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REPRESENTATION OF A UNITAL GROUP
HAVING A FINITE UNIT INTERVAL

Abstract. Let G # {0} be a unital group with a finite unit interval and with rank r.
Then r is a positive integer and G can be realized as Z" x K, where K is a finite abelian
group, in such a way that (z,k) € Gt = z € (Z*)". The state space £2(G) of G is
a polytope and the extreme points of 2(G) are Q-valued states. The positive cone Gt
satisfies the descending chain condition, and if G is torsion free, then G carries a separating
set of Q-valued states.

1. Introduction

This article is a continuation of the study of unital groups with finite
unit intervals initiated in [4]. Motivation for this study appears in [4] and
will not be repeated here. Although we make an attempt to keep this article
somewhat self-contained, we shall be using the notation, nomenclature, and
results of [4].

In what follows, abelian groups are written additively and, if G is a
partially ordered abelian group, the positive cone in G is denoted by Gt :=
{9 € G|0<g} 9. A subset F of G is cone generating iff every element
of Gt is a sum of a finite sequence of (not necessarily distinct) elements of
F.If G* generates G as a group, i.e., G = Gt — GT, then G is said to be
directed. If every element in G whose positive integer multiples are bounded
above necessarily belongs to —G™, then G is called archimedean.

Let G be a partially ordered abelian group, and let u € G*. We define
the interval E := G*[0,u] = {g € G | 0 < g < u}, and we consider E to
be a bounded partially ordered set under the restriction to £ of the partial
order on G. The interval E is understood to be organized into an effect
algebra with unit u and with orthosum @ given by the restriction to E of
+ on G. For the details, see [1, 5]. The element u € G is called an order
unit iff, for each g € G, there exists a positive integer n such that g < nu
[9, p. 4]. If there is an order unit u € G, then G is directed. A unital group
is a partially ordered abelian group G with a specified order unit u, called
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the unit, such that the interval G*[0,u], called the unit interval, is cone
generating,.

If G is a unital group, F is the unit interval in G, and K is an abelian
group, then a mapping ¢: E — K such that ¢(p+q) = ¢(p) + ¢(q) whenever
p,¢,p+q € E is called a K-valued measure on E. We say that G is a
K -unital group iff every K-valued measure ¢: E — K can be extended to a
group homomorphism ¢*: G — K. If G is a K-unital group for every abelian
group K, then G is said to be a unigroup [2, 4, 8].

A lattice-ordered unital group, and more generally, a unital group with
the Riesz interpolation property [9, Chapter 2], is automatically a unigroup.
By definition, a unigroup G with unit u is Boolean iff its unit interval F is a
Boolean algebra with p — u — p as the Boolean complementation mapping.
A Boolean unigroup G is lattice ordered and its unit is the smallest order
unit in G. Conversely, a unigroup G with the Riesz interpolation property
is a Boolean unigroup if its unit is a minimal order unit in G.

The ordered field of real numbers, the ordered field of rational numbers,
and the ordered ring of integers are denoted by R, Q, and Z, respectively.
The standard positive cone in R is R* := {z? | z € R} and the standard
positive cones in Q and Z are Q1 := QN R* and Z* := ZNQ™*. With 1 as
the unit, and with the standard (total) order, each of the additive abelian
groups R, Q, and Z is a unigroup.

If G # {0} is a unital group with unit u, then a state for G is a
group homomorphism w:G — R such that w(G*) C Rt and w(u) = 1
[9, Chapter 4]. The set of all states for G, called the state space of G, denoted
by £2(G), is a nonempty compact convex subset of the locally convex linear
topological space RC of all functions a:G — R [9, Corollary 4.4, Proposi-
tion 6.2]. If w € 2(G) then w is a Q-valued state iff w(G) C Q. Evidently,
w € 2(G) is a Q-valued state iff w maps the unit interval G*[0, u] into Q™.

Suppose G # {0} is a unital group and A C £2(G). Then A is said to be
strictly positive iff for each p # 0 in G, there exists w € A with 0 < w(p).
A state w € §2(G) is strictly positive iff the singleton set {w} is strictly
positive. By definition, A is separating iff, for every g # 0 in G, there exists
w € A with w(g) # 0. Clearly, a separating set of states is strictly positive,
and if G carries a separating set of states, then G is torsion free. By [9,
Theorem 4.14], if G is archimedean, then £2(G) is a separating set of states
for G.

Let G # {0} be a unital group with a finite unit interval E. Then,
as a partially ordered set, E is atomic, and if a;,aq,...,a, are the atoms
in E, then {ai,a2,...,a,} is both a finite cone-generating set and a finite
set of generators for the abelian group G [4, Lemma 5.1]. Therefore, the
torsion subgroup G, of G is a finite direct summand of G and any com-
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plementary direct summand H of G, is a free abelian group of finite rank
r > 0. If n: G — H is the natural projection homomorphism onto H, then
H can be organized into a unital group with unit n(u) and positive cone
H* = n(G™). Furthermore, there is an affine isomorphism w « & between
the state spaces £2(G) and 2(H) such that w(g) = @(n(g)) for all g € G 4,
Theorem 4.1].

If r is a positive integer, we understand that Z" is organized into an
additive abelian group with coordinatewise operations. Vectors in Z" are
denoted by lower case bold face Latin letters, e.g., z = (21, 22, ..., 2). The
standard partial order for Z" is the coordinatewise partial order with the
corresponding standard positive cone (Z1)". With the standard partial order,
Z' forms a so called simplicial group [9, p. 47]. As a simplicial group, Z" is
an archimedean lattice-ordered group with a smallest order unit, namely
(1,1,...,1). An element v € (Z*)" is an order unit iff all of its coordinates
are strictly positive. If v is an order unit in the simplicial group Z", then
Z" is a unigroup with unit v and the unit interval (Z*)"[0, v] forms a finite
MV-algebra [3]. Conversely, every finite MV-algebra has this form. With
u:=(1,1,...,1) as the unit, the simplicial group Z" is a Boolean unigroup
and its unit interval (Z*)7[0,u] can be identified with the finite Boolean
algebra 27.

2. The existence of a strictly positive state

In Lemmas 2.1 and 2.2 below, we shall be focusing attention on a torsion-
free unital group G # {0} with a finite unit interval E. For instance, G could
be obtained by “removing” (i.e., factoring out) the torsion from a unital
group with a finite unit interval as in [4, Theorem 4.1]. As a group, such a
G is a free abelian group of finite positive rank r, whence by choosing a free
basis, we can represent G as Z". This representation is not unique and there
is not necessarily any obvious relationship between the positive cone G and
the standard positive cone (Z*)" in Z". Nevertheless, in this section, it will
be convenient for us to make the identification G = Z", so that elements in
G are vectors h = (hy, ho, ..., h,;) with integer entries.

The additive group G = Z" is a subgroup of the additive group of the
r-dimensional coordinate vector space R”. We understand that R" is orga-
nized into a euclidean space with the usual dot product (x,y) — x-y and

norm ||x|| = /X - x.

2.1. LEMMA. Let r be a positive integer, let G = Z" as an additive abelian
group, and suppose that G is a unital group with positive cone Gt, unit
u # 0, and finite unit interval E = G*[0,u]. Denote the distinct atoms in
FE by aj,as,...,an. Then:
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(i) a1,a9,...,an span the vector space R".
(i) If g €Z" and 3} 1qa; =0, then g, =0 fori=1,2,...,n.
(iii) If a; € RT and 30, ;a; =0, then a; =0 fori=1,2,...,n.
(iv) There erists a vector z € Z" such that 0 < z-a; fori=1,2,...,n.

Proof. (i) The standard free basis e := (1,0,...,0),e2 := (0,1,...,0),...
...,er:=(0,0,...,1) for the abelian group Z" is an orthonormal basis for R".
Since ay, ag,...,an generate Z", the vectors eq,es,...,er are linear com-
binations of aj,as,...,an with integer coefficients, whence aj,as,...,an
span the vector space R".

(ii) Assume the hypotheses. As a; € E C Gt and 0 < ¢;, it follows that
¢ia; € Gt for i = 1,2,...,n. Therefore, " ; ¢;a; = 0 implies that g;a; = 0
for i = 1,2,...,n. Since a; # 0 and the group Z" is torsion free, it follows
that ¢; =0fori=1,2,...,n.

(iii) Assume the hypotheses of (iii), but suppose that a; > 0 for at least

onei € {1,2,...,n}. By (temporarily) renumbering if necessary, we can and
do assume that a; > 0 fori =1,2,...,m with 1 <m < n and, if m < n,
a; =0fori=m+1,...,n. Let A be the m x r matrix over Z with the
vectors a;, ¢ = 1,2,...,m as its successive rows, and let p be the rank of A.
Consider the equation

(1) (ﬂl,ﬂQ,...,ﬂm)Az(0,0,...,0)ERT

for (81,82, .., Bm) € R™, noting that (81, 52...,8m) = (a1,a2,...,a,) isa
nontrivial solution of (1). Thus, by the rank-plus-nullity theorem, 1 < p <m.
To solve (1), we bring the r x m transpose A* of the matrix A into reduced
row echelon form B, noting that the entries in B are rational numbers.
Thus the nonzero rows of the matrix B encode p equations expressing p
of the unknowns (; as rational linear combinations of the remaining m — p
unknowns, which are then regarded as arbitrary parameters. Renumbering
again, if necessary, we can and do assume that these equations express (;
fori=1,2,...,pin terms of By for k = p+1,p+ 2,...,m. Therefore, the
general solution of (1) is given by
m

(2) Bi = Z cikPBr fori=1,2,...,p,

k=p+1
where the coefficients ¢;; are rational numbers and (i are arbitrary real
numbers for k = p+1,p+ 2,...,m. In particular,

m
(3) o; = Z crap fori=1,2,...,p.
k=p+1

Now let 0 < € < min(aj,ay,...,a,). By continuity and (3), there
is a positive real number § such that if jar — G| < 6 for k = p+ 1,
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p+2,...,m, then (3; given by (2) satisfy 0 < a; —e < fi fori =1,2,...,p.
For each k = p+1,p+2,...,m, select a positive rational number £ with
|ax — Bk| < 8. As the coefficients c; in (2) are rational numbers, it follows
that (3; in (2) are positive rational numbers for 2 = 1,2, ..., p. Therefore, (1)
has a solution (81, B2, ..., Bp, - - ., Bm) such that §; is a positive rational num-
ber fori =1,2,...,p,...,m. Write §; in fractional form fori =1,2,...,m
and let M be the least common multiple of the resulting denominators.
Then the integers ¢; := Mg; fori = 1,2,..,m and, if m < n, ¢; := 0 for
t=m+1,...,n, provide a contradiction to (ii).

(iv) By (iii) and Farkas’s Lemma [12, Chapter 4], there is a vector ¢ € R"
such that 0 < ¢ - aj for i = 1,2, ...,n. By continuity, there exists ¢ > 0 such
that q € R” with ||c — q|| < € implies that 0 < q-a; for i = 1,2,...,n.
Choose q € Q" with ||c — q|| < e. Then there is a positive integer M such
that z:= Mqe€ Z", and we have 0 < z-a; fori =1,2,...,n. w

2.2. THEOREM. If G is a torsion-free unital group with a finite unit interval,
then there is a strictly positive Q-valued state w on G.

Proof. As a group, G can be identified with Z" as in Lemma 2.1. By
Lemma 2.1(iv), there is a vector z € Z" such that 0 < z - a;fori =1,2,...,n.
If 0 # p € G, then there are integers q; € Z*, at least one of which is
strictly positive, such that p = ", ¢;a;, and it follows that 0 < z-p. If u
is the unit in G, define w:G — R by w(h) := (z - h)/(z-u) for all h € G.
Then w is a strictly positive state on G. w

2.3. COROLLARY. If G is a unital group with a finite unit interval, then
there is a strictly positive Q-valued state w on G.

Proof. Combine [4, Theorem 4.1] and Theorem 2.2. u

3. Optimizing the representation

Suppose G # {0} is a torsion-free unital group with unit u and with
a finite unit interval E = G*[0,u]. Then the partially ordered set E is
atomic and the set {a1,as,...,a,} of atoms in F is a finite set of generators
for the abelian group G, so G is a finitely-generated torsion-free abelian
group. Consequently, G admits a free basis ej,es,...,e., where 0 < r =
rank(G). Using this free basis, we obtain a group isomorphism ¢: G — Z" of
G onto the additive abelian group Z". The isomorphism ¢ is not uniquely
determined and can be replaced by I" o ¢ where I' is any automorphism of
the group Z". The most general automorphism I" of Z" is implemented by
an r x r unimodular matrix J over Z according to I'(z) = zJ for all z € Z".
To say that J is unimodular means that J has an inverse over Z, i.e., that
det(J) = 1.
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By a suitable choice of the group isomorphism ¢:G — Z", we might
hope to obtain a representation of G that is “optimal” in some sense. Surely
one of the desiderata for an optimal representation would be that ¢ carries
the positive cone G* into the standard positive cone (Z*)" in the simplicial
group Z". We are going to prove that such a ¢ exists.

3.1. LEMMA. Let G # {0} be a torsion-free unital group with unit u and
finite unit interval E = G*[0,u], let a1,ay,...,an, be the distinct atoms in
E, and let r be the rank of G. Then there is a group isomorphism ¢:G — Z"
such that the first entry in each of the vectors ¢(a;) is strictly positive for
i=12,...,n,

Proof. Choose an arbitrary group isomorphism ¢: G — Z". If we can find
an r X r unimodular matrix J over Z such that the first entry in each of the
vectors ¢(a;)J for i = 1,2,...,n is strictly positive, then we can replace ¢
by g — ¢(g)J, and the lemma is proved.

Let aj := qS(ai) = (ail,aig, .. .,ai,) fori =1,2,...,n. Let H :=Z" as
an additive abelian group, but organized into a unital group with positive
cone Ht := ¢(G*) and unit u := ¢(u). Then a;, i = 1,2,...,n are the
distinct atoms in the finite unit interval G*[0, u]. By Lemma 2.1(iv), there
is a vector z = (21, 22,...,2,) € Z" such that

T
4) 0<szaijfori=1,2,...,n.
j=1

If 0 < D is the greatest common divisor of the nonzero iftegers in the list
21,22,...,2r, then we can and do replace z; by z;/D for j = 1,2,...,r
without affecting (4) so that the nonzero integers in the list z1, 29, .. ., 2z, are
relatively prime. Thus, there exists an r x r unimodular matrix J having
21,722, ..., 2 as the successive entries in its first column [11], whence the first
entry in each of the vectors ¢(a;)J = a;J, ¢ = 1,2,...,n, is strictly positive
by (4). =

3.2. LEMMA. With the hypotheses of Lemma 3.1, the group isomorphism
¢:G — Z" can be chosen in such a way that ¢(a;) € (Z1) fori=1,2,...,n.

Proof. By Lemma 3.1, there is a group isomorphism ¢: G — Z" such that
the first entry a;; in each of the vectors ¢(a;) = (ai1, aio, . . ., air) is strictly
positive for : = 1,2,...,n. If we can find a group automorphism I': Z" — Z"
such that I'(¢(a;)) € (Z*)" for i = 1,2,...,n, then we can replace ¢ by
I' 0 ¢, and the lemma is proved.

Let £ = max{|aij|/ai1 | i1 =1,2,...,n;j = 2,3,...,7}, so that ka;; +
aij € Zt for i = 1,2,...,n and j = 2,3,...,7. Then the desired group
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automorphism I":Z" — Z" is obtained by defining
I'(z1,22,...,2) := (21,k21 + 29,..., kz1 + 2;)
for (z1,29,...,2,) €Z". m

3.3. LEMMA. If G # {0} is a torsion-free unital group with a finite unit
interval E, and if r = rank(G), then G can be realized as the additive
abelian group Z" in such a way that G+ C (Z*)".

Proof. By Lemma 3.2, there is a group isomorphism ¢: G — Z" that maps
the atoms in E into the standard positive cone (Z*)" in the simplicial group
Z". Since the set of atoms in E generates G, it follows that ¢(G*) C (Z*)".
Using the group isomorphism ¢, we can identify G with Z".

3.4. THEOREM. Let G # {0} be a unital group with a finite unit interval
and let v be the rank of G. Then r is a positive integer and there is a finite
abelian group K such that G can be realized as the group Z" x K in such a
way that forz € Z" and k € K, (z,k) € Gt = z € (Z*)".

Proof. Since G has a finite unit interval, it is finitely generated, hence
it has finite rank r, its torsion subgroup G; is a finite direct summand of
G, and there is a torsion-free abelian group H of rank r and a group iso-
morphism ¢¥:G — H x G,. If r = 0, then G is a finite unital group, so
G = {0}, contradicting the hypotheses. Thus, r > 0. Define m: H x G, — H
by w(h,k) := h for (h,k) € H x G,, and let 7:G — H be defined by
n := mwo1. Then n:G — H is a surjective group homomorphism and
ker(n) = G-.

By [4, Theorem 4.1}, we can and do organize H into a unital group with
positive cone HY := n(G*) = {h € G | 3k € G,,(h,k) € Gt} and with
unit v := n(u). By [4, Theorem 4.1 (viii)], H has a finite unit interval.
By Lemma 3.3, we can and do assume that H = Z" as an abelian group
and that n(G*) = H* C (Z*)". Using the isomorphism 1, we can and do
identify G, as a group, with Z" x K, where K is isomorphic to G,. Then
elements of G have the form (z, k) € Z" x K with 7(z, k) = z. Consequently,
(z,k)EGT=>2z€(Z") . »

3.5. COROLLARY. If G is a unital group with a finite unit interval, then the
positive cone G satisfies the descending chain condition.

Proof. Without loss of generality we can assume that G # {0} and that
G =Z" x K as in Corollary 3.4. Suppose that (z1,k1) > (z2,k2) > ... >
(zZn,kn) > ... is a strictly decreasing infinite sequence of elements in G*.
Then zy > 29 > ... > 2y > ... is a decreasing infinite sequence of elements
in (Z*)". But (Z*)" satisfies the descending chain condition, so there exists
a positive integer N such that zny = znyj for j = 1,2,... . If 7 is the order
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of the finite group K, then two of the elements ky; must agree for j =
1,2,...,74+1, so we cannot have (z1,k1) > (z2,k2) > ... > (zZn,kn) > ... =

3.6. COROLLARY. If G is a unital group with a finite unit interval E, then
G has the Riesz interpolation property [9, Chapter 2] iff G is lattice ordered
and E is an MV-algebra.

Proof. See [9, Corollary 3.14]. =

4. x-Groups

Suppose that G # {0} is a torsion free unital group with a finite unit
interval E. By choosing a free basis in G we can realize G as G = Z" with
0 < r. Assuming that this has been done, let u € (Z*)" be the unit in
G, let aj,ag,...,an € (Z7)" be the distinct atoms in E, and let A be the
(n+1) x r matrix with aj, ag, ..., an as its first n row vectors and with u as
its (n + 1)st row vector. To obtain an alternative realization of G as'Z", we
use an r X 7 unimodular matrix J over Z to replace A by AJ, whereupon G+
is replaced by G*J. The transition A — AJ is accomplished by executing a
finite sequence of elementary column transformations over Z on the columns
of A.

By Lemma 3.3, we can always find a unimodular matrix J such that
AJ C (Z*)", and by replacing A by AJ, obtain a realization of G as Z" in
such a way that Gt C (Z*)". Assuming that this has been done, further
elementary column transformations (over Z) on A might yield a more per-
spicuous realization of G while preserving the condition Gt C (Z*)". For
instance, we could perform further elementary column transformations on
A in an attempt to decrease the entries in its last row, i.e., to decrease the
components of the unit vector for G while preserving the nonnegativity of
all entries in A.

The optimal situation is that in which, by suitable elementary column
transformations over Z, all entries in the last row of A can be reduced to 1’s
while preserving the nonnegativity of the remaining entries in A. If this can
be done, then u = (1,1,...,1), whence the vectors p = (p1,p2,...,pPr) €
E have only zeros and ones as entries. Such a vector can be identified
with the characteristic set function xar:{1,2,...,7} — {0,1} of the set
M = {i | p; =1}, and we obtain a set representation of the effect algebra E.
(Caution: This is related to, but not the same as the notion of a “concrete
logic” [10]). These considerations lead us to the following definition.

4.1. DEFINITION. A x-group of finite rank r > 0 is a unital group G with
the following properties: (i) As an additive abelian group, G = Z'. (ii)
G* C (z*)". (iii) The unit in G is u = (1,1,...,1). A x-unigroup of finite
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rank r is a y-group that is also a unigroup. A finite x-algebra is a finite effect
algebra that is isomorphic to the unit interval in a y-unigroup of finite rank.

Here is the simplest example of a non-Boolean y-unigroup.

4.2. EXAMPLE. Let G = Z3 as an abelian group, define Gt = {(z,y,2) €
G|0<L z,y,2z,y+ z— z}, and let u:= (1,1,1). Then G is an archimedean
x-unigroup of rank 3 and the unit interval F in G is the six-element modular
orthocomplemented lattice MO2. =

It can be shown that the class of x-unigroups of finite rank is closed
under the formation of finite products, coproducts, and tensor products
[7, Section 10], hence there is an abundant supply of such unigroups. The
author does not know an example of a y-unigroup of finite rank that is not
archimedean.

5. The state space

If G # {0} is an R-unital group with a finite unit interval E, then
probability measures on E can be extended uniquely to elements of £2(G),
and the fact (by Corollary 2.3) that there is a strictly positive w € 2(G)
together with the development in [6] shows that £2(G) is a rational polytope.
In this section we are going to show that £2(G) is always a rational polytope,
even if G is not R-unital, but only unital.

5.1. LEMMA. Suppose that G is a unital group with unit u, that 0 < r,
and that G = Z" as an additive group. Let G = Q" as an r-dimensional
coordinate vector space over Q and let G+ be the subset of G consisting of
all finite linear combinations of elements of Gt with nonnegative rational
coefficients. Then:

(@ G can be organized into a partially ordered vector space over Q with
Gt as its positive cone.

(ii) Regarded as a partially ordered abelian group under addition, Gisa
unigroup with unit u.

(iii) The inclusion mapping G — G is an injective morphism of unital
groups. '

(iv) Each state w € §2(G) extends to a unique state & € 2(G) and the
mapping w — @ is an aoffine bijection of $2(G) onto 2(G). Furthermore,
w € (G) is Q-valued iff & € 2(G) is Q-valued, and w is strictly positive
#f © is strictly positive.

Proof. (i) Evidently, G* + Gt C G+ and Q*G+ C G*. Suppose 0 # p; €
Gt and o; € QT fori = 1,2,...,k with Eé;l a;p; = 0. Choose a positive
integer M such that 3; :== Ma; € Zfori=1,2,...,k. Then ZLI Bip; =0,
and it follows from the fact that p; are nonzero elements of the positive
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cone Gt that 3; = 0, whence o; = 0 for ¢« = 1,2,...,k. Consequently,
-GtnGt = {0}, so G can be organized into a partlally ordered vector
space over @ with Gt as its positive cone.

(ii) Suppose x € G and choose a positive integer M such that Mx €

= G. As u is an order unit in G, there is a positive integer N such that
Nu - Mx € Gt C G*, whence x < (N/M)u < Nu in G, and it follows
that u is an order unit in G.

Suppose x € G+ and choose a positive integer N such that x < Nu in
G. Then Yy=(1/N)xe G*[0,ul,and x =y +y +...+y (N summands),
whence G*[0, u] generates the positive cone Gt. Therefore, as an additive
partially ordered abelian group, G is a unital group with unit u, and as
such, G is a unigroup by [1, Corollary 4.6].

(iii) Because G* C G*, the inclusion mapping G — G is an order
preserving group homomorphism that maps the unit of G to the unit of G.

(iv) As u € G and u is an order unit in G, each element of G is bounded
above by an element of G. Therefore, by [9 Proposition 4.2], each state
w € (XG) can be extended to a state & € (G G). Suppose & € 2(G)
is an extension of w € §2(G) and let x € G. Choose a positive inte-
ger M such that Mx € G. Then w(Mx) = &(Mx) = M&(x), whence
&(x) = (1/M)w(Mx), proving that & is uniquely determined by w. As the
restriction of a state on G to G is a state on G, it follows that w — ©
is surjective. Evidently, w — @ is an affine bijection of £2(G) onto 2(G)
and w is Q-valued iff & is Q-valued. We note that an additive group homo-
morphism from Q" to R is Q-homogeneous, and since G is the set of all
finite linear combinations with nonnegative rational coeflicients of elements
of G*, it follows that w € £2(G) is strictly positive iff @ € 2(G) is strictly
positive. »

In Lemma 5.1, Q can be regarded as a unigroup with unit 1 and the
partially ordered rational vector space G can be identified with the tensor
product Q ® G. Indeed, Lemma 5.1 can be generalized to the case in which
G is any unital group with a separating set of states by defining G:=Q®G
and replacing the inclusion mapping G — G by g — 1®g.

5.2. LEMMA. Let G # 0 be a torsion-free unital group with a finite unit
interval E. Then §2(G) is a polytope and every extreme point of 2(G) is a
Q-valued state on G.

Proof. We can and do assume that G = Z" as an additive group with
unit u, and thus form the unigroup G as in Lemma 5.1. Let aj,as,...,an
be the distinct atoms in E. Because these atoms generate G¥, it follows
that G+ is the set of all linear combinations Z —1 @;a; with nonnegative
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rational coefficients o, whence the rational vector space G is spanned by
ai,ag,...,an.

A vector t = (t1,t2,...,t,) € (Q1)" is called a rational multiplicity
vector iff 3°7_ t;a; = u. Let T be the set of all rational multiplicity vectors.
Because u — aj € é‘*, there are nonnegative rational numbers o;, j =
L,2,...,n, withu—az = }°7_, a;aj, whence (a1 +1,0a3,...,an) € T. Thus
there exists t € T with a strictly positive first component. Likewise, for each
j=12,...,n, there exists t € T with a strictly positive jth component.

If 9 = (q1,92,.-.,qn) and t = (t1,1s,...,t,) are vectors in R™, the dot
product t - q := }°7_; t;q; is defined as usual. As in [6, Definition 4.5], we
define £2(T) := {q € (R*)* |t -q =1 for every t € T}.

Let £ € 2(G). Since £&:G — R is an additive group homomorphism,
it follows that £(ax) = af(x) for & € Q and x € G. Define £ € (R*)”
by € := (£(a1),£(az),...,&(an)). Because the rational vector space G is
spanned by aj,as,...,an, the mapping £ — E is injective. Also, if t =
(t1,t2,...,tn) is any rational multiplicity vector, we have u = }°7_, t;aj,
whence 1 = {(u) = Z;;l t;€(a;), and it follows that Ee T).

Fix q = (q1,q2, - - -,qn) € £2(T) and let p € G*[0,u]. As p € G, there
are nonnegative rational numbers «;, j = 1,2,...,n, with p = E;-;l a;aj.
Suppose we have a second representation p = Z;-‘=1 Bja; where §;, j =
1,2,...,n, are also nonnegative rational numbers. As u — p € é*’, there
are nonnegative rational numbers v;, j = 1,2,...,n, such that u — p =
> j=17;aj, whence

u=> (o;+v)a=> (B +7v)aj
j=1 j=1

so t:=(o1+71, 00472, ... antYn) €T and s:= (B1+71, Bat72, - - -, Bnt¥n)
€ T. Consequently

n n
1= _Zl(aj +75)95 = X%(ﬂj + %)%
j= j=
and it follows that 37, ajq; = 3°7. B;q;. Therefore we can and do de-
fine ¢:GT{0,u] — R* by ¢(p) := Y7, ajq;. Evidently, ¢(a;) = g¢; for
j=1,2,...,n and ¢(u) = 1. Furthermore, it is clear that if p,p’,p+ p’ €
6’"‘[0, u], then ¢(p + p’) = é(p) + ¢(p'), i.e., ¢ is an R-valued measure on
@+[O, u]. Since Gis a unigroup, ¢ has a unique extension to an additive
group homomorphism ¢: G — R. Because €(aj) =¢j >20forj=1,2,...,n
and every element in Gt is a linear combination of aj;, j=1,2,...,n, with
nonnegative rational coeflicients, £ maps Gt into RT. Also, £é(u) = 1, so
e .Q(@) with £ = q.
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The arguments above show that the mapping & — 5 is a bljectlon from
2(G) onto AT). Clearly, £2(T') is a convex subset of R” and ¢ — £ is an
affine isomorphism of .Q(G’) onto 2(T). By Theorem 2.2, there is a strictly
positive Q-valued state w € £2(G). By Lemma 5.1 (iv), w admits a unique
extension to a strictly positive Q-valued state § := @ € (2(@) Thus, all of
the components of the vector E € (2(T) are strictly positive, so the conditions
on T in [6, Theorem 8.3] are met, and it follows that £2(T') is a polytope and
all of the extreme points of {2(T') are vectors with only rational coordinates.
Hence, §2(T) is a polytope and all of the extreme points of 2(G ) are Q-
valued, so £2(G) is a polytope and all of its extreme points are Q-valued. m

5.3. THEOREM. If G is a unital group with a finite unit interval, then 2(G)
is a polytope and all of the extreme points of 2(G) are Q-valued.

Proof. Let G, be the torsion subgroup of G and let : G — G/G; be the
natural surjective group homomorphism onto the quotient group G/G,. By
[4, Theorem 4.1], G/G; can be organized into a unital group with a finite
unit interval in such a way that there is an affine bijection w — @ from
2(G) onto 2(G/G,) such that w = & on. Because G/G; is torsion free, the
theorem follows from Lemma 5.2. =
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