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A G E N E R A L STATEMENT OF DUAL FIRST-ORDER 
SUFFICIENT OPTIMALITY CONDITIONS 

FOR THE GENERALIZED PROBLEM OF BOLZA 

Abstract. In this paper we provide first-order sufficient optimality conditions for the 
generalized problem of Bolza when all arcs take values in a separable Hilbert space. Our 
approach consists in the explicit construction of a quadratic function that satisfies the 
dual Hamilton-Jacobi inequality. The essential role in the generalized conditions plays the 
existence of a certain function for which a certain inequality holds. 

1. Introduction 

We consider the generalized problem of Bolza: 

b 

(P) minimize J(x) := l(x(a), x(b)) + j L(t, x(t), x(t))dt 
a 

over all absolutely continuous functions x : [a, 6] —> X with the strong 
derivative x € Lx(a,b]X), where [a, 6] is a real interval, X is a separable 
Hilbert space with the inner product (•, •) and the norm ||-|| induced by 
it, I : X x X -> R U {+00} and L : [a,b] x X x X R U {+00}. We 
assume L to be L x immeasurable, where L x B is the a-algebra of subsets 
of [a, b] x X x X generated by product sets M x N, where M is a Lebesgue 
measurable subset of [a, 6] and N is a Borel subset of X x X. Any absolutely 
continuous function y : [a, 6] —> X is called an arc. The Hamiltonian i/ is 
defined by the formula 

(1.1) H(t,x,p) := sup{(p,v) — L(t,x,v) : v G X} . 

Since I and L are allowed to be extended real-valued, (P) covers a great 
deal of dynamic optimization problems. For example, (P) subsumes the 
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problem 
b 

, . minimize J(x) := lL(t,x(t),x(t))dt 
( V ) a 

subject to x(a) = r, x(b) = s 

over all arcs x, where r,s G X. Indeed, it suffices to take I = V"{r} + ^{s}) 
where, for any q E X, ip{q} is the indicator of {9} (having the value 0 on the 
set {g} and 00 outside). 

In this paper we aim at deriving first-order sufficient optimality condi-
tions for (P) in terms of the Hamiltonian H. Concerning this question we 
can find various criteria, from the earliest ones in which the Hamiltonian 
is required to be concave-convex (see [13], [14]) to those in which neither 
differentiability nor convexity on H is not imposed (see [16], [17] and [18]). 
The approach we use is analogous to the method employed in [18], where the 
modified Hamilton-Jacobi inequality (HJ inequality) was introduced and the 
existence of a certain function, satisfying together with the Hamiltonian, a 
certain inequality was the crucial assumption. Using the dual HJ inequality 
from [12], instead of this inequality we obtained in [11] conditions of the 
same type but formulated in their dual version which require rather weak 
assumptions when compared with [18]. The method of deriving results in 
the paper is similar but it is based on application of fundamental facts from 
functional analysis concerning vector-valued functions (see [1] and [19]). The 
results obtained generalize and extend the existing conditions. 

We are interested in finding sufficient conditions for the existence of a 
strong relative minimum in the generalized problem of Bolza. In the sequel 
we say that an arc y lies in the set E C [a, b] x X, if (t, y(t)) e E for t € [a, 6]. 
Moreover, for given an arc y : [a, 6] —• X and some positive number e, we 
define 
(1.2) N(y-£):={(t,y):te[a,b], ||y - y(t)|| < e}, 

(1.3) Ne(y) :={yeX: ||y - y(i)|| < £ for some t 6 [o, b]} . 

DEFINITION 1. Let T C [a, b] x X and let an arc x lie in T and be such that 
J(x) is finite. We say that x is a strong minimum for (P) relative to T if, 
for all arcs x lying in T, the inequality J(x) > J(x) holds. 

The paper is organized as follows. Section 2 contains formulations of the 
main results: a dual sufficient optimality criterion (Theorem 1) and dual 
first-order sufficient optimality conditions (Theorem 2). In Section 3 there 
are collected some preliminaries and the proofs of main results. Section 4 is 
devoted to the applications of the conditions obtained. We give two concrete 
examples of the calculus of variations problems. Using the criterion and the 
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conditions there we find the explicit formulas for the function Q satisfying 
a certain inequality and the set T, mentioned above. 

2. Main results 
Our main result is Theorem 2 providing dual first-order sufficient condi-

tions for an arc x to be a strong minimum in (P ) relative to T. So for given 
arcs x and p and some positive number e, we define the set T by 

T := {{t, x) G [a, 6] x X : x = x(t) - Q(t)(p - p(t)) for p 6 Ne{p)}, 

where 

Q is a function on [a, b] to L{X\X) having a derivative Q a.e. in [a, b] and 

for almost all t € [a, 6], Q(t) (and in consequence Q(t)) is self-adjoint. 

Here L(X; X ) denotes the space of all linear and continuous operators on 
X to X, which is a Banach space when equipped with a norm ||.A|| = 
sup{11^4^11^ : IMIjjf < 1} for A € L(X\X). Moreover, Q denotes the strong 
derivative of Q : [a, 6] —• L(X; X ) , i.e. 

Q M - I l m « ' + * ) - « ' > 
v ' h-> o h 

(see [9]). Thus, in subsequent theorems, for given arcs p and p, the terms 
Q(t)(p(t) — p(t)) and Q(t)(p(t) — p(t)) are understood to be vectors in X 

and they represent the value of Q(t) and Q(t), respectively, on the vector 
(p(t) -p(t)) G X . 

Our sufficient conditions for (P ) are based on the criterion presented in 
Theorem 1 below. We require in it the existence of a certain function Q 

satisfying, together with the Hamiltonian, a certain inequality. 

THEOREM 1. Let x andp be given arcs and let J(x) be finite. Suppose that 

there exist a function Q satisfying (Q) and an s > 0 such that: 

(i) for almost all t € [a, i>] and for all v G X, 

L(t, x(t),i(t) + v) - L(t, x(t), i(t)) > (p(t), v); 

(ii) for almost all t € [a, 6] and for all p G Ne(p), 

H(t,x(t)-Q(t)(p-p(t)),p)-H(t,x(t),p(t)) < (£(t),p-p(t)) 

+ (P(t), Q(t)(p - P(t))) - \ { p - pit), Q(t)(p - p(t))) ; 

(Hi) for all arcs x for which there is an arc p lying in N(p;e) and satisfying 

x(t) = x(t) - Q(t)(p(t) - p(t), for t G [a, b], 
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l(x(a), x(b)) - l(x(a), x(b)) > ± (p(6) + p(b), x(b) - x(b)) 
1 _ Z 

— 2 (Ka) +P(o).®(o) ~ ®(a)> • 

Then, J(x) is well defined (possibly +oo) for x lying in T, and x is a strong 
minimum for (P) relative to T. 

Applying Theorem 1 in the case when the Hamiltonian is locally Lips-
chitz we obtain optimality conditions for (P). Denote by 

Tx := {x e X : (t, x) € T}, t € [a, b]. 

THEOREM 2. Let x and p be given arcs, J[x) be finite and let z = (x,p). 
Suppose that there exist a function Q satisfying (Q) and an e > 0 such that, 
for all t € [a, 6], the function z —> H(t, z) is locally Lipschitz on Tx x Ne(p) 
and conditions (i), (Hi) of Theorem 1 hold. Assume further that, for almost 
allte [a,6], for allp 6 Ne(p) andforallC = (a,¡3) € dzH(t,x(t)-Q(t)(p-
P(t)),p), 

(2.1) (-Q(t)a + /3 + Q(t)(p-p(t))-i(t)-Q(t)p(t),p-p(t))< 0. 

Then, J(x) is well defined (possibly +oo) for x lying in T, and x is a strong 
minimum for (P) relative to T. 

3. Proofs of main results 
Firstly, we shall prove a proposition which implies the dual sufficient 

optimality criterion for (P) (Theorem 1). We will require the existence of 
two functions, V(t,p) : [a, 6] x X —> R satisfying the dual HJ inequality 
(3.2) and W(t, x) : T —> R defined by (3.1) and by the requirement x(t) = 
—Vp(t,p). Here we identify, by the Riesz representation theorem, a functional 
Vp(t,p) e L(X\ R) with an element v € X, which we still denote by Vp(t,p). 
Given an arc p, an e > 0 and a subset T C [a, 6] x X of the variables (t, x), 
we shall make following assumptions: 

(Al) for each p € Ne(p), there exists Vt(t,p) a.e. and, for all (t,p) € [a, 6] x 
Ne(p), there exists a Frechet derivative Vp(t,p)\ 

(A2) for all arcs p lying in iV(p;e) and such that x(t) = —Vp(t,p(t)), for 
t G [a, 6], is an arc lying in T, the mapping t —> W(t, —Vp(t,p(t))) is 
absolutely continuous and 

(3.1) V(t,p(t)) = W{t,-Vp(t,P(t))) + (Vp(t,p(t)),p(t)). 

PROPOSITION 1. Let X and p be given and let J(x) be finite. Suppose that 
there exist an e > 0, functions V(t,p) and W(t,x) defined on [a, 6] x N£(p) 
and T, respectively, where 
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T := {(i,x) E[a,b]xX:x = -Vp(t,p) f o r p e Ne(p)}, 

such that x(t) = —Vp(t,p(t)), fort € [a,6], and (Al), (A2) hold. Assume 
also that, for all arcs x for which there is an arc p lying in N(p;e) and 
satisfying x(t) = —Vp(t,p(t)), for t E [a, b], the following two conditions 
hold: 

(3 2) (&) F t ( i ' p ( i ) ) + MO.^* ) ) " -VP(t,p(t)),i(t)) 

< Vt(t,p(t)) + ( p ( t ) , i ( t ) ) - L(t,x(t),i{t)) o . c . ; 

(b) l(x(a),x(b)) - l(x(a),x(b)) 
> W ( a , x ( a ) ) - W(a, x(a)) + W(b, 2 ( 6 ) ) - W(b, x(b)). 

Then, J(x) is well defined (possibly + o o ) for x lying in T, and x is a strong 
minimum for (P) relative to T. 

Proo f . Take any arc x for which there exists an arc p lying in N(p, s) and 
such that 
(3 .3) x(t) = -Vp(t,p(t)) f o r t e [a, 6]. 

Then, x lies in T. With (3.1) we shall calculate ^-V(t,p(t)). Prom (3.3) and 
UZ 

assumptions (Al), (A2) we have 

(3 .4) Vt(t,p(t)) = ±W(t,-Vp(t,P(t))) + ^ V p ( t , p ( t ) ) , p ( t ) } a . e . 

Since x(t) = —Vp(t,p(t)), for t € [a, 6], it follows, by (3.4), that 

(3 .5) Vt(t,p(t)) = ±W(t,-Vp(t,p(t))) + ( j t V p ( t , p ( t ) ) , p ( t ) } a . e . 

Inserting (3.4), (3.5) into (3.2) we obtain 

(3 .6) L(t,x(t),x(t)) > j W ( t , - V p ( t , p ( t ) ) ) - j W ( t , - V p ( t , p ( t ) ) ) 
+L(t,x(t),x) a . e . 

Integrability of the right-hand side of (3.6) and measurability of L imply 
that J(x) is well defined (possibly +oo). Integrating (3.6) and using (b) we 
obtain that J(x) > J{x). Since x was arbitrarily fixed, it follows that x is a 
strong minimum for (P) relative to T. • 

REMARK 1. It can be easily seen that in problem (V) condition (b) of Propo-
sition 1 holds for any function W(t, x) :T —• R satisfying (A2). 

We shall now concentrate on the explicit construction of the functions 
V and W used in Proposition 1. The quadratic expressions for V(t,p) and 
W(t, —Vp(t,p)) are given in the following proof. 
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P r o o f of Theorem 1. We shall prove the optimality of x using Proposition 1. 
Let a function Q, arcs x, p and an e > 0 be as in Theorem 1. 

Define a function V(t,p) : [a, 6] x N£(p) —* R by 

(3.7) V(t, p) := - <x(t),P - p(t)) + \ (p - p(t),Q(t)(p - p{t))). 

Condition (Al) is, of course, satisfied, i.e. for each p G Ne(p), there exists 
Vt(t,p) a.e. and it is equal to 
(3.8) Vt(t,p) = - (i(t),p-p(t)) + (x(t),p{t)) - (p(t),Q(t)(p-pm 

+\(p-p{t),Q{t)(jp-p{t))) a.e. 

and, for all (t,p) (E [a, 6] x Ne(p), there exists a Frechet derivative Vp(t,p) 
and it is easily calculated to be 
(3.9) Vp(t,p) = -x(t) + Q(t)(p-p(t)). 
From (3.9) it follows that x is an arc for which 

(3.10) x(t) = -Vp(t,p(t)) for t G [a, 6]. 
Take an arc x for which there exists an arc p lying in N(p] e) and satis-

fying 
(3.11) x(t) = -Vp(t,p(t)) for t € [a, 6]. 
Hence, x lies in T. We shall now demonstrate that a function V(t,p) satisfies 
inequality (3.2). Condition (i) and definition (1.1) imply that 
(3.12) H (t, x(t), p(t)) = (p(i), x(t)) - L(t, x(t), ¿(t)) a.e. , 

(3.13) H (t, x(t) - Q(t)(p - p(t)),p) > (p, v} - L(t, x(t) - Q(t)(p - p(t)), v) 
for almost all t € [a, 6], for all p € Ne(p) and for all v € X. 

Using (3.8), (3.9), (3.12), (3.13) and (ii) we have 
Vt(t,p(t)) + (p(t),x(t)) -L(t,-Vp(t,P(t)),x(t)) -Vt(t,p(t)) - <p(t),i(0> 
+L(t,x(t),i(t)) <H(t,x(t)-Q(t)(p(t)-p(t)),p(t))-ff(t,x(t),p(t)) 

- (i(t),p(t) - p(t)} - (p(t), Q(t)(P(t) - p{t))) 

+1 (p(t) ~ P(t), Q(t)(p(t) - p(t))) < 0 a.e. 

Therefore, condition (a) of Proposition 1 is satisfied. 
To complete the proof we show that assumption (A2) and condition (b) 

of Proposition 1 hold. Set 

(3.14) W(t,-Vp(t,p)) := (p(t),x(t)) ~ I (P + P(t),Q(t)(p-P(m 

for (t,p) e [a, b] x Ne(p). The mapping t-*W(t, —Vp(t,p(t))) is absolutely 
continuous since by (3.9), (3.11) the arcs x, p, p, x satisfy x(t) = x(t) — 
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Q(t)(p(t) -p(t)) for t G [a, 6], Moreover, by (3.7) and (3.9) it follows that 
(3.1) holds. Consequently, assumption (A2) holds. 

Now inserting (3.10), (3.11) into (3.14) for t = a and t — b and using 
(iii), we obtain 
W(a, x(a)) - W(a, x(a)) + W(b, x(b)) - W(b, x(b)) 

= \ (P{b) + P(b), x(b) - x(b)) - ^ (p{a) + p(a), x(a) - x(a)) 

< l(x(a), x(b)) - l(x(a), x(b)). 
Thus, condition (b) of Proposition 1 is satisfied. This completes the proof. • 

In the proof of Theorem 2 providing dual first-order optimality condi-
tions, we shall require the following lemma which is analogous to Lemma 
4.1 obtained in [18]. 
Lemma 1. Let p be a given arc and let F(t,p) : [a, fe] x N£(p) R be such 
that, for almost all t € [a, 6], the function p —+ F(t,p) is locally Lipschitz. 
Assume that there is a function f : [a, b] X satisfying the condition 
(3.15) (w-f(t),p-p(t))<0 
for almost all t € [a, b], for all p G Ne(p) and for all w € dpF(t,p). Then, 
for almost all t G [a, 6] and for all p € N£(p), 

F(t,p)-F(t,p(t))<(f(t),p-p(t)). 

The line of the proof of Lemma 1 repeats that of Lemma 4.1 presented 
in [18] with the only change arising from application of Chain Rule II of [5] 
instead of Chain Rule known from [4]. 
Proof of Theorem 2. We shall demonstrate that condition (ii) of Theorem 1 
is satisfied. Let a function Q, the arcs x, p and an e > 0 be as in Theorem 2. 
Set 
(3.16) F(4>p):= Jff(i>x(t)-Q(i)(p-p(i)),P) + ^ ( p - p ( t ) , Q ( t ) ( p - p ( 0 ) ) 

for t e [a, 6] a.e. and for p E Ne(p). Since the Hamiltonian H is locally 
Lipschitz with respect to z = (x,p) e X x X, it follows that the function 
p —> F(t,p) is locally Lipschitz on Ne(p). Applying Chain Rule II given in 
[5] we get 

dpF(t,p) c (-Q(t),idx)dzH(t,x(t)-Q(t)(p-p(t)),p) + Q(t)(p-p(t)), 
where idx is the identity mapping on X to X. In other words, we obtain 
that, if w € dpF(t,p), then w = -Q(t)a + ¡3 + Q(t)(p - p(t)) for some 
C = (a,/?) G dzH(t,x(t) - Q(t)(p - p(t)),p). The above and (2.1) lead to 
the following inequality 
(3.17) (w - £(t) - Q(t)p(t),P- p(t)) < 0 
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which is satisfied for almost all t e [a, 6], for all p e N£(p) and for all 
we dpF(t,p). Define / : [a, 6] —> X by the formula 
(3.18) f(t):=i(t) + Q(t)p(t)-

Then, from (3.17) and (3.18), we have (3.15). By Lemma 1 we infer that, 
for almost all t e [a, 6] and for all p € Ne (p), 

(3.19) F(t,p)-F(t,p(t)) < (f(t),p-p(t)). 

Inserting (3.16), (3.18) into (3.19) gives condition (ii) of Theorem 1. Since 
all the assumptions of Theorem 1 are now satisfied, it follows that x is a 
strong minimum for (P) relative to T. m 

4. Examples 
We shall now apply the dual first-order sufficient optimality conditions 

(Theorem 2) to solve two problems of the calculus of variations. In both 
examples inequality (2.1) from Section 2 will be used to find a function 
Q. This function determines the set T over which the strong minimum is 
obtained. 

EXAMPLE 1. Minimize J(x) = \ |l2 ||X(I)||2 + 1 2 || i (0 l| 2 } dt subject to 

x(—1) = —r, x( l ) = r, where r e X and ||r|| = 1. 

The Hamiltonian of the problem is 

H(t,x,p) = sup {(p,v) - 12 ||x||2 - i 2 |M|2 : veX} = -12 ||*||2 + M - . 

Let x(t) = t3r and p(t) = 6t4r, for t e [-1,1]. Then z ( - l ) = - r , x(l) = r, 
J(x) = 6. Moreover, (i) and (iii) of Theorem 1 hold for any function Q on 
[—1,1] to L(X\X) and for a function I defined as l(x 1,^2) ip{-T}(xi) + 
i>{r}(x2), where x\, xi 6 X. Inequality (2.1) is as follows 

(4.1) -24Q 2 ( t ) + Q(t) + ^idx ( p - 6 i 4 r ) ,p — 6i4r^ < 0 

for almost all t e [—1,1] and for all p 6 X. Let 

J -idx when |i| < 1 and t^O 
Q(t) := < t 

[ idx when t = 0 

Then, the function Q satisfies inequality (4.1). Hence, all the assumptions 
of Theorem 2 hold. The set T has the following form 

T := j ( i , x) € [ -1 ,1] x X : x = t3r - Q(t){p-6t4r) for p € x } , 

i.e. T = [ - l , l ] x X . 
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Thus, by Theorem 2, a; is a strong minimum for the problem considered 
relative to T. 

R e m a r k 2 . It is worth stressing in Example 1 the weakness of assumptions 
on a function Q. We require only that it has a derivative a.e. and it need 
not be, for instance, of bounded variation or absolutely continuous like it is 
assumed in [17], [18]. 

3 _ 

E x a m p l e 2. Minimize J(x) = $ ||x(i)||2 l 
2 sin t 

|±(i)||2}di subject to 

x(0) = x(|7r) = Ox, where Ox € X and v + Ox = v for each v 6 X. 

The Hamiltonian of the problem is 

H(t, x,p) = sup |(p, v) + J ||x||2 - ^¿jy IMI2 : v E x j 

M 2 -
1 M „ 2 1 

= 4 I M I 2 + 2 
. 1 

sin -
t 

Let x(i) = p(t) = Ox for t € ^ 3 . Then x(0) = x Q t t^ = Ox, J{x) = 0. 

3 
to Moreover, (i) and (iii) of Theorem 1 hold for any function Q on 

L(X;X) and for a function I defined as l(x\,x2) •— ^{Ox}^!) + ^{0x}(x2)) 
where xi, X2 € X. Inequality (2.1) is as follows 

(4.2) 

for almost all t € 

Q2(t) + 2Q(t) + 2 
. 1 

sin -
t 

idx p , p ) < 0 

« 3 

Q(t) := 

and for all p € X. Let 

(— tani)zdx when t € 

idx when t G {f-H 
Then, the function Q satisfies inequality (4.2). Hence, all the assumptions 
of Theorem 2 hold. The set T has the following form 

T := j(i, x) 6 0 , ^ t t x X : x = —Q(t)p for p € , 

i.e. T = [(0, t t ) x X] U 0 , - 7 T ) X X U[(0 ,0x ) , (tt ,0x)]. 

Thus, by Theorem 2, x is a strong minimum for the problem considered 
relative to T. 
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