

Gerd Herzog

ON QUASIMONOTONE HOMEOMORPHISMS
IN ORDERED BANACH SPACES

Abstract. Let E be a Banach space ordered by a cone K , and let $f : E \rightarrow E$ be locally Lipschitz continuous and quasimonotone increasing such that $\Psi(f(y) - f(x)) \leq -L\Psi(y - x)$ ($x \leq y$) for a linear positive functional Ψ and $L > 0$. We prove, under suitable conditions on K , f and Ψ , that f is a homeomorphism with decreasing and Lipschitz continuous inverse.

1. Introduction

Let $(E, \|\cdot\|)$ be a real Banach space, ordered by a cone K . A cone K is a closed convex subset of E with $\lambda K \subseteq K$ ($\lambda \geq 0$), and $K \cap (-K) = \{0\}$. As usual $x \leq y \iff y - x \in K$. We will always assume that K is *reproducing*, that is $K - K = E$. Then, the set

$$K^* = \{\varphi \in E^* : \varphi(x) \geq 0 \ (x \geq 0)\}$$

is a cone in the space of all continuous linear functionals E^* , the dual cone.

A functional $\Psi \in K^*$ is called *norming* if there are constants $0 < \alpha \leq \beta$ such that

$$\alpha\|x\| \leq \Psi(x) \leq \beta\|x\| \quad (x \in K).$$

A function $f : E \rightarrow E$ is called *quasimonotone increasing* (in the sense of Volkmann [13]) if

$$x, y \in E, x \leq y, \varphi \in K^*, \varphi(x) = \varphi(y) \implies \varphi(f(x)) \leq \varphi(f(y)).$$

The aim of this paper is to prove the following result:

THEOREM 1. *Let $f : E \rightarrow E$ be locally Lipschitz continuous, bounded on bounded subsets of E , and quasimonotone increasing. Let there exist a norming functional $\Psi \in K^*$ and $L > 0$ such that*

$$(1) \quad \Psi(f(y) - f(x)) \leq -L\Psi(y - x) \quad (x \leq y).$$

Then $f : E \rightarrow E$ is a homeomorphism, and $f^{-1} : E \rightarrow E$ is monotone decreasing and Lipschitz continuous. Moreover each initial value problem

$$(2) \quad x'(t) = f(x(t)) - y_0, \quad x(0) = x_0$$

is uniquely solvable on $[0, \infty)$, and the solution satisfies

$$\|x(t) - f^{-1}(y_0)\| \leq M \exp(-Lt) \|x_0 - f^{-1}(y_0)\| \quad (t \geq 0)$$

for a constant $M \geq 0$.

2. Remarks:

1. In particular Theorem 1 applies to linear mappings: Let $A : E \rightarrow E$ be linear and continuous, let $A^* : E^* \rightarrow E^*$ be its adjoint, and let $\Psi \in K^*$ be norming. If $A^* \Psi \leq -L\Psi$ for some $L > 0$, then A is an isomorphism. A related result for cones with nonempty interior can be found in [4].

2. A finite dimensional version of Theorem 1 is due to the author [6]. In this result it is assumed that K has nonempty interior and that f is merely continuous. In the result above K may have empty interior.

3. Functional conditions are a useful tool in the theory of quasimonotone increasing dynamical systems since in applications they lead to conditions which are often easy to deal with. For a survey on the subject we refer to [3], [5], [7], [9], [10], [11], [12], and the references given there.

Examples of ordered Banach spaces with reproducing cone and norming functionals are:

1. $E = l^1(\mathbb{N}, \mathbb{R})$, $K = \{x : x_k \geq 0\}$, $\Psi(x) = \sum_{k \in \mathbb{N}} x_k$;
2. $E = c_0(\mathbb{N}, \mathbb{R})$, $K = \{x : x_1 \geq x_k \geq 0\}$, $\Psi(x) = x_1$;
3. $E = L^1([0, 1], \mathbb{R})$, $K = \{u : u \geq 0 \text{ a.e.}\}$, $\Psi(u) = \int_{[0,1]} u(\xi) d\xi$;
4. $E = C([0, 1], \mathbb{R})$, $K = \{u : u(1) \geq u(\xi) \geq -2u(1)\}$, $\Psi(u) = u(1)$;
5. $E = \mathbb{R}^n$, $K^\circ \neq \emptyset$, $\Psi \in (K^*)^\circ$.

REMARK: The cone in 4. is reproducing since it contains the reproducing cone $K_0 = \{u : u(1) \geq u(\xi) \geq 0\}$, which is discussed in section 4.

The following example shows that, in general, condition (1) in Theorem 1 does not lead to a bijective mapping in case that K is only assumed to be *total*, that is $\overline{K - K} = E$. Consider $E = c_0(\mathbb{N}, \mathbb{R})$ endowed with the maximum norm and ordered by the cone

$$K = \{x : x_k \geq 2x_{k+1} \geq 0 \ (k \in \mathbb{N})\}.$$

The cone K is total. To see this, recall that the finite sequences are dense in $c_0(\mathbb{N}, \mathbb{R})$. If a finite sequence $y = (y_1, \dots, y_m, 0, 0, \dots)$ is given, then we can write the vector (y_1, \dots, y_m) as difference of vectors in

$$K_m = \{x \in \mathbb{R}^m : x_k \geq 2x_{k+1} \geq 0 \ (k = 1, \dots, m-1)\},$$

since clearly K_m is a cone with nonempty interior in \mathbb{R}^m . By filling these vectors with zeros we obtain finite sequences in K , and the difference is y .

Now $\Psi(x) = x_1$ is norming, in fact $\Psi(x) = \|x\|$ ($x \in K$). The shift operator $A : E \rightarrow E$, $Ax = (x_2, x_3, \dots)$ is monotone, hence $f(x) = -x + Ax$ is quasimonotone, and

$$\Psi(f(x)) = -x_1 + x_2 \leq -\frac{1}{2}x_1 = -\frac{1}{2}\Psi(x) \quad (x \in K).$$

But f is not surjective. In particular, according to Theorem 1, K is not reproducing. This can also be seen directly. For example $(1/k) \notin K - K$, since $(2^k x_k)$ is bounded for each sequence $(x_k) \in K - K$.

In the last section we will give an application of Theorem 1 to systems of Hammerstein integral equations.

3. Preliminaries

We first discuss some properties of K and K^* . Since K is reproducing, the cone K^* is *normal* (see for example [1], Prop. 19.4), that is there is a constant $\gamma > 0$ with

$$\varphi_1 \leq \varphi_2 \leq \varphi_3 \implies \|\varphi_2\| \leq \gamma \max\{\|\varphi_1\|, \|\varphi_3\|\}.$$

According to a result of Ellis ([2], Theorem 8, see also [8]) this implies that K is $(\gamma + \varepsilon)$ -generating for each $\varepsilon > 0$, that is each element $x \in E$ has a decomposition $x = x_1 - x_2$ such that

$$(3) \quad x_1, x_2 \in K, \quad \|x_1\| + \|x_2\| \leq (\gamma + \varepsilon)\|x\|.$$

From this we obtain:

PROPOSITION 1. *There is a constant $c_1 > 0$, such that to $x, y \in E$ there exist $u, v \in E$ with*

$$u \leq x \leq v, \quad u \leq y \leq v, \quad \|u - v\| \leq c_1\|x - y\|.$$

Proof. Fix $\varepsilon > 0$, set $c_1 = \gamma + \varepsilon$, and let $x - y = z_1 - z_2$ be a decomposition of $x - y$ according to (3). Set

$$u = \frac{x + y - (z_1 + z_2)}{2}, \quad v = \frac{x + y + (z_1 + z_2)}{2}.$$

Then

$$u - x = \frac{y - x - (z_1 + z_2)}{2} = \frac{z_2 - z_1 - (z_1 + z_2)}{2} = -z_1 \leq 0,$$

hence $u \leq x$. Analogously $x \leq v$ and $u \leq y \leq v$. Finally

$$\|v - u\| = \|z_1 + z_2\| \leq \|z_1\| + \|z_2\| \leq c_1\|x - y\|. \quad \blacksquare$$

Next, let $\Psi \in K^*$ be a norming functional. Obviously Ψ is an interior point of K^* , hence K^* is reproducing. For this reason K is normal (see again [1], Prop. 19.4), hence there exists $c_2 > 0$ such that

$$(4) \quad x_1 \leq x_2 \leq x_3 \implies \|x_2\| \leq c_2 \max\{\|x_1\|, \|x_3\|\}.$$

Moreover K is regular in this case, that is each increasing sequence which is order bounded above is convergent:

If (x_n) is a sequence with $x_n \leq x_{n+1} \leq y$ ($n \in \mathbb{N}$), then $\Psi(x_n)$ is convergent, hence (x_n) is a Cauchy sequence in E since Ψ is norming.

The next result that will be used in the proof of Theorem 1 is a comparison theorem for differential inequalities (see [14]):

PROPOSITION 2. *Let $f : E \rightarrow E$ be quasimonotone increasing and locally Lipschitz continuous. If $u, v : [0, T] \rightarrow E$ are differentiable such that*

$$u'(t) - f(u(t)) \leq v'(t) - f(v(t)), \quad u(0) \leq v(0),$$

then $u(t) \leq v(t)$ ($t \in [0, T]$).

4. Proof of Theorem 1

We consider the initial value problem

$$(5) \quad x'(t) = f(x(t)), \quad x(0) = x_0 \in E.$$

Since f is locally Lipschitz continuous (5) is uniquely locally solvable and according to Proposition 2 the solution depends monotone increasing on x_0 .

1.) Let $x : [0, \omega) \rightarrow E$ be the solution of problem (1) on its right maximal interval of existence. We prove that $\omega = \infty$:

Consider $g : E \rightarrow E$ defined by $g(x) = f(x) - f(0)$ and note that g is quasimonotone increasing and locally Lipschitz continuous. Let $x_0 = x_1 - x_2$ with $x_1, x_2 \in K$. Then $-(x_1 + x_2) \leq x_0 \leq x_1 + x_2$. Moreover consider a decomposition $-f(0) = w_1 - w_2$ with $w_1, w_2 \in K$. Let $u : [0, \omega_u) \rightarrow E$ and $v : [0, \omega_v) \rightarrow E$ be the solutions (both defined on the right maximal interval of existence) of the initial value problems

$$\begin{aligned} u'(t) &= g(u(t)) - (w_1 + w_2), \quad u(0) = -(x_1 + x_2), \\ v'(t) &= g(v(t)) + w_1 + w_2, \quad v(0) = x_1 + x_2. \end{aligned}$$

Since $u' - g(u) \leq 0 = -g(0)$ on $[0, \omega_u)$ and $u(0) \leq 0$ we have $u(t) \leq 0$ ($t \in [0, \omega_u)$), according to Proposition 2. Analogously $v(t) \geq 0$ ($t \in [0, \omega_v)$). Now (1) implies

$$\Psi(-u') = \Psi(f(0) - f(u)) + \Psi(w_1 + w_2) \leq -L\Psi(-u) + \Psi(w_1 + w_2),$$

on $[0, \omega_u]$, and $\Psi(-u(0)) = \Psi(x_2 + x_2)$. Hence

$$\begin{aligned}\Psi(-u(t)) &\leq \exp(-tL)\Psi(x_1 + x_2) + \int_0^t \exp(-(t-s)L)\Psi(w_1 + w_2) \, ds \\ &\leq \Psi(x_1 + x_2) + \frac{\Psi(w_1 + w_2)}{L} =: \eta \quad (t \in [0, \omega_u]).\end{aligned}$$

Since Ψ is norming

$$\|u(t)\| \leq \frac{\Psi(-u(t))}{\alpha} \leq \frac{\eta}{\alpha} \quad (t \in [0, \omega_u]).$$

Since f is bounded on bounded sets we conclude $\omega_u = \infty$, and $u : [0, \infty) \rightarrow E$ is bounded. Analogously $\omega_v = \infty$, and v is bounded. Now, on $[0, \omega)$ we have

$$\begin{aligned}u' - f(u) &= -f(0) - (w_1 + w_2) \leq 0 = x' - f(x) \leq -f(0) + w_1 + w_2 = v' - f(v), \\ u(0) &= -(x_1 + x_2) \leq x_0 = x(0) \leq x_1 + x_2 = v(0).\end{aligned}$$

Hence $u(t) \leq x(t) \leq v(t)$ ($t \in [0, \omega)$). According to (4)

$$\|x(t)\| \leq c_2 \max\{\|u(t)\|, \|v(t)\|\} \quad (t \in [0, \omega))$$

which in turn proves $\omega = \infty$, and $x : [0, \infty) \rightarrow E$ is bounded.

2.) Next, let $y, z : [0, \infty) \rightarrow E$ be solutions of $x' = f(x)$.

According to Proposition 1 there exist $u_0, v_0 \in E$ such that

$$\|v_0 - u_0\| \leq c_1 \|y(0) - z(0)\|, \quad u_0 \leq y(0) \leq v_0, \quad u_0 \leq z(0) \leq v_0.$$

Now, let $u, v : [0, \infty) \rightarrow E$ be the solutions of the initial value problems

$$u'(t) = f(u(t)), \quad u(0) = u_0, \quad v'(t) = f(v(t)), \quad v(0) = v_0.$$

From

$$\begin{aligned}u'(t) - f(u(t)) &= y'(t) - f(y(t)) = z'(t) - f(z(t)) = v'(t) - f(v(t)), \\ u(0) \leq y(0) \leq v(0), \quad u(0) \leq z(0) \leq v(0),\end{aligned}$$

we get $u(t) \leq y(t) \leq v(t)$, $u(t) \leq z(t) \leq v(t)$, hence

$$-(v(t) - u(t)) \leq y(t) - z(t) \leq v(t) - u(t) \quad (t \in [0, \infty)).$$

By means of (4) we have

$$\|y(t) - z(t)\| \leq c_2 \|v(t) - u(t)\| \quad (t \in [0, \infty)).$$

By (1) we obtain

$$\Psi(v'(t) - u'(t)) \leq -L\Psi(v(t) - u(t)) \quad (t \in [0, \infty)),$$

which implies

$$\Psi(v(t) - u(t)) \leq \exp(-tL)\Psi(v_0 - u_0) \quad (t \in [0, \infty)),$$

leading to

$$\begin{aligned} \|y(t) - z(t)\| &\leq c_2 \|v(t) - u(t)\| \leq \frac{c_2}{\alpha} \Psi(v(t) - u(t)) \\ &\leq \frac{c_2 \beta}{\alpha} \exp(-tL) \|v(0) - u(0)\| \\ &\leq \frac{c_1 c_2 \beta}{\alpha} \exp(-tL) \|y(0) - z(0)\| \quad (t \in [0, \infty)). \end{aligned}$$

We set

$$M := \frac{c_1 c_2 \beta}{\alpha}$$

and summarize

$$(6) \quad \|y(t) - z(t)\| \leq M \exp(-Lt) \|y(0) - z(0)\| \quad (t \in [0, \infty)).$$

3.) Now, let $x : [0, \infty) \rightarrow E$ be the solution of problem (5). We prove the convergence of $x(t)$ as $t \rightarrow \infty$. Since x is bounded we have $\|x(t)\| \leq b$ ($t \in [0, \infty)$) for some $b \geq 0$. Let $t, \tau \geq 0$. According to (6) we have

$$\|x(t + \tau) - x(t)\| \leq M \exp(-Lt) \|x(\tau) - x_0\| \leq 2Mb \exp(-tL).$$

Therefore $x(t)$ is convergent as $t \rightarrow \infty$ to ξ_0 , say, and as $\tau \rightarrow \infty$ in (6) we obtain

$$(7) \quad \|x(t) - \xi_0\| \leq M \exp(-tL) \|x_0 - \xi_0\| \quad (t \in [0, \infty)).$$

We prove that f is bijective and that f^{-1} is decreasing:

Obviously $f(\xi_0) = 0$. Moreover if $f(\xi) = 0$ then ξ and ξ_0 , considered as constant solutions of $x' = f(x)$, satisfy

$$\|\xi - \xi_0\| \leq M \exp(-Lt) \|\xi - \xi_0\| \quad (t \in [0, \infty)).$$

Hence $\xi = \xi_0$. Now for each $q \in E$ the results in 1.), 2.) and 3.) can be applied to $f_q(x) := f(x) - q$. For this reason there is a unique $\xi_q \in E$ such that $f_q(\xi_q) = 0$. Therefore f is bijective, and moreover $f^{-1}(q) = \xi_q$.

Consider $q_1, q_2 \in E$ with $q_1 \leq q_2$. Let $u, v : [0, \infty) \rightarrow E$ be the solutions of

$$u'(t) = f(u(t)) - q_2, \quad u(0) = 0, \quad v'(t) = f(v(t)) - q_1, \quad v(0) = 0.$$

Then $u' - f(u) = -q_2 \leq -q_1 = v' - f(v)$, $u(0) = v(0)$ imply $u \leq v$ on $[0, \infty)$ and therefore $\xi_{q_2} \leq \xi_{q_1}$. Hence $f^{-1} : E \rightarrow E$ is decreasing.

4.) Next, we prove that f^{-1} is Lipschitz continuous with constant $(M\beta)/(\alpha L)$:

Let $q_1, q_2 \in E$, and choose u_0, v_0 according to Proposition 1, that is

$$\|v_0 - u_0\| \leq c_1 \|q_1 - q_2\|, \quad u_0 \leq q_i \leq v_0 \quad (i = 1, 2).$$

Hence

$$f^{-1}(u_0) \geq f^{-1}(q_i) \geq f^{-1}(v_0) \quad (i = 1, 2)$$

which implies

$$f^{-1}(u_0) - f^{-1}(v_0) \geq f^{-1}(q_1) - f^{-1}(q_2) \geq -(f^{-1}(u_0) - f^{-1}(v_0)).$$

By means of (4) we get

$$\|f^{-1}(q_1) - f^{-1}(q_2)\| \leq c_2 \|f^{-1}(u_0) - f^{-1}(v_0)\|.$$

Since $f^{-1}(v_0) \leq f^{-1}(u_0)$ property (1) leads to

$$\Psi(f^{-1}(u_0) - f^{-1}(v_0)) \leq \frac{1}{L} \Psi(v_0 - u_0),$$

hence

$$\|f^{-1}(u_0) - f^{-1}(v_0)\| \leq \frac{\beta}{\alpha L} \|v_0 - u_0\|.$$

Alltogether

$$\|f^{-1}(q_1) - f^{-1}(q_2)\| \leq \frac{c_1 c_2 \beta}{\alpha L} \|q_1 - q_2\|.$$

5.) Finally, by means of (7), which is unchanged for f_{y_0} instead of f , we obtain

$$\|x(t) - f^{-1}(y_0)\| \leq M \exp(-Lt) \|x_0 - f^{-1}(y_0)\| \quad (t \geq 0)$$

for each $y_0 \in E$, where $x : [0, \infty) \rightarrow E$ is the solution of (2). \blacksquare

5. An application

We will apply Theorem 1 to a system of Hammerstein integral equations. Let $S \subseteq \mathbb{R}^n$ be compact. Let $\xi_0 \in S$ be fixed, and consider the Banach space $E = C(S, \mathbb{R}) \times C(S, \mathbb{R})$ endowed with the norm $\|(u_1, u_2)\| = \|u_1\|_\infty + \|u_2\|_\infty$, and ordered by the cone $K = K_0 \times K_0$ with

$$K_0 = \{u \in C(S, \mathbb{R}) : u(\xi_0) \geq u(\xi) \geq 0 \ (\xi \in S)\}.$$

For each $\lambda_1, \lambda_2 > 0$ the functional $\Psi((u_1, u_2)) = \lambda_1 u_1(\xi_0) + \lambda_2 u_2(\xi_0)$ is norming.

To see that K is reproducing it is sufficient to consider K_0 . Some technical calculations prove that the following decomposition of $u \in C(S, \mathbb{R})$ shows that K_0 is reproducing: $u = (u + w) - w$ with

$$w(\xi) = \|u\|_\infty + \frac{1}{|u(\xi_0) - u(\xi)| + \sqrt{\|u\|_\infty^2 + 1} - \|u\|_\infty}.$$

For $j = 1, 2$ let $k_j : S \times S \rightarrow \mathbb{R}$ be continuous, with

$$k_j(\xi_0, \eta) \geq k_j(\xi, \eta) \geq 0 \quad (\xi, \eta \in S),$$

and let $g_j : \mathbb{R} \rightarrow \mathbb{R}$ be increasing and Lipschitz continuous with constant L_j . Then $f : E \rightarrow E$ defined as

$$f(u_1, u_2)(\xi) = - \begin{pmatrix} u_1(\xi) \\ u_2(\xi) \end{pmatrix} + \begin{pmatrix} \int_S k_1(\xi, \eta) g_1(u_2(\eta)) \, d\eta \\ \int_S k_2(\xi, \eta) g_2(u_1(\eta)) \, d\eta \end{pmatrix}$$

is Lipschitz continuous and quasimonotone increasing (each integral is increasing with respect to K_0). Let

$$\lambda_1 = \sqrt{L_2 \int_S k_2(\xi_0, \eta) \, d\eta}, \quad \lambda_2 = \sqrt{L_1 \int_S k_1(\xi_0, \eta) \, d\eta},$$

and assume that both numbers are > 0 (otherwise we have a trivial case). For the corresponding norming functional Ψ and $(u_1, u_2) \leq (v_1, v_2)$ we find

$$\Psi(f(v_1, v_2) - f(u_1, u_2)) \leq (-1 + \lambda_1 \lambda_2) \Psi((v_1 - u_1, v_2 - u_2)).$$

Hence, according to Theorem 1, if

$$L_1 L_2 \int_S k_1(\xi_0, \eta) \, d\eta \int_S k_2(\xi_0, \eta) \, d\eta < 1,$$

then f is a homeomorphism with decreasing and Lipschitz continuous inverse, that is

$$\begin{pmatrix} u_1(\xi) \\ u_2(\xi) \end{pmatrix} = \begin{pmatrix} \int_S k_1(\xi, \eta) g_1(u_2(\eta)) \, d\eta \\ \int_S k_2(\xi, \eta) g_2(u_1(\eta)) \, d\eta \end{pmatrix} + \begin{pmatrix} w_1(\xi) \\ w_2(\xi) \end{pmatrix}$$

is uniquely solvable in E for each $(w_1, w_2) \in E$ and the solution depends Lipschitz continuous and increasing on (w_1, w_2) .

References

- [1] K. Deimling, *Nonlinear Functional Analysis*, Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1985.
- [2] A. J. Ellis, *The duality of partially ordered normed linear spaces*, J. London Math. Soc. 39 (1964), 730-744.
- [3] G. Herzog, *On a Theorem of Mierczyński*. Colloq. Math. 76 (1998), 19-29.
- [4] G. Herzog, *One-sided estimates for linear quasimonotone increasing operators*, Num. Funct. Anal. Opt. 19 (1998), 549-555.
- [5] G. Herzog, *On quasimonotone increasing systems of ordinary differential equations*, Portug. Math. 57 (2000), 35-43.
- [6] G. Herzog, *On quasimonotone increasing homeomorphisms*, Arch. Math. 76 (2001), 215-221.
- [7] J. Jiang, *Periodic time dependent cooperative systems of differential equations with a first integral*, Ann. Differ. Equations 8 (1992), 429-437.
- [8] N. Kung-Fu, *The duality of partially ordered Banach spaces*. Proc. London Math. Soc. 19 (1969), 269-288.

- [9] J. Mierczyński, *Strictly cooperative systems with a first integral*, SIAM J. Math. Anal. 18 (1987), 642–646.
- [10] J. Mierczyński, *Uniqueness for a class of cooperative systems of ordinary differential equations*, Colloq. Math. 67 (1994), 21–23.
- [11] J. Mierczyński, *Uniqueness for quasimonotone systems with strongly monotone first integral*, J. Nonlinear Anal. 30 (1997), 1905–1909.
- [12] B. Tang, Y. Kuang and H. Smith, *Strictly nonautonomous cooperative system with a first integral*, SIAM J. Math. Anal. 24 (1993), 1331–1339.
- [13] P. Volkmann, *Gewöhnliche Differentialungleichungen mit quasimonoton wachsenden Funktionen in topologischen Vektorräumen*, Math. Z. 127 (1972), 157–164.
- [14] P. Volkmann, *Über die Invarianz konvexer Mengen und Differentialungleichungen in einem normierten Raum*, Math. Ann. 203 (1973), 201–210.

MATHEMATISCHES INSTITUT I
UNIVERSITÄT KARLSRUHE
D-76128 KARLSRUHE, GERMANY
E-mail: Gerd.Herzog@math.uni-karlsruhe.de

Received October 28, 2002.

