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STATISTICAL APPROXIMATION
FOR PERIODIC FUNCTIONS

Abstract. In this paper we study a Korovkin type approximation theorem for positive
linear operators on the space of all 27-periodic and continuous functions on the whole real
axis via A-statistical convergence.

1. Introduction

The approximation theory which has a close relationship with other
branches of mathematics has been used in the theory of polynomial approxi-
mation and various domains of functional analysis [1], in numerical solutions
of differential and integral operators [16], in the studies of the interpolation
operator of Hermit-Fejér [2], [3], [4], [5] and the partial sums of Fourier series
[17]. In recent years some Korovkin type approximation theorems have been
studied via the concept of statistical convergence [13]. In the present paper
using A—statistical convergence we study the approximation properties of
sequence of positive linear operators on the space of all 2r—periodic and
continuous functions on the whole real axis.

Now we recall the concept of A—statistical convergence. Let A := (ank),
n, k = 1,2,..., be an infinite summability matrix. For a given sequence
z := (zx), the A—transform of z, denoted by Az := ((Az),), is given by

(Az)n = Z AnkTk,
k=1

provided the series converges for each n. A is said to be regular if lim, (Az),
= L whenever limz = L [14]. Then lim, apx = 0 for all k € N.
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Suppose that A is non-negative regular summability matrix. Then z is
A-statistically convergent to L if for every € > 0

lim ) an=0.
k:|z)—L|>e
In this case we write st4 — limz = L [6], [9], [11], [15], [18]. The case in

which A = C;, the Cesiro matrix of order one, reduces to the statistical
convergence [7], [8], [10], [12], [19].

2. A Korovkin Type Theorem

In the ordinary case the classical Korovkin theorem states that:

If {L,} is a sequence of positive linear operators such that the sequences
{Ln(1;2) — 1}, {Ln(cost; z) — cosz} and {L,(sint;z) —sinz} converge uni-
formly to zero in the interval [a,d], then the sequence {L,} converge uni-
formly to the function f in this interval in case the function f is bounded,
has period 2, is continuous in the interval [a, b].

We denote by C* the space of all 27-periodic and continuous functions
on R, the set of all real numbers. This space is equipped with the supremum
norm

Iflige =sup|f(z)|, (f€C).
z€eR

Now let A = (a,x) be a non-negative regular summability matrix. Our
primary interest is to study the approximation properties of sequence of pos-
itive linear operators on the space C* via A-statistical convergence. Theorem
1 is the main result of the present paper.

THEOREM 1. Let A = (ank) be a non-negative regular summability matriz,

and let {L,} be a sequence of positive linear operators mapping C* into C*.
Then, for all f € C*

sta — im || Lo(f;2) — f(z)llce =0
if and only if the following statements hold:
(@) sta ~lig | En(1i2) = - =0,
(b) stg — lim | Ln(cost;z) — cosz|| o =0,
(c) sta— 1i7rln | Ln(sint; ) — sinz| 5. = 0.
Proof. Since the necessity is clear, then it is enough to prove the sufficiency.
Assume that the conditions (a), (b) and (c) are satisfied. Let f € C* and I

be a closed subinterval of length 27 of R. Fix z € I. By the continuity of
f at x, given £ > 0 there exists a § > 0 such that |f(t) — f(z)| < € for all
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t satisfying |t — z| < §. Now consider the subinterval (z — 4,27 + = — 4] of
length 27. It is well-known that, for all t € (z — 6, 27 + = — §], the inequality

@ 70 - f@) <o+ 2754()
2

holds, where 1(t) := sin?(45%) and My := || f(|c. . Inequality (1) also holds
for all t € R (see [16], the proof of Theorem 2). By using (1), as in the proof
of Theorem 4 in [16], we have

[Ln(f52) = £(@)| < (e + @D ali2) 1+ & + S f 5 {|Ln(1i2) - 1
2

+ | cosz| |Ln(cost; z) — cos z|

+ |sinz| |Ln(sint; z) — sinz|}
M
<e+ e+ @)+ ) {ILa(Liz) ~ 1
sSin 3

+ |Ln(cost; ) — cosz| + |Ln(sint; =) — sinz|}
which in turn implies that

(2) [Ln(f;2) = f(@)llo+ < €+ B{[|La(1;2) - 1]ic-
’ + || Ln(cost; z) — cos || o
+ || Ln(sint; z) —sinz||s },
where B := su;;{e + |f(z)] + ﬁlﬁ%}

€ 2

Now given r > 0, choose £ > 0 such that € < r, and define

D:= {n:|Ln(1;2) — 1|lgs + ||Ln(cost; z) — cosz||on

+ |[Ln(sint; z) — sinz||ga > %}7
r—e¢
Dy :={n: |La(L;2) = Ullo» 2 55}

Dy :={n :||Ly(cost;x) — cosz|se > T———E},

r=—=¢
3B >
One can easily show that D C D; U Dy U D3. By (2) we may write

Qnk < Zanks Z Qnk + Z Ank + Z Ank-

k|| Li(fiz)—f (@)l 27 keD keDy keD» keDs

D3 :={n:||La(sint;z) —sinz| . >

Now taking limit as n — 00, (a), (b) and (c) yield the result. m
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3. Applications and remarks

In this section we will give an example which satisfies Theorem 1 but not
the classical Korovkin theorem. We also deal with the Weierstrass’ second
approximation theorem via A-statistical convergence.

Since the sequence of Fejér means of Fourier series of f € C* satisfies
the classical Korovkin theorem, it also satisfies the present Theorem 1.

Now we exhibit of a sequence of positive linear operators that satisfies
Theorem 1 but not the classical Korovkin theorem.

EXAMPLE 1. Assume that A = (a,k) is a non-negative regular summability
matrix such that lim, max{a,i} = 0. In this case A-statistical convergence
is stronger than ordinary convergence [15]. So we can choose a non-negative
sequence {u,} which is A-statistical null but not convergent. Define the
positive linear operators P, on the space C* by

Po(fiz) = (1 + un) Fu(f; 2)
where {F,} is the sequence of Fejér operators. Then observe that the se-

quence {P,} satisfies Theorem 1, but not the classical Korovkin theorem
since (u,) is not convergent.

Weierstrass’ second approximation theorem asserts that if f € C*, then
there is a sequence of trigonometric polynomials {F},} such that it converges
uniformly to the function f in the interval [—m,n]. In this case it is clear
that Theorem 1 also holds. Now is there a sequence of polynomials which
satisfies Theorem 1 but not Weierstrass’ second approximation theorem?
Actually, Example 1 answers this question positively. So we can state this
situation formally as follows.

PRroPoSITION 1. If f € C*, then there is a sequence of trigonometric poly-
nomials which is A-statistically uniformly convergent to f on [—=,w| but not
uniformly convergent.

Observe that Fejér operators may be written in the form of
a " n—k
Fu(fiz)= 5+
2 k=1

n
where ag, by are the Fourier coefficients of f.(see, e.g., [16]). We now consider
the linear operator T;, defined by

(ak cos kx + b sin k).

(3) To(f;z) := % + E pfc")(a,c coskz + by sinkzx),

k=1
where {pi")} (n=1,2,3,..; k =1,2,3,...,n) is a matrix of real numbers
and a; and by are the Fourier coefficients of f. This “general” method is
also well-known (see [16], Chap. II, Sect. 3).
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Now we have the following theorem.

THEOREM 2. Let A = (ank) be a non-negative regular summability matriz.
Assume that the following statements are satisfied:

(n) _

(i) sta —limp;™ =1,

n
(ii) %+ > pi")costZO, —r <t
k=1

Then for all f € C*

sta —lim |Ta(f;2) = f(@)llge = 0

where {T,} is the sequence of linear operators given by (3).

The above result follows from Theorem 1 (see also [16], the proof of

Theorem 13).
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