

Yaşar Bolat, Ömer Akin

NONOSCILLATORY SOLUTIONS
OF DELAY DIFFERENCE EQUATIONS
WITH OSCILLATING COEFFICIENTS

Abstract. Our aim in this paper is to obtain sufficient conditions under which certain difference equations have a “large” number of non-oscillatory solutions. Using the characteristic equation of a “majorant” delay difference equation with oscillating coefficients and Schauder’s fixed point theorem, we obtain conditions under which the difference equation in question has a non-oscillatory solution.

1. Introduction

This paper is concerned with non-oscillatory solutions of delay difference equation with oscillating coefficients of the form

$$(1) \quad \Delta y(k) = P_0(k)y(k) + \sum_{i=1}^n P_i(k)y(k - K_i(k)).$$

It should be noted that the literature is scarce concerning condition under which there exist non-oscillatory solutions. In this paper we are to extend below result to the equation (1) that is discrete analogue of functional differential equation

$$(1') \quad x'(t) + P_0(t)x(t) + \sum_{i=1}^n P_i(t)x(t - T_i(t)) = 0$$

where $P_0(t)$, $P_i(t)$ and $T_i(t)$ are continuous functions such that $|P_0(t)| \leq P_0$, $|P_i(t)| \leq P_i$ and $|T_i(t)| \leq T_i$, $i = 1, 2, \dots, n$, where P_0 , P_i and T_i are positive constants. Assume that

$$\lambda = \sum_{i=1}^n P_i e^{(\lambda + P_0)T_i}$$

has a positive root. Then equation (1') has a non-oscillatory solution of the form

$$x(t) = \exp\left(-\int_{t_0}^t (\lambda(s) + P_0(s)) ds\right)$$

where $\lambda(t)$ is a bounded continuous function.

As it is customary, a solution $\{y(k)\}$ is said to be oscillatory if the terms $y(k)$ of the sequence are not eventually positive or not eventually negative. Otherwise, the solution is called non-oscillatory. A difference equation is called oscillatory if all of its solutions oscillate. Otherwise, it is non-oscillatory. In this paper, we restrict our attention to real valued solutions $y(k)$.

2. Non-oscillations

THEOREM 1. *Consider the difference equation*

$$(1) \quad \Delta y(k) = P_0(k)y(k) + \sum_{i=1}^n P_i(k)y(k - K_i(k))$$

where $P_0(k)$, $P_i(k)$ and $K_i(k)$ are sequences such that $|P_0(k)| \leq P_0$, $|P_i(k)| \leq P_i$ and $|K_i(k)| \leq K_i$, $i = 1, 2, \dots, n$, $K_i(k) : N \rightarrow Z$, where P_0 , P_i and K_i are positive constants. Assume that

$$(2) \quad \lambda = 1 + P_0 + \sum_{i=1}^n P_i \lambda^{-K_i}$$

has a positive root. Then the equation (1) has a non-oscillatory solution of the form

$$(3) \quad y(k) = \prod_{j=k_0}^{k-1} \lambda(j)$$

where $\lambda(k)$ is a bounded sequence.

Proof. Suppose that λ_0 is a positive root of (2), i.e,

$$\lambda_0 = 1 + P_0 + \sum_{i=1}^n P_i \lambda_0^{-K_i}.$$

We will prove that (1) has a non-oscillatory solution of the form (3). Substituting (3) into (1) we obtain

$$(4) \quad \lambda(k) = 1 + P_0(k) + \sum_{i=1}^n P_i(k) \prod_{j=k-K_i(k)}^{k-1} \lambda^{-1}(j).$$

It suffices to show that (4) has a bounded solution. We will employ Schauder's fixed point theorem. Define the sets

$$X = \{\lambda(k) : \text{ bounded sequences mapping from } N \text{ into } R\}$$

with sup-norm, and

$$M = \{\lambda(k) \in X : \|\lambda(k)\| \leq \lambda_0\}$$

which is a closed and convex subset of X . Consider the mapping F on M given by

$$F\lambda(k) = 1 + P_0(k) + \sum_{i=1}^n P_i(k) \prod_{j=k-K_i(k)}^{k-1} \lambda^{-1}(j).$$

Observe that

$$\begin{aligned} \|F\lambda(k)\| &\leq 1 + |P_0(k)| + \sum_{i=1}^n |P_i(k)| \left| \prod_{j=k-K_i(k)}^{k-1} \lambda^{-1}(j) \right| \\ &\leq 1 + P_0 + \sum_{i=1}^n P_i \prod_{j=k-K_i(k)}^{k-1} |\lambda^{-1}(j)| \\ &\leq 1 + P_0 + \sum_{i=1}^n P_i \lambda_0^{-K_i} = \lambda_0. \end{aligned}$$

Hence $F(M) \subset M$. To show that (4) has a solution, it suffices to show that the mapping F has a fixed point. To this end it remains to show that F is continuous and that FM is a relatively compact subset of X . We will show that F is continuous by showing that each of the mapping

$$F_i\lambda(k) = 1 + P_0(k) + \sum_{i=1}^n P_i(k) \prod_{j=k-K_i(k)}^{k-1} \lambda^{-1}(j)$$

is continuous. Let $\lambda_n \rightarrow \lambda$ where $\lambda_n, \lambda \in M$. Then

$$\begin{aligned} &|F_i\lambda_n(k) - F_i\lambda(k)| \\ &= \left| \sum_{i=1}^n P_i(k) \prod_{j=k-K_i(k)}^{k-1} \lambda^{-1}(j) \right| \left| \prod_{j=k-K_i(k)}^{k-1} \lambda_n^{-1}(j) - \prod_{j=k-K_i(k)}^{k-1} \lambda(j) \right|. \end{aligned}$$

But

$$\left| \prod_{j=k-K_i(k)}^{k-1} \lambda_n^{-1}(j) - \prod_{j=k-K_i(k)}^{k-1} \lambda(j) \right| \leq \lambda_n^{-K_i} \lambda^{K_i} \rightarrow 1,$$

as $n \rightarrow \infty$ and because $F_i\lambda(k)$ is bounded, it follows that F_i is continuous. Since $F(M) \subset M$, so FM is bounded uniformly. To prove that FM is a relatively compact subset of X , it suffices to prove that FM is equicontinuous on arbitrarily discrete intervals. Suppose that a discrete interval $[a, b] \subset N$. Then for each $\varepsilon > 0$ there exists a $\delta > 0$, without loss of generality, we can assume $P_0 < \frac{\varepsilon}{2}$ and $P_i < \frac{\varepsilon}{2}$. For $k_1, k_2 \in [a, b]$, $|k_1 - k_2| < \delta$, we have

$$|P_0(k_1) - P_0(k_2)| < \varepsilon, \quad |P_i(k_1) - P_i(k_2)| < \varepsilon$$

and

$$|K_i(k_1) - K_i(k_2)| < 2K_i, \quad i = 1, 2, \dots, n.$$

Then

$$\begin{aligned} & |F\lambda(k_1) - F\lambda(k_2)| \\ & \leq |P_0(k_1) - P_0(k_2)| \\ & \quad + \sum_{i=1}^n \left| P_i(k_2) \prod_{j=k_2-K_i(k_2)}^{k_2-1} \lambda^{-1}(j) - P_i(k_1) \prod_{j=k_1-K_i(k_1)}^{k_1-1} \lambda^{-1}(j) \right| \\ & \leq |P_0(k_1) - P_0(k_2)| \\ & \quad + \sum_{i=1}^n \left\{ |P_i(k_2) - P_i(k_1)| \lambda_0^{-K_i} \right. \\ & \quad \left. + P_i \lambda_0^{-K_i} \left| \prod_{j=k_1}^{k_2-1} \lambda(j) \prod_{j=k_1-K_i(k_1)}^{k_2-K_i(k_2)-1} \lambda^{-1}(j) - 1 \right| \right\} \\ & \leq \varepsilon + \sum_{i=1}^n \left\{ \varepsilon \lambda_0^{-K_i} + \frac{\varepsilon}{2} \lambda_0^{-K_i} (\lambda_0^{2K_i} + 1) \right\} \\ & = \varepsilon \left[1 + \sum_{i=1}^n \left\{ \lambda_0^{-K_i} \left(1 + \frac{1}{2} (\lambda_0^{2K_i} + 1) \right) \right\} \right]. \end{aligned}$$

In view of the fact that ε is arbitrary, FM is equicontinuous on the discrete interval $[a, b]$. Finally, to show that FM is equicontinuous on any discrete intervals, we take $\{\lambda_k\}_{k=1}^\infty \subset M$, on the closed order interval $[-N, N]$, where N is a natural number, selecting a subsequence from $\{\lambda_k\}_{k=1}^\infty$, without loss of generality, written as $\{\lambda_k^{(N)}\}_{k=1}^\infty$, such that $\{F\lambda_k^{(N)}\}_{k=1}^\infty$, converges uniformly on $[-N, N]$. That is, for $N = 1$, we ahve $\{\lambda_k^{(1)}\} \subset \{\lambda_k\}$, $\{F\lambda_k^{(1)}\}$ converces uniformly on $[-1, 1]$; for $N = 2$, selecting $\{\lambda_k^{(2)}\} \subset \{\lambda_k^{(1)}\} \subset \{\lambda_k\}$, $\{F\lambda_k^{(2)}\}$ converces uniformly on $[-2, 2]$; and so on. We have $\dots \{\lambda_k^{(i)}\} \subset \{\lambda_k^{(i-1)}\} \subset \dots \subset \{\lambda_k^{(2)}\} \subset \{\lambda_k^{(1)}\} \subset \{\lambda_k\}$, $\{F\lambda_k^{(i)}\}$ converges uniformly on $[-i, i]$. Taking the diagonal sequence $\{\lambda_k^{(i)}\}$, then $\{F\lambda_k^{(i)}\}$ converces uniformly on any discrete intervals. Hence FM is a relatively compact subset of X . Therefore, Schauder's fixed point theorem can be applied and the proof is completed.

EXAMPLE. For the delay difference equation

$$(5) \quad \Delta y(k) = P_0(k)y(k) + \sum_{i=1}^3 P_i(k)y(k - K_i(k))$$

where $P_0(k) = (-1)^k 4$, $P_1(k) = (-1)^k 3$, $P_2(k) = \sin(\frac{\pi}{2}k)$, $P_3(k) = (-1)^k \frac{1}{5}$; $K_1(k) = (-1)^k$, $K_2(k) = (-1)^k 2$, $K_3(k) = (-1)^k 3$, hypotheses of theorem is satisfied. Therefore, its characteristic equation

$$(6) \quad \lambda - 1 = P_0 + \sum_{i=1}^3 P_i \lambda^{-K_i} = 4 + 3\lambda^{-1} + \lambda^{-2} + \frac{1}{5}\lambda^{-3}$$

has a real root in the interval $\lambda_0 \in (4, 5)$. Thus, Eq. (5) has the non-oscillatory solution $c(\lambda_0)^k$ for any $c \in R$, $c \neq 0$.

We now give another theorem about the existence of non-oscillatory solutions for the equation (1), which allows that $P_i(k)$ and $K_i(k)$ are unbounded, $i = 1, 2, \dots, n$.

THEOREM 2. Suppose that $P_1(k) \neq 0$, $\frac{P_i(k)}{P_1(k)} \leq Q_i$, $i = 1, 2, \dots, n$, $|P_0(k)| \leq P_0$. The equation

$$(7) \quad \lambda = P_0 + +Q_0 + \sum_{i=1}^n Q_i [1 + (\lambda + P_0)P_1]^{-K_i}$$

has a positive root. Then the equation (1) has a non-oscillatory solution of the form

$$(8) \quad y(k) = \prod_{j=k_0}^{k-1} [1 + (\lambda(j) + P_0(j))P_1(j)]$$

where $\lambda(k)$ is a bounded sequence.

Proof. Suppose that λ_0 is a positive root of (5), i.e.

$$\lambda_0 = P_0 + +Q_0 + \sum_{i=1}^n Q_i [1 + (\lambda_0 + P_0)P_1]^{-K_i}.$$

We will prove that (1) has a non-oscillatory solution of the form (8). By substituting (8) into (1), we obtain that

$$(9) \quad \lambda(k) + P_0(k) = \frac{P_0(k)}{P_1(k)} + \sum_{i=1}^n \frac{P_i(k)}{P_1(k)} \prod_{j=k-K_i(k)}^{k-1} [1 + (\lambda(j) + P_0(j))P_1(j)]^{-1}$$

is satisfied. It suffices to show that (9) has a bounded solution. Define the sets X and M as in the Theorem 1, then M is a convex and closed subset of X . Consider the mapping F on M given by

$$F\lambda(k) = -P_0(k) + \frac{P_0(k)}{P_1(k)} + \sum_{i=1}^n \frac{P_i(k)}{P_1(k)} \prod_{j=k-K_i(k)}^{k-1} [1 + (\lambda(j) + P_0(j))P_1(j)]^{-1}.$$

Observe that

$$\begin{aligned}
 |F\lambda(k)| &\leq | - P_0(k) | + \left| \frac{P_0(k)}{P_1(k)} \right| \\
 &\quad + \sum_{i=1}^n \left| \frac{P_i(k)}{P_1(k)} \right| \prod_{j=k-K_i(k)}^{k-1} [1 + (\lambda(j) + P_0(j))P(j)]^{-1} \\
 &\leq P_0 + Q_0 + \sum_{i=1}^n Q_i [1 + (\lambda_0 + P_0)P_1]^{-K_i} = \lambda_0.
 \end{aligned}$$

Hence, $FM \subset M$.

To show that (9) has a solution, it suffices to show that the mapping F has a fixed point. To this end it remains to show that F is continuous and FM is a relatively compact subset of X . Let $\lambda_n \rightarrow \lambda$ where $\lambda_n, \lambda \in M$. Then

$$\begin{aligned}
 |F\lambda_n(k) - F\lambda(k)| &= \left| \sum_{i=1}^n \frac{P_i(k)}{P_1(k)} \prod_{j=k-K_i(k)}^{k-1} [1 + (\lambda_n(j) + P_0(j))P(j)]^{-1} \right. \\
 &\quad \left. - \sum_{i=1}^n \frac{P_i(k)}{P_1(k)} \prod_{j=k-K_i(k)}^{k-1} [1 + (\lambda_n(j) + P_0(j))P(j)]^{-1} \right| \\
 &\leq \sum_{i=1}^n \left| \frac{P_i(k)}{P_1(k)} \right| \cdot \left| \prod_{j=k-K_i(k)}^{k-1} [1 + (\lambda(j) + P_0(j))P(j)]^{-1} \right| \\
 &\quad \times \left| \prod_{j=k-K_i(k)}^{k-1} [1 + (\lambda_n(j) + P_0(j))P(j)]^{-1} \right. \\
 &\quad \times \left. \prod_{j=k-K_i(k)}^{k-1} [1 + (\lambda(j) + P_0(j))P(j)]^{-1} - 1 \right| \\
 &\leq \sum_{i=1}^n Q_i [1 + (\lambda_0 + P_0)P_1]^{-K_i} \\
 &\quad \times ([1 + (\lambda_n + P_0)P_1]^{-K_i} [1 + (\lambda + P_0)P_1]^{K_i} - 1).
 \end{aligned}$$

But

$$[1 + (\lambda_n + P_0)P_1]^{-K_i} [1 + (\lambda + P_0)P_1]^{K_i} \rightarrow 1,$$

as $n \rightarrow \infty$ and $F\lambda(k)$ is bounded, it follows that F is continuous. Clearly, FM is uniformly bounded. To prove that FM is equicontinuous on any discrete interval suppose a discrete interval $[a, b] \subset N$, then for each $\varepsilon > 0$, there exists a $\delta > 0$, without loss of generality, let $Q_i < \frac{\varepsilon}{2}$. Set

$$Q_i(k) = \frac{P_i(k)}{P_1(k)}, \quad i = 1, 2, \dots, n.$$

Then $Q_i(k)$ are continuous. For $k_1, k_2 \in [a, b]$, $|k_1 - k_2| < \delta$, such that

$$|P_0(k_2) - P_0(k_1)| < \varepsilon, \quad |Q_i(k_2) - Q_i(k_1)| < \varepsilon$$

and

$$|K_i(k_2) - K_i(k_1)| < 2K_i, \quad i = 1, 2, \dots, n,$$

set

$$P_1 = \sup_{k \in [a, b]} P_i(k), \quad K_i = \sup_{k \in [a, b]} K_i(k).$$

Then

$$\begin{aligned} & |F\lambda(k_2) - F\lambda(k_1)| \\ & \leq |P_0(k_2) - P_0(k_1)| + |Q_i(k_2) - Q_i(k_1)| \\ & \quad + \sum_{i=1}^n |Q_i(k_2) - Q_i(k_1)| [1 + (\lambda_0 + P_0)P_1]^{-K_i} \\ & \quad + \sum_{i=1}^n |Q_i(k_1)| \left| \prod_{j=k_1-K_i(k_1)}^{k_1-1} [1 + (\lambda(j) + P_0(j))P(j)]^{-1} \right| \\ & \quad \times \left| \prod_{j=k_1}^{k_2-1} [1 + (\lambda(j) + P_0(j))P(j)] \right| \\ & \quad \times \left| \prod_{j=k_1-K_i(k_1)}^{k_2-K_i(k_2)} [1 + (\lambda(j) + P_0(j))P(j)]^{-1} - 1 \right| \\ & \leq 2\varepsilon + \sum_{i=1}^n \varepsilon [1 + (\lambda_0 + P_0)P_1]^{-K_i} \\ & \quad + \sum_{i=1}^n \frac{\varepsilon}{2} [1 + (\lambda_0 + P_0)P_1]^{-K_i} \left| [1 + (\lambda_0 + P_0)P_1]^{2K_i} - 1 \right| \\ & \leq \varepsilon \left[2 + \sum_{i=1}^n [1 + (\lambda_0 + P_0)P_1]^{-K_i} \right. \\ & \quad \left. + \sum_{i=1}^n \frac{1}{2} [1 + (\lambda_0 + P_0)P_1]^{-K_i} [[1 + (\lambda_0 + P_0)P_1]^{2K_i} + 1] \right]. \end{aligned}$$

In view of the fact that ε is arbitrary, FM is equicontinuous on the discrete interval $[a, b]$. Similarly, to the proof of Theorem 1, Schauder's fixed point theorem can be applied and the proof is completed.

COROLLARY 1. Suppose that $P_0 \equiv 0$, $P_i(k)$ and $K_i(k)$ are oscillating sequence, $|P_i(k)| \leq P_i$, $|K_i(k)| \leq K_i$, where P_i and K_i are positive constant,

$i = 1, 2, \dots, n$. If $(\sum_{i=1}^n P_i) \leq 2^K$, where $K = \max_{1 \leq i \leq n} K_i$. Then the conclusion of Theorem 1 holds.

Proof. It suffices to show that the equation

$$f(\lambda) = \lambda - 1 - \sum_{i=1}^n P_i \lambda^{-K_i} = 0$$

has a positive root. In fact

$$f(1) = - \sum_{i=1}^n P_i < 0$$

$$f(2) = 2 - 1 - \sum_{i=1}^n P_i 2^{-K_i} \geq 1 - \sum_{i=1}^n P_i 2^{-K} \geq 1 - 2^K 2^{-K} = 0.$$

Therefore, there exists $\lambda_0 \in (1, 2)$ such that $f(\lambda_0) = 0$.

COROLLARY 2. Suppose that $P_0 \equiv 0$, $P_i(k)$ and $K_i(k)$ are oscillating sequence, $P_1 \neq 0$, $\left| \frac{P_i(k)}{P_1(k)} \right| \leq Q_i$, $i = 1, 2, \dots, n$. If $\sum_{i=1}^n Q_i \leq (1 + P_1)^\kappa$, where $\kappa = \max_{1 \leq i \leq n} K_i$. Then the conclusion of Theorem 2 holds.

The proof is similar to Corollary 1.

References

- [1] I. Györi, G. Ladas, *Oscillation Theory of Delay Differential Equations with Applications*, Clarendon Press-Oxford, New York, 1991.
- [2] Yuanhong Yu, *Non-oscillatory solutions of delay differential equations with oscillating coefficients*, Demonstratio Math 25 (1992), 877-885.
- [3] G. Ladas, Y. G. Sficas and I. P. Stavroulakis, *Non-oscillatory functional differential equations*, Pacific J. Math. 115 (1984), 391-398.
- [4] Yan, Wei Ping, Yan, Ju Rang, *Comparison and oscillation results for delay difference equation with oscillating coefficients*, J. Math. Sci. 19 (1996), 171-176.
- [5] Q. Chuanxi, G. Ladas and J. Yan, *Oscillation of difference equations with oscillating coefficients*, Rad. Math. 8 (1992/96), 55-65.

Yasar Bolat

DEPARTMENT OF MATHEMATICS

ANKARA UNIVERSITY

06100-TANDOĞAN-ANKARA, TURKEY

Ömer Akin

DEPARTMENT OF MATHEMATICS

GAZI UNIVERSITY

06500-TEKNİKOKULLAR-ANKARA, TURKEY

Received July 4, 2002.