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NONOSCILLATORY SOLUTIONS 
OF DELAY DIFFERENCE EQUATIONS 
WITH OSCILLATING COEFFICIENTS 

Abstract. Our aim in this paper is to obtain sufficient conditions under which certain 
difference equations have a "large" number of non-oscillatory solutions. Using the charac-
teristic equation of a "majorant" delay difference equation with oscillating coefficients and 
Schauder's fixed point theorem, we obtain conditions under which the difference equation 
in question has a non-oscillatory solution. 

1. Introduction 
This paper is concerned with non-oscillatory solutions of delay difference 

equation with oscillating coefficients of the form 

(1) Ay(k) = P0(k)y(k) + ¿ P i ( f e ) y ( f e - ^(k)). 
i=1 

It should be noted that the literature is scarce concerning condition under 
which there exist non-oscillatory solutions. In this paper we are to extend 
below result to the equation (1) that is discrete analogue of functional dif-
ferential equation 

n 

(1') x'(t) + Po(t)x(t) + Y, Pi{t)x{t - Ti(t)) = 0 
¿=i 

where Po{t), Pi(t) and Xi(i) are continuous functions such that |Po(i)| < Po, 

|-Pi(£)l < Pi a n d |îi(i)| < Tu i = 1 , 2 , . . . , n, where P0 , Pi and Tj are positive 
constants. Assume that 

A = J2Pie ( X + P o ) T i 

i=l 

has a positive root. Then equation (1') has a non-oscillatory solution of the 
form 
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t 
x(t) = e x p ( - \ (A(s) + P0(s))ds) 

to 
where A(i) is a bounded continuous function. 

As it is customary, a solution {y(k)} is said to be oscillatory if the terms 
y(k)oi the sequence are not eventually positive or not eventually nega-
tive. Otherwise, the solution is called non-oscillatory. A difference equa-
tion is called oscillatory if all of its solutions oscillate. Otherwise, it is 
non-oscillatory. In this paper, we restrict our attention to real valued so-
lutions y(k). 

2. Non-oscillations 

THEOREM 1. Consider the difference equation 

(1) Ay(k) = Po(k)y(k) + £ Pi(k)y(k - Jfc(fc)) 
t=l 

where Po(k), Pi(k) and Ki(k) are sequences such that |Po(fc)| < PQ, < 
Pi and \Ki(k)\ < Ki, i = 1,2,... n, Ki(k) : N Z, where PQ, Pi and Ki are 
positive constants. Assume that 

(2) X = l + P0 + f 2 p i x ~ K i 

¿=1 
has a positive root. Then the equation (1) has a non-oscillatory solution of 
the form 

(3) y(k) = n A(j) 
j—kQ 

where A(k) is a bounded sequence. 

Proof . Suppose that Aois a positive root of (2), i.e, 
n 

X0 = l + P0 + Y/Pi^Ki-
i=1 

We will prove that (1) has a non-oscillatory solution of the form (3). Sub-
stituting (3) into (1) we obtain 

(4) \ (k) = i + p 0 ( k ) + j 2 m ) n a - 1 ^ ) . 
i=l j=k-Ki(k) 

It suffices to show that (4) has a bounded solution. We will employ Schau-
der's fixed point theorem. Define the sets 

X = (A(fc) : bounded sequences mapping from N into R} 
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with sup-norm, and 
M = (A(fc) 6 X : ||A(fc)||<A0} 

which is a closed and convex subset of X. Consider the mapping F on M 
given by 

fc-i 

j=k-Ki{k) i=l 
Observe that 

k-1 
iiFA(fc)u < i + \ p 0 { k ) \ + y : iPi(fc)i n a _ i o ) 

i= 1 j=k-Ki(k) 

< i + p 0 + E P i n i a _ i ( j ) i 
i= 1 j=k-Ki(k) 

< l + Po + ^ P i A ô ^ = Ao. 
¿=i 

Hence F(M) C M. To show that (4) has a solution, it suffices to show that 
the mapping F has a fixed point. To this end it remains to show that F is 
continuous and that FM is a relatively compact subset of X. We will show 
that F is continuous by showing that each of the mapping 

F ^ k ) = i + p 0 ( k ) + £ p i ( k) n a _ i o ) 
i= 1 j=k-Ki(k) 

is continuous. Let An —» A where A„, A e M. Then 
\FiXn(k) - Fi\(k)\ 

=F:M) n A _ i ( i ) n KHJ) n ^ - i . 
i= l j=k-Ki(k) j=k-Ki(k) j=k-Kt(k) 

But 

n k h j ) n A(j) < x~KixKt —> i, 
j=k—Ki(k) j=k—Ki(k) 

as n —• oo and because FiX(k) is bounded, it follows that Fi is continuous. 
Since F(M) C M, so FM is bounded uniformly. To prove that FM is a rel-
atively compact subset of X, it suffices to prove that FM is equicontinuous 
on arbitrarily discrete intervals. Suppose that a discrete interval [a, 6] C N. 
Then for each £ > 0 there exists a S > 0, without loss of generality, we can 
assume PQ < | and PI < | . For fci, € [a, b], |/ci — fol < we have 

|Po(fci) - Po(fc2)| < e, |Pi(fci) - Pi(k2)I < e 
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and 

Then 

| Kifa) - Ki(k2)\ < 2 Ku i = 1 ,2 , . . . , n. 

\FX(ki) - FX(k2)\ 
< \Poih) - p0(k2)\ 

t=l 

k2-1 
m 2 ) n 

j=k2-Ki(k2) 
A - ^ ' J - W i ) " f t 1 A _ 1 ( j ) 

j=k1-Ki(k1) 

< \P0(ki) - PQ(k2)\ 

+ f 2 { \ P i ( k 2 ) - P i ( k , ) \ \ o K i 

i=l 
fc2-l k2-Ki(k2)-\ . 

n * c ? ) n ^ o o - i 

= , [ l + t { A 0 - ^ ( l + i ( A ^ + l ) ) } . 

In view of the fact that e is arbitrary, FM is equicontinuous on the discrete 
interval [a, b]. Finally, to show that FM is equicontinuous on any discrete 
intervals, we take c M, on the closed order interval [—N, iV], where 
N is a natural number, selecting a subsequence from {Afc}]^, without loss of 
generality, written as such that converces uniformly 
on [-N, N]. That is, for N = 1, we ahve {A^} C {Afc}, {F\[1]} converces 
uniformly on [-1,1]; for N = 2, selecting {A^} C {A^} C {Afc}, {FX^} 
converces uniformly on [—2,2]; and so on. We have . . . {A^} C {A^-1^} c 
, . . . , C {a£2)} C {A^} C {Afc}, {FX^} converces uniformly on [~i,i]. Tak-
ing the diagonal sequence {A^}, then {FX^} converces uniformly on any 
discrete intervals. Hence FM is a relatively compact subset of X. Therefore, 
Schauder's fixed point theorem can be applied and the proof is completed. 

EXAMPLE. For the delay difference equation 
3 

(5) A y ( k ) = P0(k)y(k) + £ Pi(k)y(k - K^k)) 
i=l 
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where P0(k) = ( - l ) f c 4 , P^k) = ( - l ) f c 3 , P2(k) = s in(fk) , P3(k) = ( - l ) f c ± ; 
Ki(k) = (-l)k, K2{k) = (—l)fc2, K3(k) = (—l)fc3, hypotheses of theorem is 
satisfied. Therefore, its characteristic equation 

3 i 
(6) A - 1 = P 0 + S P * X ~ K i = 4 + 3 A _ 1 + A ~ 2 + 

¿=i 5 

has a real root in the interval Ao € (4,5). Thus, Eq. (5) has the non-
oscillatory solution c(Ao)fc for any c 6 i?, c / 0. 

We now give another theorem about the existence of non-oscilatory solu-
tions for the equation (1), which allows that Pi(k) and Kl{k) are unbounded, 
i — 1 , 2 , . . . , n. 

Theorem 2. Suppose that PI(k) ± 0, < Qi, i = 1 , 2 , . . . , n, |P0(fc)| < 
PQ. The equation 

n 

(7) A = P 0 + +Qo + 5 3 + (A + Po)Pi]~Ki 

i=1 

has a positive root. Then the equation (1) has a non-oscillatory solution of 
the form 

(8) V ( * ) = ft [1 + (Atf) + ftOWO')] 
j=k0 

where A(k) is a bounded sequence. 

P r o o f . Suppose that Ao is a positive root of (5), i.e. 
n 

Ao - Po + +Qo + 5 3 Q i [ l + (Ao + Po)Pi]~Ki. 
i=1 

We will prove that (1) has a non-oscillatory solution of the form (8). By 
substituting (8) into (1), we obtain that 

(9) A(fc) + Po(fc) = + £ n [1 + (A(j) + PoUmj)}-1 

is satisfied. It suffices to show that (9) has a bounded solution. Define the 
sets X and M as in the Theorem 1, then M is a convex and closed subset 
of X. Consider the mapping F on M given by 

FX(k) = -p0(k) + ^ . + ± n [l + i A o o + P o o ^ p o r 1 -
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Observe that 

\F\(k)\<\-P0(k)\ + 

Pi(k) 

Po(k) 

¿=1 p1(k) 

Pi(k) 

n [ i + ( A c ? ) + P o t i m i ) } - 1 

j=k—Ki(k) 

<Po + QO + J2 w + (Ao + Po)Pi]~Ki = Ao. 
t=l 

Hence, FM C M. 
To show that (9) has a solution, it suffices to show that the mapping F 

has a fixed point. To this end it remains to show that F is continuous and 
FM is a relatively compact subset of X. Let An —• A where An, A € M. Then 

è i n S n [ i + ( * n t i ) + P o t i ) ) P t i ) \ - 1 
i=i rnK) j=k~Ki(k) 

n [ i + ^ w + P o O D P a r 1 

¿=1 j=k—Ki(k) 

\FXn(k)-FX(k)\ = 

1 = 1 

Pi(k) 
pm 

fc-1 
n [ i + i m + P o t i V P t i ) } - 1 

j=k—Ki(k) 
k-l 
n [ i + ^ + P o o w j ) ] - 1 

j=k-Ki(k) 

x I I [1 + (MJ) + Poti))Pti)} ~ 1 
j=k-Ki(k) 

[1 + (Ao + Po)Pi] -Ki 
t=l 
x ([1 + (An + Po)Pi]-Ki [1 + (A + Po)Pi]Ki - 1). 

But 
[1 + (An + Po)Pi]-Ki [1 + (A + Po)Pi]Ki - 1, 

as n —• oo and FX(k) is bounded, it follows that F is continuous. Clearly, 
FM is uniformly bounded. To prove that FM is equicontinuous on any 
discrete interval suppose a discrete interval [a, 6] C N, then for each e > 0, 
there exists a 6 > 0, without loss of generality, let Qi < | . Set 
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Then Qi(k) are continuous. For k\,k2 G [a, 6], \ki — k2\ < S, such that 

\Po(k2) - Po(h)\ < e, |Qi(k2) - Qi(ki)| < £ 

and 
\Ki(k2)-Ki(k1)\<2Ki, ¿ = 1 ,2 , . . . , n , 

set 
Pi = sup Pi(k), Ki = sup Ki(k). 

fc€[a,b] fce[a,fc] 
Then 

IFXik^-FXik^l 
< \P0(k2) - P0(fci)| + |Qi(fc2) - Qi(h)\ 

+ E IQi(h) - Qi(ki)| [1 + (A0 + P0)Pi]~Ki 

¿=1 
n fcl-1 

+ E ia(*i ) i n [ i + M ) + P o t i m i T 1 

t = l j=k1-Ki(k1) 

k f [ [ i + (Hj) + PoU))P(j)} 
j=k\ 

k2-Ki{k2) 
x n [ i + ( a ( j ) + f t c ? ) ) ^ ) ] - 1 - 1 

j=k1-Ki(k1) 

< 2e + Y j e [1 + (A0 + 
i=i 

+ E Ô + (Ao + -Po)Pi]"K< [1 + (Ao + Po)Pi)2Ki ~ 1 
¿=1 

< e [ 2 + E [ l + (A0 + Po)Pi]-X< 

¿=1 
A 1 

+ E Î [! + (A° + Po)Pi}~Ki [[1 + (Ao + Po)Pi]2Ki + 1] 
i=l 

In view of the fact that e is arbitrary, FM is equicontinuous on the discrete 
interval [a, 6]. Similarly, to the proof of Theorem 1, Schauder's fixed point 
theorem can be applied and the proof is completed. 

COROLLARY 1. Suppose that Pq = 0, Pi(k) and Ki(k) are oscillating se-
quence, |^(A;)| < Pi, \Ki(k)\ < Ki, where Pi and Ki are positive constant, 
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i = 1, 2,...,71. If Pi) < 2K, where K = maxi<i<nKi. Then the con-
clusion of Theorem 1 holds. 

P r o o f . It suffices to show that the equation 

¿=1 
has a positive root. In fact 

¿=1 
n n 

f(2) = 2 - 1 -Y^Pi2~Ki > 1 > 1 - 2 * 2 - * = 0. 
¿=1 i=i 

Therefore, there exists Ao G (1,2) such that /(Ao) = 0. 

COROLLARY 2. Suppose that Po = 0, Pi(k) and Ki(k) are oscillating se-
PM quence, Pi # 0, g g < Qu i = 1 , 2 , . . . , n. Qt < (1 + Pi)K , where 

k = maxi<i< n Ki . Then the conclusion of Theorem 2 holds. 
The proof is similar to Corollary 1. 
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