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ON GENERALIZED ISHIKAWA ITERATION PROCESS 
AND NONEXPANSIVE MAPPINGS IN BANACH SPACES 

Abstract. Let D be a subset of a normed space X and T : D —» X a nonexpansive 
mapping. Let {an}, {bn} and {on} be three sequences of real numbers satisfying: 

(i) 0 < an < 1 and cm = oo, 
(ii) 0< bn < 1 for all n > 0, limn bn = 0 and max{an, 1 — an}bn < oo, 
(iii) 0 < Cn < 1 for all n > 0, and bnCn < oo. 
Given a bounded sequence {xn} in D satisfying: 

(GI) 
Zn+l = (1 — an)xn + anTyn, 

Vn = (1 — bn)xn + bnTzn, 

Zn = (1 ~ Cn)xn + CnTxn,n > 0, 

we prove that limn — Txn\\ = 0. The conditions on D,X,T and iteration parameters 
are shown which guarantee the weak and strong convergence of our iteration process to 
fixed points of T. Our results improve and extend corresponding previously known results 
of [4, 5, 8, 15, 16, 20], 

1. Introduction 
Let D be a nonempty subset of a normed space X and T : D X a 

nonexpansive mapping (i.e., | |Tx — Ty|| < ||x — y||Vx, y € D). 
It has been known (cf. [1, 2, 6]) that approximate fixed point sequence 

(AFPS, i.e., the sequence {xn} in D with ||a;n — Txn\\ —> 0 as n —> oo) 
plays a key role in studying the existence and approximation of fixed points 
of nonexpansive mappings, since in general an iterative sequence need not 
to be an approximating fixed point sequence. There are many papers (see, 
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e.g., [15], [16], [19], [20] and references therein) in which it is shown that 
corresponding iterative sequences are approximating fixed point sequences 
in Banach spaces under geometric structure uniform convexity. 

In 1976, Ishikawa [8] proved the following nice theorem without convexity 
of domain of nonexpansive mappings in normed space: 

THEOREM A [8]. Let D be a subset of a normed space X and T : D —» X a 
nonexpansive mapping. Let {in} be a sequence of real numbers satisfying: 

oo 

0 < in < t < 1 and ^ in = oo. 
n=0 

Given a sequence {xn} in D defined by 

(M) xn+i = (1 - tn)xn + tnTxn, n > 0. 

If {xn} is bounded, then ||xn — Txn\\ —» 0 as n —> oo. 

In 1974, Ishikawa introduced a new iteration process (see [17]) to approx-
imate fixed points of pseudocontractive mappings with compact domain in 
Hilbert space as follows: 

(I) xn+1 = (1 - an)xn + a n ( ( l - bn)x + bnTxn), n > 0, 

where {an} and {£>„} are sequences in [0,1] satisfying certain restrictions. 
The Mann iteration process (see [12,27]) (M) is a special case of Ishikawa 
iteration process (I). 

In the paper [4], Deng generalized Theorem A for Ishikawa iteration pro-
cess and established weak and strong convergence results for nonexpansive 
mappings in Banach spaces. 

Recently, Sharma and the author [14] introduced generalized Ishikawa 
iteration process to approximate fixed points of asymptotically nonexpansive 
mappings in uniformly convex Banach spaces: 

Let D be a nonempty subset of a normed space X and T : D —• X a 
nonlinear operator. Further, let r be a positive integer and let {on)i},i = 
1 , . . . , r be sequences of real numbers in [0, 1]. For xo G D, the generalized 
Ishikawa iterative sequence (of rank r) {zn} is given by 

= (1 - On,l)xn + an,lTyn<l, 

yn,i = (1 - an,i+i)xn + an,i+iTyn,i+i,i = 1 , . . . , r - 1, 
Vn,r = X n , n > 0 . 

In our present paper, we deal with generalized Ishikawa sequences of 
rank 3, and therefore admit a slightly simpler notation: 

On:=On,i, bn — a„ i2, cn := a„ i3, yn := yn,i and zn := 
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In particular, we underline that whenever referring to (GI) we mean the 
procedure defined for r = 3. It is first shown that the iterative sequence of 
our iteration process (i.e. generalized Ishikawa iteration process) is an AFPS 
for nonexpansive mappings in general Banach space. Then it is applied to 
prove weak and strong convergence of our iteration process for nonexpan-
sive mappings. Our results generalize and improve the results of Deng [4], 
Emmanuele [5], Ishikawa [8], Jung, Cho and Lee [9] and Tan and Xu [15]. 

2. Preliminaries 
Recall that a Banach space X is said to be smooth provided the limit 

l i m l|s + t y | | - M 
t-> o t 

exists for each x and y in S = {x G X : ||x|| = 1}. In this case, the norm of 
X is said to be Gâteaux differentiate. It is said to be uniformly Gâteaux 
differentiable if for each y G S, this limit is attained uniformly for x G S. 
The norm is said to be Fréchet differentiable if for each x G S, this limit is 
attained uniformly for y GS. In this case 

(2.1) ±\\xf + (h, J(x)) < I||* + h f < ±\\xf + (h, J(x)) + 6(||/i||) 

for all bounded x,h in X,where J(x)=c^| | i | |2 is the Fréchet derivative of 
the functional ^||.||2 at x G X, (.,.) is the pairing between X and X*, and 
b(.) is a function defined on [0,oo) such that limtj.o b{t)/t = 0. 

Finally, the norm is said to be uniformly Fréchet differentiable if the 
limit is attained uniformly for (x, y) G S x S. In this case X is said to be 
uniformly smooth. Since the dual X* of X is uniformly convex if and only if 
the norm of X is uniformly Fréchet differentiable, every Banach space with a 
uniformly convex dual is reflexive and has a uniformly Gâteaux differentiable 
norm. The reverse is false. 

If X is smooth, the duality mapping J is said to be weakly sequentially 
continuous at 0 if {J(xn)} converges to 0 in the sense of the weak-star 
topology of X* as {xn} converges weakly to 0 in X. 

We say that a Banach space X satisfies the Opial's condition [13] if for 
each sequence {xn} in X weakly convergent to a point x and for all y ^ x 

M n Ikn - aril < !im„ \\xn ~ y\\-

The examples of Banach spaces which satisfy the Opial's condition are 
Hilbert spaces and all Lp [0,27r] with 1 < p ^ 2 fail to satisfy Opial's con-
dition [13], 

Let D be a nonempty closed convex subset of a Banach space X. We 
say that I-T is demiclosed at zero if for any sequence {xn} in D condition: 
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weakly and limn ||a:n — Txn | | = 0 imply that (I-T)x = 0. 
A Banach limit LIM is a bounded linear functional on £°° such that 

limn tn < LIM„ tn < limn tn 

and 
LIMn tn = LIMn tn+1 

for all {in} be a bounded sequence in £°°. We can define the real-valued 
continuous convex function f on a Banach space X by 

f ( z ) — LIMn ||xn — z\\2 

for all z G X, where {rcn} is a bounded sequence in X. 
To prove the main results of the paper, we need the following known 

results: 
Lemma 1 [7]. Let X be a Banach space with uniformly Gateaux differentiable 
norm and u € X. Then 

f(u)= mîf(z) 
z&X 

iff 
LIM n ( z , J(xn — u)) = 0 

for all z € X, where J : X —> X* is the normalized duality mapping and 
(.,.) denotes the generalized duality pairing. 
Lemma 2 [5]. Let {an} and {&n} be two sequences of a normed space X. 
Assume that there is a sequence {£„} in [0,1] satisfying: 

(i) 0 < £ „ < £ < 1 and = oo, 
(ii) a n + i = (1 - tn)an + tnbn\/n > 0, 
(iii) limn ||an|| = d, 
(iv) limn ||6n|| < d and {Y^=o^nbn} is bounded. 

Then d=0. 
Lemma 3 [15]. Let { a n } and { 6 n } be two sequences of nonnegative numbers 
such that an+i < an + bn,n> 0. If bn converges, then limn a n exists. 

3. Main results 
THEOREM 1. Let D be a nonempty subset of a normed space X and T : D —• 
X a nonexpansive mapping. Let {an}, {6n} and {cn} be three sequences of 
real numbers satisfying: 

(i) 0 < an < a < 1 and an = 
(ii) 0 <bn< lVn > 0, limn bn = 0 and max{an, 1 - a„}&„ < 
ieii(iii) 0 < cn < Yin > 0, and bncn < oo. 
Given a sequence {xn} in D defined by (GI), then 
(a) limn ||xn — p|| exists if p is a fixed point of T, 
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(b) limn ||xn — Txn || = 0 if { x n } is bounded. 

P r o o f , (a) Let p be a fixed point of T. Then by simple calculation 

I K + I - P l l < K - P I I V n > 0. 

It follows that the {||xn — p||} is nonincreasing and the part (a) is proved, 

(b) We have 

(1) \\xn-yn\\<bn\\xn-Tzn\\ 
<bn(\\xn-Txn)\\ + \\Txn-Tzn\\ 
< (bn + &„c„)||xn - Txn||, 

(2) ||y„ - Zn\\ < (1 - 6n)||x» -Zn\\+ bn\\Tzn - Zn|| 
< (1 " 6n)||xn -Zn || + M ( 1 " Cn)||xn - Tzn|| 

+ c„||z„-x n ||] 

< (1 " 6h)||Xn ~ ¿n|| + M ( 1 " Cn)(|kn " Tx„|| 

+ | | T x n - r z n | | ) + Cnll^n ^nll] 
< ||xn - zn\\ + 6„(1 - cn)||xn - Txn|| 

< [Cn + 6 n ( l - C n ) ] | | x n - T x n | | 

and 

||xB+i - T x b + i | | < (1 - On)||xn - T x n + 1 | | + an\\Tyn - Txn+l\\ 

< (1 - a „ ) ( | | x n - X n + i | | + | | x n + i - T x n + i | | ) 

+ On || y n - X n + i H 

< (1 - a n ) (a n ||x„ - Tyn|| + ||xn+i - Tx n + i||) 

+ a „ ( ( l - a „ ) | | y n - x „ | | + an||y„ -Ty„||) . 

The last inequality implies by (1) and (2) that 

||x„+i - Txn+1|| < (1 - an)(||xn - Tyn|| + ||xn - yn||) + an||yn - Tyn|| 

< (.1 - an)(||xn - ryn|| + ||xn - yn||) 

+ a n [ ( l - 6n)||xn - Tyn|| + 6n||zn - yn||] 

< (1 - a„6n)||xn - Ty„|| + (1 - an)||xn - yn|| 

+ anbn\\Zn ~ yn\\ 
< (1 - on6n)(||xn - Txn|| + ||Txn - Tyn||) 

+ (1 - an)||x„ - y„|| + anbn\\zn - yn||. 

Therefore 

(3) ||xn+1 - Txn+i|| < [1 + 2bn(l - a^ + 2i>ncn(l - anbn)]\\xn - Txn||. 
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Since max{on, 1 - an}bn < oo, Yl'ZLo bncn < oo and {||zn - Txn\\} is 
bounded, it follows from Lemma 3 that limn ||xn — Txn\\ exists. 

Set limn ||zn - Txn\\ = d and Bn = Tyn - Txn + a~l{Txn - Txn+1). 
Hence we have 

and 
Xn+1 ~ Txn+1 = (1 - an)(xn - Txn) + anBn 

\\Bn|| < \\Tyn-Txn\\+a-l\\Txn-Txn+l\\ 
<(b n "I" ^nCn)\\%n — Txn || + ||xn - Tyn || 
<(b n + b \\ + \\xn-Txn\\ + \\Txn-Tyn\\ 
< ||xn - Txn\\ + 2(bn + bncn)\\xn - Txn\\ 
< \\xn -Txn\\ + 4bn\\xn-Txn\\. 

It follows from the condition limn b„ = 0 that limn | |5n | | < d. Moreover, 
m rn 

Y: anBn = XI ~ Txn) + Tx° ~ Txm+1 
n=0 n = 0 

m 
< X ] On ||i/n - Xn || + | |Tl0 - Txm+11| 

n=0 
m 

^ ^~2an{bn + bncn}\\xn - Txn | | + IITzo - Txm+1\\. 
n=0 

It means that {|| anBn\\} is bounded because Yl^Lo max{an, 1 — an}bn 
<00 and X^^Lo bncn<oo. It follows from Lemma 2 that limn \\xn—Ti„|| = 0, 
completing the proof. • 

In view of Theorem l(i), we remark that if F(T), the set of fixed points of 
T, is nonempty, then our iterative sequence { i n } defined by (GI) is bounded. 

THEOREM 2. Let D be a nonempty subset of a normed space X and T : 
D —• X a nonexpansive mapping. Let {on} and {6n} be two sequences of 
real numbers satisfying: 

(i) 0 < an < 1 and an = 
(ii) 0 <bn < lVn > 0, limn bn = 0 and max{a„, 1 — an}bn < 00. 
Given a sequence {xn} in D defined by (I). Then 
(a) limn \\xn — p|| exists if p is a fixed point of T, 
(b) limn ||a;n — Txn\\ = 0 if {a;n} is bounded. 

REMARK 1. In the case when Yl^Lo bn < 00, Corollary 1 immediately re-
duces to Theorem 1 of Deng [4]. Therefore, Corollary 2 is an improvement 
of Theorem 1 of Deng [4]. 
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Now we are able to prove weak convergence of our iteration process 
for nonexpansive mappings in Banach spaces endowed with some ([10],[11]) 
geometric structures. 

COROLLARY 1. Let X be a Banach space satisfying Opial's condition, D 
a non-empty weakly compact subset of X and T : D —• X a nonexpansive 
mapping such that F(T) ^ <fi and I-T is demiclosed at zero. Given a sequence 
{xn} as in Theorem 1. Then {xn} converges weakly to a fixed point ofT. 

Proof. First we show that ww(in) C F(T). Let xnk x weakly. By The-
orem 1(b) , we have limn\\xn — Txn|| = 0 since I-T is demiclosed at zero. 
Hence x 6 F{T). By Opial's condition {xn} possesses only one weak limit 
point, i.e., { x n } converges weakly to a fixed point of T. • 

We remark that Theorem 2 does not apply to any Lp space if 1 < p ^ 2, 
since none of these spaces satisfy Opial's condition (cf. [11]). The following 
result can be applied to all uniformly convex Banach spaces (and hence to 
all Lp spaces). 

THEOREM 3. Let X be a uniformly convex Banach space with Frechet dif-
ferentiable norm, D a nonempty closed convex subset of X and T : D —> D 
a nonexpansive mapping with F(T) ^ <f>. Given a sequence {in} as in The-
orem 1. Then {in} converges weakly to a fixed point ofT. 

Proof. Let {x v ( n ) } and { ^ ( n ) } converge weakly to w and z in D, respec-
tively. Since limn ||a:n — Ta;n|| = 0 by Theorem 1(b) and (I-T) is demiclosed 
with respect to zero, it follows that w = Tw and z = Tz. Set 

Tn = (1 - an)I + anT[( 1 - bn)I + bnT(( 1 - cn)I + cnT)]. 

Then Tn(D) C D because D is convex. Moreover, 

IITnx - Tny\\ < (1 - an)\\Tx - Ty\\ + an||(l - bn)(x - y) + bn(Tx - Ty)\\ 
< (1 - an)||x - 2/|| + an[(l - bn)\\x - y\\ + bn\\Tx - Ty\\] 
<ll*-y|| 

and xn+\ = Tn(xn),n > 0. The reminder of proof is similar to that of 
Theorem 1 of Tan and Xu [15]. We include this simple proof for the sake 
of completeness. Let an(t) = \\txn + (1 — t)fi — /2II, i € [0,1] and / i , / 2 6 
F(T). Then limn an(0) = ||/i — /2II and from Theorem 1(a), we obtain that 
limn an(l) = limn\\xn — /2II exists. It now remains to show limn an(t) exists 
for all t 6 (0,1). 

Further, set b„,m = \\SntTn(txn + (1 - t)f1) - tSn<mxn - (1 - i ^ m / i l l , 
where Sn<Tn — Tn+Tn—-\Tn.\.m—2,...,Tn. Then xn^.m = Snt7nxn, SntTnp = 
pVp € F(T) and | | - 5n,m2/|| < \\x - y\\ Vx, y € D. 
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Let 5 denote the modulus of convexity of X. We know from Bruck [3] 
that 

(4) + (1 - t)y|| < 1 - 2 m i n { t , (1 - t)}i(||a: - y||) 

< 1 — 2i(l — i)i(||a; — y||) 

for all t €[0,1] and for all x,y e X such that ||z|| < 1 and ||y|| < 1. Set 

_ •S'n.m/l - S n , m ( t x n + (1 - t ) f i ) 

U n > m " «11«» -/ i l l 

and 

_ S n i m ( t x n + (1 — t ) f i ) — 5w ,mgn 

V n ' m ~ (1 - t ^ - M 

Then || Un,m|| ^ 1 and ||unim|| < 1 and it follows from (4) that 

(5) 2t(l - t)i(|K,m - t>„,ra||) < 1 - I I t u n , m + (1 - i)Un,m||, 

since 

t(l-t)||*B-/l|| 

and 

II. , f-i +\„, || _ H'S'n.m̂ n ~ *Sn,m/l || 
||iM»,m + (1 - t)f»,m|| = If- 7"ii • 

II i - /ill 

It follows from (5) that 

(6) * • ' ( « & - « ) £ - A l ) 

< ||®n-/l||-||5„lTB®„-5Bim/i||. 

Since ||xn - /ill < ||®o - /ill, t(l-t) < \ for all t in [0,1] and ^ is nonde-
creasing, then from (6), we have 

Observe from ¿(0) = 0 and Theorem 1(a) that limn ||x„ — /i|| exists. Then 
the continuity of 6 yields limn bn m = 0. 
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But 
an+m(t) = ||txn+m + (1 - t)fi - hII 

< IItxn + m + (1 - t ) / i - f 2 + (Sn,m(txn + (1 - t ) / i ) 
- tsn>rnxn - (1 - t)Sn,m/l)|| 
+ | |Sn ,m(ten + (1 - i ) / l ) - tsnimxn - (1 - i )5„,m/l | | 
<| |5„ i r o ( te n + ( l - i ) / i ) - / 2 | | + bn,m 
< ||ten + ( l " i ) / l -h\\+bn,m 
< On(i) + bntrn. 

Hence 
l imnan( i) < lim^ an(i) . 

Since norm of X is Frechet differentiable, we have 

\\\fi " /2II2 + t(xn - fu J ( / i - / a ) ) < i ( £ ( i ) 

< ¿ | | / i - Ml 2 + t(xn - fuJ(h - h)) + b(t\\xn - Ml). 

Since b is increasing and ||xn — / i | | < M for some M > 0 we have 

¿||/l " f2\\2+tMn(xn ~ fUJ(h ~ h)) 

< ^ lima^(t) 

Z n 

< | | | / i - /2II2 + t\Mn(Xn - fu J(h - / a » + b(tM). 

Hence 
Iimn(a:n, J ( / x - f2)) < lim„(zn, J(fi - ft)) + ^r1, it follows from the 

fact lim f_0+ ^p- = 0 that limn(xn , J ( / i — f2)) exists. • Combining Theorems 2 and 3, we obtain 

THEOREM 4. Let X be a uniformly convex Banach space which satisfies 
Opial's condition or whose norm is Frechet differentiable, D a nonempty 
closed convex subset of X and T : D —> D a nonexpansive mapping with 
F(T) <f>. Given a sequence {xn} as Theorem 1. Then {xn} converges 
weakly to a fixed point of T. 

We remark that Theorem 4 generalizes several known results (see, e.g., 
[4], [6], [16]) which are established in uniformly convex Banach spaces. The-
orem 1 of Zeng [20] also can be extended for our iteration process. 

Now we give a dual weak-almost convergence theorem for our iteration 
process. 
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THEOREM 5. Let X be a reflexive Banach space X with uniformly Gâteaux 
differentiable norm and T:X—> X a nonexpansive mapping with F(T) ^ <f>. 
Suppose that every nonempty closed convex bounded T-invariant subset of 
X has fixed point property for T. Given a sequence {i„} as in Theorem 1. 
Then there exists a point v € F(T) such that {J(xn — w)} converges weakly 
to zero. 

Proof . Let LIM be a Banach limit and define a real-valued function / on 
X by 

f(z) = LIM„ K - , z | | 2 

for each z eD. Then / is a continuous convex functional and f(z) —> oo as 
|| —• oo. Since X is reflexive, f attains its infimum over X. Let 

M = {ueX:f(u)= inf f(z)}. zÇX 
Then M is a nonempty closed convex bounded set. Also M is invariant 
under T. In fact, by Theorem 1(b), we have limn \\xn — Txn\\ = 0 and hence 
we have for each y € M 

f(Ty) = LIMn | |Tx n -Ty | | 2 

< LIMn | | x - y | | 2 = /(y). 
Therefore, by assumption, T has a fixed point in M. Denote such a point 
by u. 

On the other hand, by Theorem 1(a), limn ||xn — p\\ exists for all p € 
F(T). Then f(p) is independent on Banach limits. Thus, we may assume 
that u minimizes / for any Banach limit LIM. It follows from Lemma 1 that 

LIM„(z, J(xn - u)) = 0 

for all z 6 X and any LIM. Thus, {(z,J(xn — u))} is almost convergent 
([11]) to zero, i.e., { J ( x n — ti)} is weakly almost convergent to zero. • 

Applying Theorem 1 and 5, we obtain the following weak convergence 
theorem: 

THEOREM 6. Let X be a reflexive Banach space X with uniformly Gâteaux 
differentiable norm, T : X —• X a nonexpansive mapping with F(T)^ <f> 
and let J - 1 : X* —> X be weakly sequentially continuous at zero. Suppose 
that every nonempty closed convex bounded T-invariant subset of X has 
fixed point property for T. Given a sequence {xn} as in Theorem 1 with 
xn — xn+\ —> 0 as n —» oo. Then there exists a point u € F(T) such that 
{rcn} converges weakly to u. 

Proof . Since the norm of X is uniformly Gâteaux differentiable, the duality 
mapping is uniformly continuous on bounded subset of X from the strong 
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topology of X to the weaA;*-topology of X*. Thus, since xn — xn+i —> 0, the 
sequence { J { x n — u) — J(xn+1 — u)} converges weakly to zero. However, this 
is a Tauberian condition for almost convergence, so {J(xn — u)} converges 
weakly to zero. Since J - 1 is weakly sequentially continuous at zero, {xn} 
converges weakly to u. This completes the proof. • 

We remark that Theorem 5 generalizes several recent results of this na-
ture. Particularly, it extends Theorem 5 of Jung, Cho and Lee [9]. 

Next we substitute the Fixed Point Property (FPP) assumption men-
tioned in Theorem 6, by assuming that space X is reflexive and strictly 
convex. 

T H E O R E M 7 . Let X be a reflexive and strictly convex Banach space with a 
uniformly Gâteaux differentiable norm, T : X —> X a nonexpansive mapping 
with F(T) </> and let J-1 : X* —• X a weakly sequentially continuous at 
zero. Given a sequence {xn} as in Theorem 1 with xn—xn+\ —• 0 as n —> oo. 
Then there exists a point u G F(T) such that {xn} converges weakly to u. 

P r o o f . To be able to use the argument of Theorem 4, we just need to show 
that the set M contains a fixed point of T. To see this, let w 6 F(T) and 
define 

M0 - {u € D : ||tt - to|| = d{w, M)}, 
where d(w,M) = inf{| | i — tu|| : x € M}. Then, since X is strictly convex, 
Mo is a singleton. Let Mo = {v}. But \\Tv — iu|| < — iu|| and so Tv = v. u 

On the other hand, it is easy to find examples of spaces which satisfy 
the F P P for nonexpansive self-mappings, which are not strictly convex. 

As a consequence of Theorem 5, we may derive the following result. 

T H E O R E M 8 . Let X be reflexive Banach space with uniformly Gâteaux differ-
entiable norm, T : X —y X a nonexpansive mapping with F(T) ^ <f>. Given a 
sequence {xn} as in Theorem 1, then there exists a nonempty closed convex 
bounded T-invariant set M defined by 

M = {ueX:f(u)= inf/(*)}. 
2ÉA 

Suppose in addition that xn — —» 0 as n —> oo, J : X* —• X is 
weakly sequentially continuous at zero and M has normal structure. Then 
{xn} converges weakly to a fixed point of T. 

P r o o f . The existence of fixed points of T in M follows from Kirk [10]. • 

Finally, we give necessary and sufficient condition for strong convergence 
of our iteration process for nonexpansive mappings in Banach spaces. 

T H E O R E M 9 . Let D be a nonempty closed subset of a Banach space X and 
T : D —> X be a nonexpansive mapping with nonempty fixed point set F(T) 
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in D. A sequence {xn} in D defined by (GI), where {an}, {bn} and {cj»} are 
three sequences of real numbers in [0,1] converges strongly to a fixed point 
ofT if and only if limn d(xn, F(T)) = 0. 

P r o o f . The necessity of the condition is obvious. For sufficiency, from 
Theorem 1(a), we have that limn ||x„ — p|| exists for each p e F(T), i.e., 
limn d(xn, F(T)) exists since limn d(xn, F(T)) = 0. Given e > 0. There ex-
ists a positive integer no such that d(xn, F(T)) < e/2 for all n > no. Hence 
for n,m > no, we have 

K - Xm|| < ||®n - P\\ + I km " p|| Vp € F(T). 
By taking infimum over p € F(T) in above inequality, we have 

\\xn-xm\\<d(xn,F(T)) + d{xm,F(T))<£ V n , m > n 0 . 

It follows that { i„} is a Cauchy sequence in D and hence it converges to 
a point v €D. Since limn xn — v, i.e., it follows that for each e' > 0, there 
exists a number N\ such that 

| | s „ - t ; | | < j Vn > iVi. 

Moreover, limn d(xn, F(T)) = 0 implies that there exists a number N2 > Ni 
such that 

d(xn,F(T))<^ Vn>iV2 

and hence 

d(xN2,F(T))<^. 

One can pick a point z 6 F(T) such that 

Thus we have 
Il Tv - vii < urti -z + z- TxN2 + TXN2 - z + z - xNz + XN2 - v|| 

< ||Tv - z | | + 2 | | T X N 2 - z | | + \\XN2 - z | | + Hxjv, - v | | 

< ||u - z|| + 3j|rcyv2 - z\\ + ||xjv2 - «|| 
< ||v - XN2 II + ||®jva - z|| + 3 | |xìv2 - z|| + [|xjv2 - u|| 
< 2 | | x N a - i ; | | + 4 | | a : j V a - z | | . 

But e' was arbitrarily chosen and therefore v = Tv, i.e., v is fixed point 
of T. m 
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Recall that a mapping T : D —* X with a nonempty fixed points set 
F(T) in D will be said to satisfy Condition (A) if there is a nondecreasing 
function g : [0, oo) —• [0, oo) with y(0) = 0, g(r) > 0 for r 6 (0, oo) such that 
||x - T i | | > g(d(x, F(T))) for all x € D. 

The following theorem generalizes Theorem 2 of Ishikawa [8], Theorem 
4 of Deng [4], Theorem 3 of Tan and Xu [15]. 

THEOREM 10. Let D be a nonempty closed subset of a Banach space X 
and T : D —> X a nonexpansive mapping with F(T) ^ <j> and condition 
(A). Given a bounded sequence {a;n} as in Theorem 1. Then {rrn} converges 
strongly to a fixed point of T. 
P r o o f . By condition A, we have 

\\xn ~ Txn|| > g(d(xn, F(T)) Vn > 0. 
By Theorem 1(b), we have limn | |xn — Ta;n|| = 0 and limn d(xn, F(T)) 

exists. From the later follows that limn d(xn, F(T)) = 0. Hence result follows 
from Theorem 9. • 

EXAMPLE 1. For the parameters of our theorems, one can make the following 
choices: 

On = b n = c„ = — — , n > 0. 
n + 1 

Then limn bn = 0 and X^^Lo bncn < oo, so these choices satisfy all the 
conditions of our theorems. 

Acknowledgement. The author would like to thank the referee for 
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