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Gerd Herzog

ON QUASIMONOTONE HOMEOMORPHISMS
IN ORDERED BANACH SPACES

Abstract. Let E be a Banach space ordered by a cone K, and let f : E — E be locally
Lipschitz continuous and quasimonotone increasing such that ¥(f(y)—f(z)) < —L¥(y—z)
(z < y) for a linear positive functional ¥ and L > 0. We prove, under suitable conditions
on K, f and ¥, that f is a homeomorphism with decreasing and Lipschitz continuous
inverse.

1. Introduction
Let (E, || -]|) be a real Banach space, ordered by a cone K. A cone K is
a closed convex subset of E with AK C K (A > 0), and KN(-K) = {0}. As
usual z < y: <= y—z € K. We will always assume that K is reproducing,
that is K — K = E. Then, the set
K*={peB*: p(z) 20 (z>0)}

is a cone in the space of all continuous linear functionals E*, the dual cone.
A functional ¥ € K™ is called norming if there are constants 0 < a < 8
such that

allz|| < ¥(z) < Blizl| (< € K).

A function f : E — F is called quasimonotone increasing (in the sense
of Volkmann (13]) if

T,y€E, z<y, p € K7, o(z) =p(y) = o(f(z)) < o(f(y))-
The aim of this paper is to prove the following result:

THEOREM 1. Let f : E — E be locally Lipschitz continuous, bounded on
bounded subsets of E, and quasimonotone increasing. Let there ezxist a norm-
ing functional ¥ € K* and L > 0 such that

(1) V(f(y) - f2)) < -L¥(y-z) (z<y).
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Then f : E — E is a homeomorphism, and f~1 : E — E is monotone
decreasing and Lipschitz continuous. Moreover each initial value problem

(2) 2'(t) = f(z(t)) —yo, 2(0) = o

is uniquely solvable on [0, 00), and the solution satisfies

llz(t) = £~ (yo)ll < M exp(—Lt)||zo — f~'(30)I| (¢t =0)
for a constant M > 0.

2. Remarks:

1. In particular Theorem 1 applies to linear mappings: Let A: E —» E
be linear and continuous, let A* : E* — E* be its adjoint, and let ¥ € K*
be norming. If A*¥ < —LV¥ for some L > 0, then A is an isomorphism. A
related result for cones with nonempty interior can be found in [4].

2. A finite dimensional version of Theorem 1 is due to the author [6]. In
this result it is assumed that K has nonempty interior and that f is merely
continuous. In the result above K may have empty interior.

3. Functional conditions are a useful tool in the theory of quasimonotone
increasing dynamical systems since in applications they lead to conditions
which are often easy to deal with. For a survey on the subject we refer to
(3], ), [7), 9], [10], [11], [12], and the references given there.

Examples of ordered Banach spaces with reproducing cone and norming
functionals are:

1. E=I1YN,R), K = {z: 2 > 0}, ¥(z) = Xten Tk;

2. E=c(N,R), K = {z: x1 >z > 0}, ¥(z) = xy;

3. E=LY([0,1,R), K={u:u>0ae. }, ¥(u)= $jo, w(€)d&;

4. E=C([0,1],R), K = {u:u(l) > u(é) > —2u(1)}, ¥(u) = u(l);

5. E=R" K°#0, ¥ e (K*)°.

REMARK: The cone in 4. is reproducing since it contains the reproducing
cone Ko = {u: u(l) > u(§) > 0}, which is discussed in section 4.

The following example shows that, in general, condition (1) in Theorem 1
does not lead to a bijective mapping in case that K is only assumed to
be total, that is K — K = E. Consider E = co(N,R) endowed with the
maximum norm and ordered by the cone

K={z:z} > 2z,41 20 (ke N)}.

The cone K is total. To see this, recall that the finite sequences are dense in
co(N,R). If a finite sequence y = (y1,...,Ym,0,0,...) is given, then we can
write the vector (y1,...,ym) as difference of vectors in

Kn={z€eR":zp,>22,4; 20(k=1,...,m—1)},
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since clearly K,, is a cone with nonempty interior in R™. By filling these
vectors with zeros we obtain finite sequences in K, and the difference is y.

Now ¥(z) = z; is norming, in fact ¥(z) = ||z|| (z € K). The shift
operator A: E — E, Az = (z9,z3,...) is monotone, hence f(z) = -z + Az
is quasimonotone, and

U(f(z)) =—-z1+22 < —%581 = —-;-\I/(z) (z € K).

But f is not surjective. In particular, according to Theorem 1, K is not
reproducing. This can also be seen directly. For example (1/k) ¢ K — K,
since (2¥z;) is bounded for each sequence (z}) € K — K.

In the last section we will give an application of Theorem 1 to systems
of Hammerstein integral equations.

3. Preliminaries

We first discuss some properties of K and K*. Since K is reproducing,
the cone K* is normal (see for example [1], Prop. 19.4), that is there is a
constant v > 0 with

p1 < 92 < o3 = ||pa|| < v max{[[al], ll3][}-

According to a result of Ellis ({2], Theorem 8, see also [8]) this implies
that K is (v + €)-generating for each € > 0, that is each element z € F has
a decomposition £ = x; — z2 such that

(3) 1,72 € K, ||lz1|| + [|22|| £ (v + &)l]=|.
From this we obtain:

PROPOSITION 1. There is a constant ¢; > 0, such that to z,y € E there
ezist u,v € E with

u<z<v, usysv, |u—vf<allz-yl

Proof. Fixe > 0, set c; = y+¢, and let z —y = 2; — 23 be a decomposition
of z — y according to (3). Set ’

_z+4+y—(2n+2) v=a:+y+(z1+22)

2 ’ 2
Then
u_zzy—:l:—2(21+22) =22—21—2(Z1+22) = -2 <0,

hence u < z. Analogously z < v and « < y < v. Finally
lo —ul| = [lz1 + z2|| < [|21][ + [|22]] < er]|z - yll. »
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Next, let ¥ € K* be a norming functional. Obviously ¥ is an interior
point of K*, hence K* is reproducing. For this reason K is normal (see again
(1], Prop. 19.4), hence there exists c; > 0 such that

(4) 21 < 22 < 23 = ||22|| < e max{||zy]l, [|z3][}-

Moreover K is regular in this case, that is each increasing sequence which
is order bounded above is convergent:
If (z,,) is a sequence with z, < z,41 < y (n € N), then ¥(z,) is convergent,
hence (z,) is a Cauchy sequence in E since ¥ is norming.

The next result that will be used in the proof of Theorem 1 is a compar-
ison theorem for differential inequalities (see [14]):

PROPOSITION 2. Let f : E — E be quasimonotone increasing and locally
Lipschitz continuous. If u,v: [0,T] — E are differentiable such that

w'(t) — f(u(t)) SV'() - f(v(t), u(0) < v(0),
then u(t) < v(t) (¢t € [0,T)).

4. Proof of Theorem 1
We consider the initial value problem

(5) '(t) = f(z(t)), =(0)==z0 € E.

Since f is locally Lipschitz continuous (5) is uniquely locally solvable
and according to Proposition 2 the solution depends monotone increasing
on xrop.

1.) Let z : [0,w) — F be the solution of problem (1) on its right maximal

interval of existence. We prove that w = oo:
Consider g : E — FE defined by g(z) = f(z) — f(0) and note that g is
quasimonotone increasing and locally Lipschitz continuous. Let g = 1 — 22
with z;,22 € K. Then —(z; + z2) < zo < z1 + z2. Moreover consider a
decomposition —f(0) = wy — wy with wy,ws € K. Let u : [0,w,) — E and
v : [0,w,) — E be the solutions (both defined on the right maximal interval
of existence) of the initial value problems

u'(t) = g(u(t)) — (w1 +w2), u(0) = —(z1 +22),
v'(t) = g(v(t)) + w1 + wa, v(0) = z1 + 2.

Since v/ — g(u) < 0 = —g(0) on [0,w,) and u(0) < 0 we have u(t) < 0
(t € [0,wy)), according to Proposition 2. Analogously v(t) > 0 (t € [0,wy)).
Now (1) implies

U(—v') = U(f(0) — f(u)) + ¥(ws + wa) < —LU(—u) + ¥(wy + wy),
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on [0,w,), and ¥(—u(0)) = ¥(z3 + z2). Hence
¢
U(—u(t)) < exp(—tL)¥(z1 + z2) + | exp(—(t — s)L)¥(w; + wy) ds
0

\Il(wl + ’w2) _

< ¥(z1 +x2) + T =7

(t € [0,wy)).

Since ¥ is norming

lu@®)l| £ —— (t € [0,wu)).

Since f is bounded on bounded sets we conclude w, = o0, and u :
[0,00) — E is bounded. Analogously w, = 00, and v is bounded. Now, on
[0,w) we have

w'=f(u) = —f(0)— (w1 +wp) <0 =2'—f(z) < —f(0) +w1+wz = "= f(v),
u(0) = —(z1 + x2) < xo = 2(0) < 21 + 22 = v(0).
Hence u(t) < z(t) < v(t) (¢t € [0,w)). According to (4)
o)l < c2 max{llu@®], le®} (¢ € 0,))

which in turn proves w = 00, and z : [0,00) — E is bounded.

Hout) 1

2.) Next, let y, 2 : [0,00) — E be solutions of =’ = f(z).
According to Proposition 1 there exist ug, vg € E such that

|[vo — uol| < e1|ly(0) — 2(0)]], w0 < ¥(0) < vo, up < 2(0) < wo.
Now, let u, v : [0,00) — E be the solutions of the initial value problems
w(t) = f(u(®)), w(0) =uo, v'(t) = f(v(1)), v(0) = vo.
From
v (t) - f(u(t) =/ (t) - fy(®) = 2'(t) - f(2(t) = '(t) - f(v(D)),
4(0) < 4(0) < v(0), u(0) < 2(0) < v(0),
we get u(t) < y(t) < v(t), u(t) < 2(t) < v(t), hence
—(v(t) —u(®)) S y(t) - 2(t) < o(t) —u(t) (¢ € [0,00)).
By means of (4) we have
|ly(t) — 2()]| < ezllv(®) —u(@®)| (¢ € [0,00)).
By (1) we obtain
U(v'(t) —w'(t)) < —L¥(v(t) — u(t)) (t € [0,00)),
which implies
U(v(t) — u(t)) < exp(—tL)¥(vo —uo) (t € [0,00)),
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leading to
ly(®) = 2l < eallet) - u(dl] < ZU(v(t) - u(t))
< 2L exp(~¢D)l[v(0) ~ w(O)|
< 4B exp(—tL)IIy(0) - 2)l| (¢ € [0,00).
We set
M= cic2f

and summarize

(6) lly(t) — 2($)l] < M exp(-Lt)||y(0) — 2(0)|| (¢ € [0, 00)).

3.) Now, let z : {0,00) — E be the solution of problem (5). We prove
the convergence of z(t) as t — oo. Since z is bounded we have ||z(t)|| < b
(t € [0,00)) for some b > 0. Let t,7 > 0. According to (6) we have

Hz(t + 7) — z(t)|| £ M exp(—tL)||z(r) — zo|| < 2Mbexp(—tL).

Therefore z(t) is convergent as t — oo to &o, say, and as 7 — oo in (6) we
obtain

(7) [lz(t) — &oll < M exp(—tL)||zo — &ol| (t € [0, 00)).

We prove that f is bijective and that f~! is decreasing:

Obviously f(&o) = 0. Moreover if f(¢) = 0 then £ and &, considered as
constant solutions of 2’ = f(z), satisfy

1€ — &oll < M exp(—Lt)|I§ — &ol| (¢ € [0, 00)).

Hence £ = &. Now for each ¢ € E the results in 1.), 2.) and 3.) can be
applied to fy(z) := f(z) — g. For this reason there is a unique §; € E such
that f,(&;) = 0. Therefore f is bijective, and moreover f~1(g) = &,.

Consider ¢q1,¢2 € E with q; < ¢o. Let u,v : [0,00) — E be the solutions
of

u'(t) = f(u(t)) — g2, u(0) =0, v'(t) = f(v(t)) - q, v(0) =0.
Then v’ — f(u) = —g2 £ —q1 = v’ — f(v), u(0) = v(0) imply u < v on {0, 00)
and therefore £, < &,,. Hence f~! : E — E is decreasing.
4.) Next, we prove that f~! is Lipschitz continuous with constant

(MB)/(aL):
Let q1,q2 € E, and choose ug, vo according to Proposition 1, that is
|lvo — uo|| < e1llgr — q2ll, w0 < ¢ <wo (i=1,2).
Hence

FHuo) 2 f7H@) 2 f7H(w) (i=1,2)
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which implies
F~Hwo) = f7H(vo) 2 f7Ha1) = fH(a2) 2 —(f 7 (wo) = £ (w0)).
By means of (4) we get
157 (@) = £ (@)l < eallf~ (wo) — £ (v0)l-

Since f~1(vg) < f~!(ug) property (1) leads to

W(7 (o) — 7 (00)) < T (a0 — wo),
hence

17 o) = £ w01 < L llvo — wall
Alltogether

177 @) ~ @l < 221y — gl

5.) Finally, by means of (7), which is unchanged for f,, instead of f, we
obtain

llz(¢) — £~ (yo)ll < M exp(=Le)llzo - f~ (wo)ll (¢20)
for each yo € E, where z : [0,00) — F is the solution of (2). .

5. An application

We will apply Theorem 1 to a system of Hammerstein integral equations.
Let S C R™ be compact. Let §; € S be fixed, and consider the Banach space
E = C(S,R)xC(S,R) endowed with the norm ||(u1, u2)|| = ||u1]]oo+]||u2l|0os
and ordered by the cone K = Ky x Ky with

Ko={u€ C(S,R) : u(6o) > u(§) 2 0 (€ € S)}.

For each A1,A2 > 0 the functional ¥((u1,u)) = Ajui(€o) + Aauz(éo) is
norming.

To see that K is reproducing it is sufficient to consider K. Some techni-
cal calculations prove that the following decomposition of u € C(S, R) shows
that Kj is reproducing: v = (u + w) — w with

1
w(&) - ”u||°° + |u(§0) _ U(g)l + \/]W.o—i-_l - Hu“oo

For j =1,2let k; : S x S — R be continuous, with
ki(§o,m) 2 ki(€,m) 20 (§,n€S),



754 G. Herzog

and let g; : R — R be increasing and Lipschitz continuous with constant L;.
Then f : E — E defined as

wr w6 = — [ @) §s k1€, mg1(ua(m)) dn)
T)®) (w(&)) * (ss ka(€, ) g2 (s (n)) dn

is Lipschitz continuous and quasimonotone increasing (each integral is in-
creasing with respect to Kjp). Let '

A = \/Lz [ ka(€on) dn, Ao = \/Ll [ k1(E0,m) dn,
S S

and assume that both numbers are > 0 (otherwise we have a trivial case).
For the corresponding norming functional ¥ and (u1, u2) < (v1,v2) we find

(f(v1,v2) — fur,u2)) < (14 AA2)¥((v1 — ug, v2 — u2)).
Hence, according to Theorem 1, if

Ly Ly § k1 (€0, m) dn | ka(&0,m) dn < 1,
5 s

then f is a homeomorphism with decreasing and Lipschitz continuous in-
verse, that is

(ul(e)) _ (ss k(6 m)aa (wa () dn) N (wa)

u2(€) §s k2(€,m)g2(u1(n)) dn ws(§)

is uniquely solvable in E for each (w;,w;) € E and the solution depends
Lipschitz continuous and increasing on (w1, wg).
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