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A UNIQUE COMMON FIXED POINT
FOR COMPATIBLE MAPPINGS OF TYPE (B)
SATISFYING AN IMPLICIT RELATION

1. Introduction

As a generalization of the notion of weakly commuting mappings, Jungck
(1] introduced the concept of compatible mappings. When S and T are self
mappings of a metric space (X, d), Jungck defines S, T to be compatible if

(lim) limp o0 A(ST Ty, TSTy) = 0

whenever lim, 0o Sz, = lim, 00 Tz, = t, for some t € X, and (z,) is a
sequence in X'. Another concept of compatibility called compatible mappings
of type (A) is defined in [2]. To be compatible of type (A), S and T above
must, in place of (lim), satify the conditions

nl}_’l{.lo d(8Tzp, TTxz,) =0, and nli_.rglod(TSzn,SSzn) = 0.

Examples are given to show that the two concepts of compatibility are in-
dependant ( Ex. 2.1 and Ex. 2.2 [2]). Recently, H. K. Pathak and M. S.
Khan [3] introduced the so called, compatible mappings of type (B),
this notion is more general than the notion of compatible mappings of type
(A). More precisely, S and T above are compatibles of type (B) if, in place
of (lim), we have the conditions:

lim d(TSz,,8%,) < % | im d(7 Sz, Tt) + lim d(Tt,T?z,)],
and
lim d(STxn, T?z,) < % [ im d(STzn,St) + lim d(St,S%n)].
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Clearly, compatible mappings of type (A) are compatible of type (B), but the
converse is not true (see Ex.2.4 [3]). However, compatibility, compatibility of
type (A) and compatibility of type (B) are equivalent under some conditions
(see [3] Proposition 2.8).

Our aim here is to prove some fixed point theorems for compatible
mappings of type (B) by adding implicit relations to the work of V. Popa [4]
and so obtain results for a wide class of expansive mappings. Throughout
this paper, X denotes a metric space (X, d) with the metric d.

Without doubt, Propositions 2.9 and 2.10 in [3] are still valid if we replace
the normed space by a metric space, and we have from that the following
Lemmas.

LEMMA 1. Let S and T be compatible mappings of type (B) from a metric
space (X,d) into itself. If St = Tt for somet € X, then STt = S*t = T?*t =
TSt.

LEMMA 2. Let S and T be compatible mappings of type (B) from a metric
space (X,d) into itself. Suppose that lim, .o Sz, = limn — 00T z,=t for
somet € X. Then

(?) limpsoT Tz, =8t if S iscontinuous att.
(73) limpeo SSzn =Tt if T is continucus at t.

2. Implicit relations
Let R4 be the set of all non-negative reals numbers and let G be the set
of all continuous functions G(t1, ..., t6) : RS — R satisfying the conditions:
(G1) : G is non decreasing in variables t5, and ts.
(Gaq) : there exists 6 € (1, +00), such that for every u,v > 0 with
(Go) : G(u,v,u,v,u+v,0) >0 or
(Gp) : G(u,v,v,u,0,u+v) >0
we have u > 6v.
(G3) : G(u,u,0,0,u,u) < 0,Yu > 0.
EXAMPLE 1.
G(ty,...,t6) = at%—bt%-’rag%ﬁe%%ﬁ, where c,d,e > 0,a>0and b > a+c.
(Gi) : is clear.
(G,) Let u,v € R, and suppose that G(u,v,u,v,u+v,0) = au? —bv? >
1/2 b 1/2
0; then u > (%) v = 0.v, where 6 = (;)

(Gp) Let u,v € R, and suppose that G(u, v, v, u,0,u+v) = au® —bv? >
p\1/2 b\ 1/2 . .
0; then u > (;) v = 6.u, where § = (—) . Thus (Gs) is satisfied

when 6 = (9)1/2.

a
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(G3) G(u,,0,0,u,u) = au? — bu? + cu®? = u? (a — b+ c) < 0,Vu > 0.
EXAMPLE 2. 12
2
G(t1,...,te) =t1 — [ at3 + tit:ﬁ] where 0 < b,c<1,a>1.
(Gi) : is clear.
(G,) : Let u,v € R4, and suppose that G(u,v,u,v,u +v,0) =
u — [av? + bu? + cv?] vz 0; then
1/2

1/2
u> (%‘_’-f;) / v = 0;.v, where 8; = (%1’—3) > 1.
(Gyp) : Let u,v € R4, and suppose that G(u,v,v,u,0,u+v) =
u — [av? + bv? + cu?] 2 5 0: then

1/2 1/2
u > (%—fic’) / v = 61.v, where 6; = (';i_z) / > 1. Therefore, (G2) hold
for § = min {6,16,} .
(G3) G(u,4,0,0,u,u) =u— (au"")v2 < 0,Vu > 0.

EXAMPLE 3.

G(t1, .. te) = t1 — [ath + b2 + ct2]P + dy/Tsts; @ > (1 + d)P,d > 0
(particularly a > 2P if d =1),0< ¢,b< 1,p € N*.
(G1) : is clear.
(Ga) : Let u,v € R4, and suppose that G(u,v, u,v,u+v,0) =
u — [avP + buP + cv”]l/” >0, then

1
u> (‘;—f—ﬁ) /pv = 6;.v, where 0] = (51‘—"’—,,) Ve > 1.
(Gp) : Let u,v € R4, and suppose that G(u,v,v,u,0,u+v) =
u — [av? + bv? + cuP]/P > 0; then

1
u > (_-l-_) /pv = 03.v, where 0 = (91—1%) & > 1. Hence (G3) hold for
# = min {01, 02} .
(G3) G(u,,0,0,u,u) = u—(aw?) /P +du = (1—(a)/P+d)u < 0,Vu > 0.
EXAMPLE 4.

G(ty,....tg) = t; — [ath + btk + ctB]/? — %(m) a>10<¢b<
2%,1) e N™.
(G1) : is clear.
(Ga) : Let u,v € R4, and suppose that G(u,v,u,v,u+v,0) =
u — [avP + buP + cvP}/P — 3u >0,

1
then u > 2 (—"‘—5) /pv = 0;.v, where 6, = (T%) /p > 1.
(Gbp) : Let u,v € Ry, and suppose that G(u,v,v,u,0,u+ v) =
u — [av? + bvP + cuP]/P — 3u > 0; then
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1 1
u>2 (1—“_-'%) /pv = f5.v, where 6y = (T%Tl:?) /p > 1. Hence (G2) hold
for 6 = min {61, 62} .
/ u -a / ul 1—2a /
(Gs) Glu,,0,0,u,u) = u— (aw?) P~ } (7)) = 2 2(1 ‘2‘23;)(1 2a'/7)
< 0, Yu > 0 since a > 1.

3. Common fixed point theorems

THEOREM 1. Let (X,d) be a metric space and A, B, S, T :(X,d) — (X,d)
four mappings satisfying the following conditions:

(1) Gld(Az, By), d(Sz, Ty), d(Az, Sz), d(By, Ty),
d(Az, Ty), d(By,Sz)] > 0

forallz,y € X, where G satisfies property (Gs). Then, the mappings A, B,
S, T have at most one common fized point.

Proof. Suppose that A, B, S, T have two common fixed points z and 2’
such that z # 2’. Then, expression (1) gives

Gld(Az,B2'),d(8z,T7'),d(Az,8z2),d(B2', T2'),d(Az, T2'),d(Bz',Sz)]
= Gld(z,2'),d(z,7),0,0,d(z,2'),d(2,2)] > 0

but this contradicts (G3). =

THEOREM 2. Let A, B, S, and T be mappings from a complete metric space
X into itself having the followings conditions:

(i) A, B are surjective,

(ii) One of A, B, S, T is continuous,

(i4i) The pairs A, S and B, T are compatible of type (B),
(iv) The inequality (1) above holds for z,y € X, and G € G.

Then A, B, S, and T have a unique common fized point.
Proof. Let zg € X be arbitrary. Choose, by condition (i), z; € & such
that yo = Azy = T xo. For this point z; choose a point z2 in X such that
y1 = Bz = Sz;. Continuing in this way, we construct a sequence (y,) in X

such that

2) Yon = ATont1 = Tzon and yony1 = Bronpo = Stonyr.
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Having the property (Gi) in mind, and using (1) and (2), it follows
0 < Gld(Azgn+1, Bxon+t2), d(Szant1, T Tont2), d(AZ2nt1, ST2n41),
d(Bzani2, Txont2), d(AT2n+1, T Tont2), d(Bont2, STont1)]
= Gld(Y2n, Y2n+1), A(¥2n+1, Y2n+2), d(Y2n, Yon+1), A(Yan+1, Yon+2),
d(Yon, Yon+2), A(Y2n+1, Yon+1)]
< Gld(y2n, Y2n+1), A(Y2n+1, Y2n+2), A(Y2n, Y2n+1), d(Y2n+1, Y2n+2),
d(y2n, Yon+1) + d(Y2n+1, Y2n+2), 0]
By (G.) there exists § > 1, such that
d(y2n, Yon+1) > 0d(yon+1, Yon+2)
that is 1
d(yan+1,Y2n+2) < GAd(Y2n, Yon-+1).

By using Gy, the same argument leads to the inequality

1
d(Y2n, Y2n+1) < b‘d(y2n—11 Yon)-

Consequently, we have

1 2n
d(Y2n, Yon+1) < (5) d(yo, y1)-

A simple calculation shows that the sequence (y,) is a Cauchy one. But since
X is complete space, then there is a point z € X such that lim, e yn = 2.
Particularly, the four subsequences (Az2n41), (Bzont2),(STon+1) and
(Tz2n) converge also to z.

Let us suppose that A is continuous. Since the mappings A and S are
compatible of type (B), then by Lemma 2, we have ASz, — Az and Sz, —
Az. By using inequality (1), we get

G[d(AS:L'Qn, Bz2‘n+1)1 d(82.’l,'2n, Tw2n+l), d(AS$2n, 82x2’n)1
d(Bzant1, TTon+1), d(ASTon, T Tont1), d(BTont1, S2T2,)] > 0.
So, by using the continuity of the function G and letting n — oo, we have
Gld(Az, 2),d(Az, 2),0,0,d(Az, 2),d(z,Az)] > 0
which contradicts (G3), so Az = 2.
We claim that Sz = z. Indeed, by (1) we have
Gld(Az, Bzay),d(Sz, Tzay), d(Az, S2),
d(Bzon, Txon), d(Az, Tzap), d(B:l:zn,Sz)] > 0.

Hence, by continuity of G,we have as n — oo

G|0,d(Sz, z),d(2,8%),0,0,d(z,52)] > 0.
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By (Gp),there exists
6 > 1, such that 0 > 6d(2,S5z).
Consequently z = Sz. Thus, we have Sz = 2z = Az. Let u € X such that
Sz = z = Bu. Then, by inequality (1), we have
Gld(Azan+1, Bu), d(Sz2n+1, Tu), d(AT2nt1, ST2n+1),
d(Bu, Tu), d(Azony1, Tu),d(Bu,Szont+1)] 2 0.
It follows, as n — oo
Gld(z, Bu),d(z, Tu), d(z, z),d(Bu, Tu), d(z, Tu), d(Bu, 2)]
= G|[0,d(z,Tu),0,d(z, Tu),d(z,Tu),0] > 0.
Using (G,), it follows that
360 > 1, such that 0> 8d(z,Tu).
That is z = Tu. Hence z = Az = 8z = Bu = Tu. Since (B,T) is a
compatible pair of type (B), then by Lemma 1, we have Bz = BTu =
TBu = T z. Moreover, by (1) we have
G[d(Am2n+la BZ), d(8$2n+1, TZ), d(.AZ2n+1, S$2n+1)a
d(Bz,Tz),d(Azan+1,Tz2),d(Bz,Sz2n+1)] 2 0.
So, by letting n — 0o, we obtain
Gld(z, Bz),d(z, T z), d(z, 2),d(Bz,Tz),d(z, Tz),d(z, Bz)]
= Gld(z,Bz),d(z,Bz),0,0,d(z,Bz),d(z,Bz)] > 0
which is a contradiction, hence d(z, Bz) < 0, and so z = Bz = T z. Therefore,
z is a common fixed point for both A, B, §, and 7.

Suppose next that S is continuous. Since the mappings A and S are
compatible of type (B), then by Lemma 2, we have SAz, — Sz and A%z, —
Sz. Using inequality (1), we get

Gld(A%zon+1, Bzant2), d(SATont1, T Tont2), d(A%Tont1, SATIm41),
d(Bz2n+2, T Tont2), A(ATont1, T Tont2), d(Brons2, SAT2n41)] = 0.
So, by using the continuity of the function G and letting n — oo, we have
G[d(Sz, z),d(Sz, 2),0,0,d(Sz, z),d(2,52)] > 0
but this contradicts (G3), so Sz = z.
Let u,v € X such that z = Sz = Au = Bv. Applying (1), we obtain
Gld(A%zon+1, Bv), d(SAzomt1, Tv), d(ATons1, SAZInt1),
d(Bv, Tv), d(A%zon+1, Tv), d(Bv, SAT2q+1)] > 0.
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As n — 00,it comes
G[0,d(Tv, 2),0,d(Tv, z),d(Twv, 2),0] > 0.

This means, by (G,), that Tv = z. Consequently, z = Tv = Bv. But, 7, B
are compatibles of type (B), then Tz = TBv = BTv = Bz. Moreover, by
(1), we have
Gld(Azan+1, Bz), d(Szan+1, T 2), d(Az2n+1, STon+1),

d(Bz, Tz), d(A:L‘gn.H, Tz), d(BZ, S$2n+1)] > 0.
Letting n — o0, it comes

Gld(Bz, z),d(Bz, z),0,0,d(Bz, 2),d(Bz,2)] > 0
which is a contradiction with (G3). So z = Bz = T z.

By (1), one may further have,
Gld(Au, Bz),d(Su, T 2), d(Au, Su), d(Bz, T z), d(Au, T z), d(Su, Bz)] > 0.

This implies that, Su = 2. Again, since A, S are compatibles of type (B),
we have Az = ASu = SAu = Sz. Thus, 2 is indeed the common fixed point
we are looking for, since by Theorem 1 z is a unique one. Analougously, one
completes the proof if either of B or 7 is continuous. =

COROLLARY 1. Let A, B, S, and T be mappings satisfying (i), (ii) and (iii)
of Theorem 2. Suppose that, for all z,y € X, we have the inequality

(3) d?(Az, By) > ad?(Sz, Ty) + bd’ (Az, Sz) + cd”(By, Ty)

such thata > 1,0<¢,b< 1,p € N*. Then A, B, S, and T have a unique
common fized point.

Proof. Take a function G as in Example 3 with d = 0. Observe, by the
condition (3), that
Gld( Az, By),d(Sz, Ty), d(Az, Sz), d(By, Ty),
d(Az, Ty),d(By,Sz)] =
d(Az, By) — [adP(Sz, Ty) + bdP(Az, Sz) + cdP(By, Ty)]"/? > 0.
Conclude by using Theorem 2. »

THEOREM 3. Let S, T and {g:};cn+ be mappings from a complete metric
space X into itself having the following conditions:

(i) {g:}ien are surjective;
(ii) S or T or every {g:};cn i continuous;
(1) S and {g:};cn are compatible of type (B)as well as T and {g:};cn;
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(iv) the estimation

(4) Gld(giz, gi+1Y), d(Sz, Ty), d(giz, Sz), d(gi+1y, TY),
d(giz, Ty), d(g9i+1y,Sz)] 2 0.

holds for all z, and y € X, Vi € N*, where G € G. Then S, T and {gi};cn
have a unique common fized point.

Proof. Letting ¢ = 1, in the inequality (4), we get exactly the hypothesis
of Theorem 2 for the mappings S, 7, g1 and g2, and so they have a unique
common fixed point 2. z is a unique common fixed point for S, 7 and ¢;
and for S, 7 and g;. Otherwise, if w is another fixed point for 7 and g¢;
with w # z, then by using (4) for i = 1, we have
G[d(glwa 922)’ d(swa TZ), d(glwa Sw)7 d(g221 TZ), d(gw’ TZ), d(g22, Sw)]
= Gld(w, 2),d(w, 2), 0,0, d(w, 2),d(w, 2)] > 0

which contradicts (G3). Hence w = z.

By the same method we prove that z is the unique common fixed point
for bcth S, 7 and gs.

Now, by letting i = 2, we get the hypothesis of Theorem 2 for the
mappings S, 7, g2 and g3, and consequently have a unique common fixed
point z’. Analougously 2’ is unique common fixed point for S, 7, g, and S,
T, g3. Thus z = 2’. In this way, we clearly see that z is the required point. m
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