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A GENERAL STATEMENT OF DUAL FIRST-ORDER
SUFFICIENT OPTIMALITY CONDITIONS
FOR THE GENERALIZED PROBLEM OF BOLZA

Abstract. In this paper we provide first-order sufficient optimality conditions for the
generalized problem of Bolza when all arcs take values in a separable Hilbert space. Our
approach consists in the explicit construction of a quadratic function that satisfies the
dual Hamilton-Jacobi inequality. The essential role in the generalized conditions plays the
existence of a certain function for which a certain inequality holds.

1. Introduction
We consider the generalized problem of Bolza:

b
(P) minimize J(z) := l(z(a), z(b)) + S L(t, z(t), z(t))dt

over all absolutely continuous functions z : [a,b] — X with the strong
derivative £ € L'(a,b; X), where [a,b] is a real interval, X is a separable
Hilbert space with the inner product (-,-) and the norm ||-|| induced by
it,/ : X xX — RU{+oo} and L : [a,b] x X x X —» RU {+0c0}. We
assume L to be L x B-measurable, where L x B is the o-algebra of subsets
of [a,b] x X x X generated by product sets M x N, where M is a Lebesgue
measurable subset of [a, b] and N is a Borel subset of X x X. Any absolutely
continuous function y : [a,b] — X is called an arc. The Hamiltonian H is
defined by the formula

(1.1) H(t,z,p) :=sup {(p,v) — L(t,z,v) : v e X}.

Since [ and L are allowed to be extended real-valued, (P) covers a great
deal of dynamic optimization problems. For example, (P) subsumes the
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problem

b
(V) minimize J(z) := § L(t, z(t), (t))dt

subject to z(a) =7, z(b) = s

over all arcs z, where r,s € X. Indeed, it suffices to take | = v} + 9y,
where, for any g € X, 1(g is the 1ndlcator of {¢} (having the value 0 on the
set {g} and oo outside).

In this paper we aim at deriving first-order sufﬁc1ent optimality condi-
tions for (P) in terms of the Hamiltonian H. Concerning this question we
can find various criteria, from the earliest ones in which the Hamiltonian
is required to be concave-convex (see [13], [14]) to those in which neither
differentiability nor convexity on H is not imposed (see [16], [17] and [18]).
The approach we use is analogous to the method employed in [18], where the
modified Hamilton-Jacobi inequality (HJ inequality) was introduced and the
existence of a certain function, satisfying together with the Hamiltonian, a
certain inequality was the crucial assumption. Using the dual HJ inequality
from [12], instead of this inequality we obtained in [11] conditions of the
same type but formulated in their dual version which require rather weak
assumptions when compared with [18]. The method of deriving results in
the paper is similar but it is based on application of fundamental facts from
functional analysis concerning vector-valued functions (see [1] and [19]). The
results obtained generalize and extend the existing conditions.

We are interested in finding sufficient conditions for the existence of a
strong relative minimum in the generalized problem of Bolza. In the sequel
we say that an arc y lies in the set E C [a,b] x X, if (¢, y(t)) € E for t € [a,b].
Moreover, for given an arc 7 : [a,b] — X and some positive number &, we
define

(1.2) N(g;e) == {(t,y) : t € [a,8], [ly —F(®)|| <e},
(1.3) N.(H) ={y € X : |ly— g(t)|| < € for some ¢t € [a,b]}.

DEFINITION 1. Let T C [a,b] x X and let an arc Z lie in T and be such that
J(z) is finite. We say that Z is a strong minimum for (P) relative to T if,
for all arcs z lying in T, the inequality J(z) > J(Z) holds.

The paper is organized as follows. Section 2 contains formulations of the
main results: a dual sufficient optimality criterion (Theorem 1) and dual
first-order sufficient optimality conditions (Theorem 2). In Section 3 there
are collected some preliminaries and the proofs of main results. Section 4 is
devoted to the applications of the conditions obtained. We give two concrete
examples of the calculus of variations problems. Using the criterion and the
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conditions there we find the explicit formulas for the function @ satisfying
a certain inequality and the set T, mentioned above.

2. Main results

Our main result is Theorem 2 providing dual first-order sufficient condi-
tions for an arc Z to be a strong minimum in (P) relative to T'. So for given
arcs Z and p and some positive number €, we define the set T by

={(t,z) € [0,b] x X : x = Z(t) — Q(t)(p — P(t)) for p € Nc(p)},
where

Q is a function on [a, b] to L(X; X) having a derivative Q a.e. in [a, b] and
for almost all t € [a, b], Q(t) (and in consequence Q(t)) is self-adjoint.

Here L(X;X) denotes the space of all linear and continuous operators on
X to X, which is a Banach space when equipped with a norm |4| =
sup {||Av||y : [lv]lx < 1} for A € L(X; X). Moreover, Q denotes the strong
derivative of @ : [a,b] — L(X; X), i.e.

600 = im AW =00

h—»O

(see [9]). Thus, in subsequent theorems, for given arcs p and p, the terms
Q) (p(t) — (t)) and Q(t)(p(t) — p(t)) are understood to be vectors in X
and they represent the value of Q(t) and Q(t), respectively, on the vector
(p(t) - 5(¢)) € X.

Our sufficient conditions for (P) are based on the criterion presented in
Theorem 1 below. We require in it the existence of a certain function @
satisfying, together with the Hamiltonian, a certain inequality.

THEOREM 1. Let Z and p be given arcs and let J(Z) be finite. Suppose that
there exist a function Q satisfying (Q) and an € > 0 such that:
(i) for almost all t € [a,b] and for allv e X,

L(t,z(t), z(t) + v) — L(t, Z(t), 2(t)) > (B(t),v) ;
(ii) for almost all t € [a,b] and for all p € N¢(p),
H (t,z(t) — Q(t)(p - 5()), p) _1H (t,2(t), p(t)) < (2(t), p — B(t))
+ (H(), Q) (p — (1)) — 5 (P = P(2), Q)P —P(1))) ;
(iii) for all arcs = for which there is an arc p lying in N(p;€) and satisfying
z(t) = Z(t) — Q(t)(p(t) — (), for t € [a, ],
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H(a(a), 2(8)) ~ (&(a), Z(8)) > 5 (3(E) +p(b), Z(b) - =(5)
~5 (3(a) + p(e),&(e) ~ 2(a)).

Then, J(z) is well defined (possibly +o00) for z lying in T, and T is a strong
minimum for (P) relative to T

Applying Theorem 1 in the case when the Hamiltonian is locally Lips-
chitz we obtain optimality conditions for (P). Denote by

T,={ze€X:(t,z) €T}, t€ [a,b]

THEOREM 2. Let Z and p be given arcs, J(Z) be finite and let z = (%, p).
Suppose that there ezist a function Q satisfying (Q) and an € > 0 such that,
for all t € [a,b], the function z — H(t,z) is locally Lipschitz on Ty x N¢(p)
and conditions (i), (iii) of Theorem 1 hold. Assume further that, for almost
allt € [a,b)], for all p € N(P) and for all { = (o, B) € 8, H(t, Z(t) - Q(t)(p—
B(t)),p),

21) (-Q@)a+B+QE)(p - 5(t) - £(t) — QE)B(E),p— B(t)) < 0.

Then, J(z) is well defined (possibly +00) for z lying in T, and Z is a strong
minimum for (P) relative to T.

3. Proofs of main results

Firstly, we shall prove a proposition which implies the dual sufficient
optimality criterion for (P) (Theorem 1). We will require the existence of
two functions, V'(¢,p) : [a,b] x X — R satisfying the dual HJ inequality
(3.2) and W(t,z) : T — R defined by (3.1) and by the requirement z(t) =
—V5(t, p). Here we identify, by the Riesz representation theorem, a functional
Vo(t, p) € L(X; R) with an element v € X, which we still denote by V,(t, p).
Given an arc p, an € > 0 and a subset T’ C [a,b] x X of the variables (t, z),
we shall make following assumptions:

(A1) for each p € N(p), there exists Vi(t,p) a.e. and, for all (¢,p) € [a, b] x
N¢(P), there exists a Fréchet derivative V,(t, p);

(A2) for all arcs p lying in N(p;€) and such that z(t) = —V,(¢,p(t)), for
t € [a,b], is an arc lying in T, the mapping t — W(t, —V,(¢,p(t))) is
absolutely continuous and

(3-1)  V(t,p®) = W, ~Vp(t, p(1))) + (V(t, p(2)), P(2)) -

PROPOSITION 1. Let  and p be given and let J(Z) be finite. Suppose that
there exist an £ > 0, functions V(t,p) and W (t,z) defined on [a,b] x N:(p)
and T, respectively, where



General statement of sufficient optimality conditions 715

T :={(t,z) € [a,b] x X : £ = ~V(2,p) for p € Ne(p)},

such that Z(t) = —V,(t,p(t)), for t € [a,b], and (Al), (A2) hold. Assume
also that, for all arcs = for which there is an arc p lying in N(p;e) and
satisfying z(t) = —Vp(t,p(t)), for t € [a,b], the following two conditions
hold:

a2 @ Vi RE) + (P E0) — Lt ~Vo(t,p(0),4(0)
< Vilt, B0) + (B(8), 3(2)) — L(t, 5(2),3() ave.

(b) U(=z(a), 2(8)) — UZ(a), 3(b))
> W(a,2(a)) — W(a, 2(a)) + W (b, 2(b)) - W(b, (b)).

Then, J(z) is well defined (possibly +00) for z lying in T, and T is a strong
minimum for (P) relative to T.

Proof. Take any arc z for which there exists an arc p lying in N(p,¢) and
such that

(3.3) z(t) = —Vp(t,p(t)) for t € [a,b)].

Then, z lies in T. With (3.1) we shall calculate %V(t, p(t)). From (3.3) and
assumptions (Al), (A2) we have

B4 Vilt,p®) = Wt ~Y%(6p0) + ( FVo:p(0),p0)) ae.
Since Z(t) = —V,(t,p(t)), for t € {a,b], it follows, by (3.4), that
(35) Vilt,5(0) = ZW(E~Vo(t,50) + { V50,50, ) s

Inserting (3.4), (3.5) into

~~

3.2) we obtain

W (6, =V (1, 2(0) — W (6, ~Vo(t, 5(0))
+L(t, z(t), T) a.e.

(36)  L{t,a(t), (1)) >

&l

Integrability of the right-hand side of (3.6) and measurability of L imply
that J(z) is well defined (possibly +00). Integrating (3.6) and using (b) we
obtain that J(z) > J(Z). Since = was arbitrarily fixed, it follows that Z is a
strong minimum for (P) relative to T'. =

REMARK 1. It can be easily seen that in problem (V) condition (b) of Propo-
sition 1 holds for any function W (t,z) : T — R satisfying (A2).

We shall now concentrate on the explicit construction of the functions
V and W used in Proposition 1. The quadratic expressions for V(t,p) and
W(t, —Vu(t,p)) are given in the following proof.
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Proof of Theorem 1. We shall prove the optimality of Z using Proposition 1.
Let a function @, arcs Z, p and an € > 0 be as in Theorem 1.
Define a function V (¢,p) : [a,b] x N.(p) — R by
_ _ 1 _ _
37 V(t,p) = —(&(t),p — B) + 5 (p - 5(t), Q) (P — £(¢))) -

Condition (A1) is, of course, satisfied, i.e. for each p € N.(p), there exists
Vi(t,p) a.e. and it is equal to

(38)  Vilt.p) = - ((t),p — B(H) + (E(8), 5(6)) - (B(0), QD) — 5())
+3 (p— 5, Q) (p — 5(2) 2.

and, for all (t,p) € [a,b] X Nc(p), there exists a Fréchet derivative V,(t,p)
and it is easily calculated to be

(3.9) Vo(t, p) = —Z(t) + Q) (p - (t)).
From (3.9) it follows that Z is an arc for which
(3.10) Z(t) = —Vp(t,B(t)) for t € [a,b].

Take an arc z for which there exists an arc p lying in N(p;¢) and satis-
fying
(3.11) z(t) = —Vp(t,p(t)) for t € [a,b].

Hence, z lies in T. We shall now demonstrate that a function V' (¢, p) satisfies
inequality (3.2). Condition (i) and definition (1.1) imply that

(3.12) H (t,z(t), p(t)) = (p(t), Z(t)) — L(t, Z(t), Z(t)) a-e. ,
(3.13) H (¢,2(¢) ~ Q(t)(p — B(t)),p) = (p,v) — L(t,Z(t) — Q(t)(p — B(t)), v)
for almost all ¢ € [a,b], for all p € N.(p) and for all v € X.
Using (3.8), (3.9), (3.12), (3.13) and (ii) we have
Vi(t, p(t)) + (p(t), £(8)) — L(t, —Vp(t, (1)), 2(t)) ~ Va(t, B(t)) — (B(2), Z(2))
+L(t, 2(t), 2(t)) < H (¢, Z(t) — Q(£)(p(t) — B(1)), p(2)) — H (¢, Z(t), 5(¢))
— (=(t), p(t) — (1)) — (B(t), Q1) (p(t) — B(t)))
+3 (p(6) = 5(2), QD) - 5(2)) < 0 ae.
Therefore, condition (a) of Proposition 1 is satisfied.

To complete the proof we show that assumption (A2) and condition (b)
of Proposition 1 hold. Set

(3.14) W (¢, =Vp(t,p)) := (B(t), (1)) - -;- {p+p(1), Q1) (P — B(1)))

for (¢,p) € [a,b] X Ne(p). The mapping ¢t — W (t, —V,(t,p(t))) is absolutely
continuous since by (3.9), (3.11) the arcs Z, p, p, z satisfy z(t) = Z(t) -
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Q) (p(t) — p(t)) for t € [a,b]. Moreover, by (3.7) and (3.9) it follows that
(3.1) holds. Consequently, assumption {(A2) holds.

Now inserting (3.10), (3.11) into (3.14) for t = @ and t = b and using
(iii), we obtain

W(a,:c(a)) - W(aa E(a)) + W(byj(b)) - W(ba "E(b))
= 3 (2(8) + p(b), Z(6) — 2(8)) ~ 5 (B(a) + P(a), 3(a) - 2(a))
< I(z(a), () - [(2(a), 3(6))

Thus, condition (b) of Proposition 1 is satisfied. This completes the proof. u

In the proof of Theorem 2 providing dual first-order optimality condi-
tions, we shall require the following lemma which is analogous to Lemma
4.1 obtained in [18].

LEMMA 1. Let § be a given arc and let F(t,p) : [a,b] X Ne(p) — R be such
that, for almost all t € [a,b], the function p — F(t,p) is locally Lipschitz.
Assume that there is a function f : [a,b] — X satisfying the condition

(3.15) (w— f(t),p—p(2)) <O
for almost all t € [a,b], for all p € N(p) and for all w € O,F(t,p). Then,
for almost all t € [a,b] and for all p € N:(p),

F(t,p) - F(tvﬁ(t)) < (f(t)’p —ﬁ(t)) .
The line of the proof of Lemma 1 repeats that of Lemma 4.1 presented
in [18] with the only change arising from application of Chain Rule II of [5]
instead of Chain Rule known from [4].

Proof of Theorem 2. We shall demonstrate that condition (ii) of Theorem 1
is satisfied. Let a function @, the arcs Z, p and an € > 0 be as in Theorem 2.
Set
- _ 1 _ _

(316)  F(t,p):=H(1,(t) ~ Q) (p—p(t)),p) + 5 (p—5(t), () 0 ~5(2)))
for t € [a,b] a.e. and for p € N.(p). Since the Hamiltonian H is locally
Lipschitz with respect to z = (z,p) € X x X, it follows that the function
p — F(t,p) is locally Lipschitz on N¢(p). Applying Chain Rule II given in
[5] we get

0pF(t,p) C (—Q(),4dx)0, H(t, Z(t) — Q(t)(p — (1)), p) + Q(t)(p — B(2)),
where idy is the identity mapping on X to X. In other words, we obtain
that, if w € 9,F(t,p), then w = —Q(t)a + B + Q(t)(p — p(t)) for some
¢ = (o, 8) € 8, H(t,Z(t) — Q(t)(p — p(t)),p)- The above and (2.1) lead to
the following inequality

(3-17) (w—z(t) - Q(t)p(t),p — B(t)) <O
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which is satisfied for almost all t € [a,b], for all p € N.(p) and for all
w € OpF(t,p). Define f : [a,b] — X by the formula

(3.18) f(t) = z(t) + Q(t)p(t).

Then, from (3.17) and (3.18), we have (3.15). By Lemma 1 we infer that,
for almost all ¢ € [a,b] and for all p € N.(p),

(3.19) F(t,p) — F(t,p(t)) < (f(t),p— (1)) .

Inserting (3.16), (3.18) into (3.19) gives condition (ii) of Theorem 1. Since
all the assumptions of Theorem 1 are now satisfied, it follows that Z is a
strong minimum for (P) relative to T. =

4. Examples

We shall now apply the dual first-order sufficient optimality conditions
(Theorem 2) to solve two problems of the calculus of variations. In both
examples inequality (2.1) from Section 2 will be used to find a function
Q. This function determines the set T over which the strong minimum is
obtained.

1
EXAMPLE 1. Minimize J(z) = { {12||o(t)|” + 2 [|2()|*} d¢ subject to
-1
z(—1) = —r,z(1) =r, where r € X and ||r|| = 1.
The Hamiltonian of the problem is

Il
482 -
Let #(t) = t3r and p(t) = 6t*r, for t € [-1,1]. Then Z(-1) = —r, Z(1) =,
J(Z) = 6. Moreover, (i) and (iii) of Theorem 1 hold for any function Q on
[-1,1] to L(X; X) and for a function ! defined as l(z1, z2) := ¢y_r}(z1) +
Y(r}(x2), where 71, zo € X. Inequality (2.1) is as follows

(4.1) <["24Q2(t) + Q(t) + %idx] (p — 6t4r) P — 6t4r> <0
for almost all t € [—1,1] and for all p € X. Let

1

—idx when [t| <landt#0

Qt)=<1 i 7 .
idxy whent=20

H(t,z,p) = sup {(p,v) — 12 |l* = £ [0l : v € X} = —12a]* +

Then, the function Q satisfies inequality (4.1). Hence, all the assumptions
of Theorem 2 hold. The set T has the following form

T .= {(t,:z:) €[-1,1] x X : z = t3r — Q(¢t)(p — 6t*r) fOYPEX},
ie. T=[-1,1] x X.
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Thus, by Theorem 2, Z is a strong minimum for the problem considered
relative to T,

REMARK 2. It is worth stressing in Example 1 the weakness of assumptions
on a function Q. We require only that it has a derivative a.e. and it need
not be, for instance, of bounded variation or absolutely continuous like it is
assumed in [17], [18].

Nl@

EXAMPLE 2. Minimize J(z) = S {—1llz(t )12+ | 1] ||£(t)||°}dt subject to
z(0) = z(37) = 0x, where Ox E X and v+ 0x = v for each v € X.

The Hamiltonian of the problem is
_ 1o 2 1 2
H(t,z,9) = sup { p,v) + 7 ol = gy ol v e X

1
= Izl +

1 1
3 g | oI

2
Moreover, (i) and (iii) of Theorem 1 hold for any function @ on |0, 57 to

L(X; X) and for a function ! defined as I(z1, T2) 1= P(0,}(T1) + Pox}(Z2),
where z1, 3 € X. Inequality (2.1) is as follows

Let Z(£) = p(t) = O for ¢ € [0, §7r]. Then 2(0) = 2 (gw) = 0x, J(z) = 0.

(4.2) <[Q2(t) +2Q(t) + 2 sin = ! zdx] D,p > <0
for almost all t € [O, %71'] and for all p € X. Let
, m 3
(—tant)idx when t € [O, —) U <0, —7r)
2 2
Q(t) = T3
idx whent € { = —7r}
{2 2

Then, the function Q satisfies inequality (4.2). Hence, all the assumptions
of Theorem 2 hold. The set T has the following form

T:= {(t,:z) € [0,%%] xX:z=-Q(t)p forpeX},

ie. T =[(0,7) x X]U [(o gn) v X] U [(0,0x), (m,0x)].

Thus, by Theorem 2, Z is a strong minimum for the problem considered
relative to T'.
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