

A. Djoudi

A UNIQUE COMMON FIXED POINT
FOR COMPATIBLE MAPPINGS OF TYPE (B)
SATISFYING AN IMPLICIT RELATION

1. Introduction

As a generalization of the notion of weakly commuting mappings, Jungck [1] introduced the concept of compatible mappings. When \mathcal{S} and \mathcal{T} are self mappings of a metric space (\mathcal{X}, d) , Jungck defines \mathcal{S} , \mathcal{T} to be compatible if

$$(\lim) \quad \lim_{n \rightarrow \infty} d(\mathcal{S}\mathcal{T}x_n, \mathcal{T}\mathcal{S}x_n) = 0$$

whenever $\lim_{n \rightarrow \infty} \mathcal{S}x_n = \lim_{n \rightarrow \infty} \mathcal{T}x_n = t$, for some $t \in \mathcal{X}$, and (x_n) is a sequence in \mathcal{X} . Another concept of compatibility called compatible mappings of type (A) is defined in [2]. To be compatible of type (A), \mathcal{S} and \mathcal{T} above must, in place of (lim), satisfy the conditions

$$\lim_{n \rightarrow \infty} d(\mathcal{S}\mathcal{T}x_n, \mathcal{T}\mathcal{T}x_n) = 0, \quad \text{and} \quad \lim_{n \rightarrow \infty} d(\mathcal{T}\mathcal{S}x_n, \mathcal{S}\mathcal{S}x_n) = 0.$$

Examples are given to show that the two concepts of compatibility are independent (Ex. 2.1 and Ex. 2.2 [2]). Recently, H. K. Pathak and M. S. Khan [3] introduced the so called, **compatible mappings of type (B)**, this notion is more general than the notion of compatible mappings of type (A). More precisely, \mathcal{S} and \mathcal{T} above are compatible of type (B) if, in place of (lim), we have the conditions:

$$\lim_{n \rightarrow \infty} d(\mathcal{T}\mathcal{S}x_n, \mathcal{S}^2x_n) \leq \frac{1}{2} \left[\lim_{n \rightarrow \infty} d(\mathcal{T}\mathcal{S}x_n, \mathcal{T}t) + \lim_{n \rightarrow \infty} d(\mathcal{T}t, \mathcal{T}^2x_n) \right],$$

and

$$\lim_{n \rightarrow \infty} d(\mathcal{S}\mathcal{T}x_n, \mathcal{T}^2x_n) \leq \frac{1}{2} \left[\lim_{n \rightarrow \infty} d(\mathcal{S}\mathcal{T}x_n, \mathcal{S}t) + \lim_{n \rightarrow \infty} d(\mathcal{S}t, \mathcal{S}^2x_n) \right].$$

Clearly, compatible mappings of type (A) are compatible of type (B), but the converse is not true (see Ex.2.4 [3]). However, compatibility, compatibility of type (A) and compatibility of type (B) are equivalent under some conditions (see [3] Proposition 2.8).

Our aim here is to prove some **fixed point theorems** for compatible mappings of type (B) by adding implicit relations to the work of V. Popa [4] and so obtain results for a wide class of expansive mappings. Throughout this paper, \mathcal{X} denotes a metric space (\mathcal{X}, d) with the metric d .

Without doubt, Propositions 2.9 and 2.10 in [3] are still valid if we replace the normed space by a metric space, and we have from that the following Lemmas.

LEMMA 1. *Let S and T be compatible mappings of type (B) from a metric space (\mathcal{X}, d) into itself. If $St = Tt$ for some $t \in \mathcal{X}$, then $STt = S^2t = T^2t = TSt$.*

LEMMA 2. *Let S and T be compatible mappings of type (B) from a metric space (\mathcal{X}, d) into itself. Suppose that $\lim_{n \rightarrow \infty} Sx_n = \lim_{n \rightarrow \infty} Tx_n = t$ for some $t \in \mathcal{X}$. Then*

- (i) $\lim_{n \rightarrow \infty} TTx_n = St$ if S is continuous at t .
- (ii) $\lim_{n \rightarrow \infty} SSx_n = Tt$ if T is continuous at t .

2. Implicit relations

Let \mathcal{R}_+ be the set of all non-negative real numbers and let \mathcal{G} be the set of all continuous functions $G(t_1, \dots, t_6) : \mathcal{R}_+^6 \rightarrow \mathcal{R}$ satisfying the conditions:

(G_1) : G is non decreasing in variables t_5 , and t_6 .

(G_2) : there exists $\theta \in (1, +\infty)$, such that for every $u, v \geq 0$ with

(G_a) : $G(u, v, u, v, u+v, 0) \geq 0$ or

(G_b) : $G(u, v, v, u, 0, u+v) \geq 0$

we have $u \geq \theta v$.

(G_3) : $G(u, u, 0, 0, u, u) < 0, \forall u > 0$.

EXAMPLE 1.

$G(t_1, \dots, t_6) = at_1^2 - bt_2^2 + \frac{ct_5t_6}{dt_3^2 + et_4^2 + 1}$, where $c, d, e \geq 0$, $a > 0$ and $b > a+c$.

(G_1) : is clear.

(G_a) Let $u, v \in \mathcal{R}_+$, and suppose that $G(u, v, u, v, u+v, 0) = au^2 - bv^2 \geq 0$; then $u \geq \left(\frac{b}{a}\right)^{1/2} v = \theta \cdot v$, where $\theta = \left(\frac{b}{a}\right)^{1/2}$.

(G_b) Let $u, v \in \mathcal{R}_+$, and suppose that $G(u, v, v, u, 0, u+v) = au^2 - bv^2 \geq 0$; then $u \geq \left(\frac{b}{a}\right)^{1/2} v = \theta \cdot v$, where $\theta = \left(\frac{b}{a}\right)^{1/2}$. Thus (G_2) is satisfied when $\theta = \left(\frac{b}{a}\right)^{1/2}$.

$$(G_3) \quad G(u, u, 0, 0, u, u) = au^2 - bu^2 + cu^2 = u^2(a - b + c) < 0, \forall u > 0.$$

EXAMPLE 2.

$$G(t_1, \dots, t_6) = t_1 - \left[at_2^2 + \frac{bt_3^2 + ct_4^2}{t_5 t_6 + 1} \right]^{1/2} \text{ where } 0 \leq b, c < 1, a > 1.$$

(G_1) : is clear.

$$(G_a) : \text{Let } u, v \in \mathcal{R}_+, \text{ and suppose that } G(u, v, u, v, u + v, 0) = u - [av^2 + bu^2 + cv^2]^{1/2} \geq 0; \text{ then}$$

$$u \geq \left(\frac{a+c}{1-b} \right)^{1/2} v = \theta_1 \cdot v, \text{ where } \theta_1 = \left(\frac{a+c}{1-b} \right)^{1/2} > 1.$$

$$(G_b) : \text{Let } u, v \in \mathcal{R}_+, \text{ and suppose that } G(u, v, v, u, 0, u + v) = u - [av^2 + bv^2 + cu^2]^{1/2} \geq 0; \text{ then}$$

$$u \geq \left(\frac{a+b}{1-c} \right)^{1/2} v = \theta_2 \cdot v, \text{ where } \theta_2 = \left(\frac{a+b}{1-c} \right)^{1/2} > 1. \text{ Therefore, } (G_2) \text{ hold for } \theta = \min \{\theta_1, \theta_2\}.$$

$$(G_3) \quad G(u, u, 0, 0, u, u) = u - (au^2)^{1/2} < 0, \forall u > 0.$$

EXAMPLE 3.

$$G(t_1, \dots, t_6) = t_1 - [at_2^p + bt_3^p + ct_4^p]^{1/p} + d\sqrt{t_5 t_6}; a > (1+d)^p, d \geq 0 \text{ (particularly } a > 2^p \text{ if } d = 1\text{), } 0 \leq c, b < 1, p \in \mathcal{N}^*.$$

(G_1) : is clear.

$$(G_a) : \text{Let } u, v \in \mathcal{R}_+, \text{ and suppose that } G(u, v, u, v, u + v, 0) = u - [av^p + bu^p + cv^p]^{1/p} \geq 0, \text{ then}$$

$$u \geq \left(\frac{a+c}{1-b} \right)^{1/p} v = \theta_1 \cdot v, \text{ where } \theta_1 = \left(\frac{a+c}{1-b} \right)^{1/p} > 1.$$

$$(G_b) : \text{Let } u, v \in \mathcal{R}_+, \text{ and suppose that } G(u, v, v, u, 0, u + v) = u - [av^p + bv^p + cu^p]^{1/p} \geq 0; \text{ then}$$

$$u \geq \left(\frac{a+b}{1-c} \right)^{1/p} v = \theta_2 \cdot v, \text{ where } \theta_2 = \left(\frac{a+b}{1-c} \right)^{1/p} > 1. \text{ Hence } (G_2) \text{ hold for } \theta = \min \{\theta_1, \theta_2\}.$$

$$(G_3) \quad G(u, u, 0, 0, u, u) = u - (au^p)^{1/p} + du = (1 - (a)^{1/p} + d)u < 0, \forall u > 0.$$

EXAMPLE 4.

$$G(t_1, \dots, t_6) = t_1 - [at_2^p + bt_3^p + ct_4^p]^{1/p} - \frac{1}{2} \left(\frac{t_1}{\sqrt{t_5 t_6 + 1}} \right); a > 1, 0 \leq c, b < \frac{1}{2^p}, p \in \mathcal{N}^*.$$

(G_1) : is clear.

$$(G_a) : \text{Let } u, v \in \mathcal{R}_+, \text{ and suppose that } G(u, v, u, v, u + v, 0) = u - [av^p + bu^p + cv^p]^{1/p} - \frac{1}{2}u \geq 0,$$

$$\text{then } u \geq 2 \left(\frac{a+c}{1-2^p b} \right)^{1/p} v = \theta_1 \cdot v, \text{ where } \theta_1 = \left(\frac{a+c}{1-2^p b} \right)^{1/p} > 1.$$

$$(G_b) : \text{Let } u, v \in \mathcal{R}_+, \text{ and suppose that } G(u, v, v, u, 0, u + v) = u - [av^p + bv^p + cu^p]^{1/p} - \frac{1}{2}u \geq 0; \text{ then}$$

$u \geq 2 \left(\frac{a+b}{1-2^p c} \right)^{1/p} v = \theta_2 \cdot v$, where $\theta_2 = \left(\frac{a+b}{1-2^p c} \right)^{1/p} > 1$. Hence (G_2) hold for $\theta = \min \{\theta_1, \theta_2\}$.

(G_3) $G(u, u, 0, 0, u, u) = u - (au^p)^{1/p} - \frac{1}{2} \left(\frac{u}{u+1} \right) = \frac{2u^2(1-a^{1/p})+u(1-2a^{1/p})}{2(1+u)} < 0$, $\forall u > 0$ since $a > 1$.

3. Common fixed point theorems

THEOREM 1. *Let (\mathcal{X}, d) be a metric space and $\mathcal{A}, \mathcal{B}, \mathcal{S}, \mathcal{T} : (\mathcal{X}, d) \rightarrow (\mathcal{X}, d)$ four mappings satisfying the following conditions:*

$$(1) \quad G[d(\mathcal{A}x, \mathcal{B}y), d(\mathcal{S}x, \mathcal{T}y), d(\mathcal{A}x, \mathcal{S}x), d(\mathcal{B}y, \mathcal{T}y), d(\mathcal{A}x, \mathcal{T}y), d(\mathcal{B}y, \mathcal{S}x)] \geq 0$$

for all $x, y \in \mathcal{X}$, where G satisfies property (G_3) . Then, the mappings $\mathcal{A}, \mathcal{B}, \mathcal{S}, \mathcal{T}$ have at most one common fixed point.

Proof. Suppose that $\mathcal{A}, \mathcal{B}, \mathcal{S}, \mathcal{T}$ have two common fixed points z and z' such that $z \neq z'$. Then, expression (1) gives

$$\begin{aligned} G[d(\mathcal{A}z, \mathcal{B}z'), d(\mathcal{S}z, \mathcal{T}z'), d(\mathcal{A}z, \mathcal{S}z), d(\mathcal{B}z', \mathcal{T}z'), d(\mathcal{A}z, \mathcal{T}z'), d(\mathcal{B}z', \mathcal{S}z)] \\ = G[d(z, z'), d(z, z'), 0, 0, d(z, z'), d(z', z)] \geq 0 \end{aligned}$$

but this contradicts (G_3) . ■

THEOREM 2. *Let $\mathcal{A}, \mathcal{B}, \mathcal{S}$, and \mathcal{T} be mappings from a complete metric space \mathcal{X} into itself having the followings conditions:*

- (i) \mathcal{A}, \mathcal{B} are surjective,
- (ii) One of $\mathcal{A}, \mathcal{B}, \mathcal{S}, \mathcal{T}$ is continuous,
- (iii) The pairs \mathcal{A}, \mathcal{S} and \mathcal{B}, \mathcal{T} are compatible of type (B),
- (iv) The inequality (1) above holds for $x, y \in \mathcal{X}$, and $G \in \mathcal{G}$.

Then $\mathcal{A}, \mathcal{B}, \mathcal{S}$, and \mathcal{T} have a unique common fixed point.

Proof. Let $x_0 \in \mathcal{X}$ be arbitrary. Choose, by condition (i), $x_1 \in \mathcal{X}$ such that $y_0 = \mathcal{A}x_1 = \mathcal{T}x_0$. For this point x_1 choose a point x_2 in \mathcal{X} such that $y_1 = \mathcal{B}x_2 = \mathcal{S}x_1$. Continuing in this way, we construct a sequence (y_n) in \mathcal{X} such that

$$(2) \quad y_{2n} = \mathcal{A}x_{2n+1} = \mathcal{T}x_{2n} \quad \text{and} \quad y_{2n+1} = \mathcal{B}x_{2n+2} = \mathcal{S}x_{2n+1}.$$

Having the property (G_1) in mind, and using (1) and (2), it follows

$$\begin{aligned}
 0 &\leq G[d(\mathcal{A}x_{2n+1}, \mathcal{B}x_{2n+2}), d(\mathcal{S}x_{2n+1}, \mathcal{T}x_{2n+2}), d(\mathcal{A}x_{2n+1}, \mathcal{S}x_{2n+1}), \\
 &\quad d(\mathcal{B}x_{2n+2}, \mathcal{T}x_{2n+2}), d(\mathcal{A}x_{2n+1}, \mathcal{T}x_{2n+2}), d(\mathcal{B}x_{2n+2}, \mathcal{S}x_{2n+1})] \\
 &= G[d(y_{2n}, y_{2n+1}), d(y_{2n+1}, y_{2n+2}), d(y_{2n}, y_{2n+1}), d(y_{2n+1}, y_{2n+2}), \\
 &\quad d(y_{2n}, y_{2n+2}), d(y_{2n+1}, y_{2n+1})] \\
 &\leq G[d(y_{2n}, y_{2n+1}), d(y_{2n+1}, y_{2n+2}), d(y_{2n}, y_{2n+1}), d(y_{2n+1}, y_{2n+2}), \\
 &\quad d(y_{2n}, y_{2n+1}) + d(y_{2n+1}, y_{2n+2}), 0].
 \end{aligned}$$

By (G_a) there exists $\theta > 1$, such that

$$d(y_{2n}, y_{2n+1}) > \theta d(y_{2n+1}, y_{2n+2})$$

that is

$$d(y_{2n+1}, y_{2n+2}) < \frac{1}{\theta} d(y_{2n}, y_{2n+1}).$$

By using G_b , the same argument leads to the inequality

$$d(y_{2n}, y_{2n+1}) < \frac{1}{\theta} d(y_{2n-1}, y_{2n}).$$

Consequently, we have

$$d(y_{2n}, y_{2n+1}) < \left(\frac{1}{\theta}\right)^{2n} d(y_0, y_1).$$

A simple calculation shows that the sequence (y_n) is a Cauchy one. But since \mathcal{X} is complete space, then there is a point $z \in \mathcal{X}$ such that $\lim_{n \rightarrow \infty} y_n = z$. Particularly, the four subsequences $(\mathcal{A}x_{2n+1})$, $(\mathcal{B}x_{2n+2})$, $(\mathcal{S}x_{2n+1})$ and $(\mathcal{T}x_{2n})$ converge also to z .

Let us suppose that \mathcal{A} is continuous. Since the mappings \mathcal{A} and \mathcal{S} are compatible of type (B), then by Lemma 2, we have $\mathcal{A}\mathcal{S}x_n \rightarrow \mathcal{A}z$ and $\mathcal{S}^2x_n \rightarrow \mathcal{A}z$. By using inequality (1), we get

$$\begin{aligned}
 &G[d(\mathcal{A}\mathcal{S}x_{2n}, \mathcal{B}x_{2n+1}), d(\mathcal{S}^2x_{2n}, \mathcal{T}x_{2n+1}), d(\mathcal{A}\mathcal{S}x_{2n}, \mathcal{S}^2x_{2n}), \\
 &\quad d(\mathcal{B}x_{2n+1}, \mathcal{T}x_{2n+1}), d(\mathcal{A}\mathcal{S}x_{2n}, \mathcal{T}x_{2n+1}), d(\mathcal{B}x_{2n+1}, \mathcal{S}^2x_{2n})] \geq 0.
 \end{aligned}$$

So, by using the continuity of the function G and letting $n \rightarrow \infty$, we have

$$G[d(\mathcal{A}z, z), d(\mathcal{A}z, z), 0, 0, d(\mathcal{A}z, z), d(z, \mathcal{A}z)] \geq 0$$

which contradicts (G_3) , so $\mathcal{A}z = z$.

We claim that $\mathcal{S}z = z$. Indeed, by (1) we have

$$\begin{aligned}
 &G[d(\mathcal{A}z, \mathcal{B}x_{2n}), d(\mathcal{S}z, \mathcal{T}x_{2n}), d(\mathcal{A}z, \mathcal{S}z), \\
 &\quad d(\mathcal{B}x_{2n}, \mathcal{T}x_{2n}), d(\mathcal{A}z, \mathcal{T}x_{2n}), d(\mathcal{B}x_{2n}, \mathcal{S}z)] \geq 0.
 \end{aligned}$$

Hence, by continuity of G , we have as $n \rightarrow \infty$

$$G[0, d(\mathcal{S}z, z), d(z, \mathcal{S}z), 0, 0, d(z, \mathcal{S}z)] \geq 0.$$

By (G_b) , there exists

$$\theta > 1, \text{ such that } 0 \geq \theta d(z, Sz).$$

Consequently $z = Sz$. Thus, we have $Sz = z = Az$. Let $u \in \mathcal{X}$ such that $Sz = z = Bu$. Then, by inequality (1), we have

$$\begin{aligned} G[d(Ax_{2n+1}, Bu), d(Sx_{2n+1}, Tu), d(Ax_{2n+1}, Sx_{2n+1}), \\ d(Bu, Tu), d(Ax_{2n+1}, Tu), d(Bu, Sx_{2n+1})] \geq 0. \end{aligned}$$

It follows, as $n \rightarrow \infty$

$$\begin{aligned} G[d(z, Bu), d(z, Tu), d(z, z), d(Bu, Tu), d(z, Tu), d(Bu, z)] \\ = G[0, d(z, Tu), 0, d(z, Tu), d(z, Tu), 0] \geq 0. \end{aligned}$$

Using (G_a) , it follows that

$$\exists \theta > 1, \text{ such that } 0 \geq \theta d(z, Tu).$$

That is $z = Tu$. Hence $z = Az = Sz = Bu = Tu$. Since (B, T) is a compatible pair of type (B), then by Lemma 1, we have $Bz = BTu = Tu = Bz$. Moreover, by (1) we have

$$\begin{aligned} G[d(Ax_{2n+1}, Bz), d(Sx_{2n+1}, Tz), d(Ax_{2n+1}, Sx_{2n+1}), \\ d(Bz, Tz), d(Ax_{2n+1}, Tz), d(Bz, Sx_{2n+1})] \geq 0. \end{aligned}$$

So, by letting $n \rightarrow \infty$, we obtain

$$\begin{aligned} G[d(z, Bz), d(z, Tz), d(z, z), d(Bz, Tz), d(z, Tz), d(z, Bz)] \\ = G[d(z, Bz), d(z, Bz), 0, 0, d(z, Bz), d(z, Bz)] \geq 0 \end{aligned}$$

which is a contradiction, hence $d(z, Bz) \leq 0$, and so $z = Bz = Tz$. Therefore, z is a common fixed point for both A , B , S , and T .

Suppose next that S is continuous. Since the mappings A and S are compatible of type (B), then by Lemma 2, we have $SAx_n \rightarrow Sz$ and $A^2x_n \rightarrow Sz$. Using inequality (1), we get

$$\begin{aligned} G[d(A^2x_{2n+1}, Bx_{2n+2}), d(SAx_{2n+1}, Tx_{2n+2}), d(A^2x_{2n+1}, SAx_{2n+1}), \\ d(Bx_{2n+2}, Tx_{2n+2}), d(A^2x_{2n+1}, Tx_{2n+2}), d(Bx_{2n+2}, SAx_{2n+1})] \geq 0. \end{aligned}$$

So, by using the continuity of the function G and letting $n \rightarrow \infty$, we have

$$G[d(Sz, z), d(Sz, z), 0, 0, d(Sz, z), d(z, Sz)] \geq 0$$

but this contradicts (G_3) , so $Sz = z$.

Let $u, v \in \mathcal{X}$ such that $z = Sz = Au = Bv$. Applying (1), we obtain

$$\begin{aligned} G[d(A^2x_{2n+1}, Bv), d(SAx_{2n+1}, Tv), d(A^2x_{2n+1}, SAx_{2n+1}), \\ d(Bv, Tv), d(A^2x_{2n+1}, Tv), d(Bv, SAx_{2n+1})] \geq 0. \end{aligned}$$

As $n \rightarrow \infty$, it comes

$$G[0, d(\mathcal{T}v, z), 0, d(\mathcal{T}v, z), d(\mathcal{T}v, z), 0] \geq 0.$$

This means, by (G_a) , that $\mathcal{T}v = z$. Consequently, $z = \mathcal{T}v = \mathcal{B}v$. But, \mathcal{T}, \mathcal{B} are compatibles of type (B), then $\mathcal{T}z = \mathcal{T}\mathcal{B}v = \mathcal{B}\mathcal{T}v = \mathcal{B}z$. Moreover, by (1), we have

$$G[d(\mathcal{A}x_{2n+1}, \mathcal{B}z), d(\mathcal{S}x_{2n+1}, \mathcal{T}z), d(\mathcal{A}x_{2n+1}, \mathcal{S}x_{2n+1}), \\ d(\mathcal{B}z, \mathcal{T}z), d(\mathcal{A}x_{2n+1}, \mathcal{T}z), d(\mathcal{B}z, \mathcal{S}x_{2n+1})] \geq 0.$$

Letting $n \rightarrow \infty$, it comes

$$G[d(\mathcal{B}z, z), d(\mathcal{B}z, z), 0, 0, d(\mathcal{B}z, z), d(\mathcal{B}z, z)] \geq 0$$

which is a contradiction with (G_3) . So $z = \mathcal{B}z = \mathcal{T}z$.

By (1), one may further have,

$$G[d(\mathcal{A}u, \mathcal{B}z), d(\mathcal{S}u, \mathcal{T}z), d(\mathcal{A}u, \mathcal{S}u), d(\mathcal{B}z, \mathcal{T}z), d(\mathcal{A}u, \mathcal{T}z), d(\mathcal{S}u, \mathcal{B}z)] \geq 0.$$

This implies that, $\mathcal{S}u = z$. Again, since \mathcal{A}, \mathcal{S} are compatibles of type (B), we have $\mathcal{A}z = \mathcal{A}\mathcal{S}u = \mathcal{S}\mathcal{A}u = \mathcal{S}z$. Thus, z is indeed the common fixed point we are looking for, since by Theorem 1 z is a unique one. Analogously, one completes the proof if either of \mathcal{B} or \mathcal{T} is continuous. ■

COROLLARY 1. *Let $\mathcal{A}, \mathcal{B}, \mathcal{S}$, and \mathcal{T} be mappings satisfying (i), (ii) and (iii) of Theorem 2. Suppose that, for all $x, y \in \mathcal{X}$, we have the inequality*

$$(3) \quad d^p(\mathcal{A}x, \mathcal{B}y) \geq ad^p(\mathcal{S}x, \mathcal{T}y) + bd^p(\mathcal{A}x, \mathcal{S}x) + cd^p(\mathcal{B}y, \mathcal{T}y)$$

such that $a > 1$, $0 \leq c, b < 1$, $p \in \mathbb{N}^$. Then $\mathcal{A}, \mathcal{B}, \mathcal{S}$, and \mathcal{T} have a unique common fixed point.*

Proof. Take a function G as in Example 3 with $d = 0$. Observe, by the condition (3), that

$$G[d(\mathcal{A}x, \mathcal{B}y), d(\mathcal{S}x, \mathcal{T}y), d(\mathcal{A}x, \mathcal{S}x), d(\mathcal{B}y, \mathcal{T}y), \\ d(\mathcal{A}x, \mathcal{T}y), d(\mathcal{B}y, \mathcal{S}x)] = \\ d(\mathcal{A}x, \mathcal{B}y) - [ad^p(\mathcal{S}x, \mathcal{T}y) + bd^p(\mathcal{A}x, \mathcal{S}x) + cd^p(\mathcal{B}y, \mathcal{T}y)]^{1/p} \geq 0.$$

Conclude by using Theorem 2. ■

THEOREM 3. *Let \mathcal{S}, \mathcal{T} and $\{g_i\}_{i \in \mathbb{N}^*}$ be mappings from a complete metric space \mathcal{X} into itself having the following conditions:*

- (i) $\{g_i\}_{i \in \mathbb{N}}$ are surjective;
- (ii) \mathcal{S} or \mathcal{T} or every $\{g_i\}_{i \in \mathbb{N}}$ is continuous;
- (iii) \mathcal{S} and $\{g_i\}_{i \in \mathbb{N}}$ are compatible of type (B) as well as \mathcal{T} and $\{g_i\}_{i \in \mathbb{N}}$;

(iv) the estimation

$$(4) \quad G[d(g_i x, g_{i+1} y), d(Sx, Ty), d(g_i x, Sx), d(g_{i+1} y, Ty), \\ d(g_i x, Ty), d(g_{i+1} y, Sx)] \geq 0.$$

holds for all x , and $y \in \mathcal{X}$, $\forall i \in N^*$, where $G \in \mathcal{G}$. Then S , T and $\{g_i\}_{i \in N}$ have a unique common fixed point.

Proof. Letting $i = 1$, in the inequality (4), we get exactly the hypothesis of Theorem 2 for the mappings S , T , g_1 and g_2 , and so they have a unique common fixed point z . z is a unique common fixed point for S , T and g_1 and for S , T and g_2 . Otherwise, if w is another fixed point for T and g_1 with $w \neq z$, then by using (4) for $i = 1$, we have

$$G[d(g_1 w, g_2 z), d(Sw, Tz), d(g_1 w, Sw), d(g_2 z, Tz), d(gw, Tz), d(g_2 z, Sw)] \\ = G[d(w, z), d(w, z), 0, 0, d(w, z), d(w, z)] \geq 0$$

which contradicts (G_3) . Hence $w = z$.

By the same method we prove that z is the unique common fixed point for both S , T and g_2 .

Now, by letting $i = 2$, we get the hypothesis of Theorem 2 for the mappings S , T , g_2 and g_3 , and consequently have a unique common fixed point z' . Analogously z' is unique common fixed point for S , T , g_2 and S , T , g_3 . Thus $z = z'$. In this way, we clearly see that z is the required point. ■

References

- [1] G. Jungck, *Compatible mappings and common fixed points*, Internat. J. Math. & Math. Sci. 9 (1986), 771–779.
- [2] G. Jungck, P. P. Murthy and Y. J. Cho, *Compatible mappings of type (A) and common fixed points*, Math. Japonica 38, 2, (1993), 381–390.
- [3] H. K. Pathak and M. S. Khan, *Compatible mappings of type (B) and common fixed point theorems of Greguš type*, Czechoslovak Math. J. 45, 120 (1995), 685–698.
- [4] V. Popa, *On unique common fixed point for compatible mappings of type (A)*, Demonstratio Math. 30 (1997), 931–936.

UNIVERSITÉ DE ANNABA
FACULTÉ DES SCIENCES
P.O. Box 12
23000 ANNABA; ALGERIA
E-mail: adjoudi@yahoo.com

Received July 4, 2002; revised version September 26, 2002.