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D. R. Sahu

ON GENERALIZED ISHIKAWA ITERATION PROCESS
AND NONEXPANSIVE MAPPINGS IN BANACH SPACES

Abstract. Let D be a subset of a normed space X and T : D — X a nonexpansive
mapping. Let {an}, {brn} and {cn} be three sequences of real numbers satisfying:

(0<an<land )y o an = oo, N

(ii) 0< bn < 1 for all n > 0,imp by =0 and )~ max{an,1 — an}bn < o0,

(iii)) 0 € cn < 1 for all n > 0, and z:‘;o bnen < oo.

Given a bounded sequence {zn} in D satisfying:

Tn+1 = (1= an)zn + anTyn,
(GI) yn = (1 = bn)zn + bnTzn,
zn = (1 - cn)en + cnTxn,n >0,

we prove that limn, ||zn — Tzn|| = 0. The conditions on D, X, T and iteration parameters
are shown which guarantee the weak and strong convergence of our iteration process to
fixed points of T. Our results improve and extend corresponding previously known results
of [4, 5, 8, 15, 16, 20].

1. Introduction

Let D be a nonempty subset of a normed space X and T : D — X a
nonexpansive mapping (i.e., |Tz — Ty|| < ||z — y||Vz,y € D).

It has been known (cf. [1, 2, 6]) that approximate fixed point sequence
(AFPS, i.e., the sequence {z,} in D with ||z, — Tz,|| — 0 as n — o0)
plays a key role in studying the existence and approximation of fixed points
of nonexpansive mappings, since in general an iterative sequence need not
to be an approximating fixed point sequence. There are many papers (see,
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e.g., [15], [16], [19], [20] and references therein) in which it is shown that
corresponding iterative sequences are approximating fixed point sequences
in Banach spaces under geometric structure uniform convexity.

In 1976, Ishikawa [8] proved the following nice theorem without convexity
of domain of nonexpansive mappings in normed space:

THEOREM A[8]. Let D be a subset of a normed space X andT: D — X a
nonezpansive mapping. Let {t,} be a sequence of real numbers satisfying:

o0
0<t,<t<l and Ztn=oo.

n=0
Given a sequence {z,} in D defined by
(M) ZTny1 = (1 —tp)zn +t,T2p,n > 0.
If {z,} is bounded, then ||z, ~ Tz,|| — 0 as n — oo.

In 1974, Ishikawa introduced a new iteration process (see [17]) to approx-
imate fixed points of pseudocontractive mappings with compact domain in
Hilbert space as follows:

49 Znt1 = (1 = an)zn + an((1 = bp)z + b,Tz,),n > 0,

where {a,} and {b,} are sequences in [0,1] satisfying certain restrictions.
The Mann iteration process (see [12,27]) (M) is a special case of Ishikawa
iteration process (I).

In the paper [4], Deng generalized Theorem A for Ishikawa iteration pro-
cess and established weak and strong convergence results for nonexpansive
mappings in Banach spaces.

Recently, Sharma and the author [14] introduced generalized Ishikawa
iteration process to approximate fixed points of asymptotically nonexpansive
mappings in uniformly convex Banach spaces:

Let D be a nonempty subset of a normed space X and T : D —» X a
nonlinear operator. Further, let r be a positive integer and let {a,;},i =
1,...,r be sequences of real numbers in [0, 1]. For zo € D, the generalized
Ishikawa iterative sequence (of rank r) {z,} is given by

Znt1 = (1 — @n,1)Zn + 0,1 TYn 1,
Yni= (1 - an,i+1)zn + an,i+1Tyn,i+17i = 1) ey T — 1’
Yn,r = Tn,N 2> 0.

In our present paper, we deal with generalized Ishikawa sequences of
rank 3, and therefore admit a slightly simpler notation:

Up '=0n1, bn=0n2, Cni=0Gn3, Yn:=Yn,1 and 2, = yYn2.
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In particular, we underline that whenever referring to (GI) we mean the
procedure defined for r = 3. It is first shown that the iterative sequence of
our iteration process (i.e. generalized Ishikawa. iteration process) is an AFPS
for nonexpansive mappings in general Banach space. Then it is applied to
prove weak and strong convergence of our iteration process for nonexpan-
sive mappings. Our results generalize and improve the results of Deng [4],
Emmanuele [5], Ishikawa (8], Jung, Cho and Lee [9] and Tan and Xu [15].

2. Preliminaries
Recall that a Banach space X is said to be smooth provided the limit

Lz + 1yl = el

t—0 t
exists for each z and y in § = {z € X : ||z|| = 1}. In this case, the norm of
X is said to be Gateaux differentiable. It is said to be uniformly Gateaux
differentiable if for each y € S, this limit is attained uniformly for z € S.
The norm is said to be Fréchet differentiable if for each z € S, this limit is
attained uniformly for y €S. In this case

(21)  gllal’ + (b, J@) < gllz+hl? < gl + (b, I(&) + bIAI)

for all bounded z,k in X,where J(x)=03||z||? is the Fréchet derivative of
the functional 1||.||2 at z € X, (.,.) is the pairing between X and X*, and
b(.) is a function defined on [0,00) such that lim;}o b(t)/t = 0.

Finally, the norm is said to be uniformly Fréchet differentiable if the
limit is attained uniformly for (z,y) € S x S. In this case X is said to be
uniformly smooth. Since the dual X* of X is uniformly convex if and only if
the norm of X is uniformly Fréchet differentiable, every Banach space with a
uniformly convex dual is reflexive and has a uniformly Gateaux differentiable
norm. The reverse is false.

If X is smooth, the duality mapping J is said to be weakly sequentially
continuous at 0 if {J(z,)} converges to O in the sense of the weak-star
topology of X* as {z,} converges weakly to 0 in X.

We say that a Banach space X satisfies the Opial’s condition [13] if for
each sequence {z,} in X weakly convergent to a point z and for all y # z

lim, ||z, — 2| < lim, ||z, -yl

The examples of Banach spaces which satisfy the Opial’s condition are
Hilbert spaces and all Lp [0,27] with 1 < p # 2 fail to satisfy Opial’s con-
dition [13].

Let D be a nonempty closed convex subset of a Banach space X. We
say that I-T is demiclosed at zero if for any sequence {z,} in D condition:
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zn, — ¢ weakly and lim,, ||z, — Tz,|| = 0 imply that (I-T)z = 0.
A Banach limit LIM is a bounded linear functional on £*° such that

lim, t, < LIM, t, < Tim, t,
and
LIM, t, = LIM, tn4;

for all {t,} be a bounded sequence in £°. We can define the real-valued
continuous convex function f on a Banach space X by

f(z) = LIM,, ||lzn — Z||2

for all z € X, where {z,} is a bounded sequence in X.
To prove the main results of the paper, we need the following known
results:

LEMMA 1 [7]. Let X be a Banach space with uniformly Géteauz differentiable
norm and v € X. Then

f(u) = inf f(2)
iff
LIM, (z, J(zp —u)) =0
for all z € X, where J : X — X* is the normalized duality mapping and
(.,.) denotes the generalized duality pairing.

LEMMA 2 [5]. Let {a,} and {b,} be two sequences of a normed space X.
Assume that there is a sequence {t,} in [0,1] satisfying:

(()0<t, <t<landy oo ytn =00,

(ii) @nt1 = (1 — tn)an + tobyVn > 0,

(iii) limy, ||a.|| = d,

(iv) imy, ||ba]| € d and {30y tabn} is bounded.
Then d=0.

LEMMA 3 [15]. Let {a,} and {b,} be two sequences of nonnegative numbers
such that an41 < an +bp,n > 0. If E:°=0 b, converges, then lim, a, ezists.

3. Main results

THEOREM 1. Let D be a nonempty subset of a normed space X andT : D —
X a nonezpansive mapping. Let {an}, {bn} and {c,} be three sequences of
real numbers satisfying:

(i)0<an<a<land Yo gan =00,

(i) 0 < b, < 1¥n > 0,lim, b, = 0 and S gmax{an,1— an}bn < 00,

text(iii) 0 < ¢, < 1Vn >0, and 3o (bacy < 00.

Given a sequence {z,} in D defined by (GI), then

(a) imy, ||z, — p|| ezists if p is a fized point of T,
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(b) lim, ||zn, — Tz,}| =0 if {z,} is bounded.
Proof. (a) Let p be a fixed point of T. Then by simple calculation
|Zn+1 —pll < llzn —pll Vn 20.

It follows that the {||z, — p||} is nonincreasing and the part (a) is proved.

(b) We have
(1 lzn — ynll < ballzn — Tzn|
Sbn(llzn — Tzp)l| + |ITzn — Tznl)
< (bn + bnca)|lzn — Tzn|,
(2) lyn — zall £ (1 = bp)llzn — 2all + bn[|T2n — 2al|
< (L =bn)llzn — 2|l + ba[(1 — cn)llzn — Tz
+ cnllzn — znll}
< (1= ba)llzn = znll + bn[(1 — cn)(llzn — Tzall
+ ITzn = Tzn||) + cnllzn — zall]
< |lzn = 2all + ba(1 = cn)l|zn — Tz, ||
< [en +bn(1 = en)lllzn — Tza||
and

|Za+1 = TZat1ll £ (1 = an)llzn = TZt1ll + anl|Tyn — Tzni|
< (1-an)(lzn = Tatrll + [|Zat+1 = Tzn41ll)
+ an|lyn — ZTn41|
< (1 -an)(anllen — Tyn|l + llzn+1 — Tzntall)
+ @n((1 = an)llyn = Znll + anllyn — Tyali)-
The last inequality implies by (1) and (2) that
lzn+1 = TZniall € (1= an)(|zn = Tynl + |20 = #mll) + anllyn — Tyall
< (1= an)(llzn — Tynll + lizn — yull)
+ an[(1 = bn)llen — Tynll + bnllzn — yall]
< (1 = apba)llzn — Tynll + (1 — an)l|lzn — yall
+ @nballzn — |
< (1 - anbn)(”zn - Tzn” + ”T.’En - Tyn")
+ (1 - an)“mn - yn” + anbn“zn = yn”'
Therefore

(3) MNzn41 — Txpsr|l £ [142b4(1 — an) + 2bpcn(1 — anby)]||lzn — Tz,
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Since Y0 s max{an,1 — an}b, < 00,3 oo, bucn, < 00 and {||zn, — Tz,||} is
bounded, it follows from Lemma 3 that lim,, ||z, — Tz,|| exists.
Set limy, ||z, — Tz,|| = d and B, = Ty, — Tzn + a;}(Tzn — TTni).
Hence we have
Tntl — TTpt1 = (1 —an)(zn — Tz,) + anB,
and
I|Ball < ITYn — Tapll + a7 | T2n — T ||

< (bn + bucn)||zn — Txa|l + |2 — Tyl

< (bn + bucn)l|lzn — Txall + |20 — Tzn|| + | Tz — Tynl]

< ”:L'n - T-Tn” + 2(bn + bncn)”mn - Tzn”

S| zn = Tzpl|| + 4bnllzn — Tz, |-

It follows from the condition lim, b, = 0 that lim,, || B,|| < d. Moreover,

|32 anBu| = | 35 an T = T) + Tt = T
n=0 n=0

m
< Z anllyn — oo + (| Tzo — TZma|

n=0

<) an(bn + bncn)llzn — Tzl + I T20 — TZma |-
n=0
It means that {|| Y- ; a»Bxl||} is bounded because > o-  max{an,1—an}b,
<ooand Y 2 o bpcn <00. It follows from Lemma 2 that lim, ||z, —T'z,|| =0,
completing the proof. m

In view of Theorem 1(i), we remark that if F(T), the set of fixed points of
T, is nonempty, then our iterative sequence {z, } defined by (GI) is bounded.

THEOREM 2. Let D be a nonempty subset of a normed space X and T :
D — X a nonezpansive mapping. Let {a,} and {b,} be two sequences of
real numbers satisfying:

() 0<a,<1andy ;) ;a, =00,

(ii) 0 £ b, < 1¥n > 0,lim,, b, = 0 and S0 pmax{a,,1—ap}b, < oo.

Given a sequence {z,} in D defined by (I). Then

(a) lim, ||z, — p|| ezists if p is a fized point of T,

(b) lim,, ||zn, — T'z,|| = 0 if {z,.} is bounded.

o0

REMARK 1. In the case when .~ b, < 00, Corollary 1 immediately re-
duces to Theorem 1 of Deng [4]. Therefore, Corollary 2 is an improvement
of Theorem 1 of Deng [4].
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Now we are able to prove weak convergence of our iteration process
for nonexpansive mappings in Banach spaces endowed with some ([10],[11])
geometric structures.

COROLLARY 1. Let X be a Banach space satisfying Opial’s condition, D
a non-empty weakly compact subset of X and T : D — X a nonezpansive
mapping such that F(T) # ¢ and I-T is demiclosed at zero. Given a sequence
{zn} as in Theorem 1. Then {z,} converges weakly to a fized point of T.

Proof. First we show that w,(z,) C F(T). Let z,, — z weakly. By The-
orem 1(b) , we have limy,|z, — Tz,|| = 0 since I-T is demiclosed at zero.
Hence z € F(T). By Opial’s condition {z,} possesses only one weak limit
point, i.e., {z,} converges weakly to a fixed point of . =

We remark that Theorem 2 does not apply to any L, spaceif 1 < p # 2,
since none of these spaces satisfy Opial’s condition (cf. [11]). The following
result can be applied to all uniformly convex Banach spaces (and hence to
all L, spaces).

THEOREM 3. Let X be a uniformly conver Banach space with Fréchet dif-
ferentiable norm, D a nonempty closed convex subset of X and T : D — D
a nonezpansive mapping with F(T) # ¢. Given a sequence {z,} as in The-
orem 1. Then {z,} converges weakly to a fized point of T

Proof. Let {z,(n)} and {zyn)} converge weakly to w and z in D, respec-
tively. Since lim,, |z, — T'z,|| = 0 by Theorem 1(b) and (I-T) is demiclosed
with respect to zero, it follows that w = Tw and z = T2. Set
Tn=(1—ap)I 4 a,T[(1 = b)) +b,T((1 —cr)I + ¢, T)].
Then T, (D) C D because D is convex. Moreover,
1Tnz — Tayll < (1 = an)ITz — Tyl + anll(1 - bn)(z — y) + ba(Tz — Ty)|
< (1 =aa)llz -yl + an[(1 = ba)llz — 9l + bn[| Tz — Tyl]
< lz -yl
and zp4+1 = Th(zn),n > 0. The reminder of proof is similar to that of
Theorem 1 of Tan and Xu [15]. We include this simple proof for the sake
of completeness. Let a,(t) = ||tz, + (1 — t)f1 — foll,t € [0,1] and f1, f2 €
F(T). Then lim, a,(0) = || f1 — f2|| and from Theorem 1(a), we obtain that
lim, a,(1) = limy, ||z, — fo|| exists. It now remains to show lim,, a,(t) exists
for all t € (0, 1).
Further, set b, m = [|Spm(tzn + (1 — ) f1) — tSpman — (1 —t)Sp m f1lls

where S, m = Tnym-1Tn4m—-2,-..,Tn. Then 2oy = SpmZn, Snmp =
pVp € F(T) and ||Sp,mz — Sa,myll < |z —yll Vz,y € D.
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Let 6 denote the modulus of convexity of X. We know from Bruck [3]
that

(4) l[tz + (1 - t)yll < 1 - 2min{t, (1 -t)}6(|lx — y|)
< 1-2¢(1 - 8)é(||l= - yl))

for all t €[0,1] and for all z,y € X such that ||z|| <1 and ||y|| < 1. Set

u — Sn,mfl - Sn,m(tzn + (1 — t)fl)
- tlzn — fill

and

o = Sam(tzn + (1= 1) ~ Sn.mn
e A =t)llzn — fill '

Then ||upm| <1 and ||vnm|| <1 and it follows from (4) that

(5) 2t(1 — t)6(flun,m — vamll) £ 1= [[tttn,m + (1 = )va,ml,
since

bn,m

Upm — U =
V= el = HT e — Aol

and

”Sn,mmn - 'n,mfl "

ltun,m + (1 = )vpm|l =

en — A1l

It follows from (5) that

(6) 2t(1 - )z —f||<s( brm )
m AP - Yz - Al

S ”z‘n - fl” - ”Sn,mzn - Sn,mfl"'

Since ||z, — fill < llzo — full, t(1-t) < 1 for all t in [0,1] and %2 is nonde-
creasing, then from (6), we have

lzo— il Lo
2 \Tzo- ful

Observe from §(0) = 0 and Theorem 1(a) that lim, ||z, — f1|| exists. Then
the continuity of § yields lim, b, , = 0.

) < llzm = fill ~ lmm = full
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But
anim(t) = [tZnim + (L =) f1 — fo

S |tTntm + (1 =) f1 = fo + (Snm(tza + (1 - 1) f1)
= tSnmZTn — (1 = t)Snmfi)ll
+ ”Sn,m(tmn + (1 - t)fl) - tS.,,,ma:n - (1 - t)Sn,mflll
< ||Sn,m(tzn + (1 = t) f1) — foll + bnm
< ltzn + (1 = t)f1 — foll + boym
< an(t) + bnm.

Hence

limy, a,(t) < lim,, an(t).
Since norm of X is Fréchet differentiable, we have

S = FalP + bl = f1, I~ f2)) € 50300
< Slfi- fall + t<wn — 1, (f1 = f2)) + b(tllzn — ful).

Since b is increasing and ||z, — fi1|| < M for some M > 0 we have
1 ,_
§||f1 - f2||2+t11mn(1‘ =1L, J(fi = f2))

m a2 (t)

I f1 = foli? + tlim,(zn — f1,J(fi — f2)) + b(tM).

S

Mlb—'l\Dl

Hence
limg(zn, J(fi — f2)) < lim, (z,, J(f1 — f2)) + ﬂttﬂl’ it follows from the
fact lim,_,g+ ﬂ-l = 0 that lim,{z,, J(fi — f2)) exists. m

Combining Theorems 2 and 3, we obtain

THEOREM 4. Let X be a uniformly conver Banach space which satisfies
Opial’s condition or whose norm is Fréchet differentiable, D a nonempty
closed convez subset of X and T : D — D a nonezpansive mapping with
F(T) # ¢. Given a sequence {zn} as Theorem 1. Then {z,} converges
weakly to a fized point of T.

We remark that Theorem 4 generalizes several known results (see, e.g.,
(4], 6], [16]) which are established in uniformly convex Banach spaces. The-
orem 1 of Zeng [20] also can be extended for our iteration process.

Now we give a dual weak-almost convergence theorem for our iteration
process.
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THEOREM 5. Let X be a reflexive Banach space X with uniformly Géteauz
differentiable norm and T:X— X a nonezpansive mapping with F(T) # ¢.
Suppose that every nonempty closed conver bounded T-invariant subset of
X has fized point property for T. Given a sequence {zn} as in Theorem 1.
Then there ezists a point v € F(T) such that {J(x, — v)} converges weakly
to zero.

Proof. Let LIM be a Banach limit and define a real-valued function f on
X by

f(z) = LIM,, ||z, — 2®
for each 2z €D. Then f is a continuous convex functional and f(z) — oo as
|z]| = oo. Since X is reflexive, f attains its infimum over X. Let

M={ueX:f(u)=inf f(z)}.

Then M is a nonempty closed convex bounded set. Also M is invariant
under T In fact, by Theorem 1(b), we have lim,, ||z, — T'z,|| = 0 and hence
we have for each y € M

f(Ty) = LIM,, |Tz, — Ty||®
< LIM, ||z — y|I* = f(v).

Therefore, by assumption, T has a fixed point in M. Denote such a point
by u.

On the other hand, by Theorem 1(a), lim, |z, — p|| exists for all p €
F(T). Then f(p) is independent on Banach limits. Thus, we may assume
that « minimizes f for any Banach limit LIM. It follows from Lemma 1 that

LIM,(z, J(zp —u)) =0

for all z € X and any LIM. Thus, {(z, J(z. — u))} is almost convergent
([11]) to zero, i.e., {J(x, — u)} is weakly almost convergent to zero. »

Applying Theorem 1 and 5, we obtain the following weak convergence
theorem:

THEOREM 6. Let X be a reflexive Banach space X with uniformly Giteauz
differentiable norm, T : X — X a nonezpansive mapping with F(T)# ¢
and let J7' : X* — X be weakly sequentially continuous at zero. Suppose
that every nonempty closed convex bounded T-invariant subset of X has
fized point property for T. Given a sequence {z,} as in Theorem 1 with
Tp — Tnyy — 0 as n — 00. Then there erists a point u € F(T) such that
{zn} converges weakly to u.

Proof. Since the norm of X is uniformly Gateaux differentiable, the duality
mapping is uniformly continuous on bounded subset of X from the strong
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topology of X to the weak*-topology of X*. Thus, since z,, —z,4+1 — 0, the
sequence {J(z, —u) — J(zn+1 —u)} converges weakly to zero. However, this
is a Tauberian condition for almost convergence, so {J(z, — u)} converges
weakly to zero. Since J~! is weakly sequentially continuous at zero, {z,}
converges weakly to u. This completes the proof. =

We remark that Theorem 5 generalizes several recent results of this na-
ture. Particularly, it extends Theorem 5 of Jung, Cho and Lee [9].

Next we substitute the Fixed Point Property (FPP) assumption men-
tioned in Theorem 6, by assuming that space X is reflexive and strictly
convex.

THEOREM 7. Let X be a reflerive and strictly conver Banach space with a
uniformly Gateauz differentiable norm, T : X — X a nonezpansive mapping
with F(T) # ¢ and let J~! : X* — X a weakly sequentially continuous at
zero. Given a sequence {z,} as in Theorem I with £,~T,4+1 — 0 asn — oo.
Then there ezists a point u € F(T) such that {z,} converges weakly to u.

Proof. To be able to use the argument of Theorem 4, we just need to show
that the set M contains a fixed point of T. To see this, let w € F(T) and
define
Mo = {ue D: lu-wl| = dw, M)},
where d(w, M) = inf{||z — w|| : z € M}. Then, since X is strictly convex,
M, is a singleton. Let My = {v}. But ||[Tv—w|| £ |[v—w| and so Tv =v. =
On the other hand, it is easy to find examples of spaces which satisfy

the FPP for nonexpansive self-mappings, which are not strictly convex.
As a consequence of Theorem 5, we may derive the following result.

THEOREM 8. Let X be reflexive Banach space with uniformly Gateauz differ-
entiable norm, T : X — X a nonezpansive mapping with F(T) # ¢. Given a
sequence {z,} as in Theorem 1, then there erists a nonempty closed convez
bounded T-invariant set M defined by

M={ueX:f(w)=int f(2)}

Suppose in addition that T, — Tpy1 — 0 asn — oo, J" ! : X* = X is
weakly sequentially continuous at zero and M has normal structure. Then
{zn} converges weakly to a fized point of T.

Proof. The existence of fixed points of T in M follows from Kirk [10]. =

Finally, we give necessary and sufficient condition for strong convergence
of our iteration process for nonexpansive mappings in Banach spaces.

THEOREM 9. Let D be a nonempty closed subset of a Banach space X and
T : D — X be a nonezpansive mapping with nonempty fized point set F(T)
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in D. A sequence {z,} in D defined by (GI), where {a,}, {bn} and {c,} are
three sequences of real numbers in [0,1] converges strongly to a fized point
of T if and only if lim,, d(z,, F(T)) = 0.

Proof. The necessity of the condition is obvious. For sufficiency, from
Theorem 1(a), we have that lim, |z, — p|| exists for each p € F(T), i.e.,
lim,, d(z,, F(T)) exists since lim,, d(z,, F(T)) = 0. Given € > 0. There ex-
ists a positive integer ng such that d(z,, F(T)) < €/2 for all n > ny. Hence
for n,m > ng, we have

lzn — Zm|l < ll#n = pll + lzm —pll VP € F(T).
By taking infimum over p € F(T) in above inequality, we have
|zn — Zm|| < d(zn, F(T)) + d(zm, F(T)) <€ Vn,m > no.

It follows that {z,} is a Cauchy sequence in D and hence it converges to
a point v €D. Since lim, z, = v, i.e., it follows that for each ¢’ > 0, there
exists a number N; such that
EI
”.’En - ’U” < Z Vn > Nl-

Moreover, lim,, d(z,, F(T)) = 0 implies that there exists a number N > N;
such that

/
d(zn, F(T)) < % Vn > N,

and hence
el
d(zn,, F(T)) < 1z
One can pick a point z € F(T) such that

s.I
low, ~ 2l < 5

Thus we have
|Tv—v| <\ Tv-2+2-Tzn, + TzN, — 2+ 2 — TN, + TN, — V|
< |Tv - zl| + 2|TzN, — 2| + llzn, — 2l + llzn, — vl
< v =zl + Bllen, — 2l + [|lzn, — vl
< v =zl + llen, — 2l + 3llzN, — 2[| + lzn, — ol
< 2lzn, — vl + 4llzn, — 2|l
g &
< 5 + 3= €.
But ¢’ was arbitrarily chosen and therefore v = T, i.e., v is fixed point
of T. m
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Recall that a mapping T : D — X with a nonempty fixed points set
F(T) in D will be said to satisfy Condition (A) if there is a nondecreasing
function g : [0, 00) — [0, 00) with g(0) = 0, g(r) > 0 for r € (0, 00) such that
|z — Tz|| > g(d(z, F(T))) for all z € D.

The following theorem generalizes Theorem 2 of Ishikawa [8], Theorem
4 of Deng [4], Theorem 3 of Tan and Xu [15].

THEOREM 10. Let D be a nonempty closed subset of a Banach space X
and T : D — X a nonezpansive mapping with F(T) # ¢ and condition
(A). Given a bounded sequence {z,} as in Theorem 1. Then {z,} converges
strongly to a fized point of T.
Proof. By condition A, we have

[zn — Tzn|| > g(d(zn, F(T)) Vn20.

By Theorem 1(b), we have lim, ||z, — Tz,|| = 0 and lim,, d(z,, F(T))
exists. From the later follows that lim,, d(z,, F(T')) = 0. Hence result follows
from Theorem 9. =

EXAMPLE 1. For the parameters of our theorems, one can make the following
choices:

1
an=bn=cn=m,n20.
Then lim, b, = 0 and Y oo bncn < 00, so these choices satisfy all the

conditions of our theorems.

Acknowledgement. The author would like to thank the referee for
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