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NONOSCILLATORY SOLUTIONS
OF DELAY DIFFERENCE EQUATIONS
WITH OSCILLATING COEFFICIENTS

Abstract. Our aim in this paper is to obtain sufficient conditions under which certain
difference equations have a “large” number of non-oscillatory solutions. Using the charac-
teristic equation of a “majorant” delay difference equation with oscillating coefficients and
Schauder’s fixed point theorem, we obtain conditions under which the difference equation
in question has a non-oscillatory solution.

1. Introduction

This paper is concerned with non-oscillatory solutions of delay difference
equation with oscillating coefficients of the form

(1) Ay(k) = Po(k)y(k) + 3 Pi(k)y(k — Ki(k)).

i=1
It should be noted that the literature is scarce concerning condition under
which there exist non-oscillatory solutions. In this paper we are to extend
below result to the equation (1) that is discrete analogue of functional dif-
ferential equation

n

(1) 2'(t) + Po(t)z(t) + )_ Pi(t)z(t — Ti(t)) = 0

i=1
where Py(t), P;(t) and T;(t) are continuous functions such that |Py(t)| < Po,
|P;(t)| < P, and |T;(t)| < T;, 1 = 1,2,...,n, where Py, P;and T; are positive
constants. Assume that
n
A= E P,eP+HP)T:

i=1
has a positive root. Then equation (1) has a non-oscillatory solution of the
form
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¢
z(t) = exp(— F(A\(s) + Po(s))ds)

where A(t) is a bounded continuous function.

As it is customary, a solution {y(k)} is said to be oscillatory if the terms
y(k) of the sequence are not eventually positive or not eventually nega-
tive. Otherwise, the solution is called non-oscillatory. A difference equa-
tion is called oscillatory if all of its solutions oscillate. Otherwise, it is
non-oscillatory. In this paper, we restrict our attention to real valued so-
lutions y(k).

2. Non-oscillations

THEOREM 1. Consider the difference equation

(1) Ay(k) = Po(k)y(k) + Y Pi(k)y(k — Ki(k))

i=1
where Py(k), Pi(k) and K;(k) are sequences such that |Po(k)| < Po, |Pi(k)] <
P, and |K;(k)| < K;,1=1,2,...n, K;(k) : N — Z, where Py, P; and K; are

positive constants. Assume that

n
(2) A=1+P+) Px K

i=1
has a positive root. Then the equation (1) has a non-oscillatory solution of
the form

k-1
(3) y(k) = T AG)
j=ko
where A(k) is a bounded sequence.

Proof. Suppose that Agis a positive root of (2), i.e,

n
do=1+Po+> P
=1
We will prove that (1) has a non-oscillatory solution of the form (3). Sub-
stituting (3) into (1) we obtain

n k—1
4) AEY=1+Po(k)+ > Rk) J[ 270)
i=1 j=k—K;(k)

It suffices to show that (4) has a bounded solution. We will employ Schau-
der’s fixed point theorem. Define the sets

X = {\(k) : bounded sequences mapping from N into R}
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with sup-norm, and
M = {Mk) € X : |A(K)I| < Ao}

which is a closed and convex subset of X. Consider the mapping F on M
given by

n k—1
Fak)=1+Po(k)+>_ P(k) I A '&).
i=1 j=k—K,;(k)
Observe that
n k-1
IFA®I < 1+ P+ S REI| TT A76)
i=1 j=k—K;(k)
k-1

<1+PR+Y. P I 'O
i=1 j=k—-K;(k)

<14 P+ > P =
i=1
Hence F(M) C M. To show that (4) has a solution, it suffices to show that
the mapping F' has a fixed point. To this end it remains to show that F' is
continuous and that F'M is a relatively compact subset of X. We will show
that F is continuous by showing that each of the mapping

n k—1
Fak)=1+P(k)+ S Pty J[ A'6)
i=1 j=k—Ki(k)

is continuous. Let A, — A where \,, A € M. Then
|FsAn (k) — FA(K)|

n k—1 k-1 k-1
->r® I 26| I %0 I 20-1
i=1 j=k—K;(k) j=k—-K;(k) j=k—-K;(k)
But
k-1 k—1
I 0 10 A(j)}sA;’“AK-'—»l,
j=k—K;(k) j=k—Ki(k)

as n — oo and because F;A(k) is bounded, it follows that F; is continuous.
Since F(M) C M, so FM is bounded uniformly. To prove that FM is a rel-
atively compact subset of X, it suffices to prove that F M is equicontinuous
on arbitrarily discrete intervals. Suppose that a discrete interval [a,b] C N.
Then for each € > 0 there exists a § > 0, without loss of generality, we can
assume Py < § and P; < § . For ki, ks € [a,b], |k1 — k2| < 0, we have

|Po(k1) — Po(k2)| < &, |Pi(k1) — Pi(k2)| < e
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and
IKi(kl) - Ki(k2)| <2K;, i=12,...,n
Then
[EFA(k1) — FA(k2)]
< |Po(k1) — Po(k2)|

n ko—1 k1—1

+2 e T X-RE) ] X

=1 j=ka—K;(k2) j=k1—K;(k1)
< |Po(k1) — Po(k2)|

+i{|P (ka) — Pi(ky)| 5 5

=1
ko—1 ko —K;(k2)—1
+ PN T A6 T1 A‘l(j)—ll}
Jj=k1 j=k1—K;(k1)

n

<e+Z{5AO '+2)\0 (/\gK‘+1)}

=1

_s[l—i-Z{)\o ( 1 (A2K +1))}]

In view of the fact that € is arbitrary, F'M is equicontinuous on the discrete
interval [a, b]. Finally, to show that F'M is equicontinuous on any discrete
intervals, we take {A;}32; C M, on the closed order interval [-N, N}, where
N is a natural number, selecting a subsequence from {A;}22,, without loss of

generality, written as {)\SCN) }22 1, such that {F)\ch)}f’:I, converces uniformly
on [—N, N|. That is, for N = 1, we ahve {)\fcl)} C { A}, {F)\fcl)} converces
uniformly on [—1,1]; for N = 2, selecting {)\g)} C {)\S)} C { A} {F)\f)}
converces uniformly on [-2,2]; and so on. We have . {)\i } C {)\ (-1) } C

, C {)\(2)} C {)\(1)} C { M}, {F)\( )} converces unlformly on [—,1]. Tak-

ing the diagonal sequence {)\,(c)}, then {F)\( } converces uniformly on any
discrete intervals. Hence F'M is a relatively compact subset of X. Therefore,
Schauder’s fixed point theorem can be applied and the proof is completed.

EXAMPLE. For the delay difference equation

(5) Ay(k) = Po(k)y(k) + ZP (K)y(k — Ki(k))
i=1
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where Py(k) = (—1)¥4, Pi(k) = (—1)*3, Py(k) = sin(Zk), Ps(k) = (-1)*}
Ki(k) = (—1)k, Ky(k) = (—=1)*2, K3(k) = (—1)*3, hypotheses of theorem is
satisfied. Therefore, its characteristic equation

3
1
(6) A=1=P+ Y PAxKi=g4axt 424073
i=1 5
has a real root in the interval Ao € (4,5). Thus, Eq. (5) has the non-
oscillatory solution c(Ag)* for any c € R, ¢ # 0.

We now give another theorem about the existence of non-oscilatory solu-
tions for the equation (1), which allows that P;(k) and K;(k) are unbounded,
1=1,2,...,n

THEOREM 2. Suppose that Py(k) # 0, ,’%% <Qi,i=12...,n, |Pok)| <
Py. The equation

(7 A=Po++Qo+ z"-: Qill + (A + R) P %
i=1

has a positive root. Then the equation (1) has a non-oscillatory solution of
the form
k-1

(8) y(k) = [T 1+ (AG) + Po(3))Pi()]

Jj=ko
where A(k) is a bounded sequence.

Proof. Suppose that ) is a positive root of (5), i.e.

do=Po++Qo+ > Qi[l+ (Ao + Po)Py] %,
i=1

We will prove that (1) has a non-oscillatory solution of the form (8). B
substituting (8) into (1), we obtain that

_ Po(k) Pk . D -1
9) AEk)+ Po(k 14 (A7) + Po(4))P (5
) X0+ Pok) = 5+ 2 s LI 006+ ReiPo)
is satisfied. It suffices to show that (9) has a bounded solution. Define the

sets X and M as in the Theorem 1, then M is a convex and closed subset
of X. Consider the mapping F' on M given by

Po(k n k—1 B
SR kg{i(k)m (AG) + Po(i) P

FA(k) = —Po(k) +
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Observe that

FAR)| < | - Pok)] + | 20)

Py(k)
Bk

j=h—Ki(k)

[1+ (AG) + Po())PG) !

n
<P+ Qo+ Qill+ (ho+ Po)Pi] ™5 = o
i=1
Hence, FM C M.
To show that (9) has a solution, it suffices to show that the mapping F'
has a fixed point. To this end it remains to show that F' is continuous and
FM is a relatively compact subset of X. Let A\, — X where A, A € M. Then

P(k) T . D -1
|FAa(k) — FA(K)| = I [1+0aG)+ BGHPG)
j=k—Kq(k)
Z PO T (14 0u) + RG)PGI
1 Pi(k) j=k—K(k)
Pk | H : Nyl
sg nil| I 1406+ R6)PO)
k—1
x| II [+ Ol + Po(i)) PG
i=k—K;(k)
k-1
x I 0+06)+ RGP -1
J=k—K(k)
< z": Qi[l+ (Ro+ PPy
i=1

X ([14+ (A + Po)P1 7% 14+ (A + Po) P - 1)
But
[14 O+ Po)P) K L+ (A + P)P]E = 1,
as n — oo and FA(k) is bounded, it follows that F' is continuous. Clearly,
FM is uniformly bounded. To prove that FM is equicontinuous on any

discrete interval suppose a discrete interval [a,b] C N, then for each € > 0,
there exists a § > 0, without loss of generality, let Q; < £ . Set

_RK
Qi(k) = Pi(k) ,i=1,2,...,n
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Then Q;(k) are continuous. For k1, k2 € [a,b], |k1 — k2| < 4, such that
|Po(k2) — Po(k1)| < &, |Qi(kz) — Qi(k1)| <€

and
|Ki(k2) — Ki(k1)| < 2K;, i=1,2,...,n,
set
P, = sup P;(k), K;= sup K;(k).
kela,b] ke[a,b]
Then

|[FA(k2) — FA(K1)|
< |Po(ke) — Po(k1)| + |Qi(k2) — Qi(k1)|

+ zn: |Qi(ka) — Qi(k1)| [1 + (Mo + Po) ]~

=1

n k1—1
s k| TI 0+ 00)+ROPOIY
i=1 =k ~Ki(k1)

ko—1
x| T] 1+ (@) + Po(4)P()]

11

.;CZ—Ki(kZ)
« 11 1+00)+RGPOI -1
j=k1—K;(k1)

<2+ e[l + (ho+ Po)P] %

=1

iy —K.
+Z:1§[1+(,\0+P0)P1] ki

[1+ (o + Po) Py - 1

< 6[2 + i [1 + (Ao + Po)Pl]_K‘

i=1

n
1 _K; )
+3°5 1+ Qo+ PP~ [[1+ Qo + PP +1]).
i=1
In view of the fact that € is arbitrary, F'M is equicontinuous on the discrete
interval [a, b]. Similarly, to the proof of Theorem 1, Schauder’s fixed point
theorem can be applied and the proof is completed.

COROLLARY 1. Suppose that Py = 0, Pi(k) and K;(k) are oscillating se-
quence, |Pi(k)| £ P, |Ki(k)] £ K, where P; and K; are positive constant,
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i=12,...,n. If X, P) < 2K where K = maxXi<i<n K;. Then the con-
clusion of Theorem 1 holds.

Proof. It suffices to show that the equation
n
fAN=x-1->PxK=0

i=1
has a positive root. In fact

f=-3 P <0
i=1

n n
f@=2-1-Y P2 K >1-Y poK>1-_2KoK =0
i=1 i=1
Therefore, there exists Ag € (1,2) such that f(Ao) =0.
COROLLARY 2. Suppose that Pp = 0, Pi(k) and K;(k) are oscillating se-

quence, P # 0, |58 < Qi, i =1,2,...,n. IF TR, Qi < (1+ P)~, where

Kk = maXi<i<n Ki. Then the conclusion of Theorem 2 holds.

The proof is similar to Corollary 1.
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