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REPRESENTATION OF A UNITAL GROUP 
HAVING A FINITE UNIT INTERVAL 

Abstract. Let G ^ {0} be a unital group with a finite unit interval and with rank r. 
Then r is a positive integer and G can be realized as TI x K, where K is a finite abelian 
group, in such a way that (z, k) € G+ => z G (Z + ) r . The state space f2(G) of G is 
a polytope and the extreme points of f2(G) are Q-valued states. The positive cone G+ 
satisfies the descending chain condition, and if G is torsion free, then G carries a separating 
set of Q-valued states. 

1. Introduction 
This article is a continuation of the study of unital groups with finite 

unit intervals initiated in [4]. Motivation for this study appears in [4] and 
will not be repeated here. Although we make an attempt to keep this article 
somewhat self-contained, we shall be using the notation, nomenclature, and 
results of [4]. 

In what follows, abelian groups are written additively and, if G is a 
partially ordered abelian group, the positive cone in G is denoted by G+ := 
{g € G | 0 < g} [9]. A subset F of G+ is cone generating iff every element 
of G + is a sum of a finite sequence of (not necessarily distinct) elements of 
F. If G+ generates G as a group, i.e., G — G+ — G+, then G is said to be 
directed. If every element in G whose positive integer multiples are bounded 
above necessarily belongs to — G+, then G is called archimedean. 

Let G be a partially ordered abelian group, and let u 6 G+. We define 
the interval E := G+[0, u] = { < ? € C ? | 0 < < 7 < tx}, and we consider E to 
be a bounded partially ordered set under the restriction to E of the partial 
order on G. The interval E is understood to be organized into an effect 
algebra with unit u and with orthosum © given by the restriction to E of 
+ on G. For the details, see [1, 5]. The element u € G + is called an order 
unit iff, for each g € G, there exists a positive integer n such that g < nu 
[9, p. 4], If there is an order unit u 6 G+, then G is directed. A unital group 
is a partially ordered abelian group G with a specified order unit u, called 



794 D. J. Foulis 

the unit, such that the interval G+[0, it], called the unit interval, is cone 
generating. 

If G is a unital group, E is the unit interval in G, and K is an abelian 
group, then a mapping <j>:E —> K such that <j>(p + q) = <f>(p) + <f>(q) whenever 
P)9)P + Q £ E i s called a K-valued measure on E. We say that G is a 
K-unital group iff every K-valued measure <f>:E^K can be extended to a 
group homomorphism <f>*\ G —> K. If G is a if-unital group for every abelian 
group K, then G is said to be a unigroup [2, 4, 8]. 

A lattice-ordered unital group, and more generally, a unital group with 
the Riesz interpolation property [9, Chapter 2], is automatically a unigroup. 
By definition, a unigroup G with unit u is Boolean iff its unit interval E is a 
Boolean algebra with p i—• u — p as the Boolean complementation mapping. 
A Boolean unigroup G is lattice ordered and its unit is the smallest order 
unit in G. Conversely, a unigroup G with the Riesz interpolation property 
is a Boolean unigroup if its unit is a minimal order unit in G. 

The ordered field of real numbers, the ordered field of rational numbers, 
and the ordered ring of integers are denoted by R, Q, and Z, respectively. 
The standard positive cone in R is R+ {x2 \ x € R} and the standard 
positive cones in Q and Z are Q + := Q fl R+ and Z+ := Z fl Q+ . With 1 as 
the unit, and with the standard (total) order, each of the additive abelian 
groups R, Q, and Z is a unigroup. 

If G ^ {0} is a unital group with unit u, then a state for G is a 
group homomorphism u : G 1 such that OJ(G+) C R+ and ui(u) = 1 
[9, Chapter 4]. The set of all states for G, called the state space of G, denoted 
by i?(G), is a nonempty compact convex subset of the locally convex linear 
topological space RG of all functions a: G —• R [9, Corollary 4.4, Proposi-
tion 6.2]. If u € J?(G) then a; is a Q-valued state iff a>(G) C Q. Evidently, 
U> € Q(G) is a Q-valued state iff U> maps the unit interval G+ [0, U] into Q+ . 

Suppose G ^ {0} is a unital group and A C J?(G). Then A is said to be 
strictly positive iff for each p ^ 0 in G+, there exists u> G A with 0 < u>(p). 
A state u> £ {2(G) is strictly positive iff the singleton set {a>} is strictly 
positive. By definition, A is separating iff, for every g ^ 0 in G, there exists 
w € A with ui(g) / 0. Clearly, a separating set of states is strictly positive, 
and if G carries a separating set of states, then G is torsion free. By [9, 
Theorem 4.14], if G is archimedean, then fi(G) is a separating set of states 
for G. 

Let G ^ {0} be a unital group with a finite unit interval E. Then, 
as a partially ordered set, E is atomic, and if ai, 02, . . . , an are the atoms 
in E, then {ai, 02, . . . , a n } is both a finite cone-generating set and a finite 
set of generators for the abelian group G [4, Lemma 5.1]. Therefore, the 
torsion subgroup GT of G is a finite direct summand of G and any com-
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plementary direct summand H of GT is a free abelian group of finite rank 
r > 0. If 77: G —• H is the natural projection homomorphism onto H, then 
H can be organized into a unital group with unit r)(u) and positive cone 
H+ = r)(G+). Furthermore, there is an affine isomorphism u u> between 
the state spaces Q{G) and fi(H) such that a>(g) — u(rj(g)) for all g € G [4, 
Theorem 4.1]. 

If r is a positive integer, we understand that 17 is organized into an 
additive abelian group with coordinatewise operations. Vectors in 17 are 
denoted by lower case bold face Latin letters, e.g., z = (21,22,..., zr). The 
standard partial order for 17 is the coordinatewise partial order with the 
corresponding standard positive cone (Z+) r . With the standard partial order, 
17 forms a so called simplicial group [9, p. 47]. As a simplicial group, 17 is 
an archimedean lattice-ordered group with a smallest order unit, namely 
(1 ,1 , . . . ,1) . An element v 6 (Z+) r is an order unit iff all of its coordinates 
are strictly positive. If v is an order unit in the simplicial group 17, then 
17 is a unigroup with unit v and the unit interval (Z+)r[0, v] forms a finite 
MV-algebra [3]. Conversely, every finite MV-algebra has this form. With 
u := (1 ,1 , . . . , 1) as the unit, the simplicial group 17 is a Boolean unigroup 
and its unit interval (Z+)r[0, u] can be identified with the finite Boolean 
algebra 2 r . 

2. The existence of a strictly positive state 
In Lemmas 2.1 and 2.2 below, we shall be focusing attention on a torsion-

free unital group G ^ {0} with a finite unit interval E. For instance, G could 
be obtained by "removing" (i.e., factoring out) the torsion from a unital 
group with a finite unit interval as in [4, Theorem 4.1]. As a group, such a 
G is a free abelian group of finite positive rank r, whence by choosing a free 
basis, we can represent G as 17. This representation is not unique and there 
is not necessarily any obvious relationship between the positive cone G+ and 
the standard positive cone (Z + ) r in 17. Nevertheless, in this section, it will 
be convenient for us to make the identification G = Z r, so that elements in 
G are vectors h = (hi,h,2,..., hr) with integer entries. 

The additive group G = 17 is a subgroup of the additive group of the 
r-dimensional coordinate vector space R r . We understand that Rr is orgar 
nized into a euclidean space with the usual dot product (x, y) i-> x • y and 
norm ||x|| = a/x • x. 

2.1. LEMMA. Let r be a positive integer, let G = 17 as an additive abelian 
group, and suppose that G is a unital group with positive cone G + , unit 
u / 0 , and finite unit interval E = G+[0, u]. Denote the distinct atoms in 
E by a i , a 2 , . . . , an- Then: 
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(i) a i , 3l2) • • • i a n span the vector space R r . 
(ii) If qi e Z+ and X)?=i 9iai = 0, then qi = 0 for i = 1 , 2 , . . . , n. 

(iii) If ai 6 R + and X^iLl a « a i  = then a» = 0 for i = 1 , 2 , . . . , n. 

( iv) There exists a vector z E Z r such that 0 < z • a ; for i = 1 , 2 , . . . , n. 

P r o o f , (i) The standard free basis e i : = ( 1 , 0 , . . . , 0 ) , e 2 : = ( 0 , 1 , . . . , 0 ) , . . . 
. . . , e r : = ( 0 , 0 , . . . , 1) for the abelian group U is an orthonormal basis for R r . 
Since a i , a 2 , . . . , a n generate Z r , the vectors e i , e 2 , . . . , e r are linear com-
binations of a j , a 2 , . . . , a n with integer coefficients, whence a i , a2, • • •, a n 

span the vector space R r . 
(ii) Assume the hypotheses. As aj € E C G+ and 0 < it follows that 

qi aj € G+ for i = 1 , 2 , . . . , n. Therefore, i <Ziai = 0 implies that = 0 
for i = 1 , 2 , . . . , n. Since aj / 0 and the group IT is torsion free, it follows 
that qi — 0 for i = 1 , 2 , . . . , n. 

(iii) Assume the hypotheses of (iii), but suppose that c^ > 0 for at least 
one i 6 { 1 , 2 , . . . , n} . By (temporarily) renumbering if necessary, we can and 
do assume that a , > 0 for i = 1 , 2 , . . . , m with 1 < m < n and, if m < ra, 
a j = 0 for i = m + 1 , . . . , n. Let A be the m x r matrix over Z with the 
vectors aj, i = 1 , 2 , . . . , m as its successive rows, and let p be the rank of A. 
Consider the equation 

(1) ((3up2,...,pm)A = ( 0 , 0 , . . . , 0 ) e r 

for (/?i, /?2, • • •, Pm) G R m , noting that ( f t , fa . . . , ftn) = (<*i, «2, • • •, a m ) is a 
nontrivial solution of (1). Thus, by the rank-plus-nullity theorem, 1 < p < m. 
To solve (1), we bring the r xm transpose A* of the matrix A into reduced 
row echelon form B, noting that the entries in B are rational numbers. 
Thus the nonzero rows of the matrix B encode p equations expressing p 
of the unknowns ft as rational linear combinations of the remaining m — p 
unknowns, which are then regarded as arbitrary parameters. Renumbering 
again, if necessary, we can and do assume that these equations express ft 
for i = 1 , 2 , . . . , p in terms of ft for k = p + 1, p + 2 , . . . , m. Therefore, the 
general solution of (1) is given by 

m 

(2) A = E c i f eft for z = 1 , 2 , . . . , p, 
k=p+1 

where the coefficients Cik are rational numbers and ft are arbitrary real 
numbers for k = p + 1, p + 2 , . . . , m. In particular, 

m 

(3) ai =  cikak for i = 1 , 2 , . . . , p. 
k=p+1 

Now let 0 < e < min(ai, 0 2 , . . . , a p ) . By continuity and (3), there 
is a positive real number 5 such that if — ft| < 5 for k = p + 1, 
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p + 2,...,m, then fa given by (2) satisfy 0 < oti — e < fa for i = 1 , 2 , . . . , p. 

For each fc = p + l ,p + 2, . . . , m, select a positive rational number fa with 
\ak—0k\ < As the coefficients c^ in (2) are rational numbers, it follows 
that fa in (2) are positive rational numbers for i — 1,2, . . . , p. Therefore, (1) 
has a solution (fa, fa, • • •, (3p, • • •, ¡3m) such that fa is a positive rational num-
ber for i — 1,2, . . . , p,..., m. Write fa in fractional form for i = 1,2, . . . , m 

and let M be the least common multiple of the resulting denominators. 
Then the integers qi := Mfa for i = 1,2, ..,m and, if m < n, := 0 for 
i = m + 1,. . . , n, provide a contradiction to (ii). 

(iv) By (iii) and Farkas's Lemma [12, Chapter 4], there is a vector c € Mr 

such that 0 < c • ai for i = 1,2, . . . , n. By continuity, there exists e > 0 such 
that q € Kr with ||c — q|| < e implies that 0 < q • a; for i = 1,2, . . . , n. 

Choose q 6 Qr with ||c — q|| < e. Then there is a positive integer M such 
that z := M q 6 and we have 0 < z • aj for i — 1,2, . . . , n. • 

2.2. THEOREM. If G is a torsion-free unital group with a finite unit interval, 

then there is a strictly positive Q-valued state ui on G. 

Proo f . As a group, G can be identified with IT as in Lemma 2.1. By 
Lemma 2.1(iv), there is a vector z € II such that 0 < z • aj for i = 1,2, . . . , n. 
If 0 t̂  p 6 G+, then there are integers qi 6 Z+, at least one of which is 
strictly positive, such that p = 9»aii an<^ it follows that 0 < z • p. If u 
is the unit in G, define u>: G —> M by a>(h) := (z • h)/(z • u) for all h € G. 

Then LJ is a strictly positive state on G. • 

2.3. COROLLARY. If G is a unital group with a finite unit interval, then 

there is a strictly positive Q-valued state ui on G. 

Proo f . Combine [4, Theorem 4.1] and Theorem 2.2. • 

3. Optimizing the representation 
Suppose G / {0 } is a torsion-free unital group with unit u and with 

a finite unit interval E = G+[0, it]. Then the partially ordered set E is 
atomic and the set {ai , a2,..., o „ } of atoms in E is a finite set of generators 
for the abelian group G, so G is a finitely-generated torsion-free abelian 
group. Consequently, G admits a free basis e\, e2,..., er, where 0 < r = 
rank(G). Using this free basis, we obtain a group isomorphism <j):G Zr of 
G onto the additive abelian group II. The isomorphism <p is not uniquely 
determined and can be replaced by r o <f> where r is any automorphism of 
the group Z r. The most general automorphism r of Z r is implemented by 
a n r x r unimodular matrix J over Z according to T (z) = z J for all z € 1?. 
To say that J is unimodular means that J has an inverse over Z, i.e., that 
det(J) = ±1. 
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By a suitable choice of the group isomorphism (f>: G —> IT, we might 
hope to obtain a representation of G that is "optimal" in some sense. Surely 
one of the desiderata for an optimal representation would be that (j> carries 
the positive cone G+ into the standard positive cone (Z + ) r in the simplicial 
group IT. We are going to prove that such a <f> exists. 

3.1. LEMMA. Let G / { 0 } be a torsion-free unital group with unit u and 

finite unit interval E = G+ [0, u], let a\, a2,..., o„ be the distinct atoms in 

E, and let r be the rank of G. Then there is a group isomorphism <j>:G —>!T 

such that the first entry in each of the vectors <t>(a,i) is strictly positive for 

i = 1,2,..., n. 

P roo f . Choose an arbitrary group isomorphism (f>: G —• IT. If we can find 
an r x r unimodular matrix J over Z such that the first entry in each of the 
vectors </>(aj) J for i = 1,2,. . . , n is strictly positive, then we can replace 4> 
by g i—> <j>(g)J, and the lemma is proved. 

Let aj := <f>(ai) = (aji, Oj2, • • •, ̂ ir) for i = 1,2,.. . , ra. Let H := IT as 
an additive abelian group, but organized into a unital group with positive 
cone H+ :— <f>(G+) and unit u := (j){u). Then aj, i = 1,2, . . . ,n are the 
distinct atoms in the finite unit interval G+ [0, u]. By Lemma 2.1(iv), there 
is a vector z = (zi, Z2,..., zr) € Z r such that 

If 0 < D is the greatest common divisor of the nonzero integers in the list 
2i, Z2, • • •, zr, then we can and do replace zj by Zj/D for j — 1,2,.. . , r 
without affecting (4) so that the nonzero integers in the list z\, Z2,..., zT are 
relatively prime. Thus, there exists a n r x r unimodular matrix J having 
zi, Z2,..., zr as the successive entries in its first column [11], whence the first 
entry in each of the vectors <j>{aì)J = ai J , i = 1 , 2 , . . . , n, is strictly positive 

3.2. LEMMA. With the hypotheses of Lemma 3.1, the group isomorphism 

<f>:G —• IT can be chosen in such a way that <f>(ai) G (Z + ) r fori = 1,2, . . . , n. 

P r oo f . By Lemma 3.1, there is a group isomorphism <j>: G —> IT such that 
the first entry an in each of the vectors 4>{cii) = (an, aj2,..., aj r ) is strictly 
positive for i = 1,2, . . . , n. If we can find a group automorphism IT —> IT 

such that r(4>(ai)) € (Z + ) r for i = 1,2, . . . ,n, then we can replace (f> by 
r o(f>, and the lemma is proved. 

Let k — max{|ajj|/ati | i = 1,2, . . . , n; j = 2,3,. . . , r } , so that kan + 
aij 6 Z + for i = 1,2, . . . , n and j = 2,3, ...,r. Then the desired group 

r 

(4) 

by (4). . 
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automorphism r : I I —> I I is obtained by defining 
r ( z x , Z2,..., zr) := {zi,kz1 + z2,...,kzi + zr) 

f o r (zu z 2 , . . . , zr) e I I . m 

3 . 3 . L E M M A . If G { 0 } is a torsion-free unital group with a finite unit 
interval E, and if r = rank(G), then G can be realized as the additive 
abelian group II in such a way that G+ C (Z+) r . 

P roo f . By Lemma 3.2, there is a group isomorphism </>:(?—• II that maps 
the atoms in E into the standard positive cone (Z+) r in the simplicial group 
I I . Since the set of atoms in E generates G+, it follows that <J>(G+) C (Z+) r . 
Using the group isomorphism CP, we can identify G with II. • 

3 . 4 . T H E O R E M . Let G { 0 } be a unital group with a finite unit interval 
and let r be the rank of G. Then r is a positive integer and there is a finite 
abelian group K such that G can be realized as the group II x K in such a 
way that for z € II and k € K, (z, k) G G+ z € (Z+)r. 

P roo f . Since G has a finite unit interval, it is finitely generated, hence 
it has finite rank r, its torsion subgroup GT is a finite direct summand of 
G, and there is a torsion-free abelian group H of rank r and a group iso-
morphism IP:G —> H x GT. If r = 0, then G is a finite unital group, so 
G = {0}, contradicting the hypotheses. Thus, r > 0. Define 7r: H X GT H 
by 7r(h, k) := h for (h, k) 6 H x GR, and let RJ: G —• H be defined by 
T) := tt o ip. Then rj: G —> H is a surjective group homomorphism and 
KER(R7) = GT. 

By [4, Theorem 4.1], we can and do organize H into a unital group with 
positive cone H+ := f](G+) = {h € G \ 3k E GT, (h, k) G G + } and with 
unit v := r](u). By [4, Theorem 4.1 (viii)], H has a finite unit interval. 
By Lemma 3.3, we can and do assume that H = II as an abelian group 
and that r)(G+) = H+ C (Z+) r . Using the isomorphism ip, we can and do 
identify G, as a group, with II x K, where K is isomorphic to Gr. Then 
elements of G have the form (z, k) €Zr x K with ry(z, k) = z. Consequently, 
( z , f c ) e G + = > z e ( z + ) r . • 
3 . 5 . C O R O L L A R Y . If G is a unital group with a finite unit interval, then the 
positive cone G+ satisfies the descending chain condition. 

Proo f . Without loss of generality we can assume that G {0} and that 
G = II x K as in Corollary 3.4. Suppose that {z\,k\) > (Z2, ̂ 2) > • • • > 
(zn, kn) > . . . is a strictly decreasing infinite sequence of elements in G+. 
Then z i > Z2 > . . . > z n > • •. is a decreasing infinite sequence of elements 
in (Z+) r . But (Z+) r satisfies the descending chain condition, so there exists 
a positive integer N such that z ^ = for j = 1 , 2 , . . . . If r is the order 
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of the finite group K, then two of the elements k^+j must agree for j = 
1,2, . . . , r +1, so we cannot have (zi, fci) > (z2, fo) > • • • > (zn, kn) > . . . • 

3.6. COROLLARY. If G is a unital group with a finite unit interval E, then 
G has the Riesz interpolation property [9, Chapter 2] iff G is lattice ordered 
and E is an MV-algebra. 

Proof . See [9, Corollary 3.14]. • 

4. x-Groups 
Suppose that G ^ {0} is a torsion free unital group with a finite unit 

interval E. By choosing a free basis in G we can realize G as G = IT with 
0 < r. Assuming that this has been done, let u £ (Z+)r be the unit in 
G, let a i , a.2,..., a n € (Z+) r be the distinct atoms in E, and let A be the 
(n +1) x r matrix with a i , a2 , . . . , a n as its first n row vectors and with u as 
its (n + l)st row vector. To obtain an alternative realization of G as'Zr, we 
use a n r x r unimodular matrix J over Z to replace A by A J, whereupon G+ 

is replaced by G+J. The transition A i—> A J is accomplished by executing a 
finite sequence of elementary column transformations over Z on the columns 
of A 

By Lemma 3.3, we can always find a unimodular matrix J such that 
A J C (Z+)r, and by replacing A by A J, obtain a realization of G as Zr in 
such a way that G+ C (Z+)r. Assuming that this has been done, further 
elementary column transformations (over Z) on A might yield a more per-
spicuous realization of G while preserving the condition G+ C (Z+)r. For 
instance, we could perform further elementary column transformations on 
A in an attempt to decrease the entries in its last row, i.e., to decrease the 
components of the unit vector for G while preserving the nonnegativity of 
all entries in A. 

The optimal situation is that in which, by suitable elementary column 
transformations over Z, all entries in the last row of A can be reduced to l 's 
while preserving the nonnegativity of the remaining entries in A. If this can 
be done, then u = (1,1, . . . , 1), whence the vectors p = (pi,p2, • • •,Pr) € 
E have only zeros and ones as entries. Such a vector can be identified 
with the characteristic set function XM'-{ 1 ,2 , . . . , r} —> {0,1} of the set 
M = {i \pi = 1}, and we obtain a set representation of the effect algebra E. 
(Caution: This is related to, but not the same as the notion of a "concrete 
logic" [10]). These considerations lead us to the following definition. 
4.1. DEFINITION. A X'9rouP ° f finite rank r > 0 is a unital group G with 
the following properties: (i) As an additive abelian group, G = Zr. (ii) 
G+ C (Z+r. (iii) The unit in G is u = (1,1, . . . , 1). A x-uni9rouP °f finite 



Representation of a unital group 801 

rank r is a x-group that is also a unigroup. A finite x~ algebra is a finite effect 
algebra that is isomorphic to the unit interval in a x-unigroup of finite rank. 

Here is the simplest example of a non-Boolean x-unigroup. 
4.2. EXAMPLE. Let G = Z3 as an abelian group, define G+ := {(x,y,z) G 
G | 0 < x, y, z, y + z — x}, and let u := (1,1,1). Then G is an archimedean 
X-unigroup of rank 3 and the unit interval E in G is the six-element modular 
orthocomplemented lattice M02. • 

It can be shown that the class of x-unigroups of finite rank is closed 
under the formation of finite products, coproducts, and tensor products 
[7, Section 10], hence there is an abundant supply of such unigroups. The 
author does not know an example of a x-unigroup of finite rank that is not 
archimedean. 

5. The state space 
If G ^ {0} is an R-unital group with a finite unit interval E, then 

probability measures on E can be extended uniquely to elements of fi(G), 
and the fact (by Corollary 2.3) that there is a strictly positive u 6 fi(G) 
together with the development in [6] shows that J7(G) is a rational polytope. 
In this section we are going to show that i2(G) is always a rational polytope, 
even if G is not R-unital, but only unital. 
5.1 . L E M M A . Suppose that G is a unital group with unit u, that 0 < r, 
and that G = TT as an additive group. Let G = Qr as an r-dimensional 
coordinate vector space over Q and let G+ be the subset of G consisting of 
all finite linear combinations of elements of G+ with nonnegative rational 
coefficients. Then: 

(i) G can be organized into a partially ordered vector space over Q with 
G+ as its positive cone. 

(ii) Regarded as a partially ordered abelian group under addition, G is a 
unigroup with unit u. 

(iii) The inclusion mapping G > G is an injective morphism of unital 
groups. 

(iv) Each state u € fi(G) eodends to a unique state Q G Q(G) and the 
mapping u H-> Q is an affine bijection of Q(G) onto Q(G). Furthermore, 
u> G i?(G) is Q-valued i f f Q G f2(G) is Q-valued, and u is strictly positive 
i f f u> is strictly positive. 
P r o o f , (i) Evidently, G+ + G+ C G+ and Q+G+ C G+. Suppose 0 ^ p j G 
G+ and a, G Q + for i = 1 , 2 , . . . , k with "¿Pi = 0- Choose a positive 
integer M such that fa := M a , G Z for i - 1 , 2 , . . . , k. Then J2i=i A Pi = 0, 
and it follows from the fact that p; are nonzero elements of the positive 
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cone G+ that $ = 0, whence a* = 0 for i = 1,2, ...,k. Consequently, 
—G+ fl G+ = { 0 } , so G can be organized into a partially ordered vector 
space over Q with G+ as its positive cone. 

(ii) Suppose x € G and choose a positive integer M such that M x G 
IT = G. As u is an order unit in G, there is a positive integer N such that 
Nu - M x e G+ C G+, whence x < (N/M) u < Nu in G, and it follows 
that u is an order unit in G. 

Suppose x G G+ and choose a positive integer N such that x < Nu in 
G. Then y := (1 /iV)x € G+[0, u], and x = y + y + .. . + y(AT summands), 
whence G+ [0, u] generates the positive cone G+. Therefore, as an additive 
partially ordered abelian group, G is a unital group with unit u, and as 
such, G is a unigroup by [1, Corollary 4.6]. 

(iii) Because G+ C G+, the inclusion mapping G G is an order 
preserving group homomorphism that maps the unit of G to the unit of G. 

(iv) As u 6 G and u is an order unit in G, each element of G is bounded 
above by an element of G. Therefore, by [9, Proposition 4.2], each state 
u> € Q{G) can be extended to a state Q € f2(G). Suppose Q 6 ft(G) 

is an extension of LJ 6 J?(G) and let x € G. Choose a positive inte-
ger M such that M x G G. Then w(Mx) = ¿D(Mx) -- McD(x), whence 
¿D(x) = (1 /M)u(Mx) , proving that to is uniquely determined by ui. As the 
restriction of a state on G to G is a state on G, it follows that u> u) 
is surjective. Evidently, u> l) is an affine bijection of Q{G) onto J?(G) 
and u> is Q-valued iff Q is Q-valued. We note that an additive group homo-
morphism from Qr to R is Q-homogeneous, and since G + is the set of all 
finite linear combinations with nonnegative rational coefficients of elements 
of G + , it follows that u € f2(G) is strictly positive iff Q 6 f2(G) is strictly 
positive. • 

In Lemma 5.1, Q can be regarded as a unigroup with unit 1 and the 
partially ordered rational vector space G can be identified with the tensor 
product Q <8) G. Indeed, Lemma 5.1 can be generalized to the case in which 
G is any unital group with a separating set of states by defining G := Q ® G 
and replacing the inclusion mapping G w G b y g w l ® f f . 

5.2. LEMMA. Let G t̂  0 be a torsion-free unital group with a finite unit 

interval E. Then f2(G) is a polytope and every extreme point of Q(G) is a 

Q-valued state on G. 

Proo f . We can and do assume that G = IT as an additive group with 
unit u, and thus form the unigroup G as in Lemma 5.1. Let ai , a2,. . . , a n 

be the distinct atoms in E. Because these atoms generate G + , it follows 
that G+ is the set of all linear combinations a^aj with nonnegative 
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rational coefficients a j , whence the rational vector space G is spanned by 
a l t a 2 > • • • > a n -

A vector t = (ti,t2,... , t n ) G (Q + ) n is called a rational multiplicity 
vector iff t j a j = u - Let T be the set of all rational multiplicity vectors. 
Because u — a i € G+, there are nonnegative rational numbers aj, j = 
1 , 2 , . . . , n , with u — a i = D j = i a j a j ) whence («i + 1 , . . . , an) € T. Thus 
there exists t € T with a strictly positive first component. Likewise, for each 
j — 1 , 2 , . . . , n, there exists t 6 T with a strictly positive j t h component. 

If q = (91, <72, • • •, qn) and t = (£1, £2, . . . , £„) are vectors in R™, the dot 
product t • q := YJj=1 tjQj defined as usual. As in [6, Definition 4.5], we 
define f2(T) := {q € (R+)n | t • q = 1 for every t G T}. 

Let £ € Q{G). Since £:G —> R is an additive group homomorphism, 
it follows that f (ax) = a£(x) for a € Q and x € G. Define £ € (M+)n 

by £ := (£(a l))£(a2)> • • • ,£( an))- Because the rational vector space G is 
spanned by a i , a 2 , . . . , a n , the mapping £ 1—• £ is injective. Also, if t = 
(£1, £2, . . . , £„) is any rational multiplicity vector, we have u = £)" = 1 £ja j , 
whence 1 = £(u) = j), a n d it follows that f <E Q{T). 

Fix q = (qi, q2,..., qn) € Q(T) and let p 6 <5+[0, u]. As p G G+, there 
are nonnegative rational numbers aj, j = 1 , 2 , . . . , n, with p = 1 Q j a j -
Suppose we have a second representation p = J2*j=iPjaj where ft, j = 
1 ,2 , . . . ,n , are also nonnegative rational numbers. As u — p 6 G+, there 
are nonnegative rational numbers 7 j , j = 1,2, . . . , n , such that u — p = 
Z)j=i 7jaj> whence 

n n 
u = + = ( f t + 7 j ) a j , 

j=1 j=1 
so t := (ai+71, "2+72, • • •, c*n+In) € T and s := ( f t +71, ft+72,..., ft+7n) 
€ T. Consequently 

n n 
1 = + 7 M i = + 7j)?i> 

i=i i=i 
and it follows that Y?j=iajqj = ]Cj=i Pjqj- Therefore we can and do de-
fine </>: G + [0 , u] -> R+ by </>(p) := E"= i Evidently, <^(aj) = q3 for 
j = 1 , 2 , . . . , n and </>(u) = 1. Furthermore, it is clear that if p, p ' , p + p ' G 
G+ [0 , u], then </>(p + p') = </>(p) + 0(p') , i.e., <f) is an R-valued measure on 
G+[0, u]. Since G is a unigroup, 4> has a unique extension to an additive 
group homomorphism G —> R. Because £(aj) = qj > 0 for j = 1 , 2 , . . . , n 
and every element in G+ is a linear combination of aj , j = 1 , 2 , . . . , n, with 
nonnegative rational coefficients, £ maps G+ into R + . Also, £(u) = 1, so 
£ 6 Q{G) with I = q. 
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The arguments above show that the mapping £ i—• £ is a bijection from 
Q(G) onto fi(T). Clearly, J?(T) is a convex subset of R" and . is an 
affine isomorphism of f2(G) onto i?(T). By Theorem 2.2, there is a strictly 
positive Q-valued state u> G fi(G). By Lemma 5.1 (iv), u admits a unique 
extension to a strictly positive Q-valued state £ := ¿¡5 G fl(G). Thus, all of 
the components of the vector £ € J?(T) are strictly positive, so the conditions 
on T in [6, Theorem 8.3] are met, and it follows that J?(T) is a polytope and 
all of the extreme points of i7(T) are vectors with only rational coordinates. 
Hence, f2(T) is a polytope and all of the extreme points of f2(G) are de-
valued, so Q(G) is a polytope and all of its extreme points are Q-valued. • 

5.3. THEOREM. If G is a unital group with a finite unit interval, then f2(G) 
is a polytope and all of the extreme points of f2(G) are Q-valued. 

P r o o f . Let GT be the torsion subgroup of G and let iy.G —> G/GT be the 
natural surjective group homomorphism onto the quotient group G/Gr. By 
[4, Theorem 4.1], G/GT can be organized into a unital group with a finite 
unit interval in such a way that there is an affine bijection OJ UJ from 
f2(G) onto f2(G/GT) such that U> = UOT]. Because G/GT is torsion free, the 
theorem follows from Lemma 5.2. • 
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