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A UNIQUE COMMON FIXED POINT 
FOR COMPATIBLE MAPPINGS OF TYPE (B) 

SATISFYING AN IMPLICIT RELATION 

1. Introduction 
As a generalization of the notion of weakly commuting mappings, Jungck 

[1] introduced the concept of compatible mappings. When S and T are self 
mappings of a metric space (X, d), Jungck defines S, T to be compatible if 

(lim) lim^oo d(STxn, TSxn) = 0 

whenever limn_>00<Sxn = lim^oo T i n = t, for some t 6 X, and (xn) is a 
sequence in X. Another concept of compatibility called compatible mappings 
of type (A) is defined in [2]. To be compatible of type (A), S and T above 
must, in place of (lim), satify the conditions 

lim d(STxn,TTxn) = 0, and lim d(TSxn,SSxn) = 0. n—>oo n—>oo 

Examples are given to show that the two concepts of compatibility are in-
dépendant ( Ex. 2.1 and Ex. 2.2 [2]). Recently, H. K. Pathak and M. S. 
Khan [3] introduced the so called, compatible mappings of type (B), 
this notion is more general than the notion of compatible mappings of type 
(A). More precisely, S and T above are compatibles of type (B) if, in place 
of (lim), we have the conditions: 

lim d(TSxn,S2xn) < ^ [ lim d(TSxn,Tt) + lim d(Tt,T2xn)] , 
n—»oo 2 Ln—»oo n—»oo J 

and 
lim d(STxn,T2xn) < £ [ lim d(STxn,St) + lim d(St, <S2a:n)l . n—• oo ' 2 Ln—»oo ' n—*oo v 'J 
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Clearly, compatible mappings of type (A) are compatible of type (B), but the 
converse is not true (see Ex.2.4 [3]). However, compatibility, compatibility of 
type (A) and compatibility of type (B) are equivalent under some conditions 
(see [3] Proposition 2.8). 

Our aim here is to prove some fixed point theorems for compatible 
mappings of type (B) by adding implicit relations to the work of V. Popa [4] 
and so obtain results for a wide class of expansive mappings. Throughout 
this paper, X denotes a metric space (X, d) with the metric d. 

Without doubt, Propositions 2.9 and 2.10 in [3] are still valid if we replace 
the normed space by a metric space, and we have from that the following 
Lemmas. 

LEMMA 1. Let S and T be compatible mappings of type (B) from a metric 
space (X,d) into itself. If St = Tt for some t 6 X, then STt = SH = T2t = 
TSt. 

L E M M A 2 . Let S and T be compatible mappings of type (B) from a metric 
space (X,d) into itself. Suppose that lim„_»<x> Sxn = lim n —> ooTxn=t for 
some t £ X. Then 

2. Implicit relations 
Let 1Z+ be the set of all non-negative reals numbers and let Q be the set 

of all continuous functions G(ti, : H\ —> 1Z satisfying the conditions: 
(Gi) : G is non decreasing in variables and 
(G2) : there exists 9 G (1, +00), such that for every u, v > 0 with 
(Ga) : G(u, v, u, v, u + v, 0) > 0 or 
(Gb) : G(u, v, v, u, 0, u + v) > 0 
we have u>9v. 
(G3) : G(u, u, 0,0, u, u) <0,Vu> 0. 

E X A M P L E 1. 
dt2+e$+1 ' w^ere c,d,e > 0, a > 0 and b> a + c. 

(G1) : is clear. 
(G0) Let u,v G 72.+, and suppose that G(u, v,u, v, u+v, 0) = au2 — bv2 > 

0; then u > (¿)1/2 v = 9.v, where 9 = . 

(Gb) Let u,v Ç. 1Z+, and suppose that G(u, v, v, u, 0, u + v) = au2 — bv2 > 

0; then u > ( j ; ) 1 ^ = S.v, where 9 = ( i ) ^ - Thus (G2) is satisfied 

(i) limn_+oo TTxn — St if S is continuous at t. 
(ii) limn-voo SSxn = Tt if T is continuous at t. 
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(G3 ) G(U, tt, 0,0, u, u) = au2 - bu2 + cu2 = u2 (a - b +c) < 0, Vu > 0. 

EXAMPLE 2. 

G(ti,..., ifi) = h - \atl + ^ J J ? ] 1/2where 0 < b, c < 1, a > 1. 
(G i ) : is clear. 

(Ga) : Let u, v G 1Z+, and suppose that G(u, v, u,v,u + v, 0) = 

u - [av2 + bu2 + cv2]1/2 > 0; then 

u > ( t % ) 1 / 2 v = Oi.v, where 01 = ( f i f ) V 2 > 1. 

(Gj,) : Let tt, v G 1Z+, and suppose that G(u, v, v, u,0,u + v) = 
u - [av2 + bv2 + cu2]1/2 > 0; then 

u > = 9vv, where 0i = ( f ^ ) V 2 > 1. Therefore, (G2 ) hold 

for 0 = min {0 i0 2 } -

( G 3 ) G{U, U, 0 ,0 , u, u) = u - (au2)1/2 < 0, Vu > 0. 

EXAMPLE 3. 
G(tu...,te) = h - [at% + bt% + ctl\1/p + a > (1 + d)p,d > 0 

(particularly a > 2P if d = 1), 0 < c, b < l ,p € Af*. 
(G\) : is clear. 
(G a ) : Let u, v € 1Z+, and suppose that G(u, v, u,v,u + v, 0) = 

u - [avp + bup + cvp]1/p > 0, then 

« > ( f i f ) 1 / P ^ = h-v, where 0X = ( f i f ) 1 / P > 1. 

(Gb) : Let u, v G TZ+, and suppose that G(u, v, v, u, 0, u + v) = 
u - [avp + bvp + cup]1/p > 0; then 

u > ( f ^ ) 1 / P u = e2.v, where 02 = ( f ^ ) 1 / P > 1. Hence (G2 ) hold for 

0 = min {01,02} • 

(G3 ) G(U, it, 0,0, it, u) = u-(aup)1/p+du = (1 - ( o j ^ + d ) « < 0,Viz > 0. 

EXAMPLE 4. 

G(tu...,te) = h - [atp2 + btp3 + ctp]1/p - \ ( t ^ ) ; a > 1, 0 < c,b < 

(G i ) : is clear. 

(Ga) : Let u, v G TZ+, and suppose that G(u, v, u,v,u + v, 0) = 

u - [avp + bup + cvp]1/p - ¿ u > 0, 

then u > 2 (•&jk)l'Pv = where 6X = ( T ^ E ) 1 / P > 1. 

(Gb) : Let it, v G TZ+, and suppose that G(u, v, v, u, 0, u + v) = 
u - [avp + bvp + cup]1/p - \u > 0; then 
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u>2 = 02.v, where 62 = > 1. Hence (G2) hold 
for 0 = min {9\, 02} • 

(G.) G(u, u, 0,0, „) = « - (aWf> - J ( - M - ^ H f f - * " * ) 

< 0, Vu > 0 since a > 1. 

3. Common fixed point theorems 
THEOREM 1. Let (X, d) be a metric space and A, B, S, T :(X, d) (X, d) 
four mappings satisfying the following conditions: 
(1) G[d(Ax, By), d(Sx, Ty), d(Ax, Sx), d(By, Ty), 

d(Ax,Ty),d(By,Sx)] > 0 

for all x, y 6 X, where G satisfies property (G3). Then, the mappings A, B, 
S, T have at most one common fixed point. 

Proof. Suppose that A, B, S, T have two common fixed points z and z' 
such that z ^ z'. Then, expression (1) gives 

G[d(Az, Bz'), d(Sz, Tz'), d(Az, Sz), d(Bz', Tz'), d(Az, Tz'), d(Bz', Sz)] 
= G[d(z, z'),d(z, z'), 0,0, d(z, z'), d(z', z)] > 0 

but this contradicts (G3). • 

THEOREM 2. Let A, B, S, and T be mappings from a complete metric space 
X into itself having the followings conditions: 

(i) A, B are surjective, 
(ii) One of A, B, S, T is continuous, 
(Hi) The pairs A, S and B, T are compatible of type (B), 
(iv) The inequality (1) above holds for x, y 6 X, and G G Q. 

Then A, B, S, and T have a unique common fixed point. 

Proof . Let XQ 6 X be arbitrary. Choose, by condition (i), x\ 6 X such 
that yo = Ax 1 = TXQ. For this point x\ choose a point x2 in X such that 
yi = Bx2 = Sx 1. Continuing in this way, we construct a sequence (yn) in X 
such that 

(2) yin = Ax2n+\ = TX2 n and J/2n+l = Bx2n+2 = Sx2n+\. 
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Having the property (Gi) in mind, and using (1) and (2), it follows 

0 < G[d(Ax2n+l,Bx2n+2),d(Sx2n+l,Tx2n+2),d(Ax2n+l,Sx2n+l), 

d(Bx2n+2, Tx2n+2), d(Ax2n+l, Tx2n+2), d(Bx2n+2, <5^2n+l)] 

= G[d(y2n, 2/2n+l), d(y2n+h V2n+2), d(y2n, V2n+l), d(V2n+1, 2/2n+2), 
d(V2n, 2/2n+2)> d(y2n+l, J/2n+l)] 

< G[d(y2n, 2/2n+l), d(j/2n+l, 2/2n+2), ¿(j/2n, 2/2n+l), ̂ (2/2n+l, 2/2n+2), 
<%2n, 3/2n+l) + d(j/2n+l, 2/2n+2), 0]. 

By (Ga) there exists 6 > 1, such that 

A simple calculation shows that the sequence (yn) is a Cauchy one. But since 
X is complete space, then there is a point z G X such that limn_»oo yn = z. 
Particularly, the four subsequences (Ax2n+i), {Bx2n+2), (<Sx2n+i) a n d 
(Tx2n) converge also to z. 

Let us suppose that A is continuous. Since the mappings A and S are 
compatible of type (B), then by Lemma 2, we have ASxn —> Az and S2xn —» 
Az. By using inequality (1), we get 

G[d(ASx2n, Bx2n+l), d(S2X2n, Tx2n+\), d(ASx2„, <S2X2n), 

d(Bx2n+l,Tx2n+l),d(ASx2n,Tx2n+l),d(Bx2n+l,S2X2n)] > 0. 

So, by using the continuity of the function G and letting n —• oo, we have 

G[d(Az, z), d(Az, z), 0 , 0 , d(Az, z), d(z, Az)] > 0 

which contradicts (G3), so Az = z. 
We claim that Sz = z. Indeed, by (1) we have 

d(y2n,y2n+l) > 0d(j/2n+l, V2n+2) 

that is 
1 

G[d(Az, Bx2n), d(Sz, Tx2n), <¿(-4.^, Sz), 

d(Bx2n,1~X2n),d(Az,Tx2n),d(Bx2n,Sz)] > 0 . 

Hence, by continuity of G,we have as n —• oo 

G[0, d(Sz, z), d(z, Sz), 0,0, d(z, .Sz)] > 0. 
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By (Gb),there exists 

6 > 1, such that 0 > 0d(z,Sz). 

Consequently z = Sz. Thus, we have Sz — z — Az. Let u € X such that 
Sz = z = Bu. Then, by inequality (1), we have 

G[d(Ax2n+l, Bu), d(Sx2n+l, Tu),d(Ax2n+l,Sx2n+l), 

d(Bu, Tu),d(Ax2n+i,Tu),d(Bu,Sx2n+i)} > 0. 

It follows, as n oo 

G[d(z, Bu), d(z, Tu), d{z, z),d(Bu, Tu),d(z, Tu), d(Bu, z)] 

= G[0, d{z, Tu), 0, d(z, Tu), d(z, Tu), 0] > 0. 

Using (Ga), it follows that 

3d > 1, such that 0>6d(z,Tu). 

That is z = Tu. Hence z = Az = Sz = Bu = Tu. Since (B,T) is a 
compatible pair of type (B), then by Lemma 1, we have Bz = BTu = 
TBu = Tz. Moreover, by (1) we have 

G[d{Ax2n+\, Bz), d(Sx2n+l, Tz), d(Ax2n+l, S l 2 n + l ) , 

d{Bz, Tz), d(Ax2n+l, Tz), d{Bz, «Sx2n+l)] > 0. 

So, by letting n —* oo, we obtain 

G[d(z, Bz), d{z, Tz), d(z, z), d{Bz, Tz), d{z, Tz), d{z, Bz)} 

= G[d(z, Bz), d(z, Bz), 0 ,0 , d(z, Bz), d(z, Bz)] > 0 

which is a contradiction, hence d(z, Bz) < 0, and so z = Bz = Tz. Therefore, 
z is a common fixed point for both A, B, S, and T. 

Suppose next that S is continuous. Since the mappings A and S are 
compatible of type (B), then by Lemma 2, we have SAxn Sz and A2xn —> 
Sz. Using inequality (1), we get 

G[d(^2X2n+l, Bx2n+2), d(SAx2n+l, Tx2n+2), d(A2X2n+l,SAx2n+l), 

d(Bx2n+2,Tx2n+2),d(A2X2n+l,Tx2n+2),d(Bx2n+2,SAx2n+l)] > 0. 

So, by using the continuity of the function G and letting n —> oo, we have 

G[d(Sz, z), d(Sz, z), 0,0, d(Sz, z), d(z, «S2)] > 0 

but this contradicts (G3), so Sz = z. 
Let u, v e X such that z — Sz — Au = Bv. Applying (1), we obtain 

G[d(A2X2n+l, Bv), d(SAx2n+l, Tv), d(A2X2n+l,SAx2n+l), 

d(Bv, Tv), d(A2X2n+l, Tv), d{Bv, 5^2n+l)] > 0-
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As n —• oo,it comes 

G[0, d(Tv, z), 0, d(Tv, z), d(Tv, z), 0] > 0. 

This means, by (Ga), that Tv = z. Consequently, z = Tv = Bv. But, T , £5 
axe compatibles of type (B), then Tz = TBv = 57\> = Moreover, by 
(1), we have 

G[d(Ax2n+l, Bz), d(Sx2n+1, Tz), d(Ax2n+i,Sx2n+l), 
d(Bz, Tz), d(Ax2n+i, Tz), d{Bz, <Sx2n+i)] > 0. 

Letting n —• oo, it comes 

G[d(Bz, z), d(Bz, z), 0,0, d(Bz, z),d(Bz, z)) > 0 

which is a contradiction with (G3). So z = Bz = Tz. 
By (1), one may further have, 

G[d(Au, Bz), d(Su, Tz), d(Au, Su), d(Bz, Tz), d(Au, Tz), d(Su, Bz)) > 0. 

This implies that, Su = z. Again, since A, S are compatibles of type (B), 
we have Az = ASu = SAu = Sz. Thus, z is indeed the common fixed point 
we are looking for, since by Theorem 1 z is a unique one. Analougously, one 
completes the proof if either of B or T is continuous. • 

COROLLARY 1. Let A, B, S, and T be mappings satisfying (i), (ii) and (Hi) 
of Theorem 2. Suppose that, for all x, y 6 X, we have the inequality 

(3) dP(Ax, By) > adP{Sx, Ty) + bd?(Ax, Sx) + cd?(By, Ty) 

such that a > 1, 0 < c, b < l,p 6 A/"*. Then A, B, S, and T have a unique 
common fixed point. 

Proof . Take a function G as in Example 3 with d = 0. Observe, by the 
condition (3), that 

G[d(Ax, By), d{Sx, Ty), d(Ax, Sx), d(By, Ty), 
d{Ax,Ty),d{By,Sx)\ = 

d(Ax, By) - [adp(Sx,Ty) + bdP(Ax,Sx) + cdP(By,Ty)\l/p > 0. 

Conclude by using Theorem 2. • 

THEOREM 3. Let S, T and be mappings from a complete metric 
space X into itself having the following conditions: 

(i) {gi}ieN are surjective; 
(ii) S or T or every is continuous; 
(Hi) S and are compatible of type (B)as well as T and {gi}ieN; 
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(iv) the estimation 

( 4 ) G[d(giX, gi+iy), d(Sx, Ty), ¿fax, Sx), d(gi+iy, Ty), 

d(gix, Ty), d(gi+iy, S x ) ] > 0. 

holds for all x, and y E X,Vi € N*, where G 6 Q. Then S, T and {<7i}iew 

have a unique common fixed point. 

Proo f . Letting i = 1, in the inequality (4), we get exactly the hypothesis 
of Theorem 2 for the mappings S, T, gi and g2, and so they have a unique 
common fixed point z. z is a unique common fixed point for S, T and g\ 
and for S, T and g2. Otherwise, if w is another fixed point for T and g\ 
with w ^ z, then by using (4) for i = 1, we have 

G[d(giw, g2z), d(Sw, Tz), d(giw, Sw), d(g2z, Tz), d(gw, Tz), d(g2z, Sw)] 

= G[d(w, z),d(w, z), 0 , 0 , d(w, z),d(w, z)] > 0 

which contradicts (G3). Hence w = z. 

By the same method we prove that z is the unique common fixed point 
for both S, T and g2-

Now, by letting i = 2, we get the hypothesis of Theorem 2 for the 
mappings S, T, g2 and <73, and consequently have a unique common fixed 
point z'. Analougously z' is unique common fixed point for <S, T , g2 and 5, 
T, <73. Thus z = z'. In this way, we clearly see that z is the required point. • 
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