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POSITIVE SOLUTIONS OF INITIAL VALUE PROBLEMS
FOR SINGULAR INTEGRO-DIFFERENTIAL EQUATIONS
IN BANACH SPACE

Abstract. Global existence of positive solutions on [0, 1] are established in Banach
space for singular initial value problems of first order integro-differential equation of the
form

2'(t) = f(t,2(t), (T=)(1)), te(0,1),
z(0) =0,

where f(t,z,y) can be singular at t = 0,1 and z = 0. Some applications for second order
singular initial or boundary value problems are worked out.

1. Introduction and some preliminary lemmas

The theory of ordinary differential equations in abstract space is a new
and important branch of differential equations(see, for example [1]-[3]). In
recent years, the studies of singular boundary value problems for ordinary
differential equations have become more and more atractive [4]-[7]. But the
study of singular initial or boundary value problems in Abstract Space,
particularly, the existence of positive solutions of initial value problems for
integro-differential equation with singularity has not been reported yet as
far as we know. In this paper we will study in abstact space the existence
of positive solutions of initial value problem for integro-differential equation
with singularity by use of the theory of fixed point index for strict set con-
traction operator. Two corollaries and an example are given separately to
indicate applications of our main results.

Let the real Banach space E be partially ordered by a cone P of E, i.e.,
z < y if and only if y — z € P. P is said to be normal if there exists a
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positive constant N such that 8§ < z < y implies ||z|| < N||y||- We suppose,
without loss of genarality, that V = 1 throughout this paper.

Consider the global existence of positive solutions on J = [0, 1] for sin-
gular initial value problem

1) {x’@)j f(t,2(2), (T2)(2)),

where (Tz)(t) = S(l) H(t,s)z(s)ds, f(t,z,y) may be singular at t = 0,1, and
z=0,ie,

tgxgl_‘_”f(tv "y ')||=+OO, tkgl_llf(ta'a')”=+oo) l:len}}”f('az’ -)H=+OO.

z—0

We will consider problem (1) on C[J, E]. Evidently, for arbitrary z €
C|J, E], C[J, E] is a Banach space with norm ||z||. = I{lea.}(”x(t)” In the

following, = € C[J, E] N C*[(0, 1), E] is called a solution of the IVP(1) if it
satisfied (1), z a positive solution of (1) if, in addition, z is nonnegative and
nontrivial, i.e., z € C[J, P] and z(t) #0, for t € J.

Let z(t) : (0,1] —» E be continuous, the abstract generalized integral
S(l) z(t)dt is called convergent if the limit lir(1)1+ fL z(t)dt exists. The conver-

gence or divergence of other kinds of generalized integrals can be defined
similarly.

For a bounded set S in a Banach space, we label a(s) to be the Ku-
ratowski measure of noncompactness(see [1]-[3], for further understanding).
In the paper, we will write a(-) and ac(-) to be Kuratowski’s measure of
noncompacteness of some bounded subset in E and in C[J, E] respectively.

For convenience, we first list the following lemmas which can be found
in (3].

LEMMA 1.1. Let S C C[J, E] be bounded and equicontinuous on J. Then
ac(S) =sup a(S(t)), where S(t) = {z(t)|z € S}.
teJ

LEMMA 1.2. Let F : P, — P (> 0 ) be a strict set contraction operator
and there exists ug € P, up # 0 such that ¢ — Fx # Aug, for any ¢ € OP;
and A > 0. Then i(F, P.,P) =0, where P, = {z € P | ||z|| < r}.

LEMMA 1.3. Let H be a set of countable strongly measureble functions z :
J — E. Assume, in addition, there ezists M € L[J, R*] such that ||z(t)| <
M(t), a.e. t € J, holds , for any = € H. Then a(H(t)) € L[J,RY], and,
o({1, a(B)dtls € HY) < 25, a(H(B)dt.
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2. Main results

Throughout this section we will need the following conditions:

H;) f € C[(0,1)x P\{0}x P, P],and forany t € (0,1),z € P\{O} y € P,
thzre is || f(t 2, y)Il < K(#)lla()||-l9(v)|l, where K € L![0,1], § K (s)ds > 0,
an

ale,t] S sup lg(@)l| < +00, gl0,a] £ sup llg(z)] < +oo
zeP\P, zeP,
for any b > a.

Moreover, there is a constant My > 0 such that 0 < H(t, s) < My for any
t,s € J. Suppose, in addition, that T is a continuous operator on C[J, P|.

Hy) f(t,z,y) is uniformly contmuous with respect to t in 4,1 — §] x
PRI\PT1 x Pgr, where 0 < § < 2, Ry > ry > 0, and Ry > 0 are arbitrary,

= {z € P| o]l < r}.

H3) There are Ly > 0,La > 0 such that a(f(t, B1, B2)) < Lia(B1) +
Lya(Bs) with 2Ly 4+ 4LyMy < 1 for t € (0,1), By C Pg,\Pr,, B2 C Pg,,and
Ry, 7y with Ry > r1 > 0 are arbitrary.

Hy4) There exists ¢* € P* with ||¢*|| = 1 such that

Um o*(f(t,z,-)) 2 ¢(t) 20
zeP

uniformly with respect to t € (0,1), where ¢ € L![0,1], S(l) p(t)dt > 0.
Moreover, there exists ¥* € P* with ||¥*|| = 1 such that

Jim (/) 2 B> 1
t—0+

Hs) There exists R > 0 such that

I; du
o qlu, R+1]
He) K(t)qlt, R+ 1] € L*[0,1].

Before we proceed to the singular problem (1), we first discuss the ap-
proximate problem of (1). Choosing e €int P with ||| = 1, consider

2(t) = f(t2(t) + £, (T2)®),  te (0,)
2) T

1
> ( (g) K(t)dt) - [0, Mo(R + 1)),

where 7 is a positive integer. Corresponding to (2) we consider the following
integral operator
t

() (4@ =|1(s2(5) + =, (Ta)(s))ds+ =, te (0,1).
0
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It is easy to prove that the positive solution of (2) on C[J, E} is equvialent
to the fixed point of operator A, on C[J, P).

The following Lemmas show that A, is a strict set contraction operator
on C[J, P):

LEMMA 2.1. Suppose Hy) holds. Then A, : C[J, P,] — C[J, P] is a continu-
ously bounded operator for any r > 0.

Proof. For any r > 0, let zp,,z € C[J, ;] such that ||z, — z|lc — 0 as
m — oo. Since

@) (5:0m(5) + £, (Tom)(s)

‘SK(S)'

a(om(e) + )| - Ia(@ e
<q[l T+ ] [0, Mor] - K(s)

and H;), then Lebesgue’s dominated theorem guarantees that ||(Apzm)(t) —
(Anz)(t)]| — O for any t € J.

From (4), it is easy to see that (A,zm)(t) is equicontinuous on J. Next
we will show that ||A,z, — Azl — 0 as m — oo. In fact, if it is not
true, then there exit some €g > 0 and {z;, }C {zm} such that ||A,zm, —
Anz|| > eofori=1,2,.... Since {Anzm} is relatively compact, there exists a
subsequence of {A,zm,} converges to y € C[J, P]. We may still set, without
loss of generality, that hm Apnzm, = v, i€, hm | AnZm; — yllc = 0, which
contradicts the fact that y A,z. Hence A, 1s contmuous

By use of H;) and an inequality similar as (4) we can show that A, is a
bounded operator. Thus, the proof of the lemma is completed.

LEMMA 2.2. Assume that Hy), Hs), H3) hold. Then A,, : C[J, P;] — C|[J, P]
is a strict set contraction operator for any r > 0.

Proof. For any r > 0, let S C C[J, P;] . It is easy to see that the set A,S is
bounded and equicontinuous on J by Lemma 2.1. We have, by Lemma 1.1,
that

(5) ac(A,S) = sup a((AnS)(t))
teJ

where (A,S)(t) = {(Anz)(t)|z € S}. Setting

Glts) = 1, 0<s<t<l,
7lo, 1>s>t>0,
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we have .
(4n2)(8) = | £(5,2(s) + =, (T)(s))ds
0
1
= [6(t,9)f(s,2(s) + =, (Tz)(s))ds.
0

We denote Ds = {13 ° G(t,s)f (s, z(s) + £ (Tz)(s))ds|lx € S}, where ¢ €
(0,%). For any z € S and t € J, we obtain by Hj)

1-46
S G(t,s)f(s,z(s) + ,(Tw)(s )ds—SG(t s)f (s, z(s) + ,(Tz)(s))ds
(6) 1
501(5 K(s)ds+ | K(s)ds),
0 1-46

where C; = q[1,r]g[0, Mor]. Now (6) and H;) imply that the Hausdorff
distance between Ds and A, S converges to zero, i.e., dg(Ds, A, S) — 0 as
d — 0%. So that we have

7 i = a(A,S).
(7) lim a(Ds) = a(4,5)
Now we estimate a(Dj). From

1-46
[ G(t,8)f(s,2(s) + % (Tz)(s))ds
4

€ (1- 20)00({G(t, )/ (5,2(s) + =, (Tz)())ls € [6,1 = ),

then together with Hy), H3) and the formula (9.4.11) of 2] implies that
1-3

(8) a(Ds) = a({ § G(t, s)f(s,a:(s) + %, (Tz)(s))ds|z € S})
< (1= 28)a(@({C(t, 5)f(s, 2(s) + S (Ta)(s))ls € 5,1~ 8],z € 5))
< a({G(t, s)f(s, z(s) + E, (Ta:)(s)) |s € [6,1 4],z € S})

< mex_a(f(6,5U5) + £, (T)(1)
< Lia(S(Is)) + L2a((T'S)(Is))
< (2L; + 4MyLo)ac(S),

where I5 =[4,1 — §]. Letting § — 07, it follows from (7) and (9) that

ac(AnS) < (2L + 4Ly Mp)ac(S).
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Thus Lemma 2.1 and Hj3) imply that A, is a strict set contraction operator
mapping C[J, P;] into C[J, P] for any r > 0 and the lemma is proved.
The following theorem indicates the existence of the fixed point of A,

THEOREM 2.1. Assume that conditions Hy)-Hs) hold. Then there ezists r €
(0, R) such that An has a fized point z,, in C[J, P] with r < ||z,|| < R for
sufficiently large n.

Proof. From Hs), there is € > 0 such that

R du 1

We will show that A,z # Az when n > 1, any z € C[J, P] with ||z|. = R
and A > 1. Indeed, if it is not true, then there exists zo € C[J, P] with
llzol| = R and A¢ > 1 such that A,z = Agxg. Therefore, we have

25(t) = 3 (6 20) + 2, (Tzo)(®), te ),

€
zo(0) = o’

and consequently
le5(®)l < K(t)a
which implies that

(10) DY ||zo(t)ll < K(®)qlllzo(®)ll, R+ 1] - 9[0, (R + 1)Mo],

where D7 denotes the Dini derivate.
Cosider the following system

w'(t) = K(t)q[u, R+ 1] - g[0, (R + 1) Mo],

20(®) + 2|, R+ 1] - 0, I @) )1

(1 - 1
Let
b dz
G(u) = _—,
®) § qfz, R+ 1]
Xom
and

t
Z(t) = { K(s)g[0, (R + 1) Mo)ds.
0
Then it is easy to see that the function G : [Fln’ R] — [0,+00) is strictly in-
creasing continuous and that Z : [0,1] — [0,+o0c) nondecreasing absolutely
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continuous, respectively. By H;) and (9) there exists unique u; € ( ;n,R)
such that

K dz 1

_§_ dnR+1 (S)K(S)Q[O, (R + 1)Mo)ds.
Set
(12) u(t) = G_I(Z(t)), for teJ

It is easy to see that u : J — [0, u;] is a nondecreasing absolutely continuous
function such that

(13) G'(u@))(t) = Z'(t), ae tel,
and so
(14) u'(t) = K(t)q[u(t), R+ 1] - g[0,(R+ 1)My], ae.te ]

From (12) we get u(0) = ﬁ. Therefore u(t) given by (12) is a solution of
system (11) in C[J, R*]. It follows from Theorem 1.4.1 of [8] and (10) that
llzo(®)|| < u(t), for t € J. Consequently, noticing the nondecreasing property
of u(t), we obtain

lzo@®lf < u(t) w1 <R, fortel,

which contradicts to the fact that ||zol|. = R.

By the homotopy invariable property of fixed point index for strict set
contraction, we obtain that

(15) i(An,Ur,C|J,P)) =1, forn> %

where Ug = {z € C[J, P]| ||z]c < R}.
On the other hand, by Hy), there is ¢ > 0 such that {§ ¢(¢)dt > € and
also r’ € (0, R) such that

(16) ©*(f(t,2,y)) 2 p(t) — €, forte (0,1), flzf| <,
where ¢* € P*, ||l¢*|| = 1.

Choose  such that 0 < r < | 2 min{r’, {5 ¢(t)dt — €}. Then for any
z € 0U, and X\ > 0, we can show that

z — A,z # Ae, whenever n >

-7 .
Indeed, if there exists A > 0 and x& 98U, such that x — A,z = Xe, then

(t) = (Ang)(t) + Ae > (Anz)(t) = | (5, 2(s) + =, (T)(s))ds + %
0

n
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This together with (16) implies
t

@*(@(1) 2 [ " (f(s,2n(s) + =, (Tza)(s)))ds 2 J[i(s) - lds.
0 0

So we obtain
1

(17) 0" (z(1)) 2 [(p(t) — €)dt > .
0

But [|o*(z(1))]l < ll¢” | - liz(2)|, this together with (17) and ||zl = [|z(1)]|
contradicts to the assumption z € 8U,.
Furthermore Lemma 1.2 implies that

(18) i(An, U, C[J,P]) = 0.
It follows from (15) and (18) that
i(An, UR\Ur, C[J, P)) = i(An, Ur, C[J, P)) — i(An, U, C[J, P))
=1-0=1.

Therefore, for sufficiently large n, A, has a fixed point z, in C[J, P] with
r < ||zn|| < R. The proof is complete.

Now we can prove our main result

THEOREM 2.2. Assume Hy)-Hg). Then problem (1) has at least one positive
solution in C[[0, 1], E] n C*[(0,1), E).

Proof. When n is sufficiently large(suppose, might as well, n > ng), let
z, be given by Theorem 2.1 with =z, € Ugr\U, and A,z, = z, where
Ur = {z € C[J,P}}| ||z|lc < r}- So

(19) oalt) = § £ (8,0(6) + £, (Ta)(9) ) ds + .
0

By Hy), there exists &' € (0,1) such that ¥*(f(¢,-,-)) > 1 for t € (0,4").
This together with (19) implies that U*(z,(t)) > t, i.e. ||zn(t)|| = t, for
n > ng,t € (0,4’). Hence we have

dlllzn@®|, R+ 1] < q[t,R+1], forn>mne, te (0,5).

By the nondecreasing property of ||z,(t)|| with respect to ¢, we get ||z, (t)|| >
¢, for t € [0, 1].
Thus, for n > ng, we have by H;) that

(20) £ (tza(t) + =, (T2a) )]
< K(t)q[t1R+ 1] '9[0’ (R+ l)MOL te (0> 61))
T | K(t)q[d',R+1]-g[0,(R+1)Mp}, tel[d,1).
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Now by Hg), (19) and (20), we obtain {z,(t)| n > no} is equicontinuous on
J. Obviously, {z,(t)| n > ne} is also uniformly bounded. We now show that
{zn(t)| n > no} is relatively compact for any t € J.

Let D = {z,| n > ngo}, and D(t) = {zx(t)| n > no}. By Lemma 1.1,
ac(D) = max a(D(t)). Using (19), (20), H;) and Lemma 1.3, we get

a(D(t)) < 255 a({f(s,za(s) + £, (Tz4)(5))In > no})ds
< 2§4(L1a(D(s)) + Laa((TD)(s)))ds
< (2L1 + 4MoLs) § ac(D)ds.

Consequently

ac(D) < (2L1 + 4MoLz) fac(D)ds.
0

So a¢(D) = 0. Hence there exists a subsequence {z,,} of {z,} converges to
z(t) , and we can conclude that z € Ug\U, by virtue of Zn; € Ur\U:.

Setting n; — +oo, we have by H;), (20) and Lebesgue’s dominated
theorem that

z(t) = | f(s,2(s), (Tz)(s))ds.
0

Thus z(t) is a solution of (1) and also a positive solution of (1). The proof
of the theorem is complete.

The following results can be easily obtained from Theorem 2.2.

COROLLARY 2.1. Suppose that H,)-Hg) hold. Then second order singular
initial value problem

z'(t) = f(t,z(t),2'(t)), te(0,1),
z(0) =0, 2'(0)=0,

has at least one positive solution in C[J, E] N C?[(0,1), E].

Proof. Set 2/(t) = y(t). Then z(t) = §, y(s)ds 2 (Ty)(t), and the above

system becomes the form of (1). Hence, our conclusion follows from Theo-
rem 2.2.

COROLLARY 2.2. Suppose that Hy)-Hg) hold. Assume, in addition, the func-
tion f € C[J x (—P)\{0} x P, P]. Then second order singular boundary value
problem

—z'(t) = f(t,2(8),z'(t)), te(0,1),
z/(0)=0, =z(1)=0,

has at least one positive solution in C1[J, E] N C2[(0,1), E].
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Proof. Set #'(t) = —y(t). Then z(t) = {; y(s)ds. So the above system is
equivalent to

{ y'(8) = f(t, —y(t), §; y(s)ds),
y(0) =0.

Hence Theorem 2.2 yields immediately our conclusion.

3. An example

As an application of our main results, we indicate in this section an
example.

EXAMPLE. Consider the following infinite dimensional system for singular
integrodifferential equations

(z' (t) = cost (1+1m
"M —¢) n "
tant t i
(21) + s (2 + = Ses ZTon s)ds) te(0,1),
T \/sup |z} In(1 + n) n,
\xn(O)z , n=12,...
PROPOSITION. System (21) has at least one positive solution in [0, 1].
Proof. Let E = I® = {z = (z1,%2,...,Zn,...)| sup|z.| < +00} endowed
n>1
with norm ||z|| = sup|z,|- Then (E,|| - ||) is a real Banach space. Choose
n>1

P = {z; € I*°] z; > 0}. It is easy to verify that P is a normal cone in
E with normal constant 1. Now consider problem {21) in E. To trans-
form (21) into the form of system (1), it is easy only to replace z(t) by
(z1(t), zo(t), . - .y zn(t),...), f(t,z,y) by (f1, fo,- -y fn,..) and fo(t,z,y) by

cost 1 arctant

t
8t (14 lmea+ 0@+ L),
Vv til—t)( nt \/sup|a:,-|ln(1+n)) ( n )
i>1

where y, = §} e*’ Ton(s)ds, respectively. Evidently, f(t,z,y) is singular at
t = 0,1 and z = 0. We now verify the conditions H;)-Hg) are satisfied
for (21). Denote by K(t) = Vj"(i—it), g(z) = (q1(2),- -, qn(2), .. .), 9(y) =
(gl(y)a s ag'n(y)a . ')’ where

gn(z) =1+ %zn+1 +

™
(2In(14n)) /sup|z;|’
i>1

gm(@) =In@+1iy), n=12....

(22)
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It is easy to see that H;) and Hy) hold. To show Hj3), for any t € (0,1),
let bounded point sequences {z(™} C Pg,\P,, and {y(™} C Pg,( where
Ry,r; with Ry > r1 > 0 are arbitrary) be given . Therefore a convergent
subsequence can be chosen from {f(t, 2z, y(™)} by applying diagonal line
method. Thus H3) holds with the special situation L; = L, = 0.

Choose ¢* = ¥* ¢* € P*such that ¢*(z) = z1. Since

lim " (f(t, - y)) >

== YHI-1)

xeP

and 11m \Il*( (t,+,-)) = +0o0, therefore Hy) is satisfied.

In2,

Now we estimate g[u, R + 1] and g[0, (R + 1)e], where R > u > 0. From
(22), we can write easily that

T
23 R+1] = =R+2+4 s,
) b ] usniﬁgm la(2)l (2In2)/u
z€P
and
(24) g0, (R + 1)e] = In(2 + (R + 1)e).
Further
R R
du (2ln2)ya \
25 _ |
(25) (S)‘I[u R +1] §) R+2)ln2)\/_+ O(R’), as R — +o0
Thus, (23), (24) and (25) imply that Hs) holds. As for Hg), it is satisfied

clearly.
Finally, our conclusion follows from Theorem 2.2.
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