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SINGULARITIES IN BOUNDARY VALUE PROBLEMS 
FOR A N ABSTRACT SECOND ORDER 

DIFFERENTIAL EQUATION OF ELLIPTIC TYPE 

Abstract. In this work we give an alternative approach to the study of some singular 
boundary value problems for a second order differential-operator equation in the space 
of Holder continuous functions. We prove that the solution can be represented explicitly 
as the sum u = ur + us °f a regular part and a singular part under some natural 
assumptions on the data. We then give a complete analysis of ur and ug by using the 
operational calculus. 

1. Introduction and assumptions 
Throughout this paper, we consider a closed linear operator A with do-

main D(A) not necessarily dense in a complex Banach space E. 
We study the following second order abstract differential equation 

(1) u"(t) + Au(t) = f(t), 16(0,1), 
under the nonregular boundary conditions 

(2) = 
1 ou'(0) + u(l) = /2 , 

where / £ C([0,1]; / i , fc € E and a is some given nonnegative para-
meter. 

Set 
n = (C \ P) U R + , 

where P is the parabolic domain 
P = {x + iy : x < 7r2, |y| < 27r\/7r2 — a;}. 

Then, the main assumption in section 2 is the following 

(Hi) p(A) D n and 3M > 0 : Vz € II | |(A - zI)~l\\L{E) < -^r-
I + \z\ 

here, p(A) is the resolvent set of A. 
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We are interested in the existence, uniqueness and regularity of the so-
lution u when / is Holder continuous function. 

Several authors have studied equation (1) when it is regarded as an 
abstract problem of parabolic or hyperbolic type. See, for example, Fattorini 
[3], S.G Krein [6], H. Tanabe [11], A. Favini [4]. 

In this work, we consider the elliptic case which is expressed by (Hi). 

The second boundary condition in (2) depending of the parameter a ^ 0, 
makes difficult the study of our problem and creates singularities. This 
condition is known as Birkhoff-Tamarkin nonregular boundary conditions 
and arises, for example, in the physical Regge problems which are noncoer-
cive. 

When a = 0, problem ( l ) - (2 ) has been completly studied by Labbas [7] 
and corresponds to a regular Dirichlet problem. 

When a ^ 0, F.G. Maksudov and I.V. Aliev [9] have studied the problem 
(l)-(2). Recently G. Dore and S. Yakubov [1] have considered the same prob-
lem in a general situation. All these authors have considered the hilbertian 
case and assumed the density of D(A) in E. They have used the fractional 
powers of operator — A and the techniques of semigroups estimates generated 
by them. 

Here, we give an alternative approach. Our techniques are essentially 
based on a direct analysis of some singular Dunford's integrals. We make 
use of the real interpolation spaces between D(A) and E which are well 
known in many concrete cases while the spaces D((—A)@), for ¡3 e]0,1[, are 
difficult to characterize in many PDE's problems. On the other hand, this 
method allows us to consider the case when D(A) ^ E, which corresponds, 
in applications, to many elliptic realizations in the framework of spaces of 
continuous functions, for example. 

We show that the solution of ( l ) - (2 ) may be broken down into the 
sum 

u(t) = uR(t) + us(t), 

of a regular part u r ( . ) whose behavior is not affected by the presence of the 
nonregular term in the boundary conditions (2) and a singular explicit part 
us(•)• We then describe all the behavior of these two parts according to the 
regularities of the data. 

The paper is organized as follows. 
In section 2, in virtue of (Hi) and the operational calculus, we give the 

explicit formula of the solution u to problem (l)-(2). When / is holderian, we 
give necessary and sufficient conditions on f\ and /2 to obtain an optimal 
smoothness of u. (See Theorem 2). 
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In section 3, we study the spectral problem 

' u"{t) + Au{t) - fiu(t) = f ( t ) , t G (0,1), 
(3) u(0) = f h 

au'(0) + u(l) = f2, 

where a is a fixed complex number and fi is a given complex number be-
longing to some sector with Re(/x) > 0 large. 

For this problem, we assume, instead of (Hi), that there exists So G]0,7r[ 
such that 

f p(A) D E 0 = {z 6 C*/l arg(z)| < 60}, 
™ \ 3M>0:Vze So \\(A-zI)^\\L{E) ^ M/\z\. 

Under assumptions fi, / 2 G £>(>1), / G C 2 r > ( [ 0 , w i t h r¡ G ]0, l/2[, 
we then obtain the representation 

UY,{T) = u^nitf + u^sit), 

with the two following estimates: 
1. if / ( 0 ) - A f i , f(1) - Ah G DA(r}; + o o ) , 

M IK,HIIX + ||uÍU||x + \\AunM\x 

K_ 

w 
and 

2 . if / ( 0 ) - A / i G ^ ( T ? ; + O O ) , 

|^|1/2 \ M \ x + K . s l U + II"M,5|IB(DA(1/2;+OO)) 

K_ 

w 
where K is a constant not depending of \x. (See Theorem 3). 

Here we have considered, for r¡ G ]0,1[, the well known real interpolation 
space between D(A) and E characterized by 

DA(T]-, +OO) = {ip G E : s u p r l ^ A - r J ) "VWE < oo}. 
r> 0 

(See Grisvard [5]). 
In section 4, we give some concrete examples to which our results can be 

applied. 

2. Construction of the solution 
2.1. The case / = 0 

Assume (Hi). Then it is well known that there exist £Q > 0, C > 0, 
<po G ]0,7r/2[ such that 

< nrpr (II F0) - AH\\DAV,+OO) + 11/(0) - Afl||^(„;+oo) + l l / IUiE)) , 

^ (ll/(°) - AMDA(V,+OC) + ll/llc*»(£o) ' 
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p(A) D A 0 = {z E C* : |arg(z)| ^ ipa) U {z : |z| < e 0 } 

VZGAo I K A - z ^ H ^ ^ C / a + lzl), 

therefore 

' p{A) D n 0 and 3M > 0 : 
V z e n 0 | | { A - z I ) - i \ \ l { e ] < M / { \ + \Z\), 

where 
n 0 = (C \ P ) U Ao. 

The following technical lemma explains why we have assumed that the spec-
trum of A is contained in some parabolic set P. 

Set 

<5q(A) = aV—A + sinh V—A, 

where >/—A is the analytic representation defined by Re y/— A > 0. 

LEMMA 1. We /iaue 
1. A G C \ n 0 = » Sa(A) ^ 0, 

2. I/iere exists 0 a €]0, TT[ SUC/I that Sa(A) ^ 0 on f/ie sector 

S(0a,e o) = { A e C : |A| ^ e 0 and |arg(A)| ^ 0 Q } . 

P r o o f . 1. Let z = x + iy with x > 0 and assume that a z + sinh z = 0, then 

{ ax + sinh x. cos y = 0 
ay + cosh x. sin y — 0, 

thus y 7^0. Now, there is only two possible situations: 

y>0 
cosy < 0 

w siny < 0, 
or 

therefore 
(4) 

y<o 
cosy < 0 
siny > 0, 

z € ]0, +oo[+i[—7r, 7r] az + sinhz ^ 0. 

Let A 6 C \ II 0 . Then we can show that 

' R e v ^ A > 0 

|Imv/=A| = 

and due to (4), we obtain Sa(A) ^ 0. 

'|A| + ReA 
^ 7T, 
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2. Fix 8Q e]0,7r/2[ and let z = x + iy with |arg(z)| < OQ. Then one has 
laz + sinhz| ^ |sinh 2;| — \az\ 

^ sinh a: — a^jx 2 + y2 

• , a 

^ sinh a: 7TTTx-cos(0O) 
Therefore there exists a constant CQ = C(a, do) such that 

Re(z) = x > CQ |az + sinh z\ > 0. 
Now, in the compact sector 

{z : Re(z) = x < Ca and |arg(z)| < 0o}, 
the analytic function 

z h q 2 + sinh z 
is vanishing at a finite number of points. Moreover, these points do not 
belong to the real strictly positive axis. So, there exists 6'a e]0, 6o] such 
that 

az + sinh z / 0, 
for all zeC* with |arg z\ ^ 6'a. Setting 0a = n — 26'a, then it follows that 
for any A G S(6a,eo), we have 

-v/^A € C* and arg ^ 0'a, 

thus Sa(A) ^ 0. 
When (—A) is positive number, the solution of the problem 

' u"(t) + Au(t) = 0, t € (0,1), 
(5) ti(O) = / i , 

au'(0) + u(l) = f2, 

is given by the formula 

un\ — c o s h V~At + sinh y/-A{\ - t) ^ sinh \ / — A t 

a^-A + sinh \/—A a>/^A + sinh y/^A 
So, in the abstract case, a possible representation of (5) is given by the 
Dunford's integral 

( 6 ) m = ¿ i ! - U ) - 1 f 2 d \ 

7 
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= R(t)f2 + R{l-t)f1 + S(t)flt 

where 7 = JA,E0 i s the sectorial boundary curve of S(8a, £Q) U ( P \ A O ) 

oriented negatively (that is from ooel6a to ooe~lda) and for t G (0,1) and 
A € 7 , 

sinh y/—\t 
= Sa( A) 

8V=X,a(t) = 
%/—Acosh %/—A£ 

¿ « ( A ) ' 

Note that, according to Lemma 1, we have <5a(A) / 0 on 7 and on the 
domain which is on the left of 7. And from (Hi), we see that p(A) contains 
the domain set on the right of 7. 

Now, for A G 7 with |A| large enough, there exists K = K(7) such that 

|<5a(A)| = | a \ /^A + sinh \/-^a| 

^ |sinh V^A| - a | V^A| 
^ sinh(Re V^X) — a |A|1//2 

then there exist two constants c = c(7) and Kq = Ko(j) such that for any 
A G 7 and t G [0,1], we have 

sinh V ^ a | >K0e cW1 / 2 , 

sinh 

cosh V - A t 

Thus 

(7) 

sinh y/—Xt 
Sa( A) 

cosh a/—At 
¿a(A) 

sinh %/—Ai 
sinh \/—A 

< (l/JftT0)e-clAl1/2(1-t), 
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According to (Hi) and (7), all the integrals in (6) converge absolutely 
for every t G ]0,1[. 

The convergence of 5(1 )/i is not guaranteed since |sv/r^a(l)| = 0(|A|1/2). 
Set 

T r. . 1 r sinh yf—Xt , . . „ 1 

" W ^ í S S í S T T ^ - " ) v i x < 

for <p G E and t € [0,1[. 
Then we have the following technical lemma 

Lemma 2. Let us assume (H\), and consider rj G]0, l /2[ . Then 

1. there exists a positive constant K = Ki^f) such that for any ip 6 E 
and t G [0,1[ 

MT)<P\\E*KME, 

2. t » V(t)<p G C°°([0,1[; D(A)), 
3. t H-» V(t)<p G C([0,1]; E) <*==>• tp G D(A), 
4. t H-» V{t)tp G C2T>([0,1]; E) •<=>• IP G DA(T]- +oo). 

When ip e D(A), then 

5. V(1 )<p G D(A), 
6. i V(t)ip G C2([0,1]; i?) fl C([0,1]; D(A)) <=> A<p G D(A), 

t ^ AV(t)(p G C([0,1] ; E) ^ A<p G D(A), 
7. t » V"(t)<p G C 2"([0, 1 ] ; E) <==> A<p G DA(T]- +oo), 

t G C 2"([0, 1 ] ; £7) <=* j ty € £>¿(77; +oo). 

Proof. It is inspired by the techniques used in [2]. Here, K will denote 
various constants which depend eventually on 7 = 7 (a). 

1. For a large |A|, the curve 7 is sectorial, so there exists ra > 0 such 
that 

{A G 7; |A| > ra} = {A G C : |A| ^ ra and |arg(A)| = 6a} . 

Set for r G]0,1] 

m i 7 l = {A G 7; |A| < rQ/r 2} , 
^ ' 1 7 + = {A G 7; |A| ^ ra/r2} . 

Let ip £ E and t G [0,1[. Then 
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and, f rom (7) , we get 

/ +00 c|A|V2 (1_t ) 

\\I+\\ekk( \ m — d | A | ) M E 

+00 e~ca 
<2K J —d*ME*K\\tp\\E. 

For /_ , we wri te 

= 5 5 i ( 
7_ 

\/rZ 

sinh y/—\t — sinh y/—A 

sinh >/=A 
) (>1 - XI)~lfd\ 

= 1 j / j f A c o s ^ V t 

2m ¿ t sinh \/-A / V ' * 

- h i \ - a / ) - v ^ A 
c i - ' 

7-/ , 7-" 

where 

Then 

= /L + /_ , 

C 1 - 4 = { A € C / |arg A| < and |A| = ra/{ 1 - t ) 2 } . 

H ' - l l ^ J" 

and, f rom 

E 

rad6 

Aeyl"*, |A|>r, 

= Jl + J2 , 

one has clearly 

I k i l b ^ t f l M b , 
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and 
K W(l-t)2 |\ |l/2/-| _ f s 

s 1 ' i l l J r f | A | . | | y b < i r | M | f i . 
ra 

|A| 

2. Let A e 7 and t € [0,1[. Due to (7), the integral 

1 . sinh V = X t A { A _ X I ) - i d X 

2m ^ sinh %/—A V ' 

is absolutely convergent. So V(t)<p € D(A) and 

. „ „ ^ 1 f sinh V—At 
v') 

3. It is enough to show the continuity at t = 1. Let <p 6 D(A) and e > 0. 
Then there exists y € D(A) such that||y> — y\\E < e. Using the identity 

( ¿ . ^ . i d z ^ t e . s , 

we have, for any t € [0,1[ 

T „ . l r sinh y/^Xt (A - XI)-1 „ „ 
V(t)y = 7TT- \ r - r - T ^ A y d X . 

Indeed the integral 

2m J sinh V - A 

1 rS inhv^Âiy 
-—: \ . -flA, 
2m J sinh \ / -A A 

is equal to zero since the function 
sinh \/—Xt y 
sinhy/—A A' 

is analytic on the domain which is on the left of 7 and in this domain, we 
have 

sinh \/—At y 

Since 
sinh \f—X A 

s inhx /=Ai (A-A/ ) " 1 

then 
sinh \J—X A 

V(t)y - y 

= O 

Ay < 7^2 WME 
E |A| 

t—1-
0 

due to the Lebesgue's theorem. Now, from the equality 

V(t)ip -<p = V(t)<p - V(t)y + V(t)y - y + y-<p, 
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we deduce that 
V(t)ip - <p 0. 

Conversely, assume that V(.)<p € C([0,1]; E), then l i m ^ i - V(t)<p exists and 
is necessarily equal to <p ; however, for any t 6 [0,1] 

sinh \/—At / A x j 
sinh y/^X 

( A - x i r ^ e D ( A ) , 

which implies that V(t)<p G D(A). 
4. Let tp 6 Da{t1] +OO) and r, t € [0,1] such that r < t, then 

tru\ vt \ 1 f s™hy/=Xt - sinh y/—\T A(A - A / ) - 1 
= - S ^ 

27ri ¿T\l sinh y/^X J X 
= J+ + J_, 

where 7+_r and 7!rT are defined in (8). We get 

P+We^k s t t ^ N W o o ) 

< - r ) 2" \\<P\\DA{T) 

For J_, we write then 

= J' + J", 

then 
i m U ^ A - l t - r H M I ^ ^ ) , 

and W(t-T)2 | \ |l/2 | t _ I l l - H I a * * J -

< K(t - t)2t? HvH^^ 

The converse result can be proved using a method similar to one in [10]. 
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5. Since (p € D(A), we get 

V(1 )<p = <p€ D(A). 
6. Using (p G D(A) and (9), we have for any t G [0,1[, 

(10) AV(t)<p = JL S - A IT^AvdX = V(t)Aip, 

and also 

(11) V»(t)V = S - Xir^dX = -V(t)Ap. 

To conclude we apply statement 3. 
7. It is a consequence of (10), (11) and statement 4. 

Now the behavior of the regular part of u is specified in the two following 
propositions. 

PROPOSITION 1. Let us assume (Hi), and consider r¡ G]0, l/2[. Then 
1 . V / 2 € £ , í h R(t)f2 € C°°([0,1[; D(A)), 
2. t ~ R(t)f2 G C([0,1] ; E) f2 G D(A), 
3. t ~ R(t)f2 € C2"([0,1] -E) ^ f2 G DA{rr, +oo). 
When f2 e D(A), then 
4. for any t G [0,1], R(t)f2 G D(A), 
5. t ~ R(t)f2 G C2([0,1] ; E) D C([0,1] ; D(A)) Af2 G D(A), 

t ~ AR(t)f2 G C([0,1] ; E) Af2 G D(A), 
6. t ~ R"(t)f2 G C2r>([0,1] ; E) <=* Af2 G DA(rt+oo), 

t ^ AR(t)f2 G C2í>([0,1 ];£?)<=> Ah € DA(T?; + O O ) . 

P r o o f . We write for any t G [0,1] 

R(t)f2 = v(t)f2 + W(t)f2, 
where 

= 1 f - a V ^ r i n h y g t _ x 
2TTZJ <JQ(A)sinhv/^X V ' J 

and, using (6), we get 

11—• W(t)f2 G C°°([0,1] ; D(A)), 
now to conclude it is enough to apply Lemma 2. 

By the same way, we obtain 

PROPOSITION 2. Let us assume (Hi), and consider 77 G]0, l/2[. Then 
1 .V/ i6Ê,tM R( 1 - t)fi e C°°(]0,1];£>(A)), 
2. í ~ fl(l - t ) / i g C([0,1];E) <=* /1 € L>(A), 
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3. t~R( 1 - t)h G c2r>([0,1] ; £7) A e £¿(»7; +oo). 

When fx € D(A), then 
4. for any t € [0,1], R( 1 - t)/I G £>(>*), 
5. t » R ( 1 - i ) / i e C 2([0,1] ; E ) n C([0,1];£>(A)) ¿ / i e D ( ^ ) , 

t ~ Ai2(t)/i € C([0,1] ; E) A/i € D(A), 
6. t ~ R"( 1 - I ) / I € C 2 " ( [ 0 , 1 ] ; £ ) Ah G D ^ F A +OO), 

t ~ - i)/i e c2»([0,1] ; £) Ah G lUfa; +oo). 

The behavior of the singular part of u is specified by the following propo-
sition. 

PROPOSITION 3. Let us assume (Hi) and consider 77 e]0, l /2[ . Then 

1. V h G E, t » S(t)h G C°°([0,1[; D(A)). 

When h G D(A), then 

2. S(t)h G C1([0,l}]E)^AheD(Â), 
3. S(t)h G C 1 + 2 , 7 ( [0 ,1] Ah G DA^+OO). 

P r o o f . 1. It follows from estimates (7). 
2. Using the resolvent identity 

we get, for any t 6 [0,1[, 

2?H 7 
thus 

x , ~ a r Asinh\/^Âi (A — XI) 1 . , ,, . . , 
= ^ S a m X = 27TZ^ ¿ a (A) 

then we use Proposition 1, statement 2. 
3. It suffices to use the fact that 

S(t)h G C 1 + 2 " ( [ 0 , 1 ] ; E) S'{t)h G C 2 "([0,1] ; E), 
and Proposition 1, statement 3. 

Now, putting 
(aR{t) = R{t)h + R(l-t)h, 

\us(t) = S(t)h, 

we can summarize this section by the following theorem. 

THEOREM 1 . Assume (Hi) and fi> h G D(A). Let 77 e]0, l / 2 [ . Then the 
representation 

u(t) =ÛR(t) +ûs(t), 

given in (6), is the unique solution of problem (5) satisfying: 
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1 . aR e C ° ° ( ] 0 , 1 [ ; D(A)), US € C ° ° ( [ 0 , 1 [ ; D(A)), 
2 . 1 I R G C2([0,1] ; E) n C([0,1] ; D(A)) «=> A f u A f 2 € D{A), 
3 . Aur € C 2 " ( [ 0 , 1 ] ; E) -A/i, A / 2 e £>¿(77; +oo), 
4 . 1 Z 5 e ^ ( [ 0 , 1 ] ; £ ) A / i € D ( A ) , 

5 . û 5 e C 1 + 2 ? 7 ( [ 0 , 1 ] ; £ ) < = > M e + < x > ) . 

E q u a t i o n s i n ( 5 ) c a n b e v e r i f e d b y u s u a l o p e r a t i o n a l c a l c u l u s . 

2.2. Second case: nonhomogeneous equation 
N o w , l e t u s c o n s i d e r t h e c o m p l e t e e q u a t i o n 

u"(t) + Au(t) = f ( t ) , t 6 ( 0 , 1 ) , 

«(0) = f u 

au'{0) + u{l) = f2> 

w i t h / G C ( [ 0 , 1 ] ; £ ) . 

W h e n —A > 0 , t h e s o l u t i o n o f ( 1 2 ) i s g i v e n b y 

u(t) 

(12) 

a \ / - A c o s h At + s i n h ^ - - < 4 ( 1 - t ) 

/ i + 
s i n h y/—At 

4 + s i n h 

l 

h 

+ -

ay/—A + s i n h \/—A 

i (cosh 1(s)is 
w h e r e 

( a \ / - A c o s h V — A t + s i n h y/—A( 1 - t ) ) s i n h \/—As 

\/—A(ay/—A + s i n h V ^ A ) 

( q V — A c o s h \ / - A s + s i n h V~A( 1 - s ) ) s i n h \ J - A t 

, 0 ^ s < t 

V - A ( a V — A + s i n h \ J - A ) 

S o , i t i s n a t u r a l t o c o n s i d e r t h e c o m p l e t e D u n f o r d ' s r e p r e s e n t a t i o n 

« ( * ) = ¿ 7 \9v^,Q(t)(A - XI)-1f2d\ 

, t ^ s < 1. 

7 

Q! r s i n h \f—\t ( \ 

+ 2ttÏ J ia(A) 
( c o s h > / = Â a ) ( A - XI)-1 f(s)ds^J dX 
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which can b e wr i t t en in t h e f o r m 

(13) u(t) = -L J g ^ a ( t ) ( A - Xiy'hdX 

5 ( U v ^ a M O 4 - A I ) - 1 / « * ) dA 

= Hfl( t ) + B s ( i ) 
where 

s inh y/—A(1 — t) s inh y/—Xs 

V^XSa(X) 

s inh \ /—A(1 — s) s inh %/—Ai 

, 0 < s < i 

, t ^ s < 1, 

a n d 

V=X5a(X) 

= hi ! -  AI)-1f(s)ds)dX, 

T h e behavior of t h e regular p a r t u / j = UR + i s g iven by 

PROPOSITION 4. A s s u m e (Hi), / i , / 2 e 0 ( A ) . L e i / € C2 t>([0,1];E) such 
that r] €]0, l/2[. Then 

1. € C 2 ( ] 0 , 1 [ ; £ 0 n C ( ] 0 , 1 [ ; D(A)), 
2. uft, G C([0,1]; E) ^ f(0) - Afi, /(1) - A / 2 e D(A), 
3. « f t , A u f i G C 2 t ? ( [ 0 , 1] ; £ ) / ( 0 ) - ¿ / i , / ( ! ) " A / a € DA(rr,+oo). 

P r o o f . S e t t i n g 

Mt) = ¿r S - XI)'1 f^dX 
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S - - A / r V i d A 

641 

+ é i ! - A i ) - 1 / « * ) d\, 

then, by the same techniques as in [7], VR satifies all the statements of 
Proposition 4 and 

v%(t) + AvR(t) = f(t), t€( 0 , 1 ) , 

VR(0) = fi, 

[vR(l)=f2. 

Write 

with 

UR = VR + WR, 

2 ni 
1 

+ h - t) - 5^,0(1 - t))(A - Xiy'hdX 

7 

+ 1 •) - *V=A,0(t, *))(A - ur'mds^j dX. 

It is not difficult to see that 
V£ € [0,1] 1 ^ ( 0 - = 0(|A|: 

and 

Sa( A) 

thus, for any k ^ 1 , we get 

WR 6 C2+2»([0,1]; £0 n C([0,1]; D(,4fc)). 
For the behavior of us = us + the singular part of u, it is enough to 
specify that of I 5 . 

P r o p o s i t i o n 5. Assume (Hi) and f e C2r>([0,1]; E) with 77 g]0, l / 2 [ . Then 

1 . S 5 e c 2 ( [ 0 , 1 [ ; E ) n c ( [ o , i [ ; D(A)), 
2. l s € ^ ( [ 0 , 1 ] ; E ) / ( 0 ) e D{A), 
3. I 5 € C 1 + 2 " ( [ 0 , 1 ] ; £ ) / ( 0 ) e Da^S+OO). 

P r o o f . 1. It is obvious. 
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2. Let us write for any i € [0,1[ 

(14) %(t) 

- £ \ ( S ^ ^ ' - ^ A - A O - ( / w - m ) * ) * 7 
n 

1/2 + 77' 

= It + Jf 

Now, due to Holder's inequality, we have 

o |A| 
therefore 

\\It\\B < K $ nc-»W1/a ll/W - m 
7 \0 / lAl 

<K\\f\\c2ri{E) J ( S e - W 1 7 2 ^ - i d l A I 
7 \0 / lAl 

thus 
i H l , e C ( [ 0,1];£) . 

The second integral can be written as 

Jt = a i?(i)/(0), 

and Proposition 1 yields 

t ~ Jt € C([0,1]; E) ^ /(0) € D(A). 

3. The proof of this statement is not trivial. Let us detail it. Assume that 
/(0) € DA(m +°o). Due to (14), we have 

us(t) = It + Jt, 
and in virtue of Proposition 1, we get 

Jt e C2r>([0,1]\E). 
It suffices now to prove the Holder property for It near 1. So 
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a r| \/—A[cosh\/—A(1 — s) — coshy/—X(t — s)] 
W i " 2 n i \ \ MA) 

x^A-XI)-1 (f(s)-f(0))dsdX} 

j j _ A / r l m _ f ( 0 ) ) d s d X 

= ~ i s i — ^ - ' M - A/)-' (Us) - no)) isd^a 

J | ( A _ m - m dsd, 
= a + b, 

and 

MB < h ! S e - c | A | 1 / 2 ( 1 " i + s ) S 2 ^ S |dX| Wf\\c2HE) 
\t 7 0 J 

< K j ( S e ^ ' ^ d . ) d m i c ^ E ) 

^ j r j f j e ^ ^ ^ l d A l j d e i l / I U w , 

K \ ( l ~ 02T,~ldZ\\f\\c*V(E) 
t 

^K(l-t)2»\\f\\c2HE), 

here, we have used Holder inequality for the third estimate and the following 
change of variable |A|1//2 (1 — £) = a, for the fourth estimate. 

On the other hand, one has 

< * j (s |A| 1 / 2 e" c l A l 1 / 2 ^ <*da ||/|U ( i J ) 

( j l A l ^ e - i l ^ i j I d A I ^ ^ H / l l ^ 

< K(1 - t2f,+ l) \\f\\C2r,{E) 

< K [t(l - t2") + (1 - t)} \\f\\c2HE) 

< K( 1 - i)2" \\f\\c*i(E) • 

The last inequality is true for t near 1. 
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Conversely if us G Cl+2r>([0,1]; E), that is % G C2"([0,1]; E), then 
Jt = aR(t)f(0)eC2»([0,l]-,E), 

and in virtue of Proposition 1, /(0) € Da{i7;+oo). 
Summarizing, we obtain 

THEOREM 2. Assume {H{), f1,f2eD(A), f G C2r>([0,1]; E), (t? G ]0, l / 2 [ ) . 
Then u = UR + US is the unique solution of problem ( l ) - ( 2 ) satisfying 

1. UReC2(}0,l[-E)nC(]0,l[-,D(A)), 
2. une C2([0,1];£) n c ( [ 0 , l ] -,D(A)) ^ f ( 0 ) - A f u f ( l ) - A f 2 G 

D(A), 
3. u'^ AUR G C2t>([0, 1] /(0) - A/i , / ( l ) - Af2 G DA(m+oo), 
4. «5 G C2([0,1[; E) n C{[0,1[; I>(A)), 
5. us G C1([0,1 ]-E) ^ /(0) - Ah € £>(A), 
6. U s 6 C1+2r?([0,1]; £ ) /(0) - A/i G £>a(T,; +OO). 

REMARK 1. Since we have proved in Lemma 1 that there exists 6a G]0,7r[ 
such that 6a(A) ^ 0 on the sector S(0a,eo), we can replace, in Theorems 1 
and 2, assumption (Hi) (which is independent of a), by the following 

j 3 £0 > o : p(A) D S(0a, e0) and 3M > 0 : 
\ Vz G S(6a,eo), ||04 - zI)~%{E) < M/( 1 + |z|). 

In fact, it is enough to replace the previous curve 7 = ja,So by the sectorial 
boundary curve of S(6a,e0) oriented negatively. Notice that S(9a,e0) de-
pends on a and we can prove that there is no 9 G]0,7r[ such that <5Q(A) ^ 0 
for any a > 0 and any A in S(9, £o)-

3. Problem with a spectral parameter 
Now we consider the following spectral problem 

' u"(t) + Au{t) - n u{t) == f(t), t G (0,1), 
(15) U(0) = / : , 

^ Su'(0) + u( 1) = /2, 

with ¡j. and a two given complex numbers such that Re ( f i ) > 0. 
In all this section, we assume that there exists So G]0,7r[ satisfying 

(H ) i P{A) D S° = {Z G C* 1 |arg(z)l ^ 5°} ' [ 2) \ 3M > 0 : Vz G E0 \\{A- zI)-%{E) < M/ |*|, 

which implies that 
p(Afi) D Sfj, — - /x+S 0 , 3M > 0 : to G S^ \¡(A^-zI)'1]^ < M/\z + (x\, 
where A^ = A — ¡il. 
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LEMMA 3. There exists xo = x ( 5 , ¿0) > 0 such that 

A € C \SX0 => a v / ^ A + sinh V ^ A ± 0. 

P r o o f . Let xq > 0 and A e C \SX0. Then we can show that 

/—r| . 7T - ¿0 

a r g V - A | ^ — — , 

|-A| ^ l o s i n g ) , 

R e ^ s in (Sq/2) . 

Therefore 

+ sinh v ^ ^ sinh ( R e \ / = a ) - |5| | - A | 1 / 2 

> sinh ( v ^ ^ / s i n ^ o ) sin ( i o / 2 ) ^ - |5| >/io^/sin(5o)• 

To conclude, it suffices to consider a large enough xq satisfying 

sinh ( v W S i ^ o s i n ( S o / 2 ) J — |5| -^/xov/sin^o > 0. 

LEMMA 4 . We have the two following cases: 
1. Let So € ]0 , 7 t /2] . Then for Si 6 [0, ¿o[, there exists xi = x(a, So, Si) > 0 

such that for any /z € C verifying R e ( / i ) > x\ and |arg(/x)| ^ ¿1, we have 

p(Ap) D Sxo. 

2. Let So g]7t/2,7r[ . Then for any ¡jl 6 C verifying Re( /z) > xo, we have 

p ( A n ) => ( z € C : R e ( z ) > - x 0 } , 

where xq is defined in the previous lemma. 

P r o o f . 1. Let [I with |arg(//)| < S\ < Sq. W e have 

Sp D «S^j, 

where 

« • O - s l - ) ^ -
Now if we assume t h a t 

Mi ^ xo 

then 

p{All) DS^D Sxo. 

Putting 

X 1 = X Q ( 1 W i y 1 

\ tan<5o / ' 

we therefore obtain s tatement 1. 
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2. It suffices to remark that for any fj, 6 C verifying Re(/i) > xq we have 

S^ D {z e C : Re(.z) ^ - x 0 } . 

In the case SQ e]0,7r/2], let us fix ii € [0, ¿o[ and consider / i£C verifying 

f Re(/u) > x\ 

\ |arg(/x)| < £i. 

Now, for a given ro > 0, set 

'S'lo.ro = Sxo\B(-xo,ro), 

where B{—xo,r$) is the open ball centered in —xq of radius ro and denote 
by 70 the boundary curve of SXQtl.0 oriented positively, (that is from ooelS° 

to ooe_i5°). Then we have 5\/—A + sinh\/—A / 0 on 70 and on its right 
hand side. Moreover 70 and its left hand side is contained in p(A(See 
Lemmas 3-4). 

In the other case, that is So €]7r/2,7r[ and for ¡J, € C verifying Re(/x) > xq 
the corresponding curve 70 which can be considered is the boundary of 

{ 2 6 C : Re(z) ^ - x 0 } . 

In virtue of representation (13), we deduce that uM = u^R + u^s is the 
eventual solution of (3), where 

«*«(*) = 5 - A I ) ~ l h d \ 
70 

70 

and 

= ¿ 1 S S ^ s W O V - A / ) " 1 / ! ^ 
70 

Then by the same way as in section 2, we obtain 

P r o p o s i t i o n 6. Assume (H2) with <50 g ] 0 , 7 t [ , fi, fi e D(A) and f e 

C2i>([0,1]; E), (q G]0, 1/2[J. Then Ufl = u^r + u^s is the unique solution of 
problem (3) satisfying 

1. u^ReC*(}0,l[-,E)nC(]0,l[,D(A)), 
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2. Ufí,Re C\[0,1]; E) n C([0,1]; D{A)) /(0) - A f i , f ( l ) - Af2 e 

D(A), 
3. AU^R € C 2 " ( [ 0 , 1 ] ; E) / ( 0 ) - A / i , / ( l ) - A / 2 6 A i f a ; + o o ) , 
4. e C2([0,1[; E) n C([0,1[; 

5. W 6 C71([0,1 ]; £ ) /(O) - ¿ / i e 
6. u^s 6 C1 + 2"([0,1]; £ ) /(0) - A/i G DJ4(77; +00). 

The main result in this section is 

THEOREM 3. Assume (H2) withS0 <E ] 0 , t t / 2 [ , fuf2eD(A), / € C 2 " ( [ 0 , 1 ] ; E ) 
tuif/i 77 6 ]0, l / 2 [ and put 

x = c([o,iy,E). 
Then 

1. / / /(0) — j4/i, / ( l ) — Af2 € DAÍV; +00), then there exists a constant 
K = i f (70) > 0 such that 

+ Uu,,R\\x H I K ^ H * + ti 
X 

< ^ (11/(1) - AflWDtto+oo) + 11/(0) - ¿ / l l k f o + o o ) + l l / I U ^ ) ) • 

2. If f(0) — Afi €DA(TI', +00), i/ien i/iere errisis a constant K = K(70) > 0 
suc/i ifoai 

H 1 / 2 K , s | l X + I UM.s| x + llwllBCD^d^j+oo)) 

£ t 4 (||/(0) - Ah\\DA{v.+oo) + \\f\\ciHE)) . 
H 

The space B(DA( 1/2;+00)) is the subset of X consisting of all u such 
that 

supi € [0, 1] ||ti(t)lbA(l/2;+oo) < 

P r o o f . For simplicity we deal with the case / = 0. The other case is left to 
the reader. 

1. The first part of U^R 

R»m = ! v ^ s W i ^ - ^ ) _ 1 / 2 d A , 
70 

can be written as 

R » m = 2 ^ 1 ( A T ^ d A ' 
so 

iMl I 
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We also have 

Kw* = oVi $ - ^r'hdx 
70 

2iri J X'aK ' (A + fj,)2 ' 

thus 

< i ^ p P M L d ^ J + o o ) • 

The same estimate follows for ARtl{t)f2. The second part of u ^ r can be 
treated similarly. 

2. Now for the singular part, it suffices to deal with 

which gives 

H 1 / 2 \ \ S » m \ \ E ^ K J M ^ \\Afl\\D^+oo) 

70 l A 

^ HA/illz^fo+oo) • 
Similarly, we get 

^ j^ff P/iIIda^+OO) • 

Let r > 0. When r < 2 |/z|, it is not difficult to prove that 

||A(A - rl)~l (S,{m\\E < \\Ah\\DAr,,+oo). 

For r > 2 |/z|, one has 

A ( A - r Z ) - 1 

- £ i v ^ e M M -
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and from 

A(A - rI)-xA(A - t i l - XI)-1 

_ (X + n ) A ( A - f i I - XI)'1 rA(A - r l ) ' 1 

r — A — n r — X — fj, ' 

it follows that 

^ - , / ) " ( 5 , w A ) = ^ J v ^ + rifr-ffo^ 

notice that on 70, r — X — /x 0. Therefore 

H ^ - r / ) - 1 ^ ^ ) / ! ) ^ 

< K f H1/2 \dX\ 
* I |A + \ r - X - M|1/2 \ r - X - ^ 

< K \ | A | V 2 | d A | 11.1 f II * I |A + /X|1+VV2|A |V2 l l ^ l b x ^ + c o ) 

f 1^1 II A f || 
^ rV* y \X + n\1+v " ^"^(w+oo) 

;+oo) ' 

we have used the fact that for A 6 70 and r > 2 |/i|, there exists a constant 
K such that 

|r - A - n\ ^ A> and \ r - X- K |A|. 

4. Examples 

In the square Q =]0, l[x]a, i>[, we consider the nonlocal boundary value 
problem of elliptic type 

' d2u d2u 

-Qfifa x ) + fa2 (*» = = /('« 
u(0,s) = f i ( x ) , x £ (a, b), 

( P l ) du a-^(0,x) + u(l,x) = f2(x), x €E (a , 6), 

u(t,a) = u(t,b) = 0, i € ( 0 , l ) , 
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and the corresponding spectral problem 

(ft) 

where 

' d 2u d 2u 
"W^' + dx 2^ ̂  ~ X̂  = ^ ~ ^ = ^ 
u(0,z) = fi(x), x € (a,b), 
ôu 

57ft(°>x) + " ( * > = /ai®)« x e ( a ' 
u(i,a) = u(t,b) = 0, t € (0,1), 

a > 0 , / € C([0,1];JE7), 
a G C, Re(/x) > 0 large, 
E = C([a, 6]) or E = W(a, b), p e]l, oo[, 
fi EE, i = l,2. 

Setting, in the case E = C([a, 6]), 

f D(A) = {ge C2([a, b]) : g(a) = g(b) = 0} 

or 
f D(A) = {g€ W 2 , p(a,b) : g(a) = g(b) = 0} 
\ (Ag)(x) = g"(x), 

in the case E = W(a,b). Note that in the first case of space E = C([a, 6]), 
we have 

(16) 

D(A) = Co ([a, b}) = {ge C([a, b}) : g(a) = g(b) = 0} ? E. 
Then we can apply our previous results, since it is well known that (Hi) 

and (Hi) are respectively verified, on the other hand, we have (for 2r) < 1) 

DA(V, +oo) = C 2 r>([a, b]) n Co ([a, 6]), 
for E = C([a, b]) and 

D ( .+oo)=fw 2 r i' P( a> b)nWt> p(a,b) if 2tj > 1/p 
AW, i f 2 j 7 < 1/p, 

for E = 1^(0,1). See [5]. 
Now, let us assume that 

i / e C 2 " ( [ o , i ] ; C ( M ] ) ) 

[fie c 2([a, b]) and /¿(a) = /¿(6) = 0, for ¿ = 1,2, 
then due to Theorem 2, we have 
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THEOREM 4. Problem (Pi) have a unique solution u(t,.) which can be written 
in the form 

u(t,.) = uR(t,.) + us(t,.) 

and such that 

1. UR € C2(]0,1[; C([a, £>])) fl C(]0, l[;C2([a, &])), 
2. uR € C2([0,1]; C([a, 6])) n C([0,1]; C2([a, b])) if and only if 

f / (0 , a) — /"(a) = /(0, b) — f"(b) = 0 

3. Atifl e C2ri([0,1]; C([o, 6]) if and only if 

f(0,.) - /( ' 6 C2"([a, 6]), / ( l , . ) - f'i € C2»([a, 6]) 

/ ( 0 , a ) - / f ( a ) = / ( 0 , 6 ) - / i ' ( 6 ) = 0 

/ ( l , a ) - / £ ( a ) = / ( l , 6 ) - / £ ( 6 ) = 0. 

4. € C2([0,1[; C([a, 6]) fl C([0,1[; C2([a, 6]). 

5. us G C 1 ([0, l];C([a, 6]) z/ and only if 

/ ( 0 , a ) - / i ' ( a ) = / ( 0 , 6 ) - / i » = 0 . 

6. us € C1+2,»([0,1];E) if and only if 

/ ( 0 , . ) - / i ' € C 2 " ( [ a , 6 ] ) 

/ ( 0 , a ) - / i ' ( a ) = / ( 0 , 6 ) - / f ( 6 ) = 0. 

We similarly obtain the result in LP-case and also for the second spectral 
problem (P2)-

By the same way, we can apply our results to general elliptic problems 
written in the strip ii =]0, l [xG as 

d2u n d2u n du 
-Qt2 x ) + ] £ a i ^ d x d x - ^ + S x ) + C(XM^x) i,j=1 1 J fc=l * 

= f(t,x), 
u(0,x) = fi(x), x e G, 

du 

a-^(0,x) + u(l,x) = f2(x), X€G, 

«(<,-)|ac = 0, «€ (0 ,1 ) , 

with E = C(G) or E = V(G) and G is an open bounded regular set of Rn . 

( f t ) 
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R E M A R K 2. We can also consider, instead of A described in (16), the fol-
lowing more general operator of Sturm-Liouville type 

' D(A) = 

{:g e C2([a, b]) : pQg{a) - pl9'{a) = p2g(b) + p3g'(b) = 0 } 
< {Ag){x) = g"{x), 

with fa > 0, po + (3i > 0 and P2 + Pz> 0, 
with the change of the last boundary condition in problem (Pi). For the 
analysis of this operator, see [8]. 

Acknowledgements. We would like to express our thanks to the 
referee, whose detailed comments helped to improve the quality of this work. 

References 

[1] G. Dore, S. Yakubov , Semigroup estimates and noncoercive boundary value prob-
lems, Semigroup Forum, 60 (2000), 93-121. 

[2] A. El Haial , R. Labbas , On the ellipticity and solvability of an abstract second order 
differential equation, Electron. J. Differential Equations 57 (2001), 1-18. 

[3] H. O. F a t t o r i n i , Second Order Linear Differential Equations in Banach 
Spaces, North-Holland, Amsterdam, 1985. 

[4] A. Favin i , Parabolicity of second order differential equations in Hilbert space, Semi-
group Forum 42 (1991), 303-312. 

[5] P. Gr i sva rd , Commutativité de Deux Fondeurs d'Interpolation et Applications, 
J. Math. Pures et Appli. 45 (1966), 143-290. 

[6] S. G. Krein, Linear Differential Equations in Banach Spaces, Moscou, 1967. 
[7] R. Labbas , Equation Elliptique Abstraite du Second Ordre et Equation Parabolique 

pour le Problème de Cauchy Abstrait, C.R. Acad. Sci. Paris, t. 305 Série I, (1987), 
785-788. 

[8] R. Labbas , B. Te r r en i , Sommes d'Opérateurs Linéaires de Type Parabolique. Sème 
partie. Boll.Un.Mat. Italiana, (7), 2-B (1988), 141-162. 

[9] F. G. Maksudov, I.V. Aliev, Differential operator of second order with nonregular 
boundary conditions, Soviet Math. Dokl. 44 (1992), 482-485. 

[10] E. S ines t r a r i , On the abstract Cauchy problem of parabolic type in spaces of con-
tinuous functions, J. Math. Anal. App. 66 (1985), 16-66. 

[11] H. T a n a b e , Equations of Evolution, Pitman, London, 1979. 

LABORATOIRE DE MATHÉMATIQUES 
FACULTÉ DES SCIENCES ET TECHNIQUES 
UNIVERSITÉ DU HAVRE 
B.P 540, 76058 LE HAVRE CEDEX, FRANCE 

Received July 5, 2002; revised version December 9, 2002. 


