

### 1. Introduction

We continue in this paper extending the results of Fourier analysis to locally convex spaces of distributions (*LCD-spaces*) defined in [6].

In Section 3, we show that if  $(\mathbf{E}, \mathcal{I})$  is an *LCD*-space having  $C^\infty$  as a dense subset, then  $(\mathbf{E}^*, \mathcal{I}^0)$  is also an *LCD*-space where  $\mathcal{I}^0$  is the topology of precompact convergence on  $\mathbf{E}^*$ ; further, for each  $f$  in  $\mathbf{E}$  and each  $F$  in  $\mathbf{E}^*$ ,  $\sigma_n f \rightarrow f$  in  $\mathbf{E}$  and  $\sigma_n F \rightarrow F$  in  $(\mathbf{E}^*, \mathcal{I}^0)$  as  $n \rightarrow \infty$ .

In Section 4, we give a necessary and sufficient condition for an *LCD*-space to admit conjugation. In Section 5, we give several representation theorems for multiplier operators.

### 2. Definitions and notations

All the notations and conventions used in [6] will be continued in this paper. In particular,  $\mathbf{T}$  will denote the circle group and  $\mathbf{D}$  will denote the space of all distributions on  $\mathbf{T}$ . For the convenience of the reader, we repeat the following definitions given in [6].

**2.1. DEFINITION.** A locally convex space  $\mathbf{E}$  is called an *LCD*-space if it can be continuously embedded into  $\mathbf{D}$  ( $\mathbf{D}$  having the weak\* topology), and if, regarded as a subset of  $\mathbf{D}$ , it satisfies the following properties:

- (2.1)  $C^\infty \subset \mathbf{E}$  and the inclusion map is continuous;
- (2.2)  $\mathbf{E}$  is translation invariant and  $\{T_x \mid x \in \mathbf{T}\}$ , the family of all translation operators on  $\mathbf{E}$ , is equicontinuous on  $\mathbf{E}$ ;

(2.3)  $f \rightarrow f^\vee$  is a continuous operator on  $\mathbf{E}$ , where  $f^\vee(u) = f(u^\vee)$  for every  $u$  in  $C^\infty$  and  $u^\vee(t) = u(-t)$  for all  $t$  in  $\mathbf{T}$ .

**2.2. DEFINITION.** An *LCD-space*  $\mathbf{E}$  is said to be *homogeneous* if  $x \rightarrow T_x f$  is continuous from  $\mathbf{T}$  to  $\mathbf{E}$  for each  $f \in \mathbf{E}$ .

### 3. Homogeneous LCD-spaces and their duals

In this section we show that if  $(\mathbf{E}, \mathcal{I})$  is a homogeneous *LCD-space*, then  $(\mathbf{E}', \mathcal{I}^0)$  is also a homogeneous *LCD-space*, where  $(\mathbf{E}', \mathcal{I}^0)$  denotes the space  $\mathbf{E}'$  with the relative topology induced by  $\mathcal{I}^0$ , and  $\mathcal{I}^0$  is the topology of precompact convergence on  $\mathbf{E}^*$  (see [7, p. 179]). If  $C^\infty$  is dense in  $\mathbf{E}$ , then  $\mathbf{E}' = \mathbf{E}^*$  by Theorem 5.4 of [6]; in this case, we show that  $(\mathbf{E}', \mathcal{I}^0) = (\mathbf{E}^*, \mathcal{I}^0)$  also has  $C^\infty$  as a dense subset.

**3.1. LEMMA.** *If  $\mathbf{E}$  is a homogeneous LCD-space and  $K$  is a totally bounded set in  $\mathbf{E}$ , then  $\bigcup\{T_a K \mid a \in \mathbf{T}\}$  is totally bounded in  $\mathbf{E}$ .*

**Proof.** Let  $V$  be a neighborhood of 0 in  $\mathbf{E}$ ; choose another neighborhood of 0, say  $W$ , such that

$$(3.1) \quad W + W \subset V.$$

Since  $\{T_a \mid a \in \mathbf{T}\}$  is an equicontinuous family, there exists a neighborhood  $U$  of 0 in  $\mathbf{E}$  such that

$$(3.2) \quad T_a(U) \subset W \quad \forall a \in \mathbf{T}.$$

Since  $K$  is totally bounded, there exist  $f_1, \dots, f_n$  in  $K$  such that

$$(3.3) \quad K \subset \bigcup_{i=1}^n (f_i + U).$$

Since  $\mathbf{E}$  is homogeneous, there exists  $\delta > 0$  such that, for each  $f$  in  $\mathbf{E}$ ,

$$(3.4) \quad T_a f - T_b f \in W \quad \text{whenever} \quad |a - b| < \delta.$$

Let  $\{a_1, a_2, \dots, a_m\}$  be a  $\delta$ -net in  $\mathbf{T}$ . Then, by (3.3), we get

$$\bigcup\{T_a K \mid a \in \mathbf{T}\} \subset \bigcup_{i=1}^n \bigcup_{j=1}^m \bigcup_{|a-a_j|<\delta} (T_a f_i + T_a U).$$

Using (3.1), (3.2) and (3.4), we obtain

$$\begin{aligned} \bigcup\{T_a K \mid a \in \mathbf{T}\} &\subset \bigcup_{i=1}^n \bigcup_{j=1}^m \bigcup_{|a-a_j|<\delta} (T_a f_i + W) \\ &\subset \bigcup_{i=1}^n \bigcup_{j=1}^m (T_{a_j} f_i + W + W) \\ &\subset \bigcup_{i=1}^n \bigcup_{j=1}^m (T_a f_i + V) \end{aligned}$$

Hence  $\bigcup\{T_a K \mid a \in \mathbf{T}\}$  is a totally bounded set in  $\mathbf{E}$ . ■

**3.2. THEOREM.** *If  $(\mathbf{E}, \mathcal{I})$  is a homogeneous LCD-space, then  $(\mathbf{E}', \mathcal{I}^0)$  is also a homogeneous LCD-space.*

**P r o o f.** Since  $\mathbf{E}$  is an LCD-space, the inclusion map  $i : \mathbf{C}^\infty \rightarrow \mathbf{E}$  is continuous. Consider  $i' : \mathbf{E}^* \rightarrow \mathbf{D}$  defined by,

$$i'(F)(u) = F(u) \quad \text{for all } u \text{ in } \mathbf{C}^\infty \text{ and all } F \text{ in } \mathbf{E}^*.$$

Then  $i'$  is the operator dual to the map  $i$ , so by [7, 11-1-6],  $i'$  is continuous from  $(\mathbf{E}^*, \sigma(\mathbf{E}^*, \mathbf{E}))$  to  $(\mathbf{D}, \sigma(\mathbf{D}, \mathbf{C}^\infty))$ , and hence, from  $(\mathbf{E}', \mathcal{I}^0)$  to  $(\mathbf{D}, \sigma(\mathbf{D}, \mathbf{C}^\infty))$ . Also, as shown in the proof of Theorem 5.3 of [6],  $i'$  is one to one. Thus  $(\mathbf{E}', \mathcal{I}^0)$  is continuously embedded into  $\mathbf{D}$ . Moreover,  $(\mathbf{E}', \mathcal{I}^0)$  satisfies (2.1) because of Lemma 2.4 in [6] and the fact that  $\mathbf{C}^\infty \subset \mathbf{E}'$  and  $\mathcal{I}^0 \subset \beta(\mathbf{E}^*, \mathbf{E})$ . Now, let

$$\mathcal{F} = \{T_a \mid T_a : (\mathbf{E}^*, \mathcal{I}^0) \rightarrow (\mathbf{E}^*, \mathcal{I}^0), a \in \mathbf{T}\}.$$

Note that  $T_a$  on  $\mathbf{E}^*$  is the operator dual to the operator  $T_{-a}$  on  $\mathbf{E}$ . Let  $U$  be a neighborhood of 0 in  $(\mathbf{E}^*, \mathcal{I}^0)$ . Then there exists a totally bounded set  $B$  in  $\mathbf{E}$  such that  $U \supset B^0$ , where  $B^0$  denotes the polar of  $B$ . Using 9.9.3(a) and 9.3.7(a) of [2], we obtain

$$\bigcap_{a \in \mathbf{T}} T_a^{-1}(U) \supset \bigcap_{a \in \mathbf{T}} T_a^{-1}(B^0) = \bigcap_{a \in \mathbf{T}} [T_{-a}(B)]^0 = \left[ \bigcup_{a \in \mathbf{T}} T_{-a}(B) \right]^0.$$

But  $\bigcup_{a \in \mathbf{T}} T_{-a}(B)$  is totally bounded by Lemma 3.1, which entails that  $\bigcap_{a \in \mathbf{T}} T_a^{-1}(U)$  is a neighborhood of 0 in  $(\mathbf{E}^*, \mathcal{I}^0)$ . Therefore  $\mathcal{F}$  is an equicontinuous family of operators on  $(\mathbf{E}^*, \mathcal{I}^0)$  and hence on  $(\mathbf{E}', \mathcal{I}^0)$  as  $T_a(\mathbf{E}' \subset \mathbf{E}'$  for each  $a$  in  $\mathbf{T}$ . Thus  $(\mathbf{E}', \mathcal{I}^0)$  satisfies (2.2) of the definition of an LCD-space.

Now, for  $F \in \mathbf{E}^*$ , define  $F^\vee$  by

$$F^\vee(f) = F(f^\vee) \quad \text{for all } f \in \mathbf{E}.$$

If we set  $L(f) = f^\vee$  and  $L^*(F) = F^\vee$  for  $f$  in  $\mathbf{E}$  and  $F$  in  $\mathbf{E}^*$ , then the map  $L^*$  is dual to the map  $L$ . Hence, by [7, 11-1-6],  $L^*$  is continuous from  $(\mathbf{E}^*, \text{weak}^*)$  to  $(\mathbf{E}^*, \text{weak}^*)$ . Let  $U$  and  $B$  be as before.  $L$  is a continuous linear operator on  $\mathbf{E}$ , so by [7, 6-4-3],  $L(B)$  is totally bounded. Hence  $[L(B)]^0$  is a neighborhood of 0 in  $(\mathbf{E}^*, \mathcal{I}^0)$ . Now,

$$\begin{aligned} H \in [L(B)]^0 &\Rightarrow |H(Lf)| \leq 1 \quad \forall f \in B \\ &\Rightarrow |H^\vee(f)| \leq 1 \quad \forall f \in B \\ &\Rightarrow L^*H \in B^0 \subset U. \end{aligned}$$

So  $L^*$  is continuous from  $(\mathbf{E}^*, \mathcal{I}^0)$  to  $(\mathbf{E}^*, \mathcal{I}^0)$ . Since  $L^*(\mathbf{E}') \subset \mathbf{E}'$ ,  $L^*$  will also be continuous from  $(\mathbf{E}', \mathcal{I}^0)$  to  $(\mathbf{E}', \mathcal{I}^0)$ . Thus  $(\mathbf{E}', \mathcal{I}^0)$  satisfies also (2.3), and hence,  $(\mathbf{E}', \mathcal{I}^0)$  is an LCD-space.

Now we shall show that  $(\mathbf{E}', \mathcal{I}^0)$  is homogeneous. Let  $F \in \mathbf{E}^*$ . Define  $\psi : \mathbf{T} \rightarrow \mathbf{E}^*$  by  $\psi(t) = T_t F \ \forall t \in \mathbf{T}$ .

Let  $U$  and  $B$  be as before. Now  $V = \{F\}^0$  is a neighborhood of 0 in  $(\mathbf{E}, \sigma(\mathbf{E}, \mathbf{E}^*))$  and hence in  $(\mathbf{E}, \mathcal{I})$ . There exists a neighborhood  $V_1$  of 0 in  $(\mathbf{E}, \mathcal{I})$  such that  $V_1 + V_1 + V_1 \subset V$ . Since  $\{T_t \mid t \in \mathbf{T}\}$  is an equicontinuous family, there exists a neighborhood  $W$  of 0 in  $(\mathbf{E}, \mathcal{I})$  such that

$$f \in W \Rightarrow T_t f \in V_1 \quad \forall t \in \mathbf{T}.$$

We may suppose that  $W \subset V_1$ . Since  $B$  is totally bounded, there exists a finite set  $\mathcal{A} = \{f_1, f_2, \dots, f_n\} \subset \mathbf{E}$  such that

$$B \subset \mathcal{A} + W.$$

As  $\mathbf{E}$  is homogeneous, there exists  $\delta > 0$  such that

$$|t| < \delta \Rightarrow f_i - T_t f_i \in W \quad \text{for } i = 1, 2, \dots, n.$$

Using the above relations, we can claim that, for  $|t| < \delta$ ,

$$\begin{aligned} f \in B &\Rightarrow f = f_i + w \quad \text{for some } f_i \in \mathcal{A} \text{ and some } w \in W \\ &\Rightarrow f - T_t f = f_i - T_t f_i + w - T_t w \in W + W + V_1 \subset V \\ &\Rightarrow |(F - T_{-t} F)(f)| = |F(f - T_t f)| \leq 1. \end{aligned}$$

Therefore  $(F - T_{-t} F) \in B^0 \subset U$  for  $|t| < \delta$ ; i.e.,  $\psi$  is continuous on  $\mathbf{T}$ . Hence  $(\mathbf{E}', \mathcal{I}^0)$  is homogeneous. Since  $\mathbf{E}'$  is translation invariant,  $(\mathbf{E}', \mathcal{I}^0)$  is homogeneous as well. ■

The following theorem generalizes Theorem 3.2 of [4].

**3.3. THEOREM.** *Let  $(\mathbf{E}, \mathcal{I})$  be a homogeneous LCD-space. For  $f$  in  $\mathbf{E}$ ,  $F$  in  $\mathbf{E}^*$  and  $t \in \mathbf{T}$ , define*

$$U(f, F)(t) = F(T_t f^\vee).$$

*Then,*

- (i)  $f \rightarrow U(f, F)$  is a continuous operator from  $\mathbf{E}$  to  $\mathbf{C}$  for each  $F \in \mathbf{E}^*$ .
- (ii)  $F \rightarrow U(f, F)$  is a continuous operator from  $(\mathbf{E}^*, \mathcal{I}^0)$  to  $\mathbf{C}$  for each  $f \in \mathbf{E}$ .

Further, if  $\mathbf{C}^\infty$  is dense in  $\mathbf{E}$ ,  $U(f, F) = F * f$  for each  $f \in \mathbf{E}$  and  $F \in \mathbf{E}^*$ .

**Proof.** (i)  $U(f, F)$  is in  $\mathbf{C}$  as  $\mathbf{E}$  is homogeneous,  $F \in \mathbf{E}^*$  and  $f \rightarrow f^\vee$  is continuous on  $\mathbf{E}$ . Fix  $F \in \mathbf{E}^*$  and define

$$H_t(f) = F(T_t f^\vee) \quad \text{for } t \in \mathbf{T} \quad \text{and } f \in \mathbf{E}.$$

Since  $\{T_t \mid t \in \mathbf{T}\}$  is an equicontinuous family of operators on  $\mathbf{E}$ ,  $\{H_t \mid t \in \mathbf{T}\}$  is also equicontinuous on  $\mathbf{E}$ . By [2, 9.5.3], there exists a continuous seminorm  $p_F$  on  $\mathbf{E}$  such that

$$|F(T_t f^\vee)| \leq p_F(f) \quad \text{for all } t \in \mathbf{T} \text{ and all } f \in \mathbf{E},$$

that is,

$$(3.5) \quad \|U(f, F)\|_\infty \leq p_F(f) \quad \text{for all } f \text{ in } \mathbf{E}.$$

Hence,  $f \rightarrow U(f, F)$  is a continuous operator from  $\mathbf{E}$  to  $\mathbf{C}$  for each  $F$  in  $\mathbf{E}^*$ .

(ii) Fix  $f$  in  $\mathbf{E}$ . Since  $\mathbf{E}$  is a homogeneous LCD-space, the set  $A_f = \{T_t f^\vee \mid t \in \mathbf{T}\}$  is totally bounded by 3.1. Hence the polar  $A_f^0$  of  $A_f$  is a neighborhood of 0 in  $(\mathbf{E}^*, \mathcal{I}^0)$ .

Now, for  $0 < \varepsilon' < \varepsilon$ ,

$$\begin{aligned} F \in \varepsilon' A_f^0 &\Rightarrow |F(T_t f^\vee)| \leq \varepsilon' < \varepsilon \quad \forall t \in \mathbf{T} \\ &\Rightarrow \|U(f, F)\|_\infty < \varepsilon. \end{aligned}$$

Hence,  $F \rightarrow U(f, F)$  is a continuous operator from  $(\mathbf{E}^*, \mathcal{I}^0)$  to  $\mathbf{C}$ .

Now suppose  $\mathbf{C}^\infty$  is dense in  $\mathbf{E}$ . Then, by Theorem 2.5 of [6],  $(\mathbf{E}^*, \beta(\mathbf{E}^*, \mathbf{E}))$  is an LCD-space. Let  $f \in \mathbf{E}$  and  $F \in \mathbf{E}^*$ . Find  $\{u_n\} \subset \mathbf{C}^\infty$  such that  $u_n \rightarrow f$  in  $\mathbf{E}$  as  $n \rightarrow \infty$ . Then, by (i),  $F * u_n = U(u_n, F) \rightarrow U(f, F)$  as  $n \rightarrow \infty$ . But  $F * u_n \rightarrow F * f$  as  $n \rightarrow \infty$ . Hence  $U(f, F) = F * f$ . ■

**3.4. THEOREM.** Let  $(\mathbf{E}, \mathcal{I})$  be an LCD-space having  $\mathbf{C}^\infty$  as a dense subset. Then  $(\mathbf{E}^*, \mathcal{I}^0)$  is a homogeneous LCD-space having  $\mathbf{C}^\infty$  as a dense subset. Moreover, for each  $F$  in  $\mathbf{E}^*$ ,  $\sigma_n F \rightarrow F$  in  $(\mathbf{E}^*, \mathcal{I}^0)$  as  $n \rightarrow \infty$ ; and, for each  $f$  in  $\mathbf{E}$ ,  $\sigma_n f \rightarrow f$  in  $\mathbf{E}$  as  $n \rightarrow \infty$ .

**Proof.** Since  $\mathbf{C}^\infty$  is dense in  $\mathbf{E}$ ,  $\mathbf{E}' = \mathbf{E}^*$  by Theorem 5.4 of [6]. Hence  $(\mathbf{E}^*, \mathcal{I}^0)$  is a homogeneous LCD-space by Theorem 3.2.

Fix  $F \in \mathbf{E}^*$ . By Theorem 3.3,  $f \rightarrow F * f$  is continuous from  $\mathbf{E}$  to  $\mathbf{C}$ . So, in view of (2.3), there exists a neighborhood  $W$  of 0 in  $\mathbf{E}$  such that

$$(3.6) \quad x \in W \Rightarrow \|F * u^\vee\|_\infty < 1/5 \Rightarrow |\sigma_n F(u)| < 1/5$$

for every nonnegative integer  $n$ .

Let  $U$  be a neighborhood of 0 in  $(E^*, \mathcal{I}^0)$  and  $B$  be a totally bounded set in  $E$  such that  $B^0 \subset U$ . There exists a finite set  $\mathcal{A} = \{f_1, f_2, \dots, f_k\} \subset E$  such that

$$B \subset \mathcal{A} + W.$$

For  $1 \leq i \leq k$ , there exists  $g_i \in C^\infty$  such that

$$(3.7) \quad f_i - g_i \in W.$$

Now, for  $1 \leq i \leq k$ ,

$$g_i \in C^\infty \Rightarrow \sigma_n g_i \rightarrow g_i \quad \text{as } n \rightarrow \infty.$$

So, there exists  $N$  such that

$$(3.8) \quad n \geq N \Rightarrow g_i - \sigma_n g_i \in W \quad \text{for } 1 \leq i \leq k.$$

Now,

$$\begin{aligned} f \in B \Rightarrow f &= f_i + u \quad \text{for some } f_i \in \mathcal{A} \text{ and some } u \in W \\ &\Rightarrow f - \sigma_n f = f_i - g_i + g_i - \sigma_n g_i + \sigma_n g_i - \sigma_n f_i + u - \sigma_n u. \end{aligned}$$

Therefore, for  $f \in B$  and  $n \geq N$ , we obtain

$$\begin{aligned} |F(f - \sigma_n f)| &\leq |F(f_i - g_i)| + |Fg_i - \sigma_n g_i| + |\sigma_n F(f_i - g_i)| \\ &\quad + |F(u)| + |\sigma_n F(u)| \leq 1 \end{aligned}$$

using (3.6) to (3.8). Hence  $\sigma_n F - F \in B^0 \subset U$  for each  $n \geq N$ . Therefore  $\sigma_n F \rightarrow F$  in  $(E^*, \mathcal{I}^0)$  as  $n \rightarrow \infty$ , and hence  $C^\infty$  is dense in  $(E^*, \mathcal{I}^0)$ . Applying this result to  $(E^*, \mathcal{I}^0)$  in place of  $(E, \mathcal{I})$  we obtain that, for each  $f$  in  $(E^*, \mathcal{I}^0)^*$ ,  $\sigma_n f \rightarrow f$  in  $((E^*, \mathcal{I}^0)^*, \mathcal{I}^{0\bullet})$  as  $n \rightarrow \infty$ , where  $\mathcal{I}^{0\bullet}$  is the topology of precompact convergence on  $(E^*, \mathcal{I}^0)^*$ . Now  $(E^*, \mathcal{I}^0)^* \supset E$  and the restriction of  $\mathcal{I}^{0\bullet}$  on  $E$  is  $\mathcal{I}^{00}$ , moreover,  $\mathcal{I}^{00} \supset \mathcal{I}$  (see [7, 12-1-10]). Therefore, for each  $f$  in  $E$ ,  $\sigma_n f \rightarrow f$  in  $E$  as  $n \rightarrow \infty$ . ■

#### 4. LCD-spaces admitting conjugation

Let  $f$  be in  $L^1$ ,  $0 < \varepsilon < \pi$ , and

$$(4.1) \quad \tilde{f}_\varepsilon(x) = -\frac{1}{\pi} \int_{-\varepsilon}^{\varepsilon} \frac{f(x+u) - f(x-u)}{2 \tan u/2} du.$$

Then

$$(4.2) \quad \lim_{\varepsilon \rightarrow 0^+} \tilde{f}_\varepsilon(x) = \tilde{f}(x) \quad (\text{say})$$

exists for almost every  $x$  [9, Vol. I; Theorem 1.4, p. 252]. Also the series  $\tilde{S}[f]$ , conjugate to the Fourier series  $S[f]$  of  $f$ , is  $(C, 1)$ -summable to sum  $\tilde{f}(x)$  almost everywhere [9, Vol. I; Theorem 1.5, p. 253]. So if  $\tilde{f} \in L^1$ , the series  $\tilde{S}[f]$  is the Fourier series of  $\tilde{f}$  [1, Vol. I, 6.1.3, p. 88].

When  $f$  is in  $L^1$ , a necessary and sufficient condition for  $\tilde{f}$  to be in  $L^1$  is given in [8] and in [9, Vol. I; Exercise 5(b), p. 180], which states as follows.

**4.1.** If  $f \in L^1$ , then  $\tilde{f} \in L^1$  if and only if  $\tilde{f}_\varepsilon(x)$  tends to a limit in  $L^1$  as  $\varepsilon \rightarrow 0^+$ .

A similar result for a continuous function is also known [9, Vol. I; Exercise 5(a), p. 180], which is as follows.

**4.2.** Let  $f$  be a continuous and periodic function. Then a necessary and sufficient condition for  $\tilde{f}$  to be (equivalent to) a continuous function is that  $\tilde{f}_\varepsilon(x)$  converges uniformly (in  $x$ ) as  $\varepsilon \rightarrow 0_+$ .

If  $\tilde{f}$  is continuous at every point in  $[-\pi, \pi]$ , then, by (4.2) and the above result,

$$(4.3) \quad \lim_{\varepsilon \rightarrow 0_+} \tilde{f}_\varepsilon(x) = \tilde{f}(x) \quad \text{for every } x.$$

These results are generalized to homogeneous *BD-spaces* in [5] and to homogeneous *FD-spaces* in [3].

**4.3.** If  $f$  is a distribution, then its conjugate distribution, denoted by  $\tilde{f}$ , is defined ([1, Vol. II; p. 91]) as

$$\tilde{f} = H * f,$$

where the distribution  $H$  is given by

$$H \equiv \sum_{n \in \mathbb{Z}} -i(\operatorname{sgn} n)e_n.$$

It is easy to see that the series conjugate to the Fourier series of a distribution  $f$  is the Fourier series of its conjugate distribution  $\tilde{f}$ . If, for  $0 < \varepsilon \leq \pi$ ,  $H_\varepsilon$  is defined on  $\mathbf{T}$  as follows

$$\begin{aligned} H_\varepsilon(x) &= \cot x/2 & \text{for } \varepsilon \leq |x| \leq \pi \\ &= 0 & \text{for } 0 \leq |x| \leq \varepsilon, \end{aligned}$$

then  $H_\varepsilon \in \mathbf{B}$  (the class of all complex valued bounded Borel functions on  $\mathbf{T}$ ); and, for  $f \in \mathbf{C}$ ,

$$H_\varepsilon * f(x) = \tilde{f}_\varepsilon(x).$$

If  $\tilde{f}, f \in \mathbf{C}$ , then, by 4.2,

$$(4.4) \quad \tilde{f}_\varepsilon \rightarrow \tilde{f} \quad \text{in } \mathbf{C} \text{ as } \varepsilon \rightarrow 0_+.$$

Also, by [1, Vol.II, (12.8.4), p. 92],

$$H(u) = \lim_{\varepsilon \rightarrow 0_+} H_\varepsilon(u) \quad \forall u \in \mathbf{C}^\infty.$$

That is,

$$(4.5) \quad H_\varepsilon \rightarrow H \quad \text{in } (D, \sigma(D, C^\infty)) \text{ as } \varepsilon \rightarrow 0_+.$$

**4.4. DEFINITION.** An *LCD-space*  $E$  is said to admit conjugation if  $\tilde{f} \in E$  for every  $f$  in  $E$ .

**4.5. THEOREM.** Let  $E$  be a barrelled homogenous LCD-space having the convex compactness property. Then  $E$  admits conjugation if and only if, for every  $f$  in  $E$ ,

$$(4.6) \quad \tilde{f}_\varepsilon = \frac{1}{\pi} \int_{-\varepsilon}^{\varepsilon} \frac{T_t f - T_{-t} f}{2 \tan t/2} dt$$

converges in  $E$  as  $\varepsilon \rightarrow 0_+$ .

**Proof. Necessary part:** Suppose  $E$  admits conjugation. Fix  $f$  in  $E$  and take  $H_\varepsilon$  as defined in 4.3.

Since  $E$  is homogeneous having the convex compactness property and  $H_\varepsilon \in M$ , then  $H_\varepsilon * f \in E$  by Theorem 3.4 of [6]. Moreover, by (3.1) of [6],

$$\begin{aligned} H_\varepsilon * f &= \frac{1}{2\pi} \int H_\varepsilon(t) T_t f dt \\ &= \frac{1}{\pi} \int_{-\varepsilon}^{\varepsilon} \frac{T_t f - T_{-t} f}{2 \tan t/2} dt \\ &= \tilde{f}_\varepsilon. \end{aligned}$$

Define  $U_\varepsilon f = H_\varepsilon * f$  and  $Uf = \tilde{f}$ . Let  $F$  be in  $E^*$ . Since  $E$  is a barrelled homogeneous LCD-space having the convex compactness property,  $C^\infty$  is dense in  $E$  by Theorem 3.2 of [6]. Moreover, since  $\tilde{f} \in E$ ,  $F * (\tilde{f})^\vee \in C$  by Theorem 2.6 of [6]. Now

$$(F * \tilde{f})^\sim = F * (\tilde{f})^\sim = -F * (\tilde{f})^\vee \in C.$$

Hence, by (4.3),

$$\begin{aligned} (F * \tilde{f})^\sim(0) &= \frac{1}{\pi} \lim_{\varepsilon \rightarrow 0_+} \int_{-\varepsilon}^{\varepsilon} \frac{(F * \tilde{f})(-t) - (F * \tilde{f})(t)}{2 \tan t/2} dt \\ &= - \lim_{\varepsilon \rightarrow 0_+} F(H_\varepsilon * f). \end{aligned}$$

Thus,

$$\lim_{\varepsilon \rightarrow 0_+} F(H_\varepsilon * f) = -(F * \tilde{f})^\sim(0) = (F * (\tilde{f})^\vee)(0) = F(\tilde{f}).$$

Hence,

$$(4.7) \quad U_\varepsilon f \rightarrow Uf \quad \text{weakly in } E \text{ as } \varepsilon \rightarrow 0_+.$$

Fix  $F \in E^*$ . Given  $\eta > 0$ , there exists  $\varepsilon_0$  such that

$$|F(U_\varepsilon f) - F(Uf)| < \eta \quad \text{for } 0 < \varepsilon < \varepsilon_0.$$

So,

$$|F(U_\varepsilon f)| < |F(Uf)| + \eta \quad \text{for } 0 < \varepsilon < \varepsilon_0.$$

For  $\varepsilon \geq \varepsilon_0$ ,

$$|F(U_\varepsilon f)| = |F(H_\varepsilon * f)| \leq p(H_\varepsilon * f)$$

for some continuous seminorm  $p$  on  $E$ . But,

$$\begin{aligned} p(H_\varepsilon * f) &= p\left(\frac{1}{2\pi} \int T_t f H_\varepsilon(t) dt\right) \\ &\leq \frac{1}{2\pi} \int p(T_t f) |H_\varepsilon(t)| dt. \end{aligned}$$

Since  $\{T_t \mid t \in \mathbf{T}\}$  is an equicontinuous family of operators on  $E$ , there exists a continuous seminorm  $q$  on  $E$  (see [2, 9.5.3]) such that

$$p(T_t f) \leq q(f) \quad \forall t \in \mathbf{T}.$$

Therefore, for  $\varepsilon \geq \varepsilon_0$ ,

$$|F(U_\varepsilon f)| \leq q(f) \|H_\varepsilon\|_1 \leq q(f) \cot(\varepsilon_0/2).$$

Hence the set  $\{U_\varepsilon f \mid 0 < \varepsilon < \pi\}$  is weakly bounded in  $E$  for each  $f$  in  $E$ ; and, since  $E$  is barrelled,  $\{U_\varepsilon f \mid 0 < \varepsilon < \pi\}$  is an equicontinuous set by [7, 9-3-4]. Since  $U$  is linear and (4.7) holds,  $U$  is continuous by [7, Lemma 9-3-6, p. 137] and, therefore, is bounded.

Let  $\widetilde{t^{(m)}}$  denote the  $m$ -th derivative of a trigonometric polynomial  $t$ . Then  $(\widetilde{t^{(m)}}) \in C$  for every nonnegative integer  $m$ . Therefore, by 4.2,

$$U_\varepsilon \widetilde{t^{(m)}} \rightarrow Ut^{(m)} \quad \text{in } C,$$

for every  $m$ . Hence

$$(4.8) \quad U_\varepsilon t \rightarrow Ut \quad \text{in } C^\infty, \text{ and hence, in } E \text{ as } \varepsilon \rightarrow 0_+.$$

Let  $W$  be a neighborhood of 0 in  $E$  and  $W'$  be another neighborhood of 0 such that  $W' + W' + W' \subset W$ . Since  $U$  is continuous and  $\{U_\varepsilon f \mid 0 < \varepsilon < \pi\}$  is equicontinuous, there exists an absolutely convex neighborhood  $V$  of 0 such that  $UV \subset W'$  and  $U_\varepsilon V \subset W'$  for  $0 < \varepsilon < \pi$ .

For  $f \in E$ , we can find  $t \in C^\infty$  (as  $C^\infty$  is dense in  $E$ ) such that  $t \in f + V$ . Now, in view of (4.8),

$$U_\varepsilon f - Uf = U_\varepsilon(f - t) + U_\varepsilon t - Ut + U(t - f) \in W' + W' + W' \subset W$$

for sufficiently small  $\varepsilon > 0$ . So, for each  $f$  in  $\mathbf{E}$ ,

$$U_\varepsilon f \rightarrow Uf \quad \text{as } \varepsilon \rightarrow 0_+.$$

*Sufficient part:* Suppose  $f \in \mathbf{E}$  and  $\lim_{\varepsilon \rightarrow 0_+} \tilde{f}_\varepsilon$  exists in  $\mathbf{E}$ . We shall prove that  $\tilde{f}_\varepsilon \rightarrow \tilde{f}$  in  $\mathbf{E}$  as  $\varepsilon \rightarrow 0_+$ .

Let  $\tilde{f}_\varepsilon \rightarrow g$  in  $\mathbf{E}$  as  $\varepsilon \rightarrow 0_+$ . This implies that  $\tilde{f}_\varepsilon \rightarrow g$  in  $\mathbf{D}$  as  $\varepsilon \rightarrow 0_+$ . Therefore, for every  $k \in Z$ ,

$$\begin{aligned} \widehat{g}(k) &= \lim_{\varepsilon \rightarrow 0_+} (H_\varepsilon * f)^\wedge(k) \\ &= \lim_{\varepsilon \rightarrow 0_+} \widehat{H}_\varepsilon(k) \widehat{f}(k) \\ &= \widehat{H}(k) \widehat{f}(k) \end{aligned}$$

using (4.5). Therefore,  $g = H * f = \tilde{f}$  in  $\mathbf{E}$ . Hence  $\mathbf{E}$  admits conjugation. ■

In the above proof we have also shown that the operator  $U$  is continuous. Hence the following is also true.

**4.6. COROLLARY.** *If  $\mathbf{E}$  is a barrelled homogeneous LCD-space having the convex compactness property and  $\mathbf{E}$  admits conjugation, then the mapping  $f \rightarrow \tilde{f}$  is a continuous linear operator on  $\mathbf{E}$ .*

## 5. Multiplier operators

Throughout this section it will be assumed that each of  $\mathbf{F}$  and  $\mathbf{G}$  is an LCD-space.

Multiplier functions  $\varphi$  of type  $(\mathbf{F}, \mathbf{G})$  and associated multiplier operators  $U_\varphi$  are defined in [1, Vol. II, p. 279].  $\mathcal{FG}$  will denote the set of transforms  $\widehat{g}$  of elements  $g$  of  $\mathbf{G}$ .

Theorem 16.2.1 of [1, Vol. II; p. 281] can be generalized to the form posed below by noting the fact that any sequentially closed linear map from an ultrabornological space to a webbed space is continuous (see [2, p. 325]).

**5.1. LEMMA.** *Let  $\mathbf{F}$  and  $\mathbf{G}$  be LCD-spaces and  $\varphi$  a multiplier of type  $(\mathbf{F}, \mathbf{G})$ ; let  $U_\varphi$  be the associated multiplier operator. Then, (a)  $U_\varphi$  is linear, (b)  $U_\varphi$  commutes with translations, (c)  $U_\varphi$  commutes with convolution by trigonometric polynomials and (d)  $U_\varphi$  is continuous whenever  $\mathbf{F}$  is ultrabornological and  $\mathbf{G}$  is webbed.*

The proof of the following lemma is exactly the same as that one given for 16.2.3(1) in [1, Vol. II].

**5.2. LEMMA.** *If  $U$  is a linear operator mapping  $\mathbf{F}$  into  $\mathbf{G}$  ( $\mathbf{F}$  and  $\mathbf{G}$  are LCD-spaces) such that*

$$(5.1) \quad U(t * f) = t * Uf$$

for each trigonometric polynomial  $t$  and each  $f \in \mathbf{F}$ , then there exists a function  $\varphi \in (\mathbf{F}, \mathbf{G})$  such that

$$(5.2) \quad Uf = U_\varphi f \quad \text{for all } f \in \mathbf{F}.$$

**5.3. DEFINITIONS.** By an  $m$ -operator of type  $(\mathbf{F}, \mathbf{G})$  we shall mean a linear operator  $U$  from  $\mathbf{F}$  to  $\mathbf{G}$ , which satisfies the equation (5.1) for each trigonometric polynomial  $t$  and each  $f \in \mathbf{F}$ . By  $m(\mathbf{F}, \mathbf{G})$  we shall denote the set of all  $m$ -operators of type  $(\mathbf{F}, \mathbf{G})$ . By 5.1 and 5.2,  $m(\mathbf{F}, \mathbf{G})$  if and only if there exists  $\varphi \in (\mathbf{F}, \mathbf{G})$  such that  $U = U_\varphi$ . By  $m_C(\mathbf{F}, \mathbf{G})$  we shall denote the class of all continuous operators in  $m(\mathbf{F}, \mathbf{G})$ .

**5.4. REMARK.** Our definition of  $m$ -operators is different from that one given in [1, Vol. II, p. 285]—there  $m$ -operators are assumed to be continuous what may fail in our case.

**5.5. THEOREM.** (a) *Let  $U \in m(\mathbf{F}, \mathbf{G})$ ,  $\mathbf{F}$  be ultrabornological and  $\mathbf{G}$  be webbed. Then  $U$  commutes with translations and is continuous from  $\mathbf{F}$  to  $\mathbf{G}$ . Hence*

$$m(\mathbf{F}, \mathbf{G}) = m_C(\mathbf{F}, \mathbf{G}).$$

(b) *To any  $U \in m(C^\infty, \mathbf{D})$  corresponds a distribution  $A \in \mathbf{D}$  such that*

$$(5.3) \quad Uf = A * f$$

*for each  $f$  in  $C^\infty$ . Conversely, if  $A \in \mathbf{D}$ , the equation (5.3) defines  $U$  as a member of  $m(C^\infty, \mathbf{D})$ .*

(c)  $m(C^\infty, \mathbf{D}) = m(C^\infty, C^\infty)$ .

(d) *If  $U \in m(\mathbf{F}, \mathbf{G})$  then there exists  $A \in \mathbf{D}$  such that  $Uf = A * f$  for each  $f \in \mathbf{F}$ .*

**P r o o f.** If  $U \in m(\mathbf{F}, \mathbf{G})$  then (5.2) shows that  $U$  is an associated multiplier operator. Hence, by 5.1(b) and (d),  $U$  commutes with translations and is continuous. Thus our definition of  $m$ -operators coincides with that one given in [1, Vol. II, p. 285] whenever  $\mathbf{F}$  is an ultrabornological space and  $\mathbf{G}$  is a webbed space. This proves (a). Since  $C^\infty$  is a Frechet space (hence ultrabornological) and  $\mathbf{D}$  is a webbed space, the statements (b) and (c) are equivalent to the first two parts of 16.3.1 of [1, Vol. II, p. 287]. The proof of the part (d) is the same as the proof of the fourth part of 16.3.1 of [1, Vol. II, p. 287]. ■

The following two theorems generalize Theorems 16.3.5 and 16.3.6 of [1, Vol. II, p. 290-291].

**5.6. THEOREM.** *Let  $\mathbf{E}$  be a barrelled LCD-space having  $C^\infty$  as a dense subset and  $U \in m(\mathbf{E}, \mathbf{C})$ . Then there exists  $F$  in  $\mathbf{E}^*$  such that*

$$Uf = F * f$$

for each  $f \in \mathbf{E}$ . Conversely, if  $F \in \mathbf{E}^*$  and  $U$  is defined by the above relation, then  $U \in m_C(\mathbf{E}, \mathbf{C})$ . Hence  $(\mathbf{E}, \mathbf{C}) = \mathcal{F}\mathbf{E}^*$ . Moreover  $m(\mathbf{E}, \mathbf{C}) = m_C(\mathbf{E}, \mathbf{C})$ .

**Proof.** The converse part can obviously follow from Theorem 2.6 of [6]. To prove the direct assertion, we first observe that  $U (= U_\varphi$  for some  $\varphi \in (\mathbf{E}, \mathbf{C}))$  is closed (see the proof of 16.2.1(4) of [1, Vol. II]). Hence, by the V. Ptak's closed graph theorem [7, 12-5-7, p. 201],  $U$  is continuous. Therefore  $m(\mathbf{E}, \mathbf{C}) = m_C(\mathbf{E}, \mathbf{C})$ .

Define the linear functional  $F$  on  $\mathbf{E}$  by

$$(5.4) \quad F(f) = U \overset{\vee}{f}(0) \quad \forall f \in \mathbf{E}.$$

Since  $\mathbf{E}$  is an *LCD-space* and  $U$  is continuous then  $F \in \mathbf{E}^*$ . Replacing  $f$  by  $T_{-x}f$  in (5.4) and using the fact that  $U$  commutes with translations we find that

$$Uf(x) = F(T_x f) \quad \text{for every } x \in \mathbf{T}.$$

Hence, by Theorem 2.6 of [6],

$$Uf = F * f \quad \forall f \in \mathbf{E},$$

which proves the direct part. ■

**5.7. THEOREM.** *Let  $\mathbf{E}$  be a weakly sequentially complete LCD-space having  $C^\infty$  as a dense subset, and let  $U$  be in  $m(\mathbf{E}^*, \mathbf{C})$ . Then there exists a distribution  $f$  in  $\mathbf{E}$  such that*

$$UF = F * f$$

*for all  $F \in \mathbf{E}^*$ . Conversely, if  $f \in \mathbf{E}$  and  $U$  is defined by the above relation, then  $U \in m_C(\mathbf{E}^*, \mathbf{C})$ , where  $\mathbf{E}^*$  is endowed with the strong\* topology. Hence,  $(\mathbf{E}^*, \mathbf{C}) = \mathcal{F}\mathbf{E}$ . Moreover,  $m(\mathbf{E}^*, \mathbf{C}) = m_C(\mathbf{E}^*, \mathbf{C})$ .*

**Proof.** Let  $U \in m(\mathbf{E}^*, \mathbf{C})$ . Since  $C^\infty$  is dense in  $\mathbf{E}$  then  $(\mathbf{E}^*, \text{strong}^*)$  is an *LCD-space*, by Theorem 2.5 of [6]. By Theorem 5.5(d), there exists a distribution  $A$  in  $\mathbf{D}$  such that

$$UF = A * F \quad \text{for all } F \in \mathbf{E}^*.$$

Now take an approximate identity  $\{f_i\}_{i=1}^\infty$  consisting of trigonometric polynomials. Then  $\{f_i\} \subset \mathbf{E}^*$ . Set  $h_i = Uf_i$  for each  $i$ . Then

$$h_i = A * f_i \in \mathbf{E} \quad \text{for each } i.$$

Notice that also

$$F(h_i) = h_i * F(0) = f_i * UF(0) \rightarrow UF(0) \quad \text{as } i \rightarrow \infty$$

for each  $F \in \mathbf{E}^*$  as  $UF \in \mathbf{C}$ . Since  $\mathbf{E}$  is weakly sequentially complete, then there exists  $f \in \mathbf{E}$  such that

$$F(h_i) \xrightarrow{\vee} F(f) = f * F(0) \quad \text{as } i \rightarrow \infty$$

for each  $F \in \mathbf{E}^*$ . Hence

$$UF(0) = f * F(0) \quad \text{for all } F \in \mathbf{E}^*.$$

Now, just as in the proof of Theorem 5.6, replacing  $F$  by  $T_{-x}F$ , we can show that

$$UF(x) = f * F(x) \quad \text{for all } x \in \mathbf{T}.$$

This proves the direct part of the theorem.

Conversely, let  $UF = f * F \forall F \in \mathbf{E}^*$ . Then  $U \in m_C(\mathbf{E}^*, \mathbf{C})$  by Theorem 2.6(ii) of [6]. This together with the direct part also shows that  $m(\mathbf{E}^*, \mathbf{C}) = m_C(\mathbf{E}^*, \mathbf{C})$ . ■

The following theorem generalizes Theorem 16.3.4 of [1, Vol. II, p. 289].

**5.8. THEOREM.** *Let  $\mathbf{E}$  be a barrelled LCD-space having  $\mathbf{C}^\infty$  as a dense subset and let  $U \in m(\mathbf{M}, \mathbf{E}^*)$ . Then there exists a distribution  $A \in \mathbf{E}^*$  such that*

$$U\mu = A * \mu$$

for all  $\mu \in \mathbf{M}$ . Conversely, if  $A \in \mathbf{E}^*$  and  $U$  is defined by the above relation, then  $U \in m_C(\mathbf{M}, \mathbf{E}^*)$ , where  $\mathbf{E}^*$  is endowed with the strong\* topology. Hence,  $(\mathbf{M}, \mathbf{E}^*) = \mathcal{F}\mathbf{E}^*$ . Moreover,  $m(\mathbf{M}, \mathbf{E}^*) = m_C(\mathbf{M}, \mathbf{E}^*)$ .

**P r o o f.** Since  $\mathbf{M}$  and  $\mathbf{E}^*$  are LCD-spaces, the direct assertion follows from 5.5(d) and replacing  $f$  by  $\varepsilon_0$  (the Dirac measure at the point 0) in the relation  $Uf = A * f$  given therein.

Conversely, let  $U$  be defined by

$$U\mu = A * \mu \quad \forall \mu \in \mathbf{M},$$

where  $A \in \mathbf{E}^*$ . Since  $\mathbf{C}^\infty$  is dense in  $\mathbf{E}$  then  $\mathbf{E}' = \mathbf{E}^*$  (see [6, Th. 5.4]). By Theorem 5.8 of [6], there exists a continuous seminorm  $p$  on  $\mathbf{E}$  such that

$$|U\mu(f)| = |A * \mu(f)| \leq \|\mu\|_1 p(f) \quad \text{for all } f \in \mathbf{E} \text{ and } \mu \in \mathbf{M}.$$

Let  $\{\mu_n\}$  be a sequence converging to  $\mu$  in  $\mathbf{M}$  and  $B$  be a bounded subset of  $\mathbf{E}$ . Then there exists a constant  $k$  such that  $p(f) \leq k$  for all  $f$  in  $B$ . Hence

$$|(U\mu_n - U\mu)(f)| \leq \|\mu_n - \mu\|_1 p(f) \rightarrow 0 \quad \text{uniformly on } B \text{ as } n \rightarrow \infty.$$

Therefore, by [7, 8-5-7, p. 120],  $U\mu_n \rightarrow U\mu$  in  $(\mathbf{E}^*, \text{strong}^*)$  as  $n \rightarrow \infty$ . Hence  $U \in m_C(\mathbf{M}, \mathbf{E}^*)$ . This together with the direct assertion also shows that  $m(\mathbf{M}, \mathbf{E}^*) = m_C(\mathbf{M}, \mathbf{E}^*)$ . ■

In [1, Vol. II, 16.4.1], it is shown that  $(L^p, L^p) = (L^q, L^q)$ , where  $1 \leq p \leq \infty$  and  $\frac{1}{p} + \frac{1}{q} = 1$ . Now we extend this result to  $(C, 1)$ -perfect barrelled LCD-spaces as follows.

**5.9. THEOREM.** *Let  $\mathbf{E}$  be a  $(C, 1)$ -perfect barrelled LCD-space. Then*

$$(\mathbf{E}, \mathbf{E}) = (\mathbf{E}', \mathbf{E}').$$

**P r o o f.** Let  $\{\varphi(n)\}_{n \in \mathbb{Z}} \in (\mathbf{E}, \mathbf{E})$  and  $U_\varphi$  be the associated multiplier operator. Then  $U_\varphi \in m(\mathbf{E}, \mathbf{E})$  and, by 5.5(b), there exists a distribution  $A$  in  $\mathbf{D}$  such that  $U_\varphi f = A * f$  for every  $f$  in  $\mathbf{E}$ . Hence  $\widehat{A}(n) = \varphi(n)$  for each  $n \in \mathbb{Z}$ . Now the series

$$(5.5) \quad \sum_{-\infty}^{\infty} (A * F)^\wedge(n) \widehat{f}(-n) = \sum_{-\infty}^{\infty} \widehat{F}(n) ((A * f)^\vee)^\wedge(-n)$$

is  $(C, 1)$ -summable for all  $f \in \mathbf{E}$  and  $F \in \mathbf{E}'$  since

$$f \in \mathbf{E} \Rightarrow f^\vee \in \mathbf{E} \Rightarrow A * f^\vee \in \mathbf{E} \Rightarrow (A * f^\vee)^\vee \in \mathbf{E}.$$

So, by Theorem 5.10 of [6],  $A * F \in \mathbf{E}'$  for every  $F$  in  $\mathbf{E}'$ ; that is,  $\{\varphi(n)\}_{n \in \mathbb{Z}} \in (\mathbf{E}', \mathbf{E}')$ . Hence

$$(5.6) \quad (\mathbf{E}, \mathbf{E}) \subset (\mathbf{E}', \mathbf{E}').$$

For the reverse inclusion, let  $\{\varphi(n)\}_{n \in \mathbb{Z}} \in (\mathbf{E}', \mathbf{E}')$ . Then again the series (5.5) is  $(C, 1)$ -summable for all  $f \in \mathbf{E}$  and  $F \in \mathbf{E}'$ . Hence, by the definition of  $\mathbf{E}'$ ,  $A * \widehat{f}^\vee \in \mathbf{E}'' = \mathbf{E}$  for all  $f$  (and hence  $\widehat{f}^\vee$ ) in  $\mathbf{E}$ ; that is,  $\{\varphi(n)\}_{n \in \mathbb{Z}} \in (\mathbf{E}, \mathbf{E})$ . Thus

$$(\mathbf{E}', \mathbf{E}') \subset (\mathbf{E}, \mathbf{E}),$$

which together with (5.6) yields the desired result. ■

The following theorem generalizes Theorem 4.3 of [6].

**5.10. THEOREM.** *Let  $\mathbf{E}$  be a homogeneous LCD-space having the convex compactness property. Then each  $U \in m(\mathbf{E}, \mathbf{E})$  leaves stable on every closed invariant subspace of  $\mathbf{E}$ . Equivalently, for each  $f \in \mathbf{E}$ ,  $Uf$  is a limit in  $\mathbf{E}$  of the set of all finite linear combinations of translates of  $f$ .*

**P r o o f.** Let  $U \in m(\mathbf{E}, \mathbf{E})$ . Since  $\mathbf{E}$  is an LCD-space, then for some  $A$  in  $\mathbf{D}$ ,  $Uf = A * f$  for each  $f$  in  $\mathbf{E}$  (see 5.5(d)). Now suppose that  $V$  is a closed invariant subspace of  $\mathbf{E}$  and  $f \in V$ . Then

$$n \in Z_V \Rightarrow \widehat{f}(n) = 0 \Rightarrow (Uf)^\wedge(n) = 0.$$

Hence  $Z_V \subset Z_{Uf}$ . So, by Theorem 4.2 of [6],  $Uf \in V$ . Thus the first assertion is true.

For the second assertion, take  $\overline{V}_f$  as the closure in  $E$  of the set of all finite linear combinations of translates of  $f$ . Clearly,  $\overline{V}_f$  is a closed invariant subspace of  $E$ . Now the application of the first assertion yields the desired result. ■

### References

- [1] R. E. Edwards, *Fourier Series*, Vols. I, II, Springer-Verlag, New York, 1979, 1982.
- [2] L. Narici and E. Beckenstein, *Topological Vector Spaces*, Marcel Dekker, Inc. New York, 1985.
- [3] M. P. Singh, *On Frechet Spaces of Distributions and Multiplier Operators*, Ph.D. Thesis, University of Roorkee, Roorkee, 1991.
- [4] R. P. Sinha, *Reflexive locally convex spaces of distributions are homogeneous*, Bull. Soc. Math. Belg., Ser. B, 44 (1992), No. 1, 83-87.
- [5] R. P. Sinha, Vishnu Kant, *On the Banach space of distributions*, Bull. Soc. Math. Belg., Ser. B, 41 (1989), No. 3, 295-305.
- [6] R. P. Sinha, A. N. Mohammed, *Fourier analysis on locally convex spaces of distributions I*, Demonstratio Math. 36 (2003), No 3, 697-709.
- [7] A. Wilansky, *Modern Methods in Topological Vector Spaces*, McGraw-Hill, Inc., New York, 1978.
- [8] M. Zamansky, *Sur  $l^1$  approximation fonctiones continues periodiques*, C.R. Acad. Sci., Paris, 228 (1949), MR10, 449; 460-461.
- [9] A. Zygmund, *Trigonometric Series*, Vols. I and II, Cambridge University Press, New York, 1968.

R. P. Sinha  
 DEPARTMENT OF MATHEMATICS  
 I.I.T. ROORKEE  
 ROORKEE, INDIA- 247667  
 E-mail: rpsrpma@iitr.ernet.in

Present address of the second author:  
 Ahmed Najim Mohammed  
 DUBAI UNIVERSITY COLLEGE  
 GENERAL EDUCATION DEPARTMENT  
 P.O. BOX 14143  
 DUBAI, UNITED ARAB EMIRATES UAE  
 E-mail: amohammed@duc.ac.ae

Received July 9, 2001; revised version April 17, 2002.

