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FOURIER ANALYSIS ON LOCALLY CONVEX SPACES
OF DISTRIBUTIONS, II

Abstract. This is the second in a series of papers, extending the theory of Fourier
analysis to locally convex spaces of distributions (LC D-spaces). In this paper, LC D-spaces
admitting conjugation and multiplier operators on LC D-spaces are discussed. It is also
shown that if E is an LC D-space having C™ as a dense subset, then E*, endowed with
the topology of precompact convergence, is an LC D-space having C™ as a dense subset.

1. Introduction

We continue in this paper extending the results of Fourier analysis to
locally convex spaces of distributions (LC D-spaces) defined in [6].

In Section 3, we show that if (E,Z) is an LCD-space having C* as a
dense subset, then (E*,Z°) is also an LCD-space where I° is the topology
of precompact convergence on E*; further, for each f in E and each F' in
E*, o,f — fin E and 0,,F — F in (E*,I°%) as n — oo.

In Section 4, we give a necessary and sufficient condition for an LCD-
space to admit conjugation. In Section 5, we give several representation
theorems for multiplier operators.

2. Definitions and notations

All the notations and conventions used in [6] will be continued in this
paper. In particular, T will denote the circle group and D will denote the
space of all distributions on T. For the convenience of the reader, we repeat
the following definitions given in [6].

2.1. DEFINITION. A locally convex space F is called an LC D-space if it can
be continuously embedded into D (D having the weak* topology), and if,
regarded as a subset of D, it satisfies the following properties:

(2.1) C°° C E and the inclusion map is continuous;
(2.2) E is translation invariant and {7} | = € T}, the family of all trans-
lation operators on FE, is equicontinuous on FE;



900 R. P. Sinha, A. N. Mohammed

(2.3) f — fV is a continuous operator on E, where fV(u) = f(u") for
every u in C* and uV(t) = u(—t) for all ¢ in T.

2.2. DEFINITION. An LCD-space E is said to be homogeneous if  — T, f
is continuous from T to F for each f € E.

3. Homogeneous LCD-spaces and their duals

In this section we show that if (E,Z) is a homogeneous LC D-space,
then (E’,I°) is also a homogeneous LC D-space, where (E’,ZI°) denotes the
space E’ with the relative topology induced by Z° and Z° is the topology
of precompact convergence on E* (see (7, p. 179]). If C* is dense in E,
then E' = E* by Theorem 5.4 of [6]; in this case, we show that (E’ 7% =
(E*,TI°) also has C* as a dense subset.

3.1. LEMMA. If E is a homogeneous LC D-space and K is a totally bounded
set in E, then | J{ToK | a € T} is totally bounded in E.

Proof. Let V be a neighborhood of 0 in E; choose another neighborhood
of 0, say W, such that

(3.1) W+WcV.

Since {T, | a € T} is an equicontinuous family, there exists a neighborhood
U of 0 in E such that

(3.2) T,(UycW VaeT.
Since K is totally bounded, there exist fi,..., f2,..., fn in K such that
(3.3) Kc|J(fi+U).

i=1
Since E is homogeneous, there exists § > 0 such that, for each f in E,
(3.4) Tof —Tof € W whenever |a—b| < 4.
Let {a;,as,...,a} be a d-net in T. Then, by (3.3), we get

J{TuK |ae T} C O 0 U @fi+T.0).

i=1j=1|a—a;|<s
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Using (3.1), (3.2) and (3.4), we obtain

U{TuK lae T} OG U @fi+w)

i=1j=1|a—a;|<é

c O O(Tajfi+W+W)

i=1j=1

c U U(Tafi +V)

i=1j=1
Hence | J{T,K | a € T} is a totally bounded set in E. =

3.2. THEOREM. If (E,T) is a homogeneous LCD-space, then (E',I°) is also
a homogeneous LCD-space.

Proof. Since F is an LC D-space, the inclusion map 7 : C* — FE is con-
tinuous. Consider ¢’ : E* — D defined by,

i'(F)(u) = F(u) forall uin C* and all F in E*.

Then ¢’ is the operator dual to the map ¢, so by [7, 11-1-6], i’ is contin-
wous from (E*,o(E*, E)) to (D,o(D,C™)), and hence, from (E’,Z°) to
(D,o(D,C)). Also, as shown in the proof of Theorem 5.3 of [6], ¢’ is one
to one. Thus (E’,Z°) is continuously embedded into D. Moreover, (E’,Z°)
satisfies (2.1) because of Lemma 2.4 in [6] and the fact that C* C E’ and
7% c B(E*, E). Now, let

F={T,|T,: (E*I° — (E*,I°, a € T}.

Note that T, on E* is the operator dual to the operator T"_, on E. Let U
be a neighborhood of 0 in (E*,Z°). Then there exists a totally bounded set
B in E such that U D B°, where B° denotes the polar of B. Using 9.9.3(a)
and 9.3.7(a) of [2], we obtain

0

N @) > N TBY) = N [T-a(B)° = [ U T_,,(B)] .

a€T a€T a€T a€T
But J,c1 T—a(B) is totally bounded by Lemma 3.1, which entails that
Naet Ta *(U) is a neighborhood of 0 in (E*, Z°).Therefore  is an equicon-
tinuous family of operators on ( E*,Z°) and hence on (E’,I°) as T,(E’' C E’
for each a in T. Thus (E’,I°) satisfies (2.2) of the definition of an LCD-
space.

Now, for F' € E*, define FV by

FY(f)=F(f¥Y) forall feE.
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If we set L(f) = fY and L*(F) = FY for f in E and F in E*, then the
map L* is dual to the map L. Hence, by [7, 11-1-6], L* is continuous from
(E*, weak™) to (E*, weak™). Let U and B be as before. L is a continuous
linear operator on E, so by [7, 6-4-3], L(B) is totally bounded. Hence [L(B)]°
is a neighborhood of 0 in (E*,Z°). Now,
HelLB)°=|H(Lf)<1 VfeB

= |HY(f)|<1 VfeB

= L*HeB°cU.
So L* is continuous from (E*,Z°) to (E*,Z°). Since L*(E') C E’, L* will
also be continuous from (E’,ZI°) to (E’,I°). Thus (E’,I°) satisfies also
(2.3), and hence, (E’,I°) is an LCD-space.

Now we shall show that (E’,Z°) is homogeneous. Let F' € E*. Define
Yp: T — E*by(t)=TFVteT.

Let U and B be as before. Now V = {F}° is a neighborhood of 0 in
(E,o(E, E*)) and hence in (FE,Z). There exists a neighborhood V; of 0 in
(E,Z) such that V; + V1 +V; C V. Since {T; | t € T} is an equicontinuous
family, there exists a neighborhood W of 0 in (E,T) such that

feW=TfeV, VteT.

We may suppose that W C V;. Since B is totally bounded, there exists a
finite set A = {f1, f2,..., fn} C E such that

Bc A+ W.
As E is homogeneous, there exists § > 0 such that
t|]<éd=fi—TifieW fori=12,...,n.
Using the above relations, we can claim that, for |¢| < 4,
feB=>f=fi+w forsome f; € Aand some w € W
=>f-Tif=fi-Tifi+twv—-TiweW+W4+ViCV
=>|(F-T_F)(Hl=F(f-T:f)l <1

Therefore (F — T_;F) € B® c U for |t| < §; i.e., % is continuous on T.
Hence (E*,I°) is homogeneous. Since E’ is translation invariant, (E’,Z°)
is homogeneous as well. m

The following theorem generalizes Theorem 3.2 of [4].

3.3. THEOREM. Let (E,T) be a homogeneous LCD-space. For f in E, F in
E* andt € T, define

U(f, F)(t) = F(T.f).
Then,
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(i) f = U(f, F) is a continuous operator from E to C for each F' € E*.
(ii) F — U(f, F) is a continuous operator from (E*,I°) to C for each
feE.

Further, if C* is dense in E, U(f,F) = F x f for each f € E and
Fe E*.
Proof. (i) U(f,F) is in C as E is homogeneous, F € E* and f — fV is
continuos on E. Fix F' € E* and define
Hy(f)=F(T;f¥) forteT and f€E.
Since {T; | t € T} is an equicontinuous family of operators on E, {H; |

t € T} is also equicontinuous on E. By [2, 9.5.3], there exists a continuous
seminorm p,, on E such that

|F(T.f¥)| < pp(f) forallte T andall f € E,
that is,
(35) IU(f, F)lloo < pg(f) for all f in E.
Hence, f — U(f, F) is a continuous operator from E to C for each F in
E*.

(i) Fix f in E. Since E is a homogeneous LCD-space, the set Ay =
{TifV | t € T} is totally bounded by 3.1. Hence the polar A(} of Ay is a
neighborhood of 0 in (E*,Z°).

Now, for 0 < &’ < ¢,

Fe s’A?f = |F(T.fY)|<e' <e VteT
= [U(f, F)llo <&

Hence, F — U(f, F) is a continuous operator from (E*,Z°) to C.

Now suppose C* is dense in E. Then, by Theorem 2.5 of [6],
(E*,B(E*,E)) is an LCD-space. Let f € E and F € E*. Find {u,} C C*
such that u,, — fin E asn — oo. Then, by (i), Fxu, = U(un, F) = U(f, F)
asn — o0o. But Fxu, - Fxfasn—oo. Hence U(f,F) = Fx f. u
3.4. THEOREM. Let (E,Z) be an LCD-space having C*> as a dense subset.
Then (E*,I°) is a homogeneous LC D-space having C™ as a dense subset.
Moreover, for each F in E*, 0,F — F in (E*,I°) as n — 00; and, for each
fimE, o,f = fin E asn — oo.

Proof. Since C* is dense in E, E’ = E* by Theorem 5.4 of [6]. Hence
(E*,I°) is a homogeneous LC D-space by Theorem 3.2.

Fix F € E*. By Theorem 3.3, f — F'* f is continuous from E to C. So,
in view of (2.3), there exists a neighborhood W of 0 in E such that
(3.6) teW = |FxuY|ow <1/5=|o.F(u)| <1/5

for every nonnegative integer n.
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Let U be a neighborhood of 0 in (E*,Z°) and B be a totally bounded set
in E such that B C U. There exists a finite set A = {f1, f2,..., fx} C E
such that

BCcA+W.
For 1 < ¢ < k, there exists g; € C* such that
(3.7) f,‘, —~gi € w.

Now, for 1 < i <k,
gi €Ec® = 0,9; > g; asn — 00.
So, there exists IV such that
(3.8) n>N=>g -0, €W forl1<i<k.
Now,
feB= f=fi+u forsome f; € Aand someuec W
= f—onf=fi—gi+gi—0Ongi +ongi —Onfi +u—onu.
Therefore, for f € B and n > N, we obtain
|F(f — on )| S1F(fi — gi)| + |Fgi — ongi)| + lonF(fi — i)
+|F(u)| +|onF(u)]| <1
using (3.6) to (3.8). Hence 0,F — F € B° C U for each n > N. Therefore
onF — F in (E*,I°) as n — oo, and hence C* is dense in (E*,I°).
Applying this result to (E*,Z°) in place of (E,Z) we obtain that, for each
f in (B*,I%*, o,f — f in ((E*,I°)*,I°) as n — oo, where Z°® is the
topology of precompact convergence on (E*,ZI°)*. Now (E*,I°%)* > E and

the restriction of Z° on E is 7%, moreover, % O T (see [7, 12-1-10]).
Therefore, for each fin E, 0,f - fin Easn —00. m

4. LCD-spaces admitting conjugation
Let f bein L!, 0 < ¢ < 7, and

(@) fo = -3 [ LS =n g,
Then
42 Jim (@) = Fl) (say)

exists for almost every z [9,Vol. I; Theorem 1.4, p. 252]. Also the series S [f],
conjugate to the Fourier series S[f] of f, is (C,1)-summable to sum f(z)
almost everywhere [9, Vol. I; Theorem 1.5, p. 253]. So if fe L1, the series
§[f] is the Fourier series of f [1, Vol. I, 6.1.3, p. 88].
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When f is in L!, a necessary and sufficient condition for fto be in L! is
given in (8] and in [9, Vol. I; Exercise 5(b), p. 180], which states as follows.

4.1.If f € L!, then f € L! if and only if f.(z) tends to a limit in L! as
g — 0t.

A similar result for a continuous function is also known [9, Vol. I; Exer-
cise 5(a), p. 180], which is as follows.

4.2. Let f be a continuous and periodic function. Then a necessary and
sufficient condition for f to be (equivalent to) a continuous function is that

ﬁ(m) converges uniformly (in z) as € — 0.

If f is continuous at every point in [, 77, then, by (4.2) and the above
result,

(4.3) El_i_’r(r} fo(z) = f(z) for every z.

These results are generalized to homogeneous BD-spaces in [5] and to ho-
mogeneous F D-spaces in [3].

4.3. If f is a distribution, then its conjugate distribution, denoted by ]7, is
defined ([1, Vol. II; p. 91]) as

f=Hx{,
where the distribution H is given by
H= Z —i(sgnn)e,.
nezZ

It is easy to see that the series conjugate to the Fourier series of a distri-
bution f is the Fourier series of its conjugate distribution f.If, for0 < € < =,
H, is defined on T as follows

H.(z)=cotz/2 fore<|z|<7
=0 for 0 < |z] <€,

then H, € B (the class of all complex valued bounded Borel functions on
T); and, for f € C,

H, x f(z) = fe(z).
If f, f € C, then, by 4.2,
(4.4) fe—F inCase— 0.
Also, by [1, Vol.II, (12.8.4), p. 92],
H(u) = El_i'I(I)1+ H.(u) VYueC™.
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That is,
(4.5) He - H in(D,o(D,C*))ase — 04.

4.4. DEFINITION. An LCD-space E is said to admit conjugation if f e E
for every f in E.

4.5. THEOREM. Let E be a barrelled homogenous LCD-space having the
convezr compactness property. Then E admits conjugation if and only if, for
every f in E,
= _1iTf—T.f

4.6 =—\——74dt
(46) fe 7rS 2tant/2

€
converges in E as € — 0.

Proof. Necessary part: Suppose E admits conjugation. Fix f in E and take
H, as defined in 4.3.

Since FE is homogeneous having the convex compactness property and
H. € M, then H, x f € E by Theorem 3.4 of [6]. Moreover, by (3.1) of [6],

1

Hex f=o- VH.(t)Tof dt
_1 7Sr Lif —T+f
T 2tant/2

= f..

Define U.f = Hcx fand Uf = f Let F be in E*. Since F is a barrelled
homogeneous LC D-space having the convex compactness property, C is
dense in E by Theorem 3.2 of [6]. Moreover, since f € E, F x (f)V € C by
Theorem 2.6 of [6]. Now

(Fx [y =Fx(f)"=-Fx(f)Y €C.
Hence, by (4.3),

Frpyr© =2 b | EANCO =N 4

T e—0y 2tant/2
= — lim F(H* f).
S—'0+

Thus,

o~ ~

Jim F(Hox )= ~(Fx f)(0) = (F+ ()0 = ().
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Hence,
(4.7) Uf—Uf weaklyin E ase — 0.
Fix F € E*. Given n > 0, there exists g such that
|[F(Uef)—FUf)<n for0<e<eo.
So,
[FUN| < |FUf)|+n for0<e < eo.
For € > ¢,
|F(Uef)| = |F(He * f)| < p(He * f)

for some continuous seminorm p on E. But,
1
p(He* f) = p<2—7r | TorH(t) dt>

< 5 HTHIEO]dt.

Since {T; | t € T} is an equicontinuous family of operators on E, there
exists a continuous seminorm q on E (see (2, 9.5.3]) such that

p(Tif) <q(f) Vte'T.
Therefore, for € > &,

|[F(U )| < a(F)|Hellz < g(f) cot(eo/2).

Hence the set {U.f | 0 < € < n} is weakly bounded in E for each f in E;
and, since FE is barrelled, {U | 0 < € < 7} is an equicontinuous set by [7,
9-3-4]. Since U is linear and (4.7) holds, U is continuous by [7, Lemma 9-3-6,
p. 137] and, therefore, is bounded.

Let t(™ denote the m-th derivative of a trigonometric polynomial t¢.

Then (t,(:"/)) € C for every nonnegative integer m. Therefore, by 4.2,
U™ — U™ in C,

for every m. Hence

(4.8) Ut —» Ut in C*, and hence, in E as € — 0.

Let W be a neighborhood of 0 in E and W’ be another neighborhood of 0
such that W/ + W'+ W' C W. Since U is continuous and {U.f | 0 < € < 7}
is equicontinuous, there exists an absolutely convex neighborhood V of 0
suchthat UV C W and U VCcW for0<e<m.

For f € E, wecan find t € C* (as C™ is dense in E) such thatt € f+V.
Now, in view of (4.8),

Uf-Uf=UA(f-t)+ Ut -Ut+Ut-f)e W +W +W cCcW
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for sufficiently small € > 0. So, for each f in E,
Uf—-oUf ase— 0.

Sufficient part: Suppose f € E and lim._,q, f; exists in E. We shall
prove thgt fe—finEase—0,.
Let fo — g in E as ¢ — 04. This implies that f — g in D as € — 0.
Therefore, for every k € Z,
g9(k) = lim (H. * f)"(k)

€04
= lim He(k)f(k)
= H(k)f(k)
using (4.5). Therefore, g = H*f = fisin E. Hence E admits conjugation. m

In the above proof we have also shown that the operator U is continuous.
Hence the following is also true.

4.6. COROLLARY. If E is a barrelled homogeneous LCD-space having the
convez compactness property and E admits conjugation, then the mapping
f — [ is a continuous linear operator on E.

5. Multiplier operators

Throughout this section it will be assumed that each of F and G is an
LCD-space.

Multiplier functions ¢ of type (F, G) and associated multiplier operators
U, are defined in [1, Vol. II, p. 279]. FG will denote the set of transforms
g of elements g of G.

Theorem 16.2.1 of [1, Vol. II; p. 281] can be generalized to the form posed
below by noting the fact that any sequentially closed linear map from an
ultrabornological space to a webbed space is continuous (see [2, p. 325]).

5.1. LEMMA. Let F and G be LCD-spaces and ¢ a multiplier of type (F, G);
let U, be the associated multiplier operator. Then, (a) U, is linear, (b) U,
commutes with translations, (c) U, commutes with convolution by trigono-

metric polynomials and (d) U, is continuous whenever F is ultrabornological
and G is webbed.

The proof of the following lemma is exactly the same as that one given
for 16.2.3(1) in [1, Vol. II].

5.2. LEMMA. If U is a linear operator mapping F into G (F and G are
LCD-spaces) such that

(5.1) Utxf)=txUf
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for each trigonometric polynomial t and each f € F, then there exists a
function ¢ € (F,G) such that

(5.2) Uf=U,f forall feF.

5.3. DEFINITIONS. By an m-operator of type (F, G) we shall mean a linear
operator U from F to G, which satisfies the equation (5.1) for each trigono-
metric polynomial ¢t and each f € F. By m(F, G) we shall denote the set
of all m-operators of type (F,G). By 5.1 and 5.2, m(F, G) if and only if
there exists ¢ € (F, G) such that U = U,. By mc(F, G) we shall denote
the class of all continuous operators in m(F, G).

5.4. REMARK. Our definition of m-operators is different from that one given
in {1, Vol. I1, p. 285]— there m-operators are assumed to be continuous what
may fail in our case.

5.5. THEOREM. (a) Let U € m(F,G), F be ultrabornological and G be
webbed. Then U commutes with translations and is continuous from F to G.
Hence

m(F,G) = mc(F,G).
(b) To any U € m(C*°, D) corresponds a distribution A € D such that
(5.3) Uf=Axf

for each f in C°°. Conversely, if A € D, the equation (5.3) defines U as a
member of m(C*, D).

(c) m(C*®, D) = m(C*>,C™).

(d) If U € m(F,G) then there ezists A € D such that Uf = Ax f for
each f € F.

Proof. If U € m(F,G) then (5.2) shows that U is an associated multi-
plier operator. Hence, by 5.1(b) and (d), U commutes with translations and
is continuous. Thus our definition of m-operators coincides with that one
given in [1, Vol. I, p. 285] whenever F is an ultrabornological space and
G is a webbed space. This proves (a). Since C* is a Frechet space (hence
ultrabornological) and D is a webbed space, the statements (b) and (c) are
equivalent to the first two parts of 16.3.1 of [1, Vol. II, p. 287]. The proof
of the part (d) is the same as the proof of the fourth part of 16.3.1 of [1,
Vol. II, p. 287]. =

The following two theorems generalize Theorems 16.3.5 and 16.3.6 of [1,
Vol. II, p. 290-291].

5.6. THEOREM. Let E be a barrelled LCD-space having C* as a dense
subset and U € m(E, C). Then there exists F' in E* such that

Uf=Fxf
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for each f € E. Conversely, if F € E* and U is defined by the above
relation, then U € mg(E, C). Hence (E,C) = FE*. Moreover m(E,C) =
me(E,C).

Proof. The converse part can obviously follow from Theorem 2.6 of [6].
To prove the direct assertion, we first observe that U(= U, for some ¢ €
(E,C)) is closed (see the proof of 16.2.1(4) of [1, Vol. II}). Hence, by the
V. Ptak’s closed graph theorem [7, 12-5-7, p. 201], U is continuous. Therefore
m(E,C) =mc(E,C).

Define the linear functional F on E by

(5.4) F(f)=UJ(0) VfeE.

Since E is an LCD-space and U is continuous then F' € E*. Replacing f
by T_,f in (5.4) and using the fact that U commutes with translations we
find that

Uf(z) = F(T, }/) for every z € T.
Hence, by Theorem 2.6 of [6],
Uf=Fxf Vfe€eE,
which proves the direct part. m

5.7. THEOREM. Let E be a weakly sequentially complete LC D-space hav-
ing C* as a dense subset, and let U be in m(E*,C). Then there ezists a
distribution f in E such that

UF =Fxf

for all F € E*. Conversely, if f € E and U is defined by the above relation,
then U € mg(E*, C), where E* is endowed with the strong* topology. Hence,
(E*,C) = FE. Moreover, m(E*,C) = mg(E*,C).

Proof. Let U € m(E*, C). Since C™ is dense in E then (E*, strong*) is
an LCD-space, by Theorem 2.5 of [6]. By Theorem 5.5(d), there exists a
distribution A in D such that

UF=AxF forall Fe E*.

Now take an approximate identity {f;}2; consisting of trigonometric
polynomials. Then {f;} C E*. Set h; = U f; for each ¢. Then

hi=Axf,e E for each 1.
Notice that also

F(hi) = hi ¥ F(0) = fy x UF(0) — UF(0) asi — oo
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for each F' € E* as UF € C. Since FE is weakly sequentially complete, then
there exists f € E such that

\

F(hi) = F(f) = f  F(0) asi— oo
for each F' € E*. Hence

UF(0)= f*F(0) forall FeE".
Now, just as in the proof of Theorem 5.6, replacing F by T, F', we can show
that

UF(z)=f*F(z) forallzeT.
This proves the direct part of the theorem.
Conversely, let UF = fxF VF € E*. Then U € mg(E*, C) by Theorem

2.6(ii) of [6]. This together with the direct part also shows that m(E*,C) =
me(E*,C). n

The following theorem generalizes Theorem 16.3.4 of [1, Vol. II, p. 289].
5.8. THEOREM. Let E be a barrelled LCD-space having C* as a dense

subset and let U € m(M, E*). Then there ezists a distribution A € E* such
that

Up=Axpu
forallp € M. Conversely, if A € E* and U is defined by the above relation,

then U € mg(M, E*), where E* is endowed with the strong* topology.
Hence, (M, E*) = FE*. Moreover, m(M, E*) = mc(M, E*).

Proof. Since M and E* are LC D-spaces, the direct assertion follows from
5.5(d) and replacing f by &o (the Dirac measure at the point 0) in the
relation U f = A * f given therein.
Conversely, let U be defined by
Up=Axp VueM,

where A € E*. Since C*™ is dense in E then E' = E* (see [6, Th. 54 ]). By
Theorem 5.8 of [6], there exists a continuous seminorm p on E such that

Un(f)] = A p(H)| < lullip(f) forall f € E and pe M.

Let {¢n} be a sequence converging to p in M and B be a bounded subset
of E. Then there exists a constant k such that p(f) < k for all f in B. Hence

(Ut = Un(£)| < lltn — ullip(f) = 0 uniformly on B as n — oo,

Therefore, by [7, 8-5-7, p. 120], Up, — Up in (E*, strong*) as n — oo.
Hence U € mg(M, E*). This together with the direct assertion also shows
that m(M, E*) = m¢(M,E*). m
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In (1, Vol. II, 16.4.1], it is shown that (L?, L?) = (L9, L9), where 1 <
p<ooandi s+e i_ 1. Now we extend this result to (C, 1)-perfect barrelled
LCD- spaces as ?ollows

5.9. THEOREM. Let E be a (C,1)-perfect barrelled LC D-space. Then
(E,E)=(E',E').

Proof. Let {¢(n)}necz € (E, E) and U, be the associated multiplier oper-
ator. Then U, € m(E, E) and, by 5.5(b), there exists a distribution A in D

such that U, f = Ax f for every f in E. Hence A(n) = ¢(n) for each n € Z.
Now the series

(5.5) Z(A*F) (n) (—n ZF (A*f)") n)

is (C, 1)-summable for all f € E and F € E’ since
fEE=f'eE=A«xf e E= (Ax Y)Y

So, by Theorem 5.10 of [6], AxF € E’ for every F'in E’; thatis, {¢(n)}nez €
(E', E'). Hence

(5.6) (E,E) C (E', E").

For the reverse inclusion, let {¢(n)}nez € (E’, E’). Then again the
series (5.5) is (C, 1)- summable forall f € E and F € E’ Hence, by the

definition of E’, A f € E" = FE for all f (and hence f) in E; that is,
{e(n)}nez € (E, E). Thus

(E',E') C (E, E),
which together with (5.6) yields the desired result. =
The following theorem generalizes Theorem 4.3 of [6].

5.10. THEOREM. Let E be a homogeneous LCD-space having the convez
compactness property. Then each U € m(E, E) leaves stable on every closed
invariant subspace of E. Equivalently, for each f € E, Uf is a limit in E
of the set of all finite linear combinations of translates of f.

Proof. Let U € m(E, E). Since E is an LCD-space, then for some A in
D,Uf = Axf for each f in E (see 5.5(d)). Now suppose that V' is a closed
invariant subspace of E and f € V. Then

neZy = f(n)=0= (Uf) n)=0.

Hence Zy C Zyy. So, by Theorem 4.2 of [6], U f € V. Thus the first assertion
is true.
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For the second assertion, take Vf as the closure_ in E of the set of all
finite linear combinations of translates of f. Clearly, V' is a closed invariant
subspace of E. Now the application of the first assertion yields the desired
result. m

References

[1] R.E. Edwards, Fourier Series, Vols. I, II, Springer-Verlag, New York, 1979, 1982.

[2] L. Narici and E. Beckenstein, Topological Vector Spaces, Marcel Dekker, Inc.
New York, 1985.

[3] M. P. Singh, On Frechet Spaces of Distributions and Multiplier Operators, Ph.D.
Thesis, University of Roorkee, Roorkee, 1991.

[4] R. P.Sinha, Reflezive locally convez spaces of distributions are homogeneous, Bull.
Soc. Math. Belg., Ser. B, 44 (1992), No. 1, 83-87.

[5] R.P.Sinha, Vishnu Kant, On the Banach space of distributions, Bull. Soc. Math.
Belg., Ser. B, 41 (1989), No. 3, 295-305.

[6] R.P.Sinha, A. N. Mohammed, Fourier analysis on locally convez spaces of dis-
tributions I, Demonstratio Math. 36 (2003), No 3, 697-709.

[7] A. Wilansky, Modern Methods in Topological Vector Spaces, McGraw-Hill, Inc.,
New York, 1978.

[8] M. Zamansky, Sur 1} approzimation fonctiones continues periodiques, C.R. Acad.
Sci., Paris, 228 (1949), MR10, 449; 460-461.

9] A. Zygmund, Trigonometric Series, Vols. I and II, Cambridge University Press,
New York, 1968.

R. P. Sinha

DEPARTMENT OF MATHEMATICS
LLT. ROORKEE

ROORKEE, INDIA- 247667

E-mail: rpsrpfma@iitr.ernet.in

Present address of the second author:
Ahmed Najim Mohammed

DUBAI UNIVERSITY COLLEGE
GENERAL EDUCATION DEPARTMENT
P.O. BOX 14143

DUBAI, UNITED ARAB EMIRATES UAE

E-mail: amohammed@duc.ac.ae

Received July 9, 2001; revised version April 17, 2002.






