

Binod Chandra Tripathy

ON A CLASS OF DIFFERENCE SEQUENCES
RELATED TO THE p -NORMED SPACE ℓ^p

Abstract. In this article we introduce the difference sequence space $m(\Delta, \phi, p)$, $0 < p < 1$, which is related to the p -normed space $\ell^p(\Delta)$ (i.e. bv_p). We study its different properties like solidity, symmetricity, completeness etc. We prove some inclusion results and verify its relations with the other sequence spaces.

1. Introduction

The sequence space $m(\phi)$ was introduced by Sargent [4], who studied its different properties and obtained its relation with the sequence space ℓ^p , $(p \geq 1)$. Following the idea, Tripathy and Sen [7] defined p -normed space $m(\phi, p)$, $0 < p < 1$ and studied its different properties. They obtained necessary and sufficient conditions on the sequence ϕ_s for establishing its relationship with the p -normed space ℓ^p . The notion of difference sequence space was introduced by Kizmaz [1], who studied their different topological properties. In this article we introduce the difference sequence space $m(\Delta, \phi, p)$, $0 < p < 1$, which is related to the p -normed sequence space $\ell^p(\Delta)$ (i.e. bv_p) and study its different properties.

The sequence space $m(\phi)$ was introduced by Sargent [4]. He studied some of its properties and obtained its relationship with the space ℓ^p . Later on it was investigated from sequence space point of view and related with summability theory by Rath and Tripathy [3], Tripathy and Sen ([6], [7]) and others.

Throughout the article w , c , c_0 , ℓ^p , ℓ^∞ denote the spaces of *all, convergent, null, p -absolutely summable* and *bounded* sequences respectively. The zero sequence $(0, 0, 0, -, -, -, -)$ is denoted by θ .

Let P_s denote the class of all subsets of N , which do not contain more than s elements. Throughout $\{\phi_n\}$ represents a non-decreasing sequence of real numbers such that

$$n\phi_{n+1} \leq (n+1)\phi_n \quad \text{for all } n \in N.$$

The class of all these sequences $\{\phi_n\}$ is denoted by Φ .

The notion of difference sequence was introduced by Kizmaz [1] recently. He studied some of the properties of the difference sequence spaces

$$X(\Delta) = \{x = (x_k) \in w : (\Delta x_k) \in X\}$$

for $X = c, c_0$ and ℓ^∞ , where $\Delta x_k = x_k - x_{k+1}$, for all $k \in N$.

2. Definitions and background

Let x be a sequence, then $S(x)$ denote the set of all permutations of the elements of $x = (x_k)$ i.e. $S(x) = \{(x_{\pi(n)}) : \pi(n) \text{ is a permutation on } N\}$. A sequence space E is said to be symmetric if $S(x) \subset E$ for all $x \in E$.

A sequence space E is said to be *solid (or normal)* if $(y_k) \in E$, whenever $(x_k) \in E$ and $|y_k| \leq |x_k|$ for all $n \in N$. Equivalently $(\alpha_k x_k) \in E$, whenever $(x_k) \in E$ for all sequences of scalars (α_k) with $|\alpha_k| \leq 1$, for all $k \in N$.

The space $m(\phi)$ introduced by Sargent [4] is defined as

$$m(\phi) = \{(x_k) \in w : \|x_k\| = \sup_{s \geq 1, \sigma \in P_s} \frac{1}{\phi_s} \sum_{k \in \sigma} |x_k| < \infty\}.$$

For $0 < p < 1$, we introduce the difference sequence space $m(\Delta, \phi, p)$ as follows :

$$m(\Delta, \phi, p) = \{(x_k) \in w : \sup_{s \geq 1, \sigma \in P_s} \frac{1}{\phi_s} \sum_{k \in \sigma} |\Delta x_k|^p < \infty\}.$$

Replacing x_k in place of Δx_k in the above definition we get the sequence space $m(\phi, p)$, ($0 < p < 1$) introduced and studied by Tripathy and Sen [7].

The space $\ell^p(\Delta) = bv_p$, for $0 < p < 1$ is defined as follows (Rath [2]):

$$bv_p = \{(x_k) \in w : \sum_{k=1}^{\infty} |\Delta x_k|^p < \infty\}.$$

The following results will be used for establishing the results of this article.

LEMMA 1 (Sargent [4], Lemma 10). *In order that $m(\phi) \subseteq m(\psi)$, it is necessary and sufficient that $\sup_{s \geq 1} \left(\frac{\phi_s}{\psi_s}\right) < \infty$.*

LEMMA 2 (Sargent [4], Lemma 11). (i) $\ell \subseteq m(\phi) \subseteq \ell^\infty$ for all ϕ of Φ .

- (ii) $m(\phi) = \ell$ if and only if $\lim_{s \rightarrow \infty} \phi_s < \infty$.
- (iii) $m(\phi) = \ell^\infty$ if and only if $\lim_{s \rightarrow \infty} (\frac{\phi_s}{s}) > 0$.

3. Main results

In this section we prove the results of this article.

The proof of the following result is a routine work.

PROPOSITION 1. $m(\Delta, \phi, p)$ is a p -normed space, p -normed by

$$g_\Delta(x) = |x_1|^p + \sup_{s \geq 1, \sigma \in P_s} \frac{1}{\phi_s} \sum_{k \in \sigma} |\Delta x_k|^p.$$

THEOREM 2. The space $m(\Delta, \phi, p)$ is complete.

Proof. Let (x^n) be a Cauchy sequence in $m(\Delta, \phi, p)$, where $x^n = (x_k^n)_{k=1}^\infty$, for all $n \in N$. Then we have $g_\Delta(x^i - x^j) \rightarrow 0$, as $i, j \rightarrow \infty$.

Then for a given $\varepsilon > 0$, there exists $n_0 \in N$ such that

$$g_\Delta(x^i - x^j) < \varepsilon \text{ for all } i, j \geq n_0.$$

$$(1) \Rightarrow |x_1^i - x_1^j|^p + \sup_{s \geq 1, \sigma \in P_s} \frac{1}{\phi_s} \sum_{k \in \sigma} |\Delta(x_k^i - x_k^j)|^p < \varepsilon, \text{ for all } i, j \geq n_0.$$

$\Rightarrow (x_1^i)_{i=1}^\infty$ and $(\Delta x_k^i)_{i=1}^\infty$ are Cauchy sequences in C .

Since C is complete, so these sequences will converge in C . Let $(x_1^i)_{i=1}^\infty$ converges to x_1 and $(\Delta x_k^i)_{i=1}^\infty$ converge to y_k for all $k \in N$. Now we have

$$\lim_{i \rightarrow \infty} x_2^i = \lim_{i \rightarrow \infty} (x_1^i - \Delta x_1^i) = x_1 - y_1.$$

Proceeding in this way we have $\lim_{i \rightarrow \infty} x_{k+1}^i = y_k - x_k$ for all $k \in N$, where $x_k = \lim_{i \rightarrow \infty} x_k^i$.

Now taking the limit as $j \rightarrow \infty$ in (1) we have

$$|x_1^i - x_1^j|^p + \sup_{s \geq 1, \sigma \in P_s} \frac{1}{\phi_s} \sum_{k \in \sigma} |\Delta x_k^i - \Delta x_k^j|^p < \varepsilon \text{ for all } i \geq n_0.$$

$\Rightarrow (x_k^i - x_k) \in m(\Delta, \phi, p)$. Without loss of generality let $i \geq n_0$, then $x^i \in m(\Delta, \phi, p)$ and $x - x^i \in m(\Delta, \phi, p)$ implies that $x = x^i + x - x^i \in m(\Delta, \phi, p)$, since $m(\Delta, \phi, p)$ is linear. Thus $m(\Delta, \phi, p)$ is complete.

THEOREM 3. The space $m(\Delta, \phi, p)$ is a K -space.

Proof. Let $g_{\Delta}(x^n - x) \rightarrow 0$, as $n \rightarrow \infty$. Then for a given $\varepsilon > 0$, there exists $n_0 \in N$ such that

$$g_{\Delta}(x^n - x) < \varepsilon \quad \text{for all } n \geq n_0.$$

$$(2) \Rightarrow |x_1^n - x_1|^p + \sup_{s \geq 1, \sigma \in P_s} \sum_{k \in \sigma} |\Delta(x_k^n - x_k)|^p < \varepsilon, \quad \text{for all } n \geq n_0.$$

From (2) it follows that

$$|x_1^n - x_1|^p < \varepsilon, \quad \text{for all } n \geq n_0.$$

$$(3) \Rightarrow x_1^n \rightarrow x_1, \quad \text{as } n \rightarrow \infty.$$

From (2) on considering $s = 1$ and $k = 1$, we have

$$(4) \quad |(x_1^n - x_1) - (x_2^n - x_2)| < \varepsilon \phi_1, \quad \text{for all } n \geq n_0.$$

From (3) and (4) it follows that

$$|x_2^n - x_2| < \varepsilon(1 + \phi_1),$$

for all $n \geq n_0$.

$$\Rightarrow \lim_{n \rightarrow \infty} x_2^n = x_2.$$

Proceeding in this way inductively, we have

$$\lim_{n \rightarrow \infty} x_k^n = x_k, \quad \text{for all } k \in N.$$

Hence $m(\Delta, \phi, p)$ is a K -space.

PROPOSITION 4. *The space $m(\Delta, \phi, p)$ is not solid in general.*

For the above Proposition 4, consider the following example.

EXAMPLE 1. Consider the sequence (x_n) defined by $x_n = 1$ for all $n \in N$. Let $\phi_n = 1$ for all $n \in N$. Then $(x_n) \in m(\Delta, \phi, p)$. Let (α_k) be defined as $\alpha_k = (-1)^k$ for all $k \in N$. Then $(\alpha_k x_k) \notin m(\Delta, \phi, p)$. Hence $m(\Delta, \phi, p)$ is not solid.

PROPOSITION 5. *The space $m(\Delta, \phi, p)$ is not symmetric in general.*

The above Proposition is clear from the following example.

EXAMPLE 2. Let $\phi_n = n$ for all $n \in N$. Consider the sequence (x_n) , where $x_n = n$ for all $n \in N$. Then $(x_n) \in m(\Delta, \phi, p)$. Now consider the rearrangement (y_n) of (x_n) defined as follows

$$(y_n) = (x_1, x_2, x_4, x_3, x_9, x_5, x_{16}, x_6, x_{25}, x_7, x_{36}, x_8, x_{49}, x_{10}, x_{64}, x_{11}, \dots).$$

Then $(y_n) \notin m(\Delta, \phi, p)$. Hence $m(\Delta, \phi, p)$ is not symmetric.

The proof of the following result follows from Lemma 1.

THEOREM 6. For (ϕ_n) and (ψ_n) two sequences of real numbers,

$$m(\Delta, \phi, p) \subseteq m(\Delta, \psi, p) \quad \text{if and only if} \quad \sup_{s \geq 1} \frac{\phi_s}{\psi_s} < \infty.$$

The following result is a consequence of the above Theorem.

COROLLARY 7. Let $0 < p < 1$, then $m(\Delta, \phi, p) = m(\Delta, \psi, p)$ if and only if $\sup_{s \geq 1} \eta_s < \infty$ and $\sup_{s \geq 1} \eta_s^{-1} < \infty$, where $\eta_s = \frac{\phi_s}{\psi_s}$ for all $s \in N$.

The proof of the following result follows from Lemma 2.

THEOREM 8. (i) For $0 < p < 1$, $bv_p \subseteq m(\Delta, \phi, p)$ for all sequences (ϕ_s) in Φ . Further $m(\Delta, \phi, p) = bv_p$ if and only if $(\phi_s) \in c$.

(ii) $m(\Delta, \phi, p) \subseteq \ell^\infty(\Delta)$.

THEOREM 9. Let $0 < p < q < 1$. Then

(a) $m(\Delta, \phi, p) \subseteq m(\Delta, \phi, q)$.

(b) $m(\Delta, \phi, p) \subseteq m(\Delta, \psi, q)$ if and only if $\sup_{s \geq 1} \frac{\phi_s}{\psi_s} < \infty$.

P r o o f. The proof of (a) part is obvious. That of (b) follows from Theorem 6 and from the inclusion of (a) part of this result.

THEOREM 10. For $0 < p < 1$, $m(\phi, p) \subseteq m(\Delta, \phi, p)$ and the inclusion is strict.

P r o o f. The proof is a routine work in view of the following inequality.

$$|\Delta x_k| \leq |x_k| + |x_{k+1}| \quad \text{for all } k \in N.$$

To show that the inclusion is strict, consider the sequences (x_k) and (ϕ_n) of example 2.

Acknowledgement, The author thanks the referee for the valuable constructive suggestions in bringing the paper to its present form.

References

- [1] H. Kizmaz, *On certain sequence spaces*, Canad. Math. Bull. 24 (2) (1981), 167–176.
- [2] D. Rath, *Spaces of r -convex sequences and matrix transformations*, Indian J. Math. 41 (2) (1999), 265–280.
- [3] D. Rath, B. C. Tripathy, *Characterization of certain matrix operators*, J. Orissa Math. Soc. 8 (1989), 121–134.
- [4] W. L. C. Sargent, *Some sequence spaces related to the ℓ^p spaces*, J. London Math. Soc. 35 (1960), 161–171.
- [5] B. C. Tripathy, *Matrix maps on the power series convergent on the unit disc*, J. Analysis 6 (1998), 27–31.

- [6] B. C. Tripathy, M. Sen, *On a new class of sequences related to the space ℓ^p* , Tamkang J. Math. 33(2) (2002), 167–171.
- [7] B. C. Tripathy, M. Sen, *On a class of sequences related to the p -normed space ℓ^p* , (Under Communication).

MATHEMATICAL SCIENCES DIVISION
INSTITUTE OF ADVANCED STUDY IN SCIENCE AND TECHNOLOGY
KHANAPARA ; GUWAHATI - 781022, INDIA.
E-mail : tripathybc@yahoo.com
tripathybc@rediffmail.com

Received August 26, 2002; revised version Match 11, 2003.