

David J. Foulis

REPRESENTATION OF A UNITAL GROUP HAVING A FINITE UNIT INTERVAL

Abstract. Let $G \neq \{0\}$ be a unital group with a finite unit interval and with rank r . Then r is a positive integer and G can be realized as $\mathbb{Z}^r \times K$, where K is a finite abelian group, in such a way that $(z, k) \in G^+ \Rightarrow z \in (\mathbb{Z}^+)^r$. The state space $\Omega(G)$ of G is a polytope and the extreme points of $\Omega(G)$ are \mathbb{Q} -valued states. The positive cone G^+ satisfies the descending chain condition, and if G is torsion free, then G carries a separating set of \mathbb{Q} -valued states.

1. Introduction

This article is a continuation of the study of unital groups with finite unit intervals initiated in [4]. Motivation for this study appears in [4] and will not be repeated here. Although we make an attempt to keep this article somewhat self-contained, we shall be using the notation, nomenclature, and results of [4].

In what follows, abelian groups are written additively and, if G is a partially ordered abelian group, the positive cone in G is denoted by $G^+ := \{g \in G \mid 0 \leq g\}$ [9]. A subset F of G^+ is *cone generating* iff every element of G^+ is a sum of a finite sequence of (not necessarily distinct) elements of F . If G^+ generates G as a group, i.e., $G = G^+ - G^+$, then G is said to be *directed*. If every element in G whose positive integer multiples are bounded above necessarily belongs to $-G^+$, then G is called *archimedean*.

Let G be a partially ordered abelian group, and let $u \in G^+$. We define the *interval* $E := G^+[0, u] = \{g \in G \mid 0 \leq g \leq u\}$, and we consider E to be a bounded partially ordered set under the restriction to E of the partial order on G . The interval E is understood to be organized into an *effect algebra* with unit u and with orthosum \oplus given by the restriction to E of $+$ on G . For the details, see [1, 5]. The element $u \in G^+$ is called an *order unit* iff, for each $g \in G$, there exists a positive integer n such that $g \leq nu$ [9, p. 4]. If there is an order unit $u \in G^+$, then G is directed. A *unital group* is a partially ordered abelian group G with a specified order unit u , called

the *unit*, such that the interval $G^+[0, u]$, called the *unit interval*, is cone generating.

If G is a unital group, E is the unit interval in G , and K is an abelian group, then a mapping $\phi: E \rightarrow K$ such that $\phi(p+q) = \phi(p) + \phi(q)$ whenever $p, q, p+q \in E$ is called a *K-valued measure* on E . We say that G is a *K-unital group* iff every *K-valued* measure $\phi: E \rightarrow K$ can be extended to a group homomorphism $\phi^*: G \rightarrow K$. If G is a *K-unital group* for every abelian group K , then G is said to be a *unigroup* [2, 4, 8].

A lattice-ordered unital group, and more generally, a unital group with the Riesz interpolation property [9, Chapter 2], is automatically a unigroup. By definition, a unigroup G with unit u is *Boolean* iff its unit interval E is a Boolean algebra with $p \mapsto u - p$ as the Boolean complementation mapping. A Boolean unigroup G is lattice ordered and its unit is the smallest order unit in G . Conversely, a unigroup G with the Riesz interpolation property is a Boolean unigroup if its unit is a minimal order unit in G .

The ordered field of real numbers, the ordered field of rational numbers, and the ordered ring of integers are denoted by \mathbb{R} , \mathbb{Q} , and \mathbb{Z} , respectively. The *standard positive cone* in \mathbb{R} is $\mathbb{R}^+ := \{x^2 \mid x \in \mathbb{R}\}$ and the *standard positive cones* in \mathbb{Q} and \mathbb{Z} are $\mathbb{Q}^+ := \mathbb{Q} \cap \mathbb{R}^+$ and $\mathbb{Z}^+ := \mathbb{Z} \cap \mathbb{Q}^+$. With 1 as the unit, and with the standard (total) order, each of the additive abelian groups \mathbb{R} , \mathbb{Q} , and \mathbb{Z} is a unigroup.

If $G \neq \{0\}$ is a unital group with unit u , then a *state* for G is a group homomorphism $\omega: G \rightarrow \mathbb{R}$ such that $\omega(G^+) \subseteq \mathbb{R}^+$ and $\omega(u) = 1$ [9, Chapter 4]. The set of all states for G , called the *state space* of G , denoted by $\Omega(G)$, is a nonempty compact convex subset of the locally convex linear topological space \mathbb{R}^G of all functions $\alpha: G \rightarrow \mathbb{R}$ [9, Corollary 4.4, Proposition 6.2]. If $\omega \in \Omega(G)$ then ω is a *\mathbb{Q} -valued state* iff $\omega(G) \subseteq \mathbb{Q}$. Evidently, $\omega \in \Omega(G)$ is a *\mathbb{Q} -valued state* iff ω maps the unit interval $G^+[0, u]$ into \mathbb{Q}^+ .

Suppose $G \neq \{0\}$ is a unital group and $\Delta \subseteq \Omega(G)$. Then Δ is said to be *strictly positive* iff for each $p \neq 0$ in G^+ , there exists $\omega \in \Delta$ with $0 < \omega(p)$. A state $\omega \in \Omega(G)$ is *strictly positive* iff the singleton set $\{\omega\}$ is strictly positive. By definition, Δ is *separating* iff, for every $g \neq 0$ in G , there exists $\omega \in \Delta$ with $\omega(g) \neq 0$. Clearly, a separating set of states is strictly positive, and if G carries a separating set of states, then G is torsion free. By [9, Theorem 4.14], if G is archimedean, then $\Omega(G)$ is a separating set of states for G .

Let $G \neq \{0\}$ be a unital group with a finite unit interval E . Then, as a partially ordered set, E is atomic, and if a_1, a_2, \dots, a_n are the atoms in E , then $\{a_1, a_2, \dots, a_n\}$ is both a finite cone-generating set and a finite set of generators for the abelian group G [4, Lemma 5.1]. Therefore, the torsion subgroup G_τ of G is a finite direct summand of G and any com-

plementary direct summand H of G_τ is a free abelian group of finite rank $r > 0$. If $\eta: G \rightarrow H$ is the natural projection homomorphism onto H , then H can be organized into a unital group with unit $\eta(u)$ and positive cone $H^+ = \eta(G^+)$. Furthermore, there is an affine isomorphism $\omega \leftrightarrow \tilde{\omega}$ between the state spaces $\Omega(G)$ and $\Omega(H)$ such that $\omega(g) = \tilde{\omega}(\eta(g))$ for all $g \in G$ [4, Theorem 4.1].

If r is a positive integer, we understand that \mathbb{Z}^r is organized into an additive abelian group with coordinatewise operations. Vectors in \mathbb{Z}^r are denoted by lower case bold face Latin letters, e.g., $\mathbf{z} = (z_1, z_2, \dots, z_r)$. The *standard partial order* for \mathbb{Z}^r is the coordinatewise partial order with the corresponding *standard positive cone* $(\mathbb{Z}^+)^r$. With the standard partial order, \mathbb{Z}^r forms a so called *simplicial group* [9, p. 47]. As a simplicial group, \mathbb{Z}^r is an archimedean lattice-ordered group with a smallest order unit, namely $(1, 1, \dots, 1)$. An element $\mathbf{v} \in (\mathbb{Z}^+)^r$ is an order unit iff all of its coordinates are strictly positive. If \mathbf{v} is an order unit in the simplicial group \mathbb{Z}^r , then \mathbb{Z}^r is a unigroup with unit \mathbf{v} and the unit interval $(\mathbb{Z}^+)^r[\mathbf{0}, \mathbf{v}]$ forms a finite MV-algebra [3]. Conversely, every finite MV-algebra has this form. With $\mathbf{u} := (1, 1, \dots, 1)$ as the unit, the simplicial group \mathbb{Z}^r is a Boolean unigroup and its unit interval $(\mathbb{Z}^+)^r[\mathbf{0}, \mathbf{u}]$ can be identified with the finite Boolean algebra 2^r .

2. The existence of a strictly positive state

In Lemmas 2.1 and 2.2 below, we shall be focusing attention on a torsion-free unital group $G \neq \{0\}$ with a finite unit interval E . For instance, G could be obtained by “removing” (i.e., factoring out) the torsion from a unital group with a finite unit interval as in [4, Theorem 4.1]. As a group, such a G is a free abelian group of finite positive rank r , whence by choosing a free basis, we can represent G as \mathbb{Z}^r . This representation is not unique and there is not necessarily any obvious relationship between the positive cone G^+ and the standard positive cone $(\mathbb{Z}^+)^r$ in \mathbb{Z}^r . Nevertheless, in this section, it will be convenient for us to make the identification $G = \mathbb{Z}^r$, so that elements in G are vectors $\mathbf{h} = (h_1, h_2, \dots, h_r)$ with integer entries.

The additive group $G = \mathbb{Z}^r$ is a subgroup of the additive group of the r -dimensional coordinate vector space \mathbb{R}^r . We understand that \mathbb{R}^r is organized into a euclidean space with the usual dot product $(\mathbf{x}, \mathbf{y}) \mapsto \mathbf{x} \cdot \mathbf{y}$ and norm $\|\mathbf{x}\| = \sqrt{\mathbf{x} \cdot \mathbf{x}}$.

2.1. LEMMA. *Let r be a positive integer, let $G = \mathbb{Z}^r$ as an additive abelian group, and suppose that G is a unital group with positive cone G^+ , unit $\mathbf{u} \neq \mathbf{0}$, and finite unit interval $E = G^+[\mathbf{0}, \mathbf{u}]$. Denote the distinct atoms in E by $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n$. Then:*

- (i) $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n$ span the vector space \mathbb{R}^r .
- (ii) If $q_i \in \mathbb{Z}^+$ and $\sum_{i=1}^n q_i \mathbf{a}_i = \mathbf{0}$, then $q_i = 0$ for $i = 1, 2, \dots, n$.
- (iii) If $\alpha_i \in \mathbb{R}^+$ and $\sum_{i=1}^n \alpha_i \mathbf{a}_i = \mathbf{0}$, then $\alpha_i = 0$ for $i = 1, 2, \dots, n$.
- (iv) There exists a vector $\mathbf{z} \in \mathbb{Z}^r$ such that $0 < \mathbf{z} \cdot \mathbf{a}_i$ for $i = 1, 2, \dots, n$.

Proof. (i) The standard free basis $\mathbf{e}_1 := (1, 0, \dots, 0), \mathbf{e}_2 := (0, 1, \dots, 0), \dots, \mathbf{e}_r := (0, 0, \dots, 1)$ for the abelian group \mathbb{Z}^r is an orthonormal basis for \mathbb{R}^r . Since $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n$ generate \mathbb{Z}^r , the vectors $\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_r$ are linear combinations of $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n$ with integer coefficients, whence $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n$ span the vector space \mathbb{R}^r .

(ii) Assume the hypotheses. As $\mathbf{a}_i \in E \subseteq G^+$ and $0 \leq q_i$, it follows that $q_i \mathbf{a}_i \in G^+$ for $i = 1, 2, \dots, n$. Therefore, $\sum_{i=1}^n q_i \mathbf{a}_i = \mathbf{0}$ implies that $q_i \mathbf{a}_i = \mathbf{0}$ for $i = 1, 2, \dots, n$. Since $\mathbf{a}_i \neq \mathbf{0}$ and the group \mathbb{Z}^r is torsion free, it follows that $q_i = 0$ for $i = 1, 2, \dots, n$.

(iii) Assume the hypotheses of (iii), but suppose that $\alpha_i > 0$ for at least one $i \in \{1, 2, \dots, n\}$. By (temporarily) renumbering if necessary, we can and do assume that $\alpha_i > 0$ for $i = 1, 2, \dots, m$ with $1 \leq m \leq n$ and, if $m < n$, $\alpha_i = 0$ for $i = m + 1, \dots, n$. Let A be the $m \times r$ matrix over \mathbb{Z} with the vectors \mathbf{a}_i , $i = 1, 2, \dots, m$ as its successive rows, and let ρ be the rank of A . Consider the equation

$$(1) \quad (\beta_1, \beta_2, \dots, \beta_m) A = (0, 0, \dots, 0) \in \mathbb{R}^r$$

for $(\beta_1, \beta_2, \dots, \beta_m) \in \mathbb{R}^m$, noting that $(\beta_1, \beta_2, \dots, \beta_m) = (\alpha_1, \alpha_2, \dots, \alpha_m)$ is a nontrivial solution of (1). Thus, by the rank-plus-nullity theorem, $1 \leq \rho < m$. To solve (1), we bring the $r \times m$ transpose A^* of the matrix A into reduced row echelon form B , noting that the entries in B are rational numbers. Thus the nonzero rows of the matrix B encode ρ equations expressing ρ of the unknowns β_i as rational linear combinations of the remaining $m - \rho$ unknowns, which are then regarded as arbitrary parameters. Renumbering again, if necessary, we can and do assume that these equations express β_i for $i = 1, 2, \dots, \rho$ in terms of β_k for $k = \rho + 1, \rho + 2, \dots, m$. Therefore, the general solution of (1) is given by

$$(2) \quad \beta_i = \sum_{k=\rho+1}^m c_{ik} \beta_k \text{ for } i = 1, 2, \dots, \rho,$$

where the coefficients c_{ik} are rational numbers and β_k are arbitrary real numbers for $k = \rho + 1, \rho + 2, \dots, m$. In particular,

$$(3) \quad \alpha_i = \sum_{k=\rho+1}^m c_{ik} \alpha_k \text{ for } i = 1, 2, \dots, \rho.$$

Now let $0 < \epsilon < \min(\alpha_1, \alpha_2, \dots, \alpha_\rho)$. By continuity and (3), there is a positive real number δ such that if $|\alpha_k - \beta_k| < \delta$ for $k = \rho + 1, \dots, m$,

$\rho + 2, \dots, m$, then β_i given by (2) satisfy $0 < \alpha_i - \epsilon < \beta_i$ for $i = 1, 2, \dots, \rho$. For each $k = \rho + 1, \rho + 2, \dots, m$, select a positive rational number β_k with $|\alpha_k - \beta_k| < \delta$. As the coefficients c_{ik} in (2) are rational numbers, it follows that β_i in (2) are positive rational numbers for $i = 1, 2, \dots, \rho$. Therefore, (1) has a solution $(\beta_1, \beta_2, \dots, \beta_\rho, \dots, \beta_m)$ such that β_i is a positive rational number for $i = 1, 2, \dots, \rho, \dots, m$. Write β_i in fractional form for $i = 1, 2, \dots, m$ and let M be the least common multiple of the resulting denominators. Then the integers $q_i := M\beta_i$ for $i = 1, 2, \dots, m$ and, if $m < n$, $q_i := 0$ for $i = m + 1, \dots, n$, provide a contradiction to (ii).

(iv) By (iii) and Farkas's Lemma [12, Chapter 4], there is a vector $\mathbf{c} \in \mathbb{R}^r$ such that $0 < \mathbf{c} \cdot \mathbf{a}_i$ for $i = 1, 2, \dots, n$. By continuity, there exists $\epsilon > 0$ such that $\mathbf{q} \in \mathbb{R}^r$ with $\|\mathbf{c} - \mathbf{q}\| < \epsilon$ implies that $0 < \mathbf{q} \cdot \mathbf{a}_i$ for $i = 1, 2, \dots, n$. Choose $\mathbf{q} \in \mathbb{Q}^r$ with $\|\mathbf{c} - \mathbf{q}\| < \epsilon$. Then there is a positive integer M such that $\mathbf{z} := M\mathbf{q} \in \mathbb{Z}^r$, and we have $0 < \mathbf{z} \cdot \mathbf{a}_i$ for $i = 1, 2, \dots, n$. ■

2.2. THEOREM. *If G is a torsion-free unital group with a finite unit interval, then there is a strictly positive \mathbb{Q} -valued state ω on G .*

Proof. As a group, G can be identified with \mathbb{Z}^r as in Lemma 2.1. By Lemma 2.1(iv), there is a vector $\mathbf{z} \in \mathbb{Z}^r$ such that $0 < \mathbf{z} \cdot \mathbf{a}_i$ for $i = 1, 2, \dots, n$. If $0 \neq \mathbf{p} \in G^+$, then there are integers $q_i \in \mathbb{Z}^+$, at least one of which is strictly positive, such that $\mathbf{p} = \sum_{i=1}^n q_i \mathbf{a}_i$, and it follows that $0 < \mathbf{z} \cdot \mathbf{p}$. If \mathbf{u} is the unit in G , define $\omega: G \rightarrow \mathbb{R}$ by $\omega(\mathbf{h}) := (\mathbf{z} \cdot \mathbf{h})/(\mathbf{z} \cdot \mathbf{u})$ for all $\mathbf{h} \in G$. Then ω is a strictly positive state on G . ■

2.3. COROLLARY. *If G is a unital group with a finite unit interval, then there is a strictly positive \mathbb{Q} -valued state ω on G .*

Proof. Combine [4, Theorem 4.1] and Theorem 2.2. ■

3. Optimizing the representation

Suppose $G \neq \{0\}$ is a torsion-free unital group with unit u and with a finite unit interval $E = G^+[0, u]$. Then the partially ordered set E is atomic and the set $\{a_1, a_2, \dots, a_n\}$ of atoms in E is a finite set of generators for the abelian group G , so G is a finitely-generated torsion-free abelian group. Consequently, G admits a free basis e_1, e_2, \dots, e_r , where $0 < r = \text{rank}(G)$. Using this free basis, we obtain a group isomorphism $\phi: G \rightarrow \mathbb{Z}^r$ of G onto the additive abelian group \mathbb{Z}^r . The isomorphism ϕ is not uniquely determined and can be replaced by $\Gamma \circ \phi$ where Γ is any automorphism of the group \mathbb{Z}^r . The most general automorphism Γ of \mathbb{Z}^r is implemented by an $r \times r$ unimodular matrix J over \mathbb{Z} according to $\Gamma(\mathbf{z}) = \mathbf{z}J$ for all $\mathbf{z} \in \mathbb{Z}^r$. To say that J is unimodular means that J has an inverse over \mathbb{Z} , i.e., that $\det(J) = \pm 1$.

By a suitable choice of the group isomorphism $\phi: G \rightarrow \mathbb{Z}^r$, we might hope to obtain a representation of G that is “optimal” in some sense. Surely one of the desiderata for an optimal representation would be that ϕ carries the positive cone G^+ into the standard positive cone $(\mathbb{Z}^+)^r$ in the simplicial group \mathbb{Z}^r . We are going to prove that such a ϕ exists.

3.1. LEMMA. *Let $G \neq \{0\}$ be a torsion-free unital group with unit u and finite unit interval $E = G^+[0, u]$, let a_1, a_2, \dots, a_n be the distinct atoms in E , and let r be the rank of G . Then there is a group isomorphism $\phi: G \rightarrow \mathbb{Z}^r$ such that the first entry in each of the vectors $\phi(a_i)$ is strictly positive for $i = 1, 2, \dots, n$.*

Proof. Choose an arbitrary group isomorphism $\phi: G \rightarrow \mathbb{Z}^r$. If we can find an $r \times r$ unimodular matrix J over \mathbb{Z} such that the first entry in each of the vectors $\phi(a_i)J$ for $i = 1, 2, \dots, n$ is strictly positive, then we can replace ϕ by $g \mapsto \phi(g)J$, and the lemma is proved.

Let $\mathbf{a}_i := \phi(a_i) = (a_{i1}, a_{i2}, \dots, a_{ir})$ for $i = 1, 2, \dots, n$. Let $H := \mathbb{Z}^r$ as an additive abelian group, but organized into a unital group with positive cone $H^+ := \phi(G^+)$ and unit $\mathbf{u} := \phi(u)$. Then \mathbf{a}_i , $i = 1, 2, \dots, n$ are the distinct atoms in the finite unit interval $G^+[0, \mathbf{u}]$. By Lemma 2.1(iv), there is a vector $\mathbf{z} = (z_1, z_2, \dots, z_r) \in \mathbb{Z}^r$ such that

$$(4) \quad 0 < \sum_{j=1}^r z_j a_{ij} \text{ for } i = 1, 2, \dots, n.$$

If $0 < D$ is the greatest common divisor of the nonzero integers in the list z_1, z_2, \dots, z_r , then we can and do replace z_j by z_j/D for $j = 1, 2, \dots, r$ without affecting (4) so that the nonzero integers in the list z_1, z_2, \dots, z_r are relatively prime. Thus, there exists an $r \times r$ unimodular matrix J having z_1, z_2, \dots, z_r as the successive entries in its first column [11], whence the first entry in each of the vectors $\phi(a_i)J = \mathbf{a}_i J$, $i = 1, 2, \dots, n$, is strictly positive by (4). ■

3.2. LEMMA. *With the hypotheses of Lemma 3.1, the group isomorphism $\phi: G \rightarrow \mathbb{Z}^r$ can be chosen in such a way that $\phi(a_i) \in (\mathbb{Z}^+)^r$ for $i = 1, 2, \dots, n$.*

Proof. By Lemma 3.1, there is a group isomorphism $\phi: G \rightarrow \mathbb{Z}^r$ such that the first entry a_{i1} in each of the vectors $\phi(a_i) = (a_{i1}, a_{i2}, \dots, a_{ir})$ is strictly positive for $i = 1, 2, \dots, n$. If we can find a group automorphism $\Gamma: \mathbb{Z}^r \rightarrow \mathbb{Z}^r$ such that $\Gamma(\phi(a_i)) \in (\mathbb{Z}^+)^r$ for $i = 1, 2, \dots, n$, then we can replace ϕ by $\Gamma \circ \phi$, and the lemma is proved.

Let $k = \max\{|a_{ij}|/a_{i1} \mid i = 1, 2, \dots, n; j = 2, 3, \dots, r\}$, so that $ka_{i1} + a_{ij} \in \mathbb{Z}^+$ for $i = 1, 2, \dots, n$ and $j = 2, 3, \dots, r$. Then the desired group

automorphism $\Gamma: \mathbb{Z}^r \rightarrow \mathbb{Z}^r$ is obtained by defining

$$\Gamma(z_1, z_2, \dots, z_r) := (z_1, kz_1 + z_2, \dots, kz_1 + z_r)$$

for $(z_1, z_2, \dots, z_r) \in \mathbb{Z}^r$. ■

3.3. LEMMA. *If $G \neq \{0\}$ is a torsion-free unital group with a finite unit interval E , and if $r = \text{rank}(G)$, then G can be realized as the additive abelian group \mathbb{Z}^r in such a way that $G^+ \subseteq (\mathbb{Z}^+)^r$.*

Proof. By Lemma 3.2, there is a group isomorphism $\phi: G \rightarrow \mathbb{Z}^r$ that maps the atoms in E into the standard positive cone $(\mathbb{Z}^+)^r$ in the simplicial group \mathbb{Z}^r . Since the set of atoms in E generates G^+ , it follows that $\phi(G^+) \subseteq (\mathbb{Z}^+)^r$. Using the group isomorphism ϕ , we can identify G with \mathbb{Z}^r . ■

3.4. THEOREM. *Let $G \neq \{0\}$ be a unital group with a finite unit interval and let r be the rank of G . Then r is a positive integer and there is a finite abelian group K such that G can be realized as the group $\mathbb{Z}^r \times K$ in such a way that for $\mathbf{z} \in \mathbb{Z}^r$ and $k \in K$, $(\mathbf{z}, k) \in G^+ \Rightarrow \mathbf{z} \in (\mathbb{Z}^+)^r$.*

Proof. Since G has a finite unit interval, it is finitely generated, hence it has finite rank r , its torsion subgroup G_τ is a finite direct summand of G , and there is a torsion-free abelian group H of rank r and a group isomorphism $\psi: G \rightarrow H \times G_\tau$. If $r = 0$, then G is a finite unital group, so $G = \{0\}$, contradicting the hypotheses. Thus, $r > 0$. Define $\pi: H \times G_\tau \rightarrow H$ by $\pi(h, k) := h$ for $(h, k) \in H \times G_\tau$, and let $\eta: G \rightarrow H$ be defined by $\eta := \pi \circ \psi$. Then $\eta: G \rightarrow H$ is a surjective group homomorphism and $\ker(\eta) = G_\tau$.

By [4, Theorem 4.1], we can and do organize H into a unital group with positive cone $H^+ := \eta(G^+) = \{h \in H \mid \exists k \in G_\tau, (h, k) \in G^+\}$ and with unit $v := \eta(u)$. By [4, Theorem 4.1 (viii)], H has a finite unit interval. By Lemma 3.3, we can and do assume that $H = \mathbb{Z}^r$ as an abelian group and that $\eta(G^+) = H^+ \subseteq (\mathbb{Z}^+)^r$. Using the isomorphism ψ , we can and do identify G , as a group, with $\mathbb{Z}^r \times K$, where K is isomorphic to G_τ . Then elements of G have the form $(\mathbf{z}, k) \in \mathbb{Z}^r \times K$ with $\eta(\mathbf{z}, k) = \mathbf{z}$. Consequently, $(\mathbf{z}, k) \in G^+ \Rightarrow \mathbf{z} \in (\mathbb{Z}^+)^r$. ■

3.5. COROLLARY. *If G is a unital group with a finite unit interval, then the positive cone G^+ satisfies the descending chain condition.*

Proof. Without loss of generality we can assume that $G \neq \{0\}$ and that $G = \mathbb{Z}^r \times K$ as in Corollary 3.4. Suppose that $(\mathbf{z}_1, k_1) > (\mathbf{z}_2, k_2) > \dots > (\mathbf{z}_n, k_n) > \dots$ is a strictly decreasing infinite sequence of elements in G^+ . Then $\mathbf{z}_1 \geq \mathbf{z}_2 \geq \dots \geq \mathbf{z}_n \geq \dots$ is a decreasing infinite sequence of elements in $(\mathbb{Z}^+)^r$. But $(\mathbb{Z}^+)^r$ satisfies the descending chain condition, so there exists a positive integer N such that $\mathbf{z}_N = \mathbf{z}_{N+j}$ for $j = 1, 2, \dots$. If τ is the order

of the finite group K , then two of the elements k_{N+j} must agree for $j = 1, 2, \dots, \tau + 1$, so we cannot have $(\mathbf{z}_1, k_1) > (\mathbf{z}_2, k_2) > \dots > (\mathbf{z}_n, k_n) > \dots$ ■

3.6. COROLLARY. *If G is a unital group with a finite unit interval E , then G has the Riesz interpolation property [9, Chapter 2] iff G is lattice ordered and E is an MV-algebra.*

Proof. See [9, Corollary 3.14]. ■

4. χ -Groups

Suppose that $G \neq \{0\}$ is a torsion free unital group with a finite unit interval E . By choosing a free basis in G we can realize G as $G = \mathbb{Z}^r$ with $0 < r$. Assuming that this has been done, let $\mathbf{u} \in (\mathbb{Z}^+)^r$ be the unit in G , let $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n \in (\mathbb{Z}^+)^r$ be the distinct atoms in E , and let A be the $(n+1) \times r$ matrix with $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n$ as its first n row vectors and with \mathbf{u} as its $(n+1)$ st row vector. To obtain an alternative realization of G as \mathbb{Z}^r , we use an $r \times r$ unimodular matrix J over \mathbb{Z} to replace A by AJ , whereupon G^+ is replaced by G^+J . The transition $A \mapsto AJ$ is accomplished by executing a finite sequence of elementary column transformations over \mathbb{Z} on the columns of A .

By Lemma 3.3, we can always find a unimodular matrix J such that $AJ \subseteq (\mathbb{Z}^+)^r$, and by replacing A by AJ , obtain a realization of G as \mathbb{Z}^r in such a way that $G^+ \subseteq (\mathbb{Z}^+)^r$. Assuming that this has been done, further elementary column transformations (over \mathbb{Z}) on A might yield a more perspicuous realization of G while preserving the condition $G^+ \subseteq (\mathbb{Z}^+)^r$. For instance, we could perform further elementary column transformations on A in an attempt to decrease the entries in its last row, i.e., to decrease the components of the unit vector for G while preserving the nonnegativity of all entries in A .

The optimal situation is that in which, by suitable elementary column transformations over \mathbb{Z} , all entries in the last row of A can be reduced to 1's while preserving the nonnegativity of the remaining entries in A . If this can be done, then $\mathbf{u} = (1, 1, \dots, 1)$, whence the vectors $\mathbf{p} = (p_1, p_2, \dots, p_r) \in E$ have only zeros and ones as entries. Such a vector can be identified with the characteristic set function $\chi_M: \{1, 2, \dots, r\} \rightarrow \{0, 1\}$ of the set $M = \{i \mid p_i = 1\}$, and we obtain a *set representation* of the effect algebra E . (Caution: This is related to, but not the same as the notion of a “concrete logic” [10]). These considerations lead us to the following definition.

4.1. DEFINITION. A χ -group of finite rank $r > 0$ is a unital group G with the following properties: (i) As an additive abelian group, $G = \mathbb{Z}^r$. (ii) $G^+ \subseteq (\mathbb{Z}^+)^r$. (iii) The unit in G is $\mathbf{u} = (1, 1, \dots, 1)$. A χ -unigroup of finite

rank r is a χ -group that is also a unigroup. A finite χ -algebra is a finite effect algebra that is isomorphic to the unit interval in a χ -unigroup of finite rank.

Here is the simplest example of a non-Boolean χ -unigroup.

4.2. EXAMPLE. Let $G = \mathbb{Z}^3$ as an abelian group, define $G^+ := \{(x, y, z) \in G \mid 0 \leq x, y, z, y + z - x\}$, and let $\mathbf{u} := (1, 1, 1)$. Then G is an archimedean χ -unigroup of rank 3 and the unit interval E in G is the six-element modular orthocomplemented lattice MO2. ■

It can be shown that the class of χ -unigroups of finite rank is closed under the formation of finite products, coproducts, and tensor products [7, Section 10], hence there is an abundant supply of such unigroups. The author does not know an example of a χ -unigroup of finite rank that is not archimedean.

5. The state space

If $G \neq \{0\}$ is an \mathbb{R} -unital group with a finite unit interval E , then probability measures on E can be extended uniquely to elements of $\Omega(G)$, and the fact (by Corollary 2.3) that there is a strictly positive $\omega \in \Omega(G)$ together with the development in [6] shows that $\Omega(G)$ is a rational polytope. In this section we are going to show that $\Omega(G)$ is always a rational polytope, even if G is not \mathbb{R} -unital, but only unital.

5.1. LEMMA. *Suppose that G is a unital group with unit \mathbf{u} , that $0 < r$, and that $G = \mathbb{Z}^r$ as an additive group. Let $\widehat{G} = \mathbb{Q}^r$ as an r -dimensional coordinate vector space over \mathbb{Q} and let \widehat{G}^+ be the subset of \widehat{G} consisting of all finite linear combinations of elements of G^+ with nonnegative rational coefficients. Then:*

- (i) *\widehat{G} can be organized into a partially ordered vector space over \mathbb{Q} with \widehat{G}^+ as its positive cone.*
- (ii) *Regarded as a partially ordered abelian group under addition, \widehat{G} is a unigroup with unit \mathbf{u} .*
- (iii) *The inclusion mapping $G \hookrightarrow \widehat{G}$ is an injective morphism of unital groups.*
- (iv) *Each state $\omega \in \Omega(G)$ extends to a unique state $\widehat{\omega} \in \Omega(\widehat{G})$ and the mapping $\omega \mapsto \widehat{\omega}$ is an affine bijection of $\Omega(G)$ onto $\Omega(\widehat{G})$. Furthermore, $\omega \in \Omega(G)$ is \mathbb{Q} -valued iff $\widehat{\omega} \in \Omega(\widehat{G})$ is \mathbb{Q} -valued, and ω is strictly positive iff $\widehat{\omega}$ is strictly positive.*

Proof. (i) Evidently, $\widehat{G}^+ + \widehat{G}^+ \subseteq \widehat{G}^+$ and $\mathbb{Q}^+ \widehat{G}^+ \subseteq \widehat{G}^+$. Suppose $\mathbf{0} \neq \mathbf{p}_i \in G^+$ and $\alpha_i \in \mathbb{Q}^+$ for $i = 1, 2, \dots, k$ with $\sum_{i=1}^k \alpha_i \mathbf{p}_i = \mathbf{0}$. Choose a positive integer M such that $\beta_i := M\alpha_i \in \mathbb{Z}$ for $i = 1, 2, \dots, k$. Then $\sum_{i=1}^k \beta_i \mathbf{p}_i = \mathbf{0}$, and it follows from the fact that \mathbf{p}_i are nonzero elements of the positive

cone G^+ that $\beta_i = 0$, whence $\alpha_i = 0$ for $i = 1, 2, \dots, k$. Consequently, $-\widehat{G}^+ \cap \widehat{G}^+ = \{\mathbf{0}\}$, so \widehat{G} can be organized into a partially ordered vector space over \mathbb{Q} with \widehat{G}^+ as its positive cone.

(ii) Suppose $\mathbf{x} \in \widehat{G}$ and choose a positive integer M such that $M\mathbf{x} \in \mathbb{Z}^r = G$. As \mathbf{u} is an order unit in G , there is a positive integer N such that $N\mathbf{u} - M\mathbf{x} \in G^+ \subseteq \widehat{G}^+$, whence $\mathbf{x} \leq (N/M)\mathbf{u} \leq N\mathbf{u}$ in \widehat{G} , and it follows that \mathbf{u} is an order unit in \widehat{G} .

Suppose $\mathbf{x} \in \widehat{G}^+$ and choose a positive integer N such that $\mathbf{x} \leq N\mathbf{u}$ in \widehat{G} . Then $\mathbf{y} := (1/N)\mathbf{x} \in \widehat{G}^+[\mathbf{0}, \mathbf{u}]$, and $\mathbf{x} = \mathbf{y} + \mathbf{y} + \dots + \mathbf{y}$ (N summands), whence $\widehat{G}^+[\mathbf{0}, \mathbf{u}]$ generates the positive cone \widehat{G}^+ . Therefore, as an additive partially ordered abelian group, \widehat{G} is a unital group with unit \mathbf{u} , and as such, \widehat{G} is a unigroup by [1, Corollary 4.6].

(iii) Because $G^+ \subseteq \widehat{G}^+$, the inclusion mapping $G \hookrightarrow \widehat{G}$ is an order preserving group homomorphism that maps the unit of G to the unit of \widehat{G} .

(iv) As $\mathbf{u} \in G$ and \mathbf{u} is an order unit in \widehat{G} , each element of \widehat{G} is bounded above by an element of G . Therefore, by [9, Proposition 4.2], each state $\omega \in \Omega(G)$ can be extended to a state $\widehat{\omega} \in \Omega(\widehat{G})$. Suppose $\widehat{\omega} \in \Omega(\widehat{G})$ is an extension of $\omega \in \Omega(G)$ and let $\mathbf{x} \in \widehat{G}$. Choose a positive integer M such that $M\mathbf{x} \in G$. Then $\omega(M\mathbf{x}) = \widehat{\omega}(M\mathbf{x}) = M\widehat{\omega}(\mathbf{x})$, whence $\widehat{\omega}(\mathbf{x}) = (1/M)\omega(M\mathbf{x})$, proving that $\widehat{\omega}$ is uniquely determined by ω . As the restriction of a state on \widehat{G} to G is a state on G , it follows that $\omega \mapsto \widehat{\omega}$ is surjective. Evidently, $\omega \mapsto \widehat{\omega}$ is an affine bijection of $\Omega(G)$ onto $\Omega(\widehat{G})$ and ω is \mathbb{Q} -valued iff $\widehat{\omega}$ is \mathbb{Q} -valued. We note that an additive group homomorphism from \mathbb{Q}^r to \mathbb{R} is \mathbb{Q} -homogeneous, and since \widehat{G}^+ is the set of all finite linear combinations with nonnegative rational coefficients of elements of G^+ , it follows that $\omega \in \Omega(G)$ is strictly positive iff $\widehat{\omega} \in \Omega(\widehat{G})$ is strictly positive. ■

In Lemma 5.1, \mathbb{Q} can be regarded as a unigroup with unit 1 and the partially ordered rational vector space \widehat{G} can be identified with the tensor product $\mathbb{Q} \otimes G$. Indeed, Lemma 5.1 can be generalized to the case in which G is any unital group with a separating set of states by defining $\widehat{G} := \mathbb{Q} \otimes G$ and replacing the inclusion mapping $G \hookrightarrow \widehat{G}$ by $g \mapsto 1 \otimes g$.

5.2. LEMMA. *Let $G \neq 0$ be a torsion-free unital group with a finite unit interval E . Then $\Omega(G)$ is a polytope and every extreme point of $\Omega(G)$ is a \mathbb{Q} -valued state on G .*

Proof. We can and do assume that $G = \mathbb{Z}^r$ as an additive group with unit \mathbf{u} , and thus form the unigroup \widehat{G} as in Lemma 5.1. Let $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n$ be the distinct atoms in E . Because these atoms generate G^+ , it follows that \widehat{G}^+ is the set of all linear combinations $\sum_{j=1}^n \alpha_j \mathbf{a}_j$ with nonnegative

rational coefficients α_j , whence the rational vector space \widehat{G} is spanned by $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n$.

A vector $\mathbf{t} = (t_1, t_2, \dots, t_n) \in (\mathbb{Q}^+)^n$ is called a *rational multiplicity vector* iff $\sum_{j=1}^n t_j \mathbf{a}_j = \mathbf{u}$. Let T be the set of all rational multiplicity vectors. Because $\mathbf{u} - \mathbf{a}_1 \in \widehat{G}^+$, there are nonnegative rational numbers α_j , $j = 1, 2, \dots, n$, with $\mathbf{u} - \mathbf{a}_1 = \sum_{j=1}^n \alpha_j \mathbf{a}_j$, whence $(\alpha_1 + 1, \alpha_2, \dots, \alpha_n) \in T$. Thus there exists $\mathbf{t} \in T$ with a strictly positive first component. Likewise, for each $j = 1, 2, \dots, n$, there exists $\mathbf{t} \in T$ with a strictly positive j th component.

If $\mathbf{q} = (q_1, q_2, \dots, q_n)$ and $\mathbf{t} = (t_1, t_2, \dots, t_n)$ are vectors in \mathbb{R}^n , the dot product $\mathbf{t} \cdot \mathbf{q} := \sum_{j=1}^n t_j q_j$ is defined as usual. As in [6, Definition 4.5], we define $\Omega(T) := \{\mathbf{q} \in (\mathbb{R}^+)^n \mid \mathbf{t} \cdot \mathbf{q} = 1 \text{ for every } \mathbf{t} \in T\}$.

Let $\xi \in \Omega(\widehat{G})$. Since $\xi: \widehat{G} \rightarrow \mathbb{R}$ is an additive group homomorphism, it follows that $\xi(\alpha \mathbf{x}) = \alpha \xi(\mathbf{x})$ for $\alpha \in \mathbb{Q}$ and $\mathbf{x} \in \widehat{G}$. Define $\tilde{\xi} \in (\mathbb{R}^+)^n$ by $\tilde{\xi} := (\xi(\mathbf{a}_1), \xi(\mathbf{a}_2), \dots, \xi(\mathbf{a}_n))$. Because the rational vector space \widehat{G} is spanned by $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n$, the mapping $\xi \mapsto \tilde{\xi}$ is injective. Also, if $\mathbf{t} = (t_1, t_2, \dots, t_n)$ is any rational multiplicity vector, we have $\mathbf{u} = \sum_{j=1}^n t_j \mathbf{a}_j$, whence $1 = \xi(\mathbf{u}) = \sum_{j=1}^n t_j \xi(\mathbf{a}_j)$, and it follows that $\tilde{\xi} \in \Omega(T)$.

Fix $\mathbf{q} = (q_1, q_2, \dots, q_n) \in \Omega(T)$ and let $\mathbf{p} \in \widehat{G}^+[\mathbf{0}, \mathbf{u}]$. As $\mathbf{p} \in \widehat{G}^+$, there are nonnegative rational numbers α_j , $j = 1, 2, \dots, n$, with $\mathbf{p} = \sum_{j=1}^n \alpha_j \mathbf{a}_j$. Suppose we have a second representation $\mathbf{p} = \sum_{j=1}^n \beta_j \mathbf{a}_j$ where β_j , $j = 1, 2, \dots, n$, are also nonnegative rational numbers. As $\mathbf{u} - \mathbf{p} \in \widehat{G}^+$, there are nonnegative rational numbers γ_j , $j = 1, 2, \dots, n$, such that $\mathbf{u} - \mathbf{p} = \sum_{j=1}^n \gamma_j \mathbf{a}_j$, whence

$$\mathbf{u} = \sum_{j=1}^n (\alpha_j + \gamma_j) \mathbf{a}_j = \sum_{j=1}^n (\beta_j + \gamma_j) \mathbf{a}_j,$$

so $\mathbf{t} := (\alpha_1 + \gamma_1, \alpha_2 + \gamma_2, \dots, \alpha_n + \gamma_n) \in T$ and $\mathbf{s} := (\beta_1 + \gamma_1, \beta_2 + \gamma_2, \dots, \beta_n + \gamma_n) \in T$. Consequently

$$1 = \sum_{j=1}^n (\alpha_j + \gamma_j) q_j = \sum_{j=1}^n (\beta_j + \gamma_j) q_j,$$

and it follows that $\sum_{j=1}^n \alpha_j q_j = \sum_{j=1}^n \beta_j q_j$. Therefore we can and do define $\phi: \widehat{G}^+[\mathbf{0}, \mathbf{u}] \rightarrow \mathbb{R}^+$ by $\phi(\mathbf{p}) := \sum_{j=1}^n \alpha_j q_j$. Evidently, $\phi(\mathbf{a}_j) = q_j$ for $j = 1, 2, \dots, n$ and $\phi(\mathbf{u}) = 1$. Furthermore, it is clear that if $\mathbf{p}, \mathbf{p}', \mathbf{p} + \mathbf{p}' \in \widehat{G}^+[\mathbf{0}, \mathbf{u}]$, then $\phi(\mathbf{p} + \mathbf{p}') = \phi(\mathbf{p}) + \phi(\mathbf{p}')$, i.e., ϕ is an \mathbb{R} -valued measure on $\widehat{G}^+[\mathbf{0}, \mathbf{u}]$. Since \widehat{G} is a unigroup, ϕ has a unique extension to an additive group homomorphism $\xi: \widehat{G} \rightarrow \mathbb{R}$. Because $\xi(\mathbf{a}_j) = q_j \geq 0$ for $j = 1, 2, \dots, n$ and every element in \widehat{G}^+ is a linear combination of \mathbf{a}_j , $j = 1, 2, \dots, n$, with nonnegative rational coefficients, ξ maps \widehat{G}^+ into \mathbb{R}^+ . Also, $\xi(\mathbf{u}) = 1$, so $\xi \in \Omega(\widehat{G})$ with $\tilde{\xi} = \mathbf{q}$.

The arguments above show that the mapping $\xi \mapsto \tilde{\xi}$ is a bijection from $\Omega(\widehat{G})$ onto $\Omega(T)$. Clearly, $\Omega(T)$ is a convex subset of \mathbb{R}^n and $\xi \mapsto \tilde{\xi}$ is an affine isomorphism of $\Omega(\widehat{G})$ onto $\Omega(T)$. By Theorem 2.2, there is a strictly positive \mathbb{Q} -valued state $\omega \in \Omega(G)$. By Lemma 5.1 (iv), ω admits a unique extension to a strictly positive \mathbb{Q} -valued state $\xi := \tilde{\omega} \in \Omega(\widehat{G})$. Thus, all of the components of the vector $\tilde{\xi} \in \Omega(T)$ are strictly positive, so the conditions on T in [6, Theorem 8.3] are met, and it follows that $\Omega(T)$ is a polytope and all of the extreme points of $\Omega(T)$ are vectors with only rational coordinates. Hence, $\Omega(T)$ is a polytope and all of the extreme points of $\Omega(\widehat{G})$ are \mathbb{Q} -valued, so $\Omega(G)$ is a polytope and all of its extreme points are \mathbb{Q} -valued. ■

5.3. THEOREM. *If G is a unital group with a finite unit interval, then $\Omega(G)$ is a polytope and all of the extreme points of $\Omega(G)$ are \mathbb{Q} -valued.*

Proof. Let G_τ be the torsion subgroup of G and let $\eta: G \rightarrow G/G_\tau$ be the natural surjective group homomorphism onto the quotient group G/G_τ . By [4, Theorem 4.1], G/G_τ can be organized into a unital group with a finite unit interval in such a way that there is an affine bijection $\omega \mapsto \tilde{\omega}$ from $\Omega(G)$ onto $\Omega(G/G_\tau)$ such that $\omega = \tilde{\omega} \circ \eta$. Because G/G_τ is torsion free, the theorem follows from Lemma 5.2. ■

References

- [1] M. K. Bennett and D. J. Foulis, *Interval and scale effect algebras*, Adv. in Appl. Math. 19 (1997) 200–215.
- [2] D. J. Foulis, *Representations on Unigroups*, in *Current Research in Operational Quantum Logic*, Coecke, B., Moore, D., and Wilce, A., eds., Kluwer Academic Publishers, Boston, 2000, 115–138.
- [3] D. J. Foulis, *MV and Heyting effect algebras*, Found. Phys. 30, No. 10 (2000) 1687–1706.
- [4] D. J. Foulis, *Removing the torsion from a unital group*, Rep. Math. Phys. 52, No 2 (2003), 187–203.
- [5] D. J. Foulis and M. K. Bennett, *Effect algebras and unsharp quantum logics*, Found. Phys. 24, No. 10 (1994) 1331–1352.
- [6] D. J. Foulis and R. J. Greechie, *Probability weights and measures on finite effect algebras*, Internat. J. Theoret. Phys. 38, No. 12 (1999) 3189–3208.
- [7] D. J. Foulis, R. J. Greechie and M. K. Bennett, *Sums and products of interval algebras*, Internat. J. Theoret. Phys. 33, No. 11 (1994) 2119–2136.
- [8] D. J. Foulis, R. J. Greechie and M. K. Bennett, *The transition to unigroups*, Internat. J. Theoret. Phys. 37, No. 1 (1998) 45–64.
- [9] K. Goodearl, *Partially Ordered Abelian Groups With Interpolation*, American Mathematical Society Mathematical Surveys and Monographs No. 20, American Mathematical Society, Providence, RI, 1986.
- [10] P. Pták and S. Pulmannová, *Orthomodular Structures as Quantum Logics*, Kluwer, Dordrecht/Boston/London, 1991.

- [11] R. B. Richter and W. P. Wardlaw, *Good matrices: Matrices that preserve ideals*, Amer. Math. Monthly 104, No. 10 (1997) 932–938.
- [12] J. C. Rosales and P. A. García-Sánchez, *Finitely Generated Commutative Monoids*, Nova Science Publishers, Inc., Commack, NY (1999).

DEPARTMENT OF MATHEMATICS AND STATISTICS
UNIVERSITY OF MASSACHUSETTS
AMHERST, MA 01003, USA
E-mail: foulis@math.umass.edu.

Received October 23, 2002.

