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GENERALIZED STURM SEPARATION THEOREM

Abstract. True shifts for right invertible operators has been examined in several
papers in various aspects (cf. PR[4], PR[5]). A generalization of Sturm separation theorem
was given in PR[2] in the case when a right invertible operator under consideration had
the one-dimensional kernel. Following the preprint [6], it is shown that the Sturm theorem
holds without any assumption about the dimension of that kernel. In the last section of
the present paper there are considered the multiplicative symbols in Leibniz algebras.

1. True shifts

We recall here the following notions and theorems of Algebraic Analysis
(without proofs; cf. PR[1], PR[4]).

Let X be a linear space (in general, without any topology) over a field
F of scalars of the characteristic zero. Write

e L(X) is the set of all linear operators with domains and ranges in X

e dom A is the domain of an A € L(X);

e ker A = {z € dom A : Az = 0} is the kernel of an A € L(X);

o [j(X)={A € L(X):dom A = X}.

An operator D € L(X) is said to be right invertible if there is an operator
R € Lo(X) such that RX C dom D and DR = I, where I denotes the
identity operator. The operator R is called a right inverse of D. By R(X)
we denote the set of all right invertible operators in L(X). Let D € R(X).
Let Rp C Lo(X) be the set of all right inverses for D, i.e. DR = I whenever
R e Rp. We have

dom D = RX ® ker D, independently of the choice of an R € Rp.

Elements of ker D are said to be constants, since by definition, Dz = 0 if
and only if z € ker D. The kernel of D is said to be the space of constants.
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We should point out that, in general, constants are different than scalars,
since they are elements of the space X. If two right inverses commute each
with another, then they are equal. Let

Fp={F € Lo(X): F2=F; FX =kerD and 3ger, FR = 0}.

Any F € Fp is said to be an initial operator for D corresponding to R. One
can prove that any projection F’ onto ker D is an initial operator for D
corresponding to a right inverse R’ = R — F'R independently of the choice
ofan R € Rp.

If two initial operators commute each with another, then they are equal.
Thus this theory is essentially noncommutative.

An operator F € Lo(X) is initial for D if and only if thereisan R € Rp
such that

(1.1) F=I-RD ondomD.

Even more. Write Rp = {Ry},er. Then, by (1.1), we conclude that Rp
induces in a unique way the family Fp = {F,}yer of the correspond-
ing initial operators defined by means of the equality F\, = I — R,D on
dom D (v € T). Formula (1.1) yields (by a two-lines induction) the
Taylor Formula:

n
(1.2) I=>" R*FD" +R"D" on dom D" (n € N).
k=0

It is enough to know one right inverse in order to determine all right
inverses and all initial operators. Note that a superposition (if exists) of a
finite number of right invertible operators is again a right invertible operator.

The equation Dz = y (y € X) has the general solution z = Ry + z,
where R € Rp is arbitrarily fixed and z € ker D is arbitrary. However, if we
put an initial condition: Fx = z,, where F' € Fp and z, € ker D, then this
equation has a unique solution £ = Rz + zg.

If T € L(X) belongs to the set A(X) of all left invertible operators,
then kerT = {0}. If D € Z(X) = R(X) N A(X) (i.e. D is invertible), then
Fp = {0} and Rp = {D71}.

If P(t) € F[t] (i.e. P(t) is a polynomial with scalar coefficients, where F
is the field of scalars under consideration) then all solutions of the equation

(1.3) PD)z=y, ye€X,

can be obtained by a decomposition of a rational function induced by P(t)
into vulgar fractions. One can distinguish subspaces of X with the property
that all solutions of Equation (1.3) belong to a subspace Y whenever y € Y
(cf. von Trotha T[1], PR(3]).
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Write
(1.4) vpA={0#Ae€F:T—- XA is invertible} for A € L(X).

It means that 0 # A € vpA if and only if 1/ is a regular value of A.

By V(X) we denote the set of all Volterra operators belonging to L(X),
i.e. the set of all operators A € L(X) such that I — AA is invertible for all
scalars A. Clearly, A € V(X) if and only if vpA = F\ {0} (cf. Formula (1.4)).

Let X be a Banach space. Denote by QN (X) the set of all quasinilpotent
operators belonging to L(X), i.e. the set of all bounded operators A € Lo(X)
such that

lim {/||A"z|| =0 for zeX.

It is well-known that QN(X) Cc V(X). If F = C then QN(X) = V(X) N
B(X), where B(X) is the set of all bounded operators belonging to L(X).

DEFINITION 1.1. (cf. PR[2], also PR[4]). Let X be a complete linear metric
space over a field F of scalars. Let A € L(X) be continuous. Let E C
dom A C X be a subspace. Let w be a non-empty subset of vpA. The
operator A € L(X) is said to be w-almost quasinilpotent on E if

(1.5) lim A"A"z =0 forall \ew, z € F.

n— 00
The set of all operators w-almost quasinilpotent on the set £ will be denoted
by AQN(E;w). If w = vpA then we say that A is almost quasinilpotent on
E. The set of all almost quasinilpotent operators on E will be denoted by
AQN(E). O

THEOREM 1.1. (cf. PR[2], also PR[4]). Let E be a subspace of a complete
linear metric space X overF. If A€ L(X), E C dom A and § # w C vpA,
then the following conditions are equivalent:
(i) A is w-almost quasinilpotent on E;
(ii) for every A € w, = € E the series Y

(o o]

neo ATA"T is convergent and

(1.6) I-24)"'z=) XAz (A ew, z € E);

n=0

(iil) for every A € w, z € E, m € N the series 3 ., ("fn’ffl) AA™z is
convergent and

(1.7)
. > /n+m-—1
(I - \A) :1:-2( o

n=0

For given D € R(X), R € Rp we shall consider (cf. T[1], PR[3]) the
following subspaces

)A"A"z (Aew, z€ E, meN).
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o the space of smooth elements

Dy, = ﬂ dom D*, where dom D° = X;
keNo
o the space of D-polynomials

S=|J)ker D*; S=P(R)=lin {R¥z:z€ker D, k€ No} C Do,
n€eN
which, by definition, is independent of the choice of an R € Rp;
e the space of exponentials

ER)= |J ker(D-AI)=
A€vFR

=lin {I—-AR)"!'z:z€ker D, A€ vpR or A =0} C Do,

which is independent of the choice of the right inverse R, provided that R
is a Volterra operator,

e the space of D-analytic elements in a complete linear metric space X
(F=CorF=R)

o0
— . _ n n . .. nern,..

AR(D)—{.’I)EDOO..’E—; R"FD z}—{zeD“'nll.I%o R"D"z = 0},
where F' is an initial operator for D corresponding to an R € Rp .

Clearly, by definitions, we have S, E(R) C D. If X is a complete linear
metric space then S C Ar(D) C D.

True shifts has been examined in several papers in various aspects (cf.
for instance, PR[3]-PR([5]). Here we recall the most important properties of
true shifts (also without proofs). We begin with

DEFINITION 1.2. (cf. PR[4], [5]). Suppose that X is a complete linear metric
locally convex space (F = Cor F = R), D € R(X) is closed, ker D # {0} and
F is a continuous initial operator for D corresponding to a right inverse R al-
most quasinilpotent on ker D. Let A(R) =Ry or R. If {Sh}neam) C Lo(X)
is a family of continuous linear operators such that Sy = I and for h € A(R)
either
k k—i
SRF=Y __RiF forkeN
2 &=
or
Sp(I = AR)™'F = (I = AR)™'F for )\ € vR,

then S}, are said to be true shifts. The family {Sh}rca(r) is a semigroup
(or group) with respect to the superposition of operators as a structure
operation. (]
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THEOREM 1.2. (cf. PR[4], [5]). Suppose that all conditions of Definition 1.2.
are satisfied, {Sh}nca(r) is a strongly continuous semigroup (group) of true
shifts and either P(R) = X or E(R) = X. Then D is an infinitesimal
generator for {Sp}ream), hence dom D = X and Sp.D = DSy on dom D.
Moreover, the canonical mapping k defined as

(1.8) kz = {z"(t)}cam), where z"\(t)=FSz (z€ X)
is a topological isomorphism (hence separate points) and
d ¢
kD = —k, kR= Sn, kFz = Kz|¢=o,
dt 0
and (kSpz)(t) =™t +h) for z € X, t,h € A(R).

THEOREM 1.3. (cf. PR[4], [5]). Suppose that all conditions of Definition 1.2
are satisfied and {Sh}nca(r) is @ family of true shifts. Then for all h € A(R)
and z € Ar(D) the series

s convergent,
(1.9) Spx =Pz for x € Ap(D)

and e"? maps Ar(D) into itself.
This implies the Lagrange-Poisson formula for a right invertible
operator D:

(1.10) Ap =e"® —I on Ag(D), where Ap=S, -1 (h € A(R))

(cf. PR[4]). Note that (under assumptions of Theorem 1.2) vp(RpSpR) =
vpR whenever F is an initial operator for D corresponding to R and S), are
true shifts. This means that the family {Rxr}reamw) = {R — FShR}nca(m)
of right inverses induced by shifts have the same regular values as R (cf.
BPR][1], also PR[4)).

DEFINITION 1.3. Let X be a linear metric space. Let T € L(X) and z € X.
The set O(T : z) = {T"z : n € Ng = NU {0}} is said to be the orbit of
with respect to T (cf. Rolewicz R[1]). A continuous linear operator T acting
in X is said to be hypercyclic if there is an element z € X (called later
hypercyclic vector), such that its orbit O(T : z) is dense in X (cf. Shapiro
S[1]). o}

THEOREM 1.4. (cf. PR[5]). Suppose that {Sr}rcam) is a family of true
shifts. Let h € A(R) be arbitrarily fized. Then the operator P is hypercyclic
and there is a x € Ar(D) which is a hypercyclic vector for ePD.
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2. Symbol functions
We begin with

DEFINITION 2.1. Let D € R(X) and let d(D) = {1,2,...,dimker D},
(0 < dimker D) < +400). Then ker D = lin {z,},.eq(D), Where 2z, € ker D,
n € d(D) are linearly independent. By Theorem 1.2, to every x € X there
corresponds a function z” : A(R) — ker D defined as z”(t) = Fyz, where
F, = F'S; for t € A(R). Thus there exist scalar functions S;., : A(R) — T,
n € d(D), such that

(2.1) " = 1in{Sz;n2n}neqp) for z € X.
The sequence S; = {Sz;n}nedq(D) is said to be the symbol of the element z.
Its nth component is said to be nth symbol function*. O

From Definition 2.1 it follows that the symbol is linear in its index, i.e.
(2.2) Sz =¢Sz, Sz4y=S:+Sy forallz,ye X, ceF.
Indeed, since F and S; are linear, we have: (cz)" = cz” and (z + y) =
zN +y™.
COROLLARY 2.1. Suppose that all assumptions of Theorem 1.2 are satisfied
andz € X, t,h € A(R). Then

Spz(t) = ac—liSz(t) for z € dom D;

She(t) = | Sz(u)du; Spa(t) =Se(0); S(sye)(t) = Su(t + h).

Proof. By our assumptions and Theorem 1.2, for z € dom D, t € A(R) we
have

(Spz)(t) = {SDzn2n}nea(d) =

d d
= {8 gamon) ncatD)(8) = {Seimn neay(t) = (5;5=)(0)
Similar proofs for Sgz, SFz, Ss,z (z € X, t,h € A(R)). =
By an easy induction we obtain

COROLLARY 2.2. Suppose that all assumptions of Theorem 1.2 are satisfied.
Then

(i) Spre = %S, for « € dom D* (k € N);

(ii) all nth symbol functions are infinitely differentiable (with respect to
t € A(R) for z € Do, (n € d(D)));

*The symbol functions for D-polynomials and exponentials has been introduced in
PR[1], p.357. The case dim ker D = 1 has been examined in PR[2].
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(ili) z € Ar(D) if and only if all nth symbol functions S, (n € d(D))
are analytic at t =0 and

Sz:n(t) = i 'sgkz,(O) for te AR) (z € Ar(D), n € d(D)).
k=0

COROLLARY 2.3. Suppose that all assumptions of Theorem 1.2 are satisfied.
Let P(t) € F[t] (i.e. P(t) is a polynomial with scalar coefficients). Then the
equation

(2.3) P(D)x =y, yeX

has a solution z if and only if each nth symbol function S, (n € d(D))
satisfies an ordinary differential equation:

(2.4) P(%)Sxm = Sy:n (n € d(D)).

DEFINITION 2.2. Suppose that all assumptions of Theorem 1.2 are satisfied.
Then true shifts have the intermediate value property (shortly: IVP) if for
every ¢ € dom D and for every t,h € A(R) there exists a § = {6,}, 0 <
0, <1 (n € d(D)) such that

(2.5) Sein(t + ) — Se(t) = hSpan(t + 0,h) (n € d(D)). O

Since the family { Sy }rc a(r) of true shifts is at least a semigroup, in order
to show that they have IVP it is enough to prove that for every z € dom D,
h € A(R) there is a § = {0, }nca(D), On € (0,1), such that

(2.6) Sein(h) — Sz(0) = ASpzin(6nh) (n € d(D)).
Indeed, Formula (2.6) implies that for all ¢t € A(R), n € d(D) we have

Szin(t + B) — Sgin(t) = Se(Szin(h) — Szin(0)) = S, <h%§pxm(0nh)) =

= hSg,Dz;n(0nh) = hSpz.n(t + 0,h).

THEOREM 2.1. Suppose that all assumptions of Theorem 1.2 are satisfied .
Then true shifts Sy, have IVP on dom D.

Proof. Let {Sh}nca(r) be a family of true shifts. Since we are dealing with
a semigroup (group), we can use Formula (2.6). Let z € dom D, t € A(R)
and n € d(D) be arbitrarily fixed. Then there is a 8, € (0,1) such that

Sx;n(t + h) - Sx;n(t) = Sszz;n(h) - SSex;n(O) = hSDS:z;n(gnh) =

= hSS,Dz;n(onh) = hSDa:;n(t + 0nh)’
which implies
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v v v
Se.n(t+h)—S,.n(t) =
zedom D hte AR) ned(D) 0< b, <1 mnETA)=Szn(?)
= hSD:r;n (t -+ eh) [
COROLLARY 2.4. Suppose that all assumptions of Theorem 2.1 are satisfied.
Then the initial operators F, = FSy, (h € A(R)) have IVP.

Proof. Act on the both sides of Formula (2.6) by the operator F' and again
apply this formula. [

2.7)

This Corollary has deep consequences. Namely, we have

COROLLARY 2.5. Suppose that all assumptions of Theorem 1.2 are satisfied.
Then the following theorems on intermediate value hold:

(i) Ifa # b, £ € dom D and Foxr = 0, Fpz = 0 then there ezists a
6 = {bn}neca(p) such that

SFyz—Fazin = (b— a)SFa+a(b-a)Dz;" (n € d(D))a

(ii) If a # b, z € dom D and Fyx = F,z, then there ezists a 6 =
{0n}ned(p) such that

SFa+gn(b_a)Dz;n =0 (n € d(D))1
(iii) If a # b and x € X then there ezists a § = {On}nca(D) such that
1
- aslgz;" = SF,,e(5-ayzims  Where It = (Fy — Fo)R, (ne€ d(D));

() Ifa # b and £ € dom D then

Ssz-—Faz;n = (b - a)S[Sé Fout0n(b—a)Dzinddy] (TL € d(D))’

(v) If dim ker D = 1 (i.e. d(D) = {1}), then there correspond to (i)-(iv)
the classical Lagrange and Rolle theorems, theorem on intermediate value of
a definite integral and Hadamard Lemma (where 0 < 8 < 1):

Fyz — Fox = (b—a)Fa194-a)Dxr  whenever F, = Fy = 0;
Fotrop-a)Dz =0 whenever Fyz = Fyx;
1
b—a

'z =F, g-a)T, where It = (F, - F,)R;

1
Fyz — Foz = (b—a) [g F,H_g(b_a)D:cde] :
0

3. Oscillatory elements
We shall apply results of Sections 1 and 2 in order to examine solutions
of linear equations in a right invertible operator.
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DEFINITION 3.1. Let X be a linear space over the field F and let D € R(X).
Suppose that {F,}scam) C Fp is a family of initial operators for D. A
point a € A(R) is said to be a zero of an element z € X if F,z = 0. An
element z € X is said to be oscillatory if there is a sequence {a,} C R such
that F, z =0 for n € N, i.e. if  has infinitely many zeros. d

Recall that an element z € X is said to be S-periodic for an S € Lo(X)
if Sz = z (cf. PR[1], also PR[4]).

LEMMA 3.1. Let F be an initial operator for D € R(X) corresponding to a
right inverse R and let be given a semigroup {Sh}nher C Lo(X). Ifx € X is
Sp-periodic and Fx = 0 then x has infinitely many zeros jh for j € Z, i.e.
x is oscillatory.

Proof. By our assumptions we have St =5_4 =58 forallh € R\ {0}.
Thus Fjpz = FSjhz = FSjz = Fz =0 for j € Z. n

Suppose that D € R(X) and R € Rp. An operator A € Lo(X) is said to
be stationary if DA = AD and RA = AR. Clearly, scalar multiples of the
identity are stationary. In general, a converse statement is not true.

THEOREM 3.1. (Sturm Separation Theorem) Suppose that all assumptions of
Theorem 1.2 are satisfied. Let u and Rv be two linearly independent solutions

of the equation Q(D)x =0, where Q(D) = EL\;O QwD*,
(31) QN = Ia QO""aQN—I € LO(X)a
Qo, ..., QN—-1 are stationary, the operator

N
QU,R) =) QwRV*
k=0

is tnvertible and

(3.2) Fou=0, Fwv=0 (b#a).

Then there exists a © = {0n},cq(Dy; 0 < 6, <1 for n € d(D), such that
(3.3) SF, e0-ayuin =0 for all n € d(D).

In particular, if dim ker D = 1, then there is a 8 € (0,1) such that
(3-4) Foto(b—ayu=0.

Proof. If u and v satisfy our assumptions, then Corollary 2.5(i) (a gen-
eralization of the Lagrange theorem) implies that there is § = {0, }nea(D),
0 < 6, <1 for n € d(D), such that

0= SFbv—Fav;n = S(F;,—F,,)Ru;n = S(b—a)Fa_,_,;"(,,_a)DRu;n
= (b—a)SF,

+0(b—a) Uiy
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i.e. Formula (3.3) holds. In particular, if dim ker D = 1, then d(D) = {1}.
Thus, in a similar way, Corollary 2.5(iv) implies (3.4).

On the other hand such solutions u and v exist. Indeed, since Qq, ..., QN
are stationary, Qn = I, we find Q(D) = DNQ(I, R). Hence any solution of
Equation (3.1) satisfies the equation

N-1
QU,R)x = z R*z., where 2, ...,2ny_1 € ker D.
k=0
This implies that
N-1 N-1
z=[QUR]™Y Rtza=) R QUR)] =
k=0 k=0

We therefore can take v = R*1[Q(I,R)] 'z fora k =1,..,N — 1. Then
v = Ru =RF[Q(I,R)]"'z; (k = 1,..., N —1). Clearly, u and v are linearly
independent since z and Rz are linearly independent whenever z € ker D.

[

COROLLARY 3.1. Suppose that all assumptions of Theorem 3.1 are satisfied
and A(R) = R. If v is Sy-periodic and there ezists a § = {0 }nca(p) (On €
(0,1)) such that hi, = (j + 6a)h are zeros of u for j € Z.

Proof. By Lemma 3.1, v has zeros jh for j € Z. By Corollary 2.2, there
exists a 6 = {On}nea(p) (On € (0,1)) such that
0= SF;.v—Fv;n = S(F;.—F)Ru;n = hSth DRu;n = hSFo,.hu;n-

Thus, similarly as in the proof of Lemma 3.1, we find

SF4ommnuin = SFSjnsopnuin = SFSo,.hSiu;n = SFso,nuin = SFe,nuin =0
for j € Z, n € d(D). ]

THEOREM 3.2. Suppose that all assumptions of Theorem 3.1 are satisfied
and A(R) = R. If v is oscillatory then u is oscillatory and for every n € N
there ezists a 0,, € (0,1) such that

(3.5) SF,, un =0, where hj, = hy + 0p(hny1 = ha).

Moreover,

() if lhn+1 = hn| — 0 then |hy,,; — h| = 0 as n — oo;

(ii) of |hnt1 — hn| — oo then |h;,  ; — h}| — 00 as n — oo;
i.e. two linearly independent solutions u and v = Ru of Equation (3.1) have
stmilar kind of oscillations.
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Proof. If v is oscillatory and h,, are its zeros then for every n € N there
exists 0, € (0,1) such that for all v € d(D)

0= SF"»+1”—th”;” = S(Fh —Fpn,)Ruy = Sth+9n(hn+1—hn)“;" = SF"Q“;V'

n+l
Hence v is oscillatory with zeros k], (n € N).

(i) Suppose that |hp4+1 —hn| — 0 as n — oco. Then for every € > 0 there
exists an N € N such that for all n > N we have |h,41 — hp| < €. Hence for
n>N

lhsr1 = Binl = [Png1 + Ony1(Bnga — hags = b = On(hnyr — ha)| <
< Ihn+1 - hnl + 0n+1|hn+2 - hn+1| + onlhn+l - hnl <
e+ 0py18+ 0 < 3¢,
ie. |h, 1 —h,| = 0asn— oo
(ii) Similarly, if |hn41 — hn] — 00, as n — oo then for every € > 0 there
is an N € N such that |hp41 — hn| > € for all n > N. This implies that

|1 — hy| > €+ 6py16+ 0 > 3e forn > N, ie. |hy; —hl| = o0 as
n — 00. ]

4. Multiplicative symbol in algebras
We recall the following theorem.

THEOREM 4.1. (cf. PR[5]). Let all conditions of Definition 2.1 be satisfied
and let X be a commutative algebra. Let {Sh}rcaw) be a family of true
shifts. Then D|4,(p) satisfies the Leibniz condition if and only if Si are
multiplicative on Ag(D) for all h € A(R).

This implies the following

THEOREM 4.2. Let all assumptions of Theorem 1.2 be satisfied and let X
be a Leibniz algebra. If F' is multiplicattive then the symbol S and the nth
symbol functions are multiplicative, i.e.
(4.1) Szyin = Sz;nSy;m  for all z,y e X, neN.
Proof. Let t € A(R) be arbitrary. By Theorem 4.1, all true shifts S; are
multiplicative. By our assumptions and definitions, for all z,y € X

Fiz = FSyz = z™\(t) = {Sain}necap); Fi(zy) = FSi(zy) = (zy)(t)

= {Sry;n}ned(D)-
Since F is multiplicative, we get
{Seyin} = a9 (t) = FSyzy = F[($2)(Sw)] = [(FS.) (FSu)]
=z" (t)yA (t) = {S:z:;n}ned(D) {Sy;n}ned(D)-

This means that the symbol S is multiplicative. Also the nth symbol func-
tions are, by their definition, multiplicative. .
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