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POSITIVE SOLUTIONS OF INITIAL VALUE PROBLEMS 
FOR SINGULAR INTEGRO-DIFFERENTIAL EQUATIONS 

IN BANACH SPACE 

Abstract. Global existence of positive solutions on [0,1] are established in Banach 
space for singular initial value problems of first order integro-differential equation of the 
form 

x'(t) = f{t,x(t),{Tx)(t)), t e (0,1), 
x(0) = 0, 

where f(t,x,y) can be singular at t = 0,1 and x = 0. Some applications for second order 
singular initial or boundary value problems are worked out. 

1. Introduction and some preliminary lemmas 
The theory of ordinary differential equations in abstract space is a new 

and important branch of differential equations(see, for example [1]—[3]). In 
recent years, the studies of singular boundary value problems for ordinary 
differential equations have become more and more atractive [4]—[7]. But the 
study of singular initial or boundary value problems in Abstract Space, 
particularly, the existence of positive solutions of initial value problems for 
integro-differential equation with singularity has not been reported yet as 
far as we know. In this paper we will study in abstact space the existence 
of positive solutions of initial value problem for integro-differential equation 
with singularity by use of the theory of fixed point index for strict set con-
traction operator. Two corollaries and an example are given separately to 
indicate applications of our main results. 

Let the real Banach space E be partially ordered by a cone P of E, i.e., 
x < y if and only if y — x 6 P. P is said to be normal if there exists a 
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positive constant N such that 0 < x < y implies ||x|| < iV||y||. We suppose, 
without loss of genarality, that N = 1 throughout this paper. 

Consider the global existence of positive solutions on J — [0,1] for sin-
gular initial value problem 

m (x'(t) = f(t,x(t),(Tx)(t)), 

U ( 0 ) = 0, 

where ( T x ) ( t ) = \QH(t,s)x(s)ds, f(t,x,y) may be singular at t = 0,1, and 
x = 0, i.e., 

lim ||/(i,-,-)|| = +oo, lim ||/(t,v)ll = +°°> lim||/(-,av)|| = +oo. 
t—>0+ t—>1~ x€P 

x—>0 

We will consider problem (1) on C[J, E]. Evidently, for arbitrary x G 
C[J,E], C[J,E] is a Banach space with norm ||x||c = max||x(t)||. In the 

following, x € C[J,E] n (^[(O,1 ),E] is called a solution of the IVP ( l ) if it 
satisfied (1), x a positive solution of (1) if, in addition, x is nonnegative and 
nontrivial, i.e., x € C[J, P] and x(t) ^ 0, for t € J. 

Let x(t) : (0,1] —> E be continuous, the abstract generalized integral 
jJ x(t)dt is called convergent if the limit lim ^ x(t)dt exists. The conver-

£—•0+ 
gence or divergence of other kinds of generalized integrals can be defined 
similarly. 

For a bounded set S in a Banach space, we label a(s) to be the Ku-
ratowski measure of noncompactness(see [l]-[3], for further understanding). 
In the paper, we will write a(-) and ac(- ) to be Kuratowski's measure of 
noncompacteness of some bounded subset in E and in C[ J, E] respectively. 

For convenience, we first list the following lemmas which can be found 
in [3], 

L E M M A 1.1. Let S C C[J,E] be bounded and equicontinuous on J. Then 

atc(S) = supa(S(t ) ) , where S(t) = {x(t)\x 6 S}. 
teJ 

L E M M A 1.2. Let F : Pr —> P ( r > 0 ) be a strict set contraction operator 
and there exists uq € P, uo ^ 0 such that x — Fx ^ Xuo, for any x 6 dPT 

and A > 0. Then i(F, Pr, P) = 0, where PT = {x <E P \ ||x|| < r } . 

L E M M A 1.3. Let H be a set of countable strongly measureble functions x : 

J —• E. Assume, in addition, there exists M G L[J,R+] such that ||x(i)|| < 

M(t), a.e. t € J, holds , for any x € H. Then a(H(t)) e L[J,R+], and, 

<*({$., 6 H}) < 2 lja(H(t))dt. 
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2. Main results 
Throughout this section we will need the following conditions: 
Hi) / e C[(0,1) x P\{0} x P, P], and for any t € (0,1), x € P\{0}, y € P, 

there is \\f(t,x,y)\\ < K(t)\\q(x)\\.\\g(y)lwheve K e Ll[0,l], \1
0K(s)ds > 0, 

and 

q[a,b}= sup ||g(a:)|| < +oo, g[0, a] = sup ||g(x)|| < +oo 
xePb\Pa xePa 

for any b> a. 
Moreover, there is a constant Mo > 0 such that 0 < H(t, s) < Mo for any 

t,s 6 J. Suppose, in addition, that T is a continuous operator on C[J, P]. 
H2) f(t,x,y) is uniformly continuous with respect to t in [5,1 — <5] x 

-PflA-Pri x PR2 where 0 < 6 < Ri > r\ > 0, and R2 > 0 are arbitrary, 
Pr = {x€ P| | |z | | < r}. 

H3) There are Li > 0,L2 > 0 such that a{f(t,BhB2)) < Lia{Bx) + 
L2a(B2) with 2Li + 4L2M0 < 1 for t 6 (0, l),Bi c PRl\Pri,B2 c PRl,&nd 
i?i,ri with Ri > r\ > 0 are arbitrary. 

H4) There exists tp* G P* with ||<p*|| = 1 such that 

M>P*(f(t,x,-))>ip(t) >0 
1-.0 
1 €P 

uniformly with respect to i € (0,1), where <p € i 1 [0,1], (p(t)dt > 0. 
Moreover, there exists 6 P* with || = 1 such that 

J im tt*(/(i,v)) > / 3 > l . 
t—>0+ 

H5) There exists R > 0 such that 

H6) K W q f c R + y e L 1 ^ ! ) . 
Before we proceed to the singular problem (1), we first discuss the ap-

proximate problem of (1). Choosing e eint P with ||e|| = 1, consider 

(2) I X'{t) = / ( i ' X { t ) + { T x ) m * E 1}' 

where n is a positive integer. Corresponding to (2) we consider the following 
integral operator 

t 
(3) (Anx)(t) = \f(s,x(s) + -,(Tx)(s))ds+-, t € (0,1). J T) T) 
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It is easy to prove that the positive solution of (2) on C[J, E] is equvialent 
to the fixed point of operator An on C[J, P]. 

The following Lemmas show that An is a strict set contraction operator 
on C[J, P]: 

LEMMA 2.1. Suppose H\) holds. Then An : C[J,PT] —• C[J,P] is a continu-

ously bounded operator for any r > 0. 

Proo f . For any r > 0, let xm,x G C[J,Pr] such that \\xm — i|' 
m —> oo. Since 

0 as 

(4) f(s,xm(s) + ^,(Txm)(s)j < K(s) • q(xm(s) + ^j 

<q 

• « » ( ( T ^ W ) ! ! 

l l 
n n 

g[0,M0r)-K(s) 

and Hi), then Lebesgue's dominated theorem guarantees that ||(Anxm)(i) — 
(•/4nx)(i) || - * 0 for any t € J. 

From (4), it is easy to see that ( A n x m ) ( t ) is equicontinuous on J. Next 
we will show that ||i4nxm — —• 0 as m —• oo. In fact, if it is not 
true, then there exit some Co > 0 and {a;mi }C { % } such that ^Anxmi — 
Anx|| > eo for ¿ = 1,2, Since {Anxm} is relatively compact, there exists a 
subsequence of {Anxmi} converges to y € C[J, P]. We may still set, without 
loss of generality, that lim Anxmi = y, i.e., lim ||A„a:mi — y||c = 0, which 

i—*oo i—*oo 
contradicts the fact that y = Anx. Hence An is continuous. 

By use of Hi ) and an inequality similar as (4) we can show that An is a 
bounded operator. Thus, the proof of the lemma is completed. 

LEMMA 2.2. Assume that Hi), H2), H3) hold. Then An : C[J,Pr] C[J,P] 

is a strict set contraction operator for any r > 0. 

Proo f . For any r > 0, let S C C[J, Pr] . It is easy to see that the set AnS is 
bounded and equicontinuous on J by Lemma 2.1. We have, by Lemma 1.1, 
that 

(5) ac(AnS)= sup a((AnS)(t)) 
teJ 

where (A „5 ) ( i ) = {(i4nx)(i)|z 6 S}. Setting 

G{t 
(0 , 1 > 

< s < t < 1, 

s > t > 0, 



Positive solutions of initial value problems 851 

we have 
* e 

(.Anx)(t) = J f(s, x(s) + - , (Tx)(s))ds 
0 n 

1 e 
= \ G(t, s)f(s, x(s) + (Tx)(s))ds. 

6 n 

We denote Ds = G(t,s)f(s,x(s) + (Tx)(s))ds\x € S}, where 6 € 
(0, 5). For any x € S and t € J, we obtain by Hi) 

1—<5 1 
\ G(t, s)f(s, x(s) + (Tx)(s))ds - I s)f(s, x(s) + (Tx) ( s ) )ds 
6 n 0 n 

< Ci(J K(s)ds + j K(s)ds), 
0 1-4 

where Ci = r]^[0, Mor], Now (6) and Hi) imply that the Hausdorff 
distance between Dg and AnS converges to zero, i.e., djf(D$, AnS) —> 0 as 
S —• 0 + . So that we have 
(7) Hm a(Ds) = a(AnS). 

Now we estimate a(Ds). From 
i-<5 e 

I G{t, s)f(s, x(s) + - , (Tx) ( s ) )d s 
s n 

€ (1 - 2S)co({G(t, s)f(s, x(s) + i (Tx)(s))|s €[6,1- <*]}), 

then together with H2), H3) and the formula (9.4.11) of [2] implies that 

(8) a(Ds) = a ( { G(t,s)f(s,x(s) + (Tx)(S))<fc|x G 5 } ) 

< (1 - 26)a(co{{G(t, s)f(s, x(s) + - , (Tx)(s))\s €[6,1- 6],x € 5}) n 
< |G(i, a)f(a, x(s) + (Tx)(sf) \s €[6,1- 6], x € s j ) 

< max J f ( t , S ( I 6 ) + ^, (TS)(Is))) 
te[i,i-«J] \ n J 

<Lia(S(Is)) + L2a((TS)(Is)) 
< (2Li + 4 M 0 L 2 ) a c ( S ) , 

where Is =[<5,1 — i], Letting 6 —> 0+ , it follows from (7) and (9) that 
ac(AnS) < (2Li+AL2M0)ac(S). 
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Thus Lemma 2.1 and H3) imply that An is a strict set contraction operator 
mapping C[J, Pr] into C[J, P] for any r > 0 and the lemma is proved. 

The following theorem indicates the existence of the fixed point of An 

THEOREM 2.1. Assume that conditions H i ) - H 5 ) hold. Then there exists r 6 
(0, R) such that An has a fixed point xn in C[J,P] with r < ||xn|| < R for 
sufficiently large n. 

Proof . From H5), there is e > 0 such that 

( 9 ) 1] > •5[0'MO(^+ 1 ) ] -

We will show that Anx / \x when n > any x € C[J,P] with ||x||c = R 
and A > 1. Indeed, if it is not true, then there exists xo € C[J, P] with 
||xo|| = R and Ao > 1 such that Anx0 = Ao^o- Therefore, we have 

®o(0 = T"/(i> ®o(t) + (Tx0)(t)), t € J, Ao n 

and consequently 

||4(i)|| <K(t)q\ x0(t) + - ,R+ 1 
L n 

which implies that 

(10) £>+IM0ll <K(t)q[\\xo(t)lR+l}-9[Q,(R + l)Mo}, 

where D+ denotes the Dini derivate. 
Cosider the following system 

' u'{t) = K(t)q[u, R + 1] • g[0, {R + 1 )M0], 

•fl[0I||(Txo)(t)||], 

( 1 1 ) 
u (0) = 

Let 

1 
A 0n" 

G(u)= J 
1 

>0" 

dz 
q[z,R+ 1] ' 

and 

Z(t) = \K(s)g[0, (R+l)M0]ds. 

Then it is easy to see that the function G : ii] —> [0, +00) is strictly in-
creasing continuous and that Z : [0,1] —> [0, +00) nondecreasing absolutely 
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continuous, respectively. By Hi) and (9) there exists unique ui € ( t ^ , R) 
such that 

U1 dz 1 

A0n 

Set 
(12) u(t) = G~1(Z(t)), for teJ. 

It is easy to see that u : J —• [0, ui] is a nondecreasing absolutely continuous 
function such that 

(13) G'(u(t))u'(t) = Z'(t), a.e. t € J, 

and so 

(14) u'{t) = K(t)q[u(t),R + 1] • g[0,(R+l)Mo], a.e. t e J. 

Prom (12) we get u(0) = Therefore u(t) given by (12) is a solution of 
system (11) in C[J,R+]. It follows from Theorem 1.4.1 of [8] and (10) that 
||x0(i)|| < u(t), for t £ J. Consequently, noticing the nondecreasing property 
of u(t), we obtain 

||®o(t)|| < «(0 < «1 < R, fovteJ, 
which contradicts to the fact that ||xo||c = R-

By the homotopy invariable property of fixed point index for strict set 
contraction, we obtain that 

(15) i(An,UR,C[J,P]) = 1, for n > i , 

where Ur = {x 6 C[J, P}\ ||x||c < R}. 
On the other hand, by H4), there is e' > 0 such that ^ ip(t)dt > e' and 

also r' € (0, R) such that 

(16) <p*(f(t, x, y)) > <p(t) - e', for t e (0,1), ||*|| < 

where tp* e P*, ||y*|| = 1. 

Choose r such that 0 < r < I = min{r', \Q ip{t)dt — e'}. Then for any 
x 6 dUT and A > 0, we can show that 

x — Anx ^ Ae, whenever n > —. 
I — r 

Indeed, if there exists A > 0 and x€ dUr such that x — Anx = Ae, then 
t x(t) = (Anx)(t) + Ae > (^ni)(i) = \f(s,x(s) + - , (Txn)(s))ds + - . „ n n 
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This together with (16) implies 

<p*(x(t)) > 5 <p*(f(s, xn(s) + (Txn)(s)))ds > j ^ s ) - ¿[da. 
o n o 

So we obtain 

(17) <p*(x(l))>\(<p(t)-e')dt>r. 
o 

But ||y>*(x(l))|| < \\<p*\\ • ||x(l)||, this together with (17) and ||z||c = ||s(l)|| 
contradicts to the assumption x G dUT. 

Furthermore Lemma 1.2 implies that 

(18) i(An,UT,C[J,P}) = 0. 
It follows from (15) and (18) that 

i(An, UR\Ur, C[J, P}) = i(An, UR, C[J, P}) - i(An, Ur, C[J, P}) 
= 1 - 0 = 1. 

Therefore, for sufficiently large n, An has a fixed point xn in C[J, i3] with 
r < ||rcn|| < R. The proof is complete. 

Now we can prove our main result 

THEOREM 2.2. Assume H i ) - H e ) . Then problem (1) has at least one positive 
solution in C[[0,1], E] n 0^ (0 ,1 ) , E). 
Proof . When n is sufficiently large(suppose, might as well, n > no), let 
xn be given by Theorem 2.1 with xn 6 UR\UT and Anxn — xn where 
Ur = {x€C[J,P]| ||x||c<r}. So 

(19) xn{t) = \f(s,xn(s) + -,{Txn){s) 
6 V n 

By H4), there exists 5' e (0,1) such that $*{f{t, •, •)) > 1 for i € (0,J')-
This together with (19) implies that ^ * ( i n ( i ) ) > t, i.e. |jcr„(t)|| > t, for 
n > no, t £ (0,6'). Hence we have 

q[||in(i)||,i2+l] <q[t,R+l], for n > n 0 , te(0,6'). 
By the nondecreasing property of ||a;n(i)|| with respect to t, we get ||a:n(£)|| > 
6', for t e [<P, 1], 

Thus, for n > no, we have by Hi) that 

(20) ||/(t,xn(t) + ^,(Tsn)(t))|| 

J K(t)q[t, R + 1] • 5[0, (R + 1)M0], t G (0,6'), 

~ \ K(t)q[6', R + 1] • g[0, (R + 1 )M0], t G 1). 

\ds + ~. ' n 
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Now by He), (19) and (20), we obtain { in ( i )| n > no} is equicontinuous on 
J. Obviously, {xn(£)| n > no} is also uniformly bounded. We now show that 
{a;n(i)| n > no} is relatively compact for any t e J. 

Let D = {:rn| n > no}, and D(t) = {zn ( i ) l n ^ no}- By Lemma 1.1, 
ac(D) = maxa(D(t ) ) . Using (19), (20), Hi) and Lemma 1.3, we get 

a(D(t)) < 2 fta({f(s,xn(s) + f , (Txn)(s))\n > n0})ds 

<2?0(L1a(D(s)) + L2a((TD)(s)))ds 

< (2L1+AM0L2)]t0ac(D)ds. 

Consequently 
t 

otc(D) < (2Li + 4M0L2 ) \ac(D)ds. 
o 

So ac(D) = 0. Hence there exists a subsequence {xni} of {xn} converges to 
x(t) , and we can conclude that x € UR\UT by virtue of xni € UR\UT. 

Setting rii —» +oo, we have by Hi), (20) and Lebesgue's dominated 
theorem that 

t 
x(t) = \f(s,x(s),(Tx)(s))ds. 

o 
Thus x(t) is a solution of (1) and also a positive solution of (1). The proof 
of the theorem is complete. 

The following results can be easily obtained from Theorem 2.2. 

COROLLARY 2.1. Suppose that H\)-H&) hold. Then second order singular 
initial value problem 

x"(t) = f(t,x(t),x'(t)), t €(0,1), 

a;(0) = 0, x'(0) = 0, 

has at least one positive solution in C[J, E] fl C2[(0,1), E]. 

Proof. Set x'(t) = y(t). Then x(t) = y(s)ds = (Ty)(t), and the above 
system becomes the form of (1). Hence, our conclusion follows from Theo-
rem 2.2. 

COROLLARY 2.2. Suppose that H i ) -H6) hold. Assume, in addition, the func-
tion f G C[J x (—P)\{0} xP,P]. Then second order singular boundary value 
problem 

r -x"(t) = f(t,x(t),x'(t)), te (0,1), 

\ x'(0) = 0, x ( l ) = 0, 

has at least one positive solution in C1[J, E] fl C2[(0,1), E\. 
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Proof . Set x'(t) = —y{t). Then x(t) = \ly(s)ds. So the above system is 
equivalent to 

iy'(t) = f(t,-y(t),lly(s)ds), 
\y( 0) = 0. 

Hence Theorem 2.2 yields immediately our conclusion. 

3. An example 
As an application of our main results, we indicate in this section an 

example. 
EXAMPLE. Consider the following infinite dimensional system for singular 
integrodifferential equations 

(21) 

. . . cost .„ 1 

arctan t 
+-

sup |x{| ln(l + n) \ nQ 
%>l 

)\n(2 + t \es2x2n(s)dsS), t € (0,1), 

x„(0) = 0, n= 1 ,2 , . . . 

PROPOSITION. System ( 2 1 ) has at least one positive solution in [ 0 ,1 ] . 

Proof . Let E = l°° = {x = (xi, x2,... ,xn,.. .)| sup |a;n| < +00} endowed 
n>l 

with norm ||x|| = sup |xn|. Then (E, || • ||) is a real Banach space. Choose 
n>l 

P = {xi € l°°\ Xi > 0}. It is easy to verify that P is a normal cone in 
E with normal constant 1. Now consider problem (21) in E. To trans-
form (21) into the form of system (1), it is easy only to replace x(t) by 
Cxi(t),x2(t),...,xn(t),...) , f(t,x,y) by ( f h / 2 , . . . , /„,..) and fn(t,x,y) by 

cosi .„ 1 arctan t . , /n t 
—==={1 + - x n + i + , , , — -) • ln(2 + -yn), 

1 - t) n /sup \xi\ln(l + n) n 
V *>i 

j 2 
where yn = J0 e3 x2n(s)ds, respectively. Evidently, f(t,x,y) is singular at 
t = 0,1 and x = 0. We now verify the conditions Hi)-He) are satisfied 
for (21). Denote by K(t) = g(x) = ( g i ( x ) , . . . , gn(x), . . . ) , g(y) = 
(gi(y),---,9n(y),---), Where 

| 1n(x) = 1 + i * „ + 1 + (21n(1+„,*^,up|l l|. 
¿>1 

5 n(y) = ln(2 + iy n ) , n = 1 , 2 , . . . . 
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It is easy to see that Hi) and H2) hold. To show H3), for any t € (0,1), 
let bounded point sequences { x ^ } c P r j\Pn and {y^} C Pr^ ( where 
Ri, r\ with R\ > ri > 0 are arbitrary) be given . Therefore a convergent 
subsequence can be chosen from {f(t, y^)} by applying diagonal line 
method. Thus H3) holds with the special situation L\ = L2 = 0. 

Choose <p* — ip* 6 P*,such that <p*(x) = x\. Since 

,„2, 
x£P 

and lim\I'*(/(i, •, •)) = +00, therefore H4) is satisfied. 

Now we estimate q[u, R + 1] and g[0, (R + l)e], where R > u > 0. From 
(22), we can write easily that 

(23) q[u,R+1]= sup ||g(a;)|| = i2 + 2 + ^ 
u<iix||<fi+i (21n2) i/u' 

xg P 

and 

(24) (R + l)e] = ln(2 + (i? + l)e). 

Further 

/ ? du (2In2)v/ïï , „ ( 2 5 ) \ ~ r — ñ — r r = , n / n rt\ i ^ r - d u = O Í R ), a s R - > +00. 

Thus, (23), (24) and (25) imply that H5) holds. As for H6), it is satisfied 
clearly. 

Finally, our conclusion follows from Theorem 2.2. 
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