

Oktay Duman

STATISTICAL APPROXIMATION FOR PERIODIC FUNCTIONS

Abstract. In this paper we study a Korovkin type approximation theorem for positive linear operators on the space of all 2π -periodic and continuous functions on the whole real axis via A -statistical convergence.

1. Introduction

The approximation theory which has a close relationship with other branches of mathematics has been used in the theory of polynomial approximation and various domains of functional analysis [1], in numerical solutions of differential and integral operators [16], in the studies of the interpolation operator of Hermit-Fejér [2], [3], [4], [5] and the partial sums of Fourier series [17]. In recent years some Korovkin type approximation theorems have been studied via the concept of statistical convergence [13]. In the present paper using A -statistical convergence we study the approximation properties of sequence of positive linear operators on the space of all 2π -periodic and continuous functions on the whole real axis.

Now we recall the concept of A -statistical convergence. Let $A := (a_{nk})$, $n, k = 1, 2, \dots$, be an infinite summability matrix. For a given sequence $x := (x_k)$, the A -transform of x , denoted by $Ax := ((Ax)_n)$, is given by

$$(Ax)_n := \sum_{k=1}^{\infty} a_{nk} x_k,$$

provided the series converges for each n . A is said to be regular if $\lim_n (Ax)_n = L$ whenever $\lim x = L$ [14]. Then $\lim_n a_{nk} = 0$ for all $k \in \mathbb{N}$.

This research was supported by the Scientific and Technical Research Council of Turkey.

Key words and phrases: A -statistical convergence, sequence of positive linear operators, the Korovkin type theorem.

1991 *Mathematics Subject Classification:* 41A25, 41A36.

Suppose that A is non-negative regular summability matrix. Then x is A -statistically convergent to L if for every $\varepsilon > 0$

$$\lim_n \sum_{k:|x_k-L|\geq\varepsilon} a_{nk} = 0.$$

In this case we write $st_A - \lim x = L$ [6], [9], [11], [15], [18]. The case in which $A = C_1$, the Cesáro matrix of order one, reduces to the statistical convergence [7], [8], [10], [12], [19].

2. A Korovkin Type Theorem

In the ordinary case the classical Korovkin theorem states that:

If $\{L_n\}$ is a sequence of positive linear operators such that the sequences $\{L_n(1; x) - 1\}$, $\{L_n(\cos t; x) - \cos x\}$ and $\{L_n(\sin t; x) - \sin x\}$ converge uniformly to zero in the interval $[a, b]$, then the sequence $\{L_n\}$ converge uniformly to the function f in this interval in case the function f is bounded, has period 2π , is continuous in the interval $[a, b]$.

We denote by C^* the space of all 2π -periodic and continuous functions on \mathbb{R} , the set of all real numbers. This space is equipped with the supremum norm

$$\|f\|_{C^*} = \sup_{x \in \mathbb{R}} |f(x)|, \quad (f \in C^*).$$

Now let $A = (a_{nk})$ be a non-negative regular summability matrix. Our primary interest is to study the approximation properties of sequence of positive linear operators on the space C^* via A -statistical convergence. Theorem 1 is the main result of the present paper.

THEOREM 1. *Let $A = (a_{nk})$ be a non-negative regular summability matrix, and let $\{L_n\}$ be a sequence of positive linear operators mapping C^* into C^* . Then, for all $f \in C^*$*

$$st_A - \lim \|L_n(f; x) - f(x)\|_{C^*} = 0$$

if and only if the following statements hold:

- (a) $st_A - \lim_n \|L_n(1; x) - 1\|_{C^*} = 0$,
- (b) $st_A - \lim_n \|L_n(\cos t; x) - \cos x\|_{C^*} = 0$,
- (c) $st_A - \lim_n \|L_n(\sin t; x) - \sin x\|_{C^*} = 0$.

P r o o f. Since the necessity is clear, then it is enough to prove the sufficiency. Assume that the conditions (a), (b) and (c) are satisfied. Let $f \in C^*$ and I be a closed subinterval of length 2π of \mathbb{R} . Fix $x \in I$. By the continuity of f at x , given $\varepsilon > 0$ there exists a $\delta > 0$ such that $|f(t) - f(x)| < \varepsilon$ for all

t satisfying $|t - x| < \delta$. Now consider the subinterval $(x - \delta, 2\pi + x - \delta]$ of length 2π . It is well-known that, for all $t \in (x - \delta, 2\pi + x - \delta]$, the inequality

$$(1) \quad |f(t) - f(x)| < \varepsilon + \frac{2M_f}{\sin^2 \frac{\delta}{2}} \psi(t)$$

holds, where $\psi(t) := \sin^2(\frac{t-x}{2})$ and $M_f := \|f\|_{C^*}$. Inequality (1) also holds for all $t \in \mathbb{R}$ (see [16], the proof of Theorem 2). By using (1), as in the proof of Theorem 4 in [16], we have

$$\begin{aligned} |L_n(f; x) - f(x)| &< (\varepsilon + |f(x)|) |L_n(1; x) - 1| + \varepsilon + \frac{M_f}{\sin^2 \frac{\delta}{2}} \{ |L_n(1; x) - 1| \\ &\quad + |\cos x| |L_n(\cos t; x) - \cos x| \\ &\quad + |\sin x| |L_n(\sin t; x) - \sin x| \} \\ &< \varepsilon + (\varepsilon + |f(x)| + \frac{M_f}{\sin^2 \frac{\delta}{2}}) \{ |L_n(1; x) - 1| \\ &\quad + |L_n(\cos t; x) - \cos x| + |L_n(\sin t; x) - \sin x| \} \end{aligned}$$

which in turn implies that

$$(2) \quad \|L_n(f; x) - f(x)\|_{C^*} < \varepsilon + B \{ \|L_n(1; x) - 1\|_{C^*} \\ + \|L_n(\cos t; x) - \cos x\|_{C^*} \\ + \|L_n(\sin t; x) - \sin x\|_{C^*} \},$$

where $B := \sup_{x \in I} \{ \varepsilon + |f(x)| + \frac{M_f}{\sin^2 \frac{\delta}{2}} \}$.

Now given $r > 0$, choose $\varepsilon > 0$ such that $\varepsilon < r$, and define

$$\begin{aligned} D &:= \{ n : \|L_n(1; x) - 1\|_{C^*} + \|L_n(\cos t; x) - \cos x\|_{C^*} \\ &\quad + \|L_n(\sin t; x) - \sin x\|_{C^*} \geq \frac{r - \varepsilon}{B} \}, \\ D_1 &:= \{ n : \|L_n(1; x) - 1\|_{C^*} \geq \frac{r - \varepsilon}{3B} \}, \\ D_2 &:= \{ n : \|L_n(\cos t; x) - \cos x\|_{C^*} \geq \frac{r - \varepsilon}{3B} \}, \\ D_3 &:= \{ n : \|L_n(\sin t; x) - \sin x\|_{C^*} \geq \frac{r - \varepsilon}{3B} \}. \end{aligned}$$

One can easily show that $D \subset D_1 \cup D_2 \cup D_3$. By (2) we may write

$$\sum_{k: \|L_k(f; x) - f(x)\|_{C^*} \geq r} a_{nk} \leq \sum_{k \in D} a_{nk} \leq \sum_{k \in D_1} a_{nk} + \sum_{k \in D_2} a_{nk} + \sum_{k \in D_3} a_{nk}.$$

Now taking limit as $n \rightarrow \infty$, (a), (b) and (c) yield the result. ■

3. Applications and remarks

In this section we will give an example which satisfies Theorem 1 but not the classical Korovkin theorem. We also deal with the Weierstrass' second approximation theorem via A -statistical convergence.

Since the sequence of Fejér means of Fourier series of $f \in C^*$ satisfies the classical Korovkin theorem, it also satisfies the present Theorem 1.

Now we exhibit of a sequence of positive linear operators that satisfies Theorem 1 but not the classical Korovkin theorem.

EXAMPLE 1. Assume that $A = (a_{nk})$ is a non-negative regular summability matrix such that $\lim_n \max_k \{a_{nk}\} = 0$. In this case A -statistical convergence is stronger than ordinary convergence [15]. So we can choose a non-negative sequence $\{u_n\}$ which is A -statistical null but not convergent. Define the positive linear operators P_n on the space C^* by

$$P_n(f; x) = (1 + u_n)F_n(f; x)$$

where $\{F_n\}$ is the sequence of Fejér operators. Then observe that the sequence $\{P_n\}$ satisfies Theorem 1, but not the classical Korovkin theorem since (u_n) is not convergent.

Weierstrass' second approximation theorem asserts that if $f \in C^*$, then there is a sequence of trigonometric polynomials $\{F_n\}$ such that it converges uniformly to the function f in the interval $[-\pi, \pi]$. In this case it is clear that Theorem 1 also holds. Now is there a sequence of polynomials which satisfies Theorem 1 but not Weierstrass' second approximation theorem? Actually, Example 1 answers this question positively. So we can state this situation formally as follows.

PROPOSITION 1. *If $f \in C^*$, then there is a sequence of trigonometric polynomials which is A -statistically uniformly convergent to f on $[-\pi, \pi]$ but not uniformly convergent.*

Observe that Fejér operators may be written in the form of

$$F_n(f; x) = \frac{a_0}{2} + \sum_{k=1}^n \frac{n-k}{n} (a_k \cos kx + b_k \sin kx).$$

where a_k, b_k are the Fourier coefficients of f . (see, e.g., [16]). We now consider the linear operator T_n defined by

$$(3) \quad T_n(f; x) := \frac{a_0}{2} + \sum_{k=1}^n \rho_k^{(n)} (a_k \cos kx + b_k \sin kx),$$

where $\{\rho_k^{(n)}\}$ ($n = 1, 2, 3, \dots$; $k = 1, 2, 3, \dots, n$) is a matrix of real numbers and a_k and b_k are the Fourier coefficients of f . This "general" method is also well-known (see [16], Chap. II, Sect. 3).

Now we have the following theorem.

THEOREM 2. *Let $A = (a_{nk})$ be a non-negative regular summability matrix. Assume that the following statements are satisfied:*

- (i) $st_A - \lim_n \rho_1^{(n)} = 1$,
- (ii) $\frac{1}{2} + \sum_{k=1}^n \rho_k^{(n)} \cos t \geq 0, -\pi \leq t \leq \pi$.

Then for all $f \in C^$*

$$st_A - \lim \|T_n(f; x) - f(x)\|_{C^*} = 0$$

where $\{T_n\}$ is the sequence of linear operators given by (3).

The above result follows from Theorem 1 (see also [16], the proof of Theorem 13).

References

- [1] F. Altomare, M. Campiti, *Korovkin Type Approximation Theory and Its Application*, Walter de Gruyter Publ. Berlin, 1994.
- [2] R. Bojanic, F. Cheng, *Estimates for the rate of approximation of functions of bounded variation by Hermite-Fejér polynomials*, Proceedings of the conference of Canadian Math. Soc. 3 (1983), 5–17.
- [3] R. Bojanic, M. K. Khan, *Summability of Hermite-Fejér interpolation for functions of bounded variation*, J. Nat. Sci. Math. 32 No. 1 (1992), 5–10.
- [4] E. W. Cheney, *Introduction to Approximation Theory*, AMS Chelsea Publishing, 2000.
- [5] R. A. Devore, *The Approximation of Continuous Functions by Positive Linear Operators*, Lecture Notes in Mathematics, Springer-Verlag, 293 (1972), Berlin.
- [6] J. S. Connor, *On strong matrix summability with respect to a modulus and statistical convergence*, Canad. Math. Bull. 32 (1989), 194–198.
- [7] J. S. Connor, *The statistical and strong p -Cesáro convergence of sequences*, Analysis 8 (1988), 47–63.
- [8] H. Fast, *Sur la convergence statistique*, Colloq. Math. 2 (1951), 241–244.
- [9] A. R. Freedman, J.J. Sember, *Densities and summability*, Pacific J. Math. 95 (1981), 293–305.
- [10] J. A. Fridy, *On statistitcal convergence*, Analysis 5 (1985), 301–313.
- [11] J. A. Fridy and H. I. Miller, *A matrix characterization of statistical convergence*, Analysis 11 (1991), 59–66.
- [12] J. A. Fridy, C. Orhan, *Statistical limit superior and limit inferior*, Proc. Amer. Math. Soc. 125 (1997), 3625–3631.
- [13] A. D. Gadjiev, C. Orhan, *Some approximation theorems via statistical convergence*, Rocky Mountain J. Math. 32 (2002), 129–138.
- [14] G. H. Hardy, *Divergent Series*, Oxford Univ. Press, London, 1949.
- [15] E. Kolk, *Matrix summability of statistically convergent sequences*, Analysis 13 (1993), 77–83.

- [16] P. P. Korovkin, *Linear Operators and The Theory of Approximation*, India, Delhi, 1960.
- [17] B. Kuttner, *On the Gibbs phenomenon for Riesz means*, J. London Math. Soc. 19 (1944), 153–161.
- [18] H. I. Miller, *A measure theoretical subsequence characterization of statistical convergence*, Trans. Amer. Math. Soc. 347 (1995), 1811–1819.
- [19] H. I. Miller, C. Orhan, *On almost convergent and statistically convergent subsequences*, Acta. Math. Hungar. 93 (1-2) (2001), 135–151.

ANKARA UNIVERSITY
FACULTY OF SCIENCE
DEPARTMENT OF MATHEMATICS
TANDOĞAN 06100, ANKARA, TURKEY
e-mail: oduman@science.ankara.edu.tr

Received April 15, 2002; revised version January 29, 2003.