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GENERALIZED S T U R M SEPARATION THEOREM 

Abstract. True shifts for right invertible operators has been examined in several 
papers in various aspects (cf. PR[4], PR[5]). A generalization of Sturm separation theorem 
was given in PR[2] in the case when a right invertible operator under consideration had 
the one-dimensional kernel. Following the preprint [6], it is shown that the Sturm theorem 
holds without any assumption about the dimension of that kernel. In the last section of 
the present paper there are considered the multiplicative symbols in Leibniz algebras. 

1. True shifts 
We recall here the following notions and theorems of Algebraic Analysis 

(without proofs; cf. PR[1], PR[4]). 
Let X be a linear space (in general, without any topology) over a field 

F of scalars of the characteristic zero. Write 
• L(X) is the set of all linear operators with domains and ranges in X\ 
• dom A is the domain of an A 6 L(X); 
• ker .<4 = { x £ dom A : Ax = 0 } is the kernel of an A € L(X); 
• L0(X) = {Ae L(X) : dom A = X } . 
An operator D E L(X) is said to be right invertible if there is an operator 

R E LQ(X) such that RX C dom D and DR = I, where I denotes the 
identity operator. The operator R is called a right inverse of D. By R(X) 
we denote the set of all right invertible operators in L(X). Let D E R(X). 
Let TZD C LQ(X) be the set of all right inverses for D, i.e. DR = I whenever 
R E HD- We have 

dom D = RX ® ker D, independently of the choice of an R £ TZD-

Elements of ker D are said to be constants, since by definition, Dz = 0 if 
and only if 2 G ker D. The kernel of D is said to be the space of constants. 
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We should point out that, in general, constants are different than scalars, 
since they are elements of the space X. If two right inverses commute each 
with another, then they are equal. Let 

FD = {FE LO(X) : F2 = F; FX = ker D a n d 3REND FR = 0}. 

Any F G TD is said to be an initial operator for D corresponding to R. One 
can prove that any projection F' onto ker D is an initial operator for D 
corresponding to a right inverse R! = R — F'R independently of the choice 
of an R G Ha-

lf two initial operators commute each with another, then they are equal. 
Thus this theory is essentially noncommutative. 

An operator F G LQ(X) is initial for D if and only if there is an R G 7ZD 
such that 

(1.1) F = I — RD ondom D. 

Even more. Write 7ZD = {-ft-yKer- Then, by (1.1), we conclude that 7ZD 
induces in a unique way the family TD — {F7}7 €r of the correspond-
ing initial operators defined by means of the equality Fy = I — R^D on 
dom D (7 6 T). Formula (1.1) yields (by a two-lines induction) the 
Taylor Formula: 

n 

(1.2) I = RNFDN + RNDN o n d o m DN (n E N) . 
fc=0 

It is enough to know one right inverse in order to determine all right 
inverses and all initial operators. Note that a superposition (if exists) of a 
finite number of right invertible operators is again a right invertible operator. 

The equation Dx = y (y € X) has the general solution x = Ry + z, 
where R € IZD is arbitrarily fixed and z G ker D is arbitrary. However, if we 
put an initial condition: Fx = xa, where F G To and x0 6 ker D, then this 
equation has a unique solution x = Rx + XQ. 

If T € L(X) belongs to the set A(X) of all left invertible operators, 
then kerT = {0}. If D e T{X) = R{X) n A(X) (i.e. D is invertible), then 
J~D = {0} a n d TZD = {D'1}. 

If P(t) € F[i] (i.e. P(t) is a polynomial with scalar coefficients, where F 
is the field of scalars under consideration) then all solutions of the equation 

(1.3) P(D)x = y, y€X, 

can be obtained by a decomposition of a rational function induced by P(t) 
into vulgar fractions. One can distinguish subspaces of X with the property 
that all solutions of Equation (1.3) belong to a subspace Y whenever y G Y 
(cf. von Trotha T[l], PR[3]). 
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Write 
(1.4) vgA= { 0 ^ A g F : I - XA is invertible} for A G L(X). 
It means that 0 ^ A G v$A if and only if 1/A is a regular value of A. 

By V(X) we denote the set of all Volterra operators belonging to L(X), 
i.e. the set of all operators A G L(X) such that I — XA is invertible for all 
scalars A. Clearly, A G V(X) if and only if vpA = F\{0} (cf. Formula (1.4)). 

Let X be a Banach space. Denote by QN(X) the set of all quasinilpotent 
operators belonging to L(X), i.e. the set of all bounded operators A G LQ{X) 
such that 

lim \Z||j4na|| = 0 for x G X. 
n—>oo 

It is well-known that QN(X) c V{X). If F = C then QN(X) = V(X) n 
B(X), where B(X) is the set of all bounded operators belonging to L(X). 
DEFINITION 1.1. (cf. PR[2], also PR[4]). Let X be a complete linear metric 
space over a field F of scalars. Let A G L(X) be continuous. Let E C 
dom A C X be a subspace. Let w be a non-empty subset of v^A. The 
operator A G L(X) is said to be ui-almost quasinilpotent on E if 
(1.5) lim AnAnx = 0 for all A G w, x G E. 

n—> oo 

The set of all operators u;-almost quasinilpotent on the set E will be denoted 
by AQN(E;UJ). If u> = vpA then we say that A is almost quasinilpotent on 
E. The set of all almost quasinilpotent operators on E will be denoted by 
AQN(E). • 

THEOREM 1.1. (cf. PR[2], also PR[4]). Let E be a subspace of a complete 
linear metric space X over F. If A G L(X), E C dom A and 0 ^ u C v$A, 
then the following conditions are equivalent". 

(i) A is u>-almost quasinilpotent on E\ 
(ii) for every X G UJ, x G E the series A n A n x is convergent and 

oo 
(1.6) (I - XA)-1! = J2 xnAnx (Xeuj, x€ E); 

71=0 

(iii) for every X G a;, x G E, m G N the series Y,n=o " 
convergent and 
(1-7) 

(7 - XA)~mx = Y ( n + m~1}xnAnx (X E UJ, x € E, ME N). 
f o V / 

For given D G R{X), R G UD we shall consider (cf. T[l], PR[3]) the 
following subspaces 
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• the space of smooth elements 

Doo = P | dom Dk, where dom D° = X\ 
fee N0 

• the space of D-polynomials 

S = ( J ker Dn; S = P(R) = lin {.Rkz : z G ker D, k € N 0 } C D 
neN 

which, by definition, is independent of the choice of an R G Kd', 
• the space of exponentials 

E(R) = (J ker (D - X I) = 
xevfR 

= lin {(I - XRy^z : z € ker D, X G VfR or X = 0} C Doo, 
which is independent of the choice of the right inverse R, provided that R 
is a Volterra operator, 

• the space of D-analytic elements in a complete linear metric space X 
(F = C or F = R) 

oo 
AR(D) = {xeD00:x = YY RNFDnx} = {x € Ax, : lim RNDnx = 0}, ' ^ n—*oc n=0 

where F is an initial operator for D corresponding to an R € TZd • 
Clearly, by definitions, we have S, E(R) C DOO. If X is a complete linear 

metric space then S C Ar(D) C Doo-
True shifts has been examined in several papers in various aspects (cf. 

for instance, PR[3]-PR[5]). Here we recall the most important properties of 
true shifts (also without proofs). We begin with 

DEFINITION 1.2. (cf. PR[4], [5]). Suppose that X is a complete linear metric 
locally convex space (F = C or F = R), D G R(X) is closed, ker D / {0} and 
F is a continuous initial operator for D corresponding to a right inverse R al-
most quasinilpotent on ker D. Let A(R) = K+ or R. If {«S,/i}/lei4(R) C Lo(X) 
is a family of continuous linear operators such that So = I and for h G -A(R) 
either 

ShRkF = y -RjF for k G N0 

or 
Sh(I - Aii)_ 1F = eXh(I - XR^F for A G vpR, 

then Sh are said to be true shifts. The family {Sh}heA(R) is a semigroup 
(or group) with respect to the superposition of operators as a structure 
operation. • 
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THEOREM 1.2. (cf. PR[4], [5]). Suppose that all conditions of Definition 1.2. 
are satisfied, {Sh}heA(R) a strongly continuous semigroup (group) of true 
shifts and either P(R) = X or E(R) = X. Then D is an infinitesimal 
generator for {<S/i}/ieA(R)> hence dom D = X and ShD = DSh on dom D. 
Moreover, the canonical mapping K defined as 
(1.8) KX = {xA(i)}teA(R), where xA(t) = FStx (x 6 X) 
is a topological isomorphism (hence separate points) and 

d 1 
KD = — K, KR = \ K, KFX = KX I T=O, 

dt J 

and (KShx)(t) = xA(t + h) for x 6 X, t,h€ ^4(R). 

THEOREM 1.3. (cf. PR[4], [5]). Suppose that all conditions of Definition 1.2 
are satisfied and {S7i}heA(R) a family of true shifts. Then for all h G A(M) 
and x € AR(D) the series 

°° hn 

ehDx = Y±jDnx 
„ n! 

n = 0 

is convergent, 
(1.9) Shx = ehDx far xe AR(D) 
and ehD maps AR(D) into itself. 

This implies the Lagrange-Poisson formula for a right invertible 
operator D: 
(1.10) Ah = ehD-I onAR(D), where Ah = Sh - I [h € A(R)) 
(cf. PR[4]). Note that (under assumptions of Theorem 1.2) VF(RFSH,R) = 
VFR whenever F is an initial operator for D corresponding to R and SH are 
true shifts. This means that the family {Rh}heA(R) = {R~ FShR}h.eA(R) 
of right inverses induced by shifts have the same regular values as R (cf. 
BPR[1], also PR[4]). 
DEFINITION 1 .3 . Let X be a linear metric space. Let T € L(X) and x e X. 
The set 0(T : x) = {Tnx : n e N0 = N U {0}} is said to be the orbit of x 
with respect to T (cf. Rolewicz R[l]). A continuous linear operator T acting 
in X is said to be hypercyclic if there is an element x G X (called later 
hypercyclic vector), such that its orbit 0(T : x) is dense in X (cf. Shapiro 
S[l]). • 

THEOREM 1 . 4 . (cf. PR [5]) . Suppose that {Sh}heA(R) is a family of true 
shifts. Let h € A(M) be arbitrarily fixed. Then the operator ehD is hypercyclic 
and there is a x € Ar(D) which is a hypercyclic vector for ehD. 
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2. Symbol functions 
We begin with 

D E F I N I T I O N 2 . 1 . Let D e R(X) and let d(D) = { 1 , 2 , ...,dimker£>}, 
(0 < dim ker D) < +oo). Then ker D = lin {zn}ngd(£>), where zn € ker D, 
n € d(D) are linearly independent. By Theorem 1.2, to every x € X there 
corresponds a function xA : J4(R) —> ker D defined as xA(t) = Ftx, where 
Ft = FSt for t e A(R). Thus there exist scalar functions Sx ; n : A(M) —> F, 
n € d(D), such that 

(2.1) xA = lin{Sx;nzn}n6<i(D) for x e X. 
The sequence Sx = {§x;n}ned(D) said to be the symbol of the element x. 
Its nth component is said to be nth symbol function*. • 

From Definition 2.1 it follows that the symbol is linear in its index, i.e. 
(2.2) Sc* = cSx, S x + y = Sx + Sy for all x, y e X, c 6 F. 
Indeed, since F and St are linear, we have: (cx)A = cxA and (x + y)A = 
xA + yA. 

C O R O L L A R Y 2 . 1 . Suppose that all assumptions of Theorem 1.2 are satisfied 
and x eX, t, he .A(R). Then 

&Dx(t) = 4 § x ( i ) forxe dom D\ at 
t 

SRx(t) = j Sx(u)du; SF x ( i ) = §x(0); S ( S h x ) ( t ) = Sx(t + h). 
o 

P r o o f . By our assumptions and Theorem 1.2, for x 6 dom D,t € ^4(M) we 
have 

(§Dx)(t) = {§Dx;nZn}ned(I?) = 

d d 
= {S^x;n2n)}nGd(0)( i) = {^x;nZn}ned(D)(t) = (¿¿^X*) ' 

Similar proofs for Sfix, §Fx, §shX (x e X, t, h G ̂ 4(R)). • 
By an easy induction we obtain 

C O R O L L A R Y 2 . 2 . Suppose that all assumptions of Theorem 1.2 are satisfied. 
Then 

(i) SD*X = ^ r S x for x € dom Dk (k € N); 
(ii) all nth symbol functions are infinitely differentiable (with respect to 

t e A(R) for xeDoo (n € d(D))); 

*The symbol functions for D-polynomials and exponentials has been introduced in 
PR[1], p.357. The case dim ker D = 1 has been examined in PR[2]. 
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(iii) x G Ar(D) if and only if all nth symbol functions S i ; n (n 6 d(D)) 
are analytic at t = 0 and 

oo ,k 
SXin(t) = £ f°r t e A(R) (* e MD), n e d(D)). 

k=0 

COROLLARY 2.3. Suppose that all assumptions of Theorem 1.2 are satisfied. 
Let P(t) 6 ¥[t] (i.e. P(t) is a polynomial with scalar coefficients). Then the 
equation 

(2.3) P(D)x = y, y € X 

has a solution x if and only if each nth symbol function §x;n (n € d(D)) 
satisfies an ordinary differential equation: 

(2.4) P ^ S i ; n = S y ; n ( n e d ( D ) ) . 

DEFINITION 2.2. Suppose that all assumptions of Theorem 1.2 are satisfied. 
Then true shifts have the intermediate value property (shortly: IVP) if for 
every x e dom D and for every t,h £ A(R) there exists a 6 = {#„}, 0 < 
0n < 1 (n e d(D)) such that 

(2.5) Sx;n(t + h)-Sx(t) = hSDxin(t + Onh) (ned(D)). • 

Since the family {Sh}heA(R) °f true shifts is at least a semigroup, in order 
to show that they have IVP it is enough to prove that for every x e dom D, 
h e A(R) there is a 9 = {0 n }ned(D) , 9n € (0,1), such that 

(2.6) S x , n (h) - S x(0) = hSDx,n(0nh) (n € d{D)). 

Indeed, Formula (2.6) implies that for all t E A(R), n 6 d(D) we have 

S x ; n ( t + h)- Sx ;„(i) = St(Sx.in(h) - S x ; n(0)) = St (h^SDxin(0nh)J = 

= h§StDx;n(0nh) = hSDx;n(t + 9nh). 

THEOREM 2.1. Suppose that all assumptions of Theorem 1.2 are satisfied . 
Then true shifts Sh have IVP on dom D. 

P r o o f . Let {-StJ/^CR) be a family of true shifts. Since we are dealing with 
a semigroup (group), we can use Formula (2.6). Let x € dom D, t £ A(M) 
and n € d(D) be arbitrarily fixed. Then there is a 6n € (0,1) such that 

S*;n(i + h)~ Sx.n(t) = SStX.n(h) ~ SStx;n(0) = hSDStXin^nh) = 

= h§stDx;n(0nh) = /l§Dx;n(i + 
which implies 
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V V V 3 
(2-7) X e dom D h,t€ ¿ ( R ) n 6 d(D) 0 < 6n < 1 S * ; » ( t + f c ) " S * ; » ( i 0 = 

= h§Dx.n(t + 6h). m 

COROLLARY 2.4. Suppose that all assumptions of Theorem 2.1 are satisfied. 

Then the initial operators Fh = FSh (h € -A(R)) have IVP. 

P r o o f . Act on the both sides of Formula (2.6) by the operator F and again 
apply this formula. • 

This Corollary has deep consequences. Namely, we have 

COROLLARY 2.5. Suppose that all assumptions of Theorem 1.2 are satisfied. 

Then the following theorems on intermediate value hold: 

(i) If a ^ b, x € dom D and Fax = 0, F^x = 0 then there exists a 

6 = {0n}ned(D) s u c h that 

§Fbx-Fax;n = (b- a)SFa+Hb_a)Dx.tn (n G d(D))' 

(ii) If a b, x e dom D and F^x = Fax, then there exists a 0 = 

{0n}ned(L>) such that 

§Fa+en(b_a)DX;n = 0 (n € d(D))-, 

(iii) If a ^ b and x G X then there exists a 0 = {dn}ned(D) such that 

¿S/°x;n = SFa+((b.a)x;n, where Iba = (Fb - Fa)R, (n 6 d(D)); 

(iv) Ifa^b and x € dom D then 

SF„x-F0x;n = (b ~ a)S[ji F0+,n(fc_a)D«in<WBJ ( n 6 d (D ) ) '> 

(v) If dim ker D = 1 (i.e. d(D) = {1 } ) , then there correspond to (i)-(iv) 

the classical Lagrange and Rolle theorems, theorem on intermediate value of 

a definite integral and Hadamard Lemma (where 0 < 9 < 1): 

Ff,x — Fax = (b — a)Fa+e(j>-a)Dx whenever Fa = F\, = 0; 

Fa+e(b-a)Dx = 0 whenever Fbx = Fax; 

—Ibax = Fa+e{b_a)x, where Iba = (Fb - Fa)R-
b — a 

r 1 
Fbx - Fax = (b- a) \ Fa+e{b_a)DxdO 

L o 

3. Oscillatory elements 
We shall apply results of Sections 1 and 2 in order to examine solutions 

of linear equations in a right invertible operator. 
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DEFINITION 3.1. Let X be a linear space over the field F and let D e R ( X ) . 
Suppose that {.Fa}aeA(M) C Td is a family of initial operators for D. A 
point a G .A(M) is said to be a zero of an element x G X if Fax = 0. An 
element x G X is said to be oscillatory if there is a sequence {an} C R such 
that Fanx = 0 for n G N, i.e. if x has infinitely many zeros. • 

Recall that an element x G X is said to be S-periodic for an S G Lq(X) 
if Sx = x (cf. PR[1], also PR[4]). 

LEMMA 3.1. Let F be an initial operator for D G R(X) corresponding to a 
right inverse R and let be given a semigroup {Sh}heR C Lq(X). If x G X is 
Sh-periodic and Fx = 0 then x has infinitely many zeros jh for j G Z, i.e. 
x is oscillatory. 

P r o o f . By our assumptions we have S^1 = = Sh for all h € R \ {0}. 
Thus Fjhx = FSjhX = FSj

hx = Fx = 0 for j € Z. • 

Suppose that D e R(X) and R G TZd- An operator A G Lq(X) is said to 
be stationary if DA = AD and RA = AR. Clearly, scalar multiples of the 
identity are stationary. In general, a converse statement is not true. 

THEOREM 3 . 1 . ( S t u r m S e p a r a t i o n T h e o r e m ) Suppose that all assumptions of 
Theorem 1.2 are satisfied. Letu and Rv be two linearly independent solutions 
of the equation Q{D)x = 0, where Q(D) = J2h=o QkDk, 

(3.1) QN = I,Q0,...,QN-1eL0(X), 

QO, ...,Qn-i a r e stationary, the operator 
N 

Q(I,R) = Y^ QkRN~k 

k=0 
is invertible and 
(3.2) Fav = 0, Fbv = 0 (b^a). 
Then there exists a Q = {0n}ned(D)> 0 < 0„ < 1 for n G d(D), such that 
(3.3) SF0+9(6_a)u;n = 0 for all n G d(D). 
In particular, if dim ker D = 1, then there is a 6 G (0,1) such that 
(3-4) Fa+9{b_a)u = 0. 
P r o o f . If u and v satisfy our assumptions, then Corollary 2.5(i) (a gen-
eralization of the Lagrange theorem) implies that there is 9 = {dn}ned(D)> 
0 < 0n < 1 for n G d(D), such that 

0 = §FbV—Fav\n = §(Fb-Fa)Ru-,n = §(b-a)Fa+l>n(b-a)DRu-,n 

= (b- a)SFa+e(b_a)U;n, 
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i.e. Formula (3.3) holds. In particular, if dim ker D = 1, then d(D) = {1}. 
Thus, in a similar way, Corollary 2.5(iv) implies (3.4). 

On the other hand such solutions u and v exist. Indeed, since Qo,..., QN 
are stationary, Qn = I, we find Q(D) = DNQ(I, R). Hence any solution of 
Equation (3.1) satisfies the equation 

N-l 

Q(I,R)x=Y1 Rk Zk, where z0,..., z^-i € ker D. 
k=o 

This implies that 
N-l N-l 

X = WiR)}-1 £ Rkzk = R'lQdR)}-1^. 
fc=0 fc=0 

We therefore can take u = Rk~l[Q(I, fi)]-1^ for a k = l, . . . ,iV - 1. Then 
v — Ru =Rk[Q(I, i?)] - 1 Zfc (fc = 1, •••, N — 1). Clearly, u and v axe linearly 
independent since z and Rz are linearly independent whenever z G ker D. 

m 

COROLLARY 3 . 1 . Suppose that all assumptions of Theorem 3.1 are satisfied 
and A(R) = R. If v is S^-periodic and there exists a 9 = {On}n£d(D) € 
(0,1)) such that h'jn = (j + 9n)h are zeros ofu for j 6 Z. 

Proof . By Lemma 3.1, v has zeros jh for j 6 Z. By Corollary 2.2, there 
exists a 9 = {0n}ned(D) (9n € (0,1)) such that 

0 = §Fhv-Fv,n = §(Fh-F)Ru;n = h§FehDRu;n = h§Fenhu;n-

Thus, similarly as in the proof of Lemma 3.1, we find 

SFu+en)hu-,n = §FSjh+t)nhu-,n = §FS^hS'ujn = SFSenhu;n = §F S n „ u;n = 0 

for jez, ned{D). m 

THEOREM 3 . 2 . Suppose that all assumptions of Theorem 3.1 are satisfied 
and A(R) = R. If v is oscillatory then u is oscillatory and for every n € N 
there exists a 9n E (0,1) such that 

(3.5) Sf^uju = 0, where h'n = hn + 6n(hn+i - hn). 

Moreover, 
(i) if |/in+i — hn\ -h• 0 then - h'n\ —• 0 as n —• oo; 

(ii) if |/in+i — °o then \h'n+l — h'n\ —> oo as n —• oo; 
i.e. two linearly independent solutions u and v = Ru of Equation (3.1) have 
similar kind of oscillations. 



Generalized Sturm separation theorem 745 

P r o o f . If v is oscillatory and hn are its zeros then for every n G N there 
exists 0„ G (0,1) such that for all v € d(D) 

0 = v-Fhnv,u = §(Fkn+1-Fhn)Ru-,v = SFhn+en(h„+1-h„)«;" = 

Hence v is oscillatory with zeros h'n (n € N). 
(i) Suppose that |/in+i — hn\ —• 0 as n —> oo. Then for every e > 0 there 

exists an TV € N such that for all n> N we have \hn+\ — hn\ < e. Hence for 
n > N 

\h'n+i - h'n| = |/in+1 + 0n+i(hn+2 - hn+1 - h n - 9n(hn+i - /in)| < 

< - h'n | + 0n+l\hn+2 ~ + On\h„+l ~ h n \ < 

<e + en+1e + ene < 3e, 
i.e. — h'n\ —y 0 as n —> oo. 

(ii) Similarly, if |/in+i — hn\ —> oo, as n —> oo then for every e > 0 there 
is an N e N such that \hn+i — hn\ > e for all n > N. This implies that 
\K+i ~ K\ > E + 0n+1£ + 0ne > 3e for n > N, i.e. \h'n+1 - h'n\ oo as 
n —» oo. • 

4. Multiplicative symbol in algebras 
We recall the following theorem. 

THEOREM 4 . 1 . (cf. PR[5]). Let all conditions of Definition 2.1 be satisfied 
and let X be a commutative algebra. Let {Sh}heA(R) be a family of true 
shifts. Then D\^r(d) satisfies the Leibniz condition if and only if Sh. are 
multiplicative on Ar{D) for all h G ^4(R). 

This implies the following 
THEOREM 4 . 2 . Let all assumptions of Theorem 1.2 be satisfied and let X 
be a Leibniz algebra. If F is multiplicattive then the symbol S and the nth 
symbol functions are multiplicative, i.e. 
(4.1) S i y ; n = S I ; nSy ; n for all x,y € X, n € N. 
P r o o f . Let t e >1(R) be arbitrary. By Theorem 4.1, all true shifts St are 
multiplicative. By our assumptions and definitions, for all x, y G X 

Ftx = FStx = xA(t) = {S i ;n}ne<i(Z3); Ft{xy) = FSt(xy) = (xy)A(t) 

= {§x2/;n}ned(D)-
Since F is multiplicative, we get 

{S*y;n} = xyA(t) = FStxy = F[(Stx)(Sty)} = [(FStx)(FSty)] 
= XA(t)y*(t) = {§X;n}ned(D){§y,n}ned(D)-

This means that the symbol S is multiplicative. Also the nth symbol func-
tions are, by their definition, multiplicative. • 
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