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SINGULARITIES IN BOUNDARY VALUE PROBLEMS
FOR AN ABSTRACT SECOND ORDER
DIFFERENTIAL EQUATION OF ELLIPTIC TYPE

Abstract. In this work we give an alternative approach to the study of some singular
boundary value problems for a second order differential-operator equation in the space
of Hélder continuous functions. We prove that the solution can be represented explicitly
as the sum u = up + ug of a regular part and a singular part under some natural
assumptions on the data. We then give a complete analysis of ug and ug by using the
operational calculus.

1. Introduction and assumptions

Throughout this paper, we consider a closed linear operator A with do-
main D(A) not necessarily dense in a complex Banach space E.

We study the following second order abstract differential equation

(1) u’(t) + Au(t) = f(t), te(0,1),
under the nonregular boundary conditions
0) =
(2) u( ,) fl)
o (0) +u(1) = fo,

where f € C([0,1]; E), fi1, f2 € E and « is some given nonnegative para-
meter.
Set
II= (C \ P) URy,

where P is the parabolic domain
P={z+iy:z <7 |y <2rV7?-zx}.
Then, the main assumption in section 2 is the following

(Hy) p(A) DM and IM > 0:Vz € I (A - zI) Y g <

1+ 2|
here, p(A) is the resolvent set of A.
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We are interested in the existence, uniqueness and regularity of the so-
lution » when f is Holder continuous function.

Several authors have studied equation (1) when it is regarded as an
abstract problem of parabolic or hyperbolic type. See, for example, Fattorini
[3], S.G Krein [6], H. Tanabe [11], A. Favini [4].

In this work, we consider the elliptic case which is expressed by (Hj).
The second boundary condition in (2) depending of the parameter a # 0,
makes difficult the study of our problem and creates singularities. This
condition is known as Birkhoff-Tamarkin nonregular boundary conditions
and arises, for example, in the physical Regge problems which are noncoer-
cive.

When a = 0, problem (1)-(2) has been completly studied by Labbas [7]
and corresponds to a regular Dirichlet problem.

When a # 0, F.G. Maksudov and 1.V. Aliev [9] have studied the problem
(1)-(2). Recently G. Dore and S. Yakubov [1] have considered the same prob-
lem in a general situation. All these authors have considered the hilbertian
case and assumed the density of D(A) in E. They have used the fractional
powers of operator — A and the techniques of semigroups estimates generated
by them.

Here, we give an alternative approach. Our techniques are essentially
based on a direct analysis of some singular Dunford’s integrals. We make
use of the real interpolation spaces between D(A) and E which are well
known in many concrete cases while the spaces D((—A)P), for 3 €]0, 1], are
difficult to characterize in many PDE’s problems. On the other hand, this
method allows us to consider the case when D(A) # E, which corresponds,
in applications, to many elliptic realizations in the framework of spaces of
continuous functions, for example.

We show that the solution of (1)—(2) may be broken down into the
sum

u(t) = ug(t) + us(t),

of a regular part ug(.) whose behavior is not affected by the presence of the
nonregular term in the boundary conditions (2) and a singular explicit part
us(.). We then describe all the behavior of these two parts according to the
regularities of the data.

The paper is organized as follows.

In section 2, in virtue of (H;) and the operational calculus, we give the
explicit formula of the solution u to problem (1)-(2). When f is h6lderian, we
give necessary and sufficient conditions on f; and f to obtain an optimal
smoothness of u. (See Theorem 2).
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In section 3, we study the spectral problem
u”(t) + Au(t) — pu(t) = £(t), te(0,1),
3) w(0) = f1,
au'(0) +u(l) = fa,
where & is a fixed complex number and p is a given complex number be-

longing to some sector with Re(u) > 0 large.
For this problem, we assume, instead of (H1), that there exists dp €]0, 7|

such that
) {PAPTs el <
IM>0:Vze€ o |(A—2I)7 e < M/|z|.
Under assumptions f1, fo € D(A), f € C?([0,1]; E) with € ]0,1/2], -
we then obtain the representation
uu(t) = up,R(E) + uu,s(t),
with the two following estimates:

Lif f(0) — Af1, f(1) — Af2 € Da(n; +00),

il e Rl + |2 2[| =+ 4w Rl ¢
K
< o7 (19 = A2l ey + 150 = Aftllp(giso) + I lconcsy)
and
2. if f(0) — Af1 € Da(n; +o0),

1/2
112 llug,sllx + sl x + sl mp,,1/20400))

K
< W (”f(o) - Afl”DA(TIH-oo) + IIf”Cz'T(E)) ,

where K is a constant not depending of u. (See Theorem 3).

|1

Here we have considered, for 5 € |0, 1], the well known real interpolation
space between D(A) and E characterized by

Da(n;+o0) ={p € E: sugr”IIA(A —rI)¢|lE < oo}.
>

(See Grisvard [5]).
In section 4, we give some concrete examples to which our results can be
applied.

2. Construction of the solution
2.1. The case f =0

Assume (H;). Then it is well known that there exist e > 0, C > 0,
o € ]0,m/2[ such that
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{p(A) D Ao={z€C*:larg(z)] < po} U {z: |2| L €0}
VzelAo |(A- zI)'IHL(E) < C/(1+|2]),
therefore

p(A) DIy and IM > 0 :

{Vz elly ||[(A- ZI)_lllL(E) < M/(1+ |2)),

where
IIp = (C \ P)U Ao.

The following technical lemma explains why we have assumed that the spec-
trum of A is contained in some parabolic set P.

Set
0a(A) = aV—A +sinh vV =X,
where /—A is the analytic representation defined by Re v/—X > 0.
LEMMA 1. We have
1. Ae C\ I, = 0,(X) #0,
2. there exists 6, €)0, 7 such that §4(X) # 0 on the sector
S(0a,€0) ={AEC : |A| 2 €0 and |arg(N)| > 6a}.
Proof. 1. Let z = z + iy with z > 0 and assume that o z+sinh z = 0, then
az +sinhz.cosy =0
ay + coshz.siny = 0,
thus y # 0. Now, there is only two possible situations:
y>0
cosy <0
siny < 0,
or
y<0
cosy < 0
siny > 0,
therefore
4) z € ]0, +oo[+i[—m, 7] => az +sinh z # 0.
Let A € C \ II,. Then we can show that

Rev-A>0
Imy—-A| = l
and due to (4), we obtain do(A) # 0.

|A| + ReA

5 |7

b
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2. Fix 6y €]0,7/2[ and let z = = + ¢y with |arg(z)| < 8y. Then one has
|z + sinh z| > |sinh z| — |az|

> sinhz — ay/z? + y?

a

mm.

Therefore there exists a constant C, = C(e, 6p) such that
Re(z) =z > Co => |az +sinh z| > 0.

> sinhz —

Now, in the compact sector
{z :Re(z) = 2 < C, and |arg(z)| < 6o},
the analytic function
z+ az+sinhz

is vanishing at a finite number of points. Moreover, these points do not
belong to the real strictly positive axis. So, there exists 8, €]0,6o] such
that

az+sinhz # 0,

for all z € C* with |arg 2| < 6),. Setting 8, = 7 — 26/, then it follows that
for any A € S(64,¢€0), we have

V—A€C* and Iarg \/-/\‘ A
thus é,(A) # 0.
When (—A) is positive number, the solution of the problem
u’(t) + Au(t) =0, te€(0,1),
(5) u(0) = f1,
au'(0) + u(l) = fa,
is given by the formula
u(t) = ay/—Acosh v/—At + sinh v—A(1 — 1) fit sinh v/— At f
B ay/~A+sinhy/—-A Lt av—A+sinh V- >

So, in the abstract case, a possible representation of (5) is given by the
Dunford’s integral

©) a(t) = 5 sgm,a(t>(A — M) fpd

Sgnaa —t)(A = AI)7L frd)

27rz

+%§8\/:;\'la ) (A=)~ lfld)\
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=R@t)fa+ R(1—t)fi + S(t) f1,

where v = 74, is the sectorial boundary curve of S(4,£0) U (P\Ao)
oriented negatively (that is from ooe®= to coe~*=) and for t € (0,1) and
A€,

sinh v/— At
9/=%a(t) = a0y

v —=Acoshv—At
$/=xalt) = 500 :

Note that, according to Lemma 1, we have d,()) # 0 on 4 and on the
domain which is on the left of 4. And from (H,), we see that p(A) contains
the domain set on the right of ~.

Now, for A € 4 with |A| large enough, there exists K = K(v) such that
[8a(N)] = |av=X + sinh V=1
> |sinh \/—_/\| - '\/—_AI
> sinh(RevV-)) — a |)\|1/2
> K eRevV=A
> K e|,\|1/2sm(oa/2),

then there exist two constants ¢ = c¢(y) and Ko = Ko(y) such that for any
A€~ andt € [0,1], we have

18N > KoecN™?,
sinh /=X ‘ > Koe°|’\|l/2,
sinh \/—)\t| < eVt
cosh \/—)\t| < st
Thus
( Sm;l (V/\) At < (1/Ko)e - N2 (- t)
) J cos; \(//\) At < (1/Ko)e —e A2 t)
sinh \/ At 1/2
1/K. —c|A| (1-t)
\ smh\/ < (1/Ko)e
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According to (Hp) and (7), all the integrals in (6) converge absolutely
for every t € ]0,1[.
The convergence of S(1) f1 is not guaranteed since |s, /=y ,(1)| = O(|\*/2).

Set
1 (sinhv-=MXt

V(t)p = 2m§ \/_(A A" Lpd),

forp€ Fandt e [0,1].
Then we have the following technical lemma

LEMMA 2. Let us assume (Hi), and consider n €]0,1/2[. Then

1. there ezists a positive constant K = K(v) such that for any ¢ € E
andt € [0,1]
IV®elle < Kllelg,
2.t V(t)p € C([0, 1[; D(A4)),
3.t—V(t)p e C([0,1]; E) <= ¢ € D(A),
4.t V(t)p € C*([0,1]; E) <= ¢ € Da(n; +0).
When ¢ € D(A), then
5. V(1)p € D(4),
6. t— V(t)p € C([0,1]; E) N C([0,1]; D(A)) <= Ap € D(4),
t— AV(t)p € C([0,1];E) <= Ay € D(4A),
7.t V" (t)p € C([0,1]; E) <> Ap € Da(n; +o0),
t AV(t)p € C?([0,1]; E) < Ap € Da(n;+00).
Proof. It is inspired by the techniques used in [2]. Here, K will denote
various constants which depend eventually on v = v(«).
1. For a large |\|, the curve v is sectorial, so there exists r, > 0 such
that

ey A =2ra}={N€C :|A\>rqand |arg(A)] =04}.
Set for T €]0, 1]

(8) 7L = {’\ €7; |Al < ra/Tz}
i={rev A2 "'0/7'2}
Let ¢ € E and t € [0,1[. Then
1 sinh \/—)\t(A_ D)L pd)

Vi) = 2mi 718_,: sinh v —A

1 sinh v/—At
— A =D tpd)
+27ri lx , sinh/— ( )

+

=1 +I+1
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and, from (7), we get

+oo  —c|AV3(1-1)
Iele <K (| le)\l)llwng
To/(1-t)2
+00 —co
<2K | S—dollplp <K ol
VTa

For I_, we write

1 <sinh v=At — sinhv/-\
I =— .
P sinh v/—A

T omi

)(A — M) 7tpd)
e
1 -1
+5— L(A = AI)"lpdA
Y-

1 S §\/—_/\cosh\/—_)\s
T omi 1 sinh v—=X

ds) (A= 2I)"tpdr

—— | (A-AD)lpdx
Cl—t

where

Ot = {XeC/ Jarg | < b and N = ra/(1 - 1)}

(A _Tac? I)_ltp
T (1-1)2
(1-¢) 5

Then
1 G
105 < 57 §

T,,d0
(loi—t)z <Klolg,

and, from
t
r=-1 (; v ’*,czsj_ e Asazs> (4= AI)"1pd
T eyt gra N SRV
t
toe | (S Yoo Asds) (A= AT pd)
PAent Plsre M SIRVT
= Jl + J27

one has clearly
Iille < K el
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and \
ra/(1-t) 1/2
K AT A -1
< — i Sl
ol < g § P el < Kl
2.Let A€ yand t € [0,1[. Due to (7), the integral
sinh v -\t
A A=) lpd),
27rzx sinh v/— ( e
is absolutely convergent. So V'(t)¢ € D(A) and
sinh /—At
9 AV (t)p = ————A(A - M) pdA.
©) O = 33§ ST A4 D

3. It is enough to show the continuity at t = 1. Let ¢ € D(A) and € > 0.
Then there exists y € D(A) such that||¢ — y||g < €. Using the identity
_aply= ATy
(A-M)"y= ) Y
we have, for any t € [0, 1]

1 sinhv/=At (A - X!
vty = Q—.SY sinh /- A

Indeed the integral

Ayd).

1 Ssmh\/ tyd)\
2mi 5 sinhv/=X A

is equal to zero since the functlon

sinh =Xt y

sinhv/—X A’

is analytic on the domain which is on the left of 4 and in this domain, we
have

A—

sinhv—-Aty —eN2(1—
2NV I o e M-
sinh /=X A (e )

sinh v/=t (A — MI)~! “ K
A £<—=llA
sinh V=X A v E |/\|2 4yl

Since

then

Vit)y—y 0

due to the Lebesgue’s theorem. Now, from the equality
Vit)p—e=V(t)e-V(tly+V(tly-y+y—e,
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we deduce that

t 0.
V(t)e - B

Conversely, assume that V(.)p € C([0,1]; E), then lim,_,;- V' (¢)¢ exists and
is necessarily equal to ¢ ; however, for any ¢ € [0, 1]
sinh v/—At (
sinh v —
which implies that V(t)p € D(A).
4. Let ¢ € Dg(n;+00) and 7,t € [0,1] such that 7 < ¢, then

1 Ssmh\/ At — sinhv/=Ar A(A - AI)7!

A- D)"Yy e D(4),

Vitp -V = — wdA
(t)p = V(r)p = o— 2, Y 5y
+
1 S S\/ )\cosh\/ s A(A-2I)! I\
2mi S \r sinh v/— A v
= J+ + J-—a
where 45" and 4'~" are defined in (8). We get
d|X
ilp < K | Sl s
t—7r
+
<K@t =7)" ¢l p 5 (o)
For J_, we write then
-1
s % S (S \/—)\clclxsh \/_s s) A(A /\AI) )
T s eqt=7 gry \r SID V-
1 v—=Acosh v— s A(A-2D!
i S S VX ds 3 wdA
e ’\67'__71|’\|>7'a T SIH
— JI+JII
then
"JI”E <K|t—T] ”‘P”DA(n i+00) *
and
e/ N2~ 7
17"lg <K | —Wm—dw 121l p 4 a;00)

Ta

< K(t - 7—)277 ”‘p”DA("I;+oo) :
The converse result can be proved using a method similar to one in (10].
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5. Since ¢ € D(A), we get
V(1)p = ¢ € D(A).
6. Using ¢ € D(A) and (9), we have for any t € [0, 1],

sinh v/— At

2m§ — \/_(A M)t Apdh = V() Ag,

(10) AV(t)p =
and also

1) V()= sinh v/ =Xt

27” S sinh v/=\ (4=AD)

To conclude we apply statement 3.
7. It is a consequence of (10), (11) and statement 4.

1Apd) = —V(t) Ap.

Now the behavior of the regular part of @ is specified in the two following
propositions.
PROPOSITION 1. Let us assume (Hi), and consider n €]0,1/2[. Then
1.V fa € E,t — R(t)f2 € C*([0,1[; D(4)),
2.t R(t)f; € C([0,1]; E) <= f» € D(A),
3.t R(t)fa € C*1([0,1];E) <= f> € Da(n;+o0).
When fo € D(A), then
4. for any t € [0,1}, R(t)f2 € D(A),
5.t R(t)f € C([0,1]; E)yn C([0, 1]; D(A)) <= Af2 € D(4),
t++ AR(t)f2 € O(0,1]; E) <= Af, € D(4),
6. t— R"(t)f2 € C*1([0,1]; E) <= Afz € Da(n; +0),
t— AR(t)f2 € C*'([0,1]; E) <= Afz € Da(n; +c0).

Proof. We write for any ¢ € [0, 1]
R(t)fa=V(t)fa+ W(t)fe,

1 —Asinhv—=At
W(t)fo= — A-AI
®)f2 2m ,§ da(A) sinh v/ =X ( A
and, using (6), we get
t — W(t)f2 € C=([0,1]; D(4)),

now to conclude it is enough to apply Lemma 2.
By the same way, we obtain

where

! fodr

PROPOSITION 2. Let us assume (Hj), and consider n €]0,1/2[. Then

1.V fi € E,t— R(1 —t)f1 € C*(]0,1]; D(4)),
2. t— R(1—t)f1 € C([0,1]; E) <= f1 € D(4),
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3. t— R(1—t)fy € C*([0,1]; E) <= f1 € Da(n;+00).
When f; € D(A), then
4. for any t € [0,1], R(1 —t)f1 € D(A),
5.t— R(1—1t)f1 € C%([0,1]; E)N C([0,1]; D(A)) +> Afy € D(4),
t— AR(t)f1 € C([0,1]; E) <= Af1 € D(4),
6.t R"(1—t)f1 € C¥([0,1]; E) <= Af1 € Da(n; +00),
t— AR(1 —t)f1 € C?1([0,1);E) <= Afi € Da(n;+o0).
The behavior of the singular part of 7 is specified by the following propo-
sition.
PROPOSITION 3. Let us assume (H1) and consider n €]0,1/2[. Then
LV fie E, t— S(t)fi € C=([0,1[; D(A)).
When f1 € D(A), then
2. 8(t)f1 € CH([0,1}; E) <= Afr € D(4) ,
3. 5(t)fr € C1*2([0,1]; E) <= Af1 € Da(n; +00).
Proof. 1. It follows from estimates (7).

2. Using the resolvent identity
AA-MTA

(A=D1 = 3 T
we get, for any t € [0, 1],
A(A-D)1
St = Ss\/—,\a(t)%hd%

thus
—a ¢ Asinh /=t (A — AI)7!

2mi S da(A) A
then we use Proposmon 1, statement 2.
3. It suffices to use the fact that
S(t)fi € C1**1((0,1]; B) <= S'(t)f1 € C*"([0,1]; E),

and Proposition 1, statement 3.
Now, putting

(t)f]_ Af1 dA = —aR(t)Afl,

{UR( ) =R(t)f2 + R(1-1t)f1,
us(t) = S(t)f1,
we can summarize this section by the following theorem.

THEOREM 1. Assume (H1) and fi, fo € D(A). Let n €]0,1/2[. Then the

representation
u(t) = Tr(t) + us(t),
given in (6), is the unique solution of problem (5) satisfying:
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.up € C=(|0,1; D(4)), Ts € C=((0,1;D(4)),
.Tr € CX([0,1); E)N C([0,1]; D(A)) <= Af1, Afs € D(A),
. Uh, Atr € C™([0,1]; E) <= Af1, Afs € Da(n; +00),

. Tg € C1([0,1]; E) <= Afi € D(A),

. Tg € CY¥21([0,1]; E) <= Af1 € Da(n; +0).

Equations in (5) can be verifed by usual operational calculus.

CUl W N =

2.2. Second case: nonhomogeneous equation
Now, let us consider the complete equation

u’(t) + Au(t) = f(t), te€(0,1),
(12) u(0) = fi1,
w'(0) + u(l) = fa,
with f € C([0,1]; E).
When —A > 0, the solution of (12) is given by

u(t)
_ —Acosh /—At + sinh =A(1 — t) fit sinh v/—At f
- av/—A4 + sinhv/—A ! \/_ +sinhy—4°"°
asinhv—At
NPwey Eweyerd (cosh v="4s) f(s)ds + (s) H /=4t 9) f(s)ds,
where
Hﬂ,a(t’ s)
(av/=A cosh v/~ At +smh\/_(1—t))smh\/_s O<sct
_ vV—A(av/—A + sinh /—A4) ST
B (av/—Acosh v/—As + sinhv/—A(1 ~ s)) sinh /—At fcs<l
V—A(av/—A + sinh v—A) P ESES S

So, it is natural to consider the complete Dunford’s representation

u(t) = 2jrz§gma(t>(A ALY~ fad)

Sgna(l—t)(A AN fd)

27rz

+2—§sﬂa( YA =D frdA
Y

Lo S s1nh \/_t (S (cosh \/—_)\s) (A- /\I)_lf(s)ds> dA

2m o
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+i { (i H /=, (t,s)(A = AI)7! f(s)ds) d\
0

27
¥

which can be written in the form

(13)  wd)=5- fou=3al0A - 2D i

~.2

+%§ (;) sinh ‘gj\()t =) (4 - Ap)! f(s)ds) dX

= Tp(t) + Tr(t) + Ts(t) + Ts(t),

where —
sinh v/—A(1 — t) sinh —)\s’ 0<s<t
. V=20a(N)
K\/:Xa(t’ S) =~
; sinh v=X(1 — s) sinh V=Xt
, t<s<l,
V—=2Ada(A)
and

1
TR(t) = (1Kt 8)(A = A1)~ f(s)ds)dA
0

sinh v—=A(t —
da(A)
The behavior of the regular part ug = ug + Tg is given by

PROPOSITION 4. Assume (Hy), f1,f2 € D(A). Let f € C*1([0,1]; E) such
that n €)0,1/2[. Then

L un € C(0,1f E) nC(0, 1]; D(4)), L
2. up, Aug € C([0,1]; E) <= f(0) — Af1, f(1) — Af2 € D(4),
3. u, Aug € C¥([0,1]; E) <= £(0) — Af1, f(1)— Afs € Da(n; +00).

Proof. Setting

uR(t) = 5= | 9 =Ro(E)(A ~ A1) fadA
Y

1
2mi
.

!
us(t) = 2ms S ((S)

) (4 - D)1 £(s)ds)dx
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1
+T Sgﬂo(l —t)(A - )‘I)_lfld)\
™ .

1
+ee | (g K /=5(t 8)(A = AI)™! f(s)ds) d),

27rz,¥ o

then, by the same techniques as in {7}, vp satifies all the statements of
Proposition 4 and

vp(t) + Ave(t) = £(), te(0,1),

vr(0) = f1,
vg(l) =
Write
UR = YR + WR,
with
wp(t) = 5 §<gna<t) 9y=o®)(4 = AD) 7L f2dA

+% §(9y=xa(1 = &) = gy=xo(l = H)(A =AD" fidA

27rz7 b

It is not difficult to see that
V€ € [0, 1] 1gy=5,0(6) — 9 /=x,0(6)] = O(IA[M/ 2= emel21-0)),

1
+L f (S(Km,a(t, s) — K /=x0(t,8))(A - /\I)“lf(s)ds> dX.

and

IK\/—_,\,a(t1 s) — K\/—_A,o(t’ )| =a IK\/__,\,o(ta s)|

v=2
ba ()
= 0 (N2 M) |K =l )]
thus, for any k > 1, we get
wr € C***1((0,1]; E) N C([0,1]; D(4¥)).

For the behavior of ug = us + Ws, the singular part of u, it is enough to
specify that of ug.
PROPOSITION 5. Assume (H;) and f € C?7([0,1]; E) with 1 €]0,1/2[. Then

1. us € C’2([0 1; E) nC([0, 1[; D(4)),

2. us € CY([0,1]; E) <= £(0) € D(4),

3. Ts € C*21([0,1); E) <= f(0) € Da(n; +00).

Proof. 1. It is obvious.
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2. Let us write for any ¢ € [0, 1]
(14) ()
_ _g_s (§ vV —=Acoshv/—=A(t —

2mi 2\ da(A)

_a vV/=Xcosh vV=X(t — s) . )
_2i§/(§ o) (A=A () - f(o»d)dA

+ a (§ \/—_)\cosh\/:_)\-(t—

(4 = A1) f(s)ds) dA

) (4 — A1) f(O)ds) X

2mi 5\ 3a(A)
= It + Jt.
Now, due to Holder’s inequality, we have
t
K
Se_“l'\ll/zs2’7ds  ——,
H IA|1/2 + 7

therefore

Ifls <K (s ~e | £(s) - £(0) nEds) wﬁ/zdw

t
e [1/2
< K ”f”Cz'i(E) S (Se cs|A 32nds) IAIl/zdI |

K lomee) § prene
thus
t— I, € C([0,1]; E).
The second integral can be written as
Ji = a R(t)f(0),
and Proposition 1 yields
t+— J; € C([0,1]; E) <= f(0) € D(A).

3. The proof of this statement is not trivial. Let us detail it. Assume that
f(0) € D4(n; +00). Due to (14), we have

Tg(t) = L + J;,
and in virtue of Proposition 1, we get
e C?([0,1]; E).

It suffices now to prove the Holder property for I; near 1. So
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__H v/—X[cosh v/=X(1 — s) — cosh v/=X(t — s)]
5ol
X {(A M)~H(f(s) - £(0)) dsdX}
+issﬂcosh\/_(1

) (4 - A1) (f(s) - £(0)) dsd

2y da(A)
1 ¢ .
= om §§§ e Eg)(& =) (4 - A" (£(s) - £(0)) dsdAdg
+%§§ \/—Xcos? \(/;)—(1 4= 207 ((5) - ) dsi
=a+b,

and

-\ V21~ 1
(Sre MM (1-¢) |)\|17+1/2 |d)\|> d¢ ”f“C?ﬂ(E)

1
< K§(1-8)*1de || fll gan(ry
t

<KQ=8)"||£llganiy »

here, we have used Holder inequality for the third estimate and the following
change of variable |A|'/2 (1 — £) = o, for the fourth estimate.
On the other hand, one has

1
—elni/2s 1
Bl < K § (SIAP/"’e s mldxl) s21ds || 1l c2n )
t

Y

1

_ey1/2 1

<K S(SIAI‘” 31N HldM) $21ds || fllg2n ()
t \v

<K =) || £l gon(gy
K [t(1 = ) + (1= )] | fllganc)

<K(1 = ||fllgancg, -
The last inequality is true for ¢ near 1.
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Conversely if Ts € C1H2([0,1); E), that is Ty € C?7([0, 1]; E), then
Je = o R(t)£(0) € C*([0,1]; E),

and in virtue of Proposition 1, f(0) € D4(n; +00).

Summarizing, we obtain
THEOREM 2. Assume (H,), f1, f2 € D(4), f € C*([0,1}; E), (n€]0,1/2)).
Then u = ug + ug is the unique solution of problem (1)-(2) satisfying

1. ug € C2(J0, 1} E) N C(]0, 1[; D(A)),

2. ug € C*([0,1]; E) N C([0,1]; D(A)) <= f(0) - Af1, f(1) — Afz €

D(4),

3. ufy, Aug € C*([0,1]; E) <= f(0) — Af1, f(1)~ Afz2 € Da(n; +00),

4. us € C%([0,1[; E) n C([0, 1[; D(A)),

5. us € C1([0,1]; E) <= f(0) — Af1 € D(A),

6. us € C1*27([0,1]; E) <= f(0) — Af1 € Da(n; +c0).
REMARK 1. Since we have proved in Lemma 1 that there exists 6, €]0, 7|
such that d,()\) # 0 on the sector S(6,,€0), we can replace, in Theorems 1
and 2, assumption (Hj) (which is independent of o), by the following

{3 g0 >0 : p(A) D S(0a,e0) and IM >0
Vz € S(ba, €0), [I(A- ZI)_lllL(E) < M/(1+ |z]).

In fact, it is enough to replace the previous curve v = v, ¢, by the sectorial
boundary curve of S(6,,€0) oriented negatively. Notice that S(0q,€0) de-

pends on ¢ and we can prove that there is no 8 €)0, [ such that do(X) # 0
for any a > 0 and any A in S(8,€p).

3. Problem with a spectral parameter
Now we consider the following spectral problem

u’(t) + Au(t) — p u(t) = f(t), te(0,1),
(15) u(0) = f1,
| au’(0) + u(l) = fa,
with 4 and & two given complex numbers such that Re(u) > 0.
In all this section, we assume that there exists dg €]0, 7| satisfying

{p(A) >To={zeC"/ |arg(2)| < &},

IM>0:Vze £y |(A- ZI)—IHL(E) < M/,

which implies that

p(AL) D Sy =—p+Eo, IM >0:Vz€ S, ||(Ap—2D) ipm < M/ |2+ 4],
where A, = A — ul.

(Ha)
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LEMMA 3. There ezists o = z(&,dp) > 0 such that
A €C\S;, = av—-A+sinhv-XA #0.

Proof. Let zg > 0 and A € C \Sz,. Then we can show that
-4
\a.rg\/—)\l < T 5 0,
|—A| = zosin(do),

Re v/=X > 1/Z+/5in(dp) sin (60/2) -

Therefore

|&\/—_A + sinh \/:X| > sinh (Re \/__)\) — [&] |~ A2

> sinh (\/z_o\/sin(éo) sin (60/2)) — |&| v/zo4/sin(dp).

To conclude, it suffices to consider a large enough z¢ satisfying
sinh (\/z_m/sin 8 sin (d0/2)) — & vEov/sindg > 0.
LEMMA 4. We have the two following cases:

1. Let &9 €)0,7/2]. Then for 81 € [0, o[, there exists z1 = z(&, o, 61) > 0
such that for any p € C verifying Re(u) > =1 and |arg(p)| < 91, we have

p(Ap) O S
2. Let b9 €]7/2,7t[. Then for any u € C verifying Re(u) > zo, we have
p(A,) D {z € C:Re(2) > ~zo},
where g is defined in the previous lemma.

Proof. 1. Let u with |arg(s)| < 61 < o. We have

SI»‘ 2 Sﬂu

where 5

p1 = (1 - ::ﬁ&; ) Re(p).
Now if we assume that

U1 2 To
then
p(Au) D 8. D S

Putting

1 = o (1 _ tan §; >_1

tan &g

we therefore obtain statement 1.
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2. It suffices to remark that for any p € C verifying Re(u) > z¢ we have
S, D {z € C:Re(z) > —zo}.
In the case 8o €]0,7/2], let us fix &1 € [0, o[ and consider p € C verifying

{Re(u) >z
|arg(u)| < 61
Now, for a given ¢ > 0, set

Szo,ro = zo\B(_IOa 7'0),

where B(—zg,70) is the open ball centered in —zq of radius r¢ and denote
by o the boundary curve of Sy, ,, oriented positively.(that is from ooe
to coe~0), Then we have &v/—\ + sinhv/—X # 0 on v, and on its right
hand side. Moreover vy and its left hand side is contained in p(A,). (See
Lemmas 3-4).

In the other case, that is dg €]7/2, 7| and for u € C verifying Re(u) > zo
the corresponding curve <y, which can be considered is the boundary of

{z € C:Re(z) > —xo}.

In virtue of representation (13), we deduce that u, = u, g + u, s is the
eventual solution of (3), where

gjm V9 ma®)(4n— 2D 1f,d)
o

1 -1
o § vl O = )T i

u,R(t) =

2mi

L { (g K /=5t 8)(Ay— A~ f(s)ds) X,
Yo \O

and

-~

u5(8) = 5 | symxa(®)( s — AD) 7 frd)
Yo

a S (§ sinh v/=A(t —

2mi ) 55

) (4, — AL f(s)ds) dX.

0
Then by the same way as in section 2, we obtain

PROPOSITION 6. Assume (Hj) with & €)0,7], f1, fo € D(A) and f €

C?1([0,1); E), (n €]0,1/2[). Then u,, = uy R+ uys is the unique solution of

problem (8) satisfying

1. u, g € C2(]0,1; E) n C(]0, 1[; D(4)),
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]

. uu,r € C%([0,1]; E) N C([0,1]; D(A)) <= f(0) — Af1, f(1) — Af2 €
D(4),

. U'Z,R7 Au,u.,R € CZ"([O) 1] ’E) — f(o)_Afb f(l)_Af2 € DA("” +OO),

. uu,s € C2([0,1; E) n C([0, 1; D(A4)),

.Uy S E Cl([O, 1; F) < f(0) — Af1 € D(A),

. ups € Cl+2"([0, 1]; E) <= f(0) — Af1 € Da(n; +00).

The main result in this section is

THEOREM 3. Assume (Ha) with & € ]0,7/2|, f1, fo€ D(A), f€C?7([0,1]; E)
with n € ]0,1/2[ and put

O U Wb W

X =C([0,1; E).
Then
1. If f(0)— Af1, f(1) — Afe € D4(n;+00), then there ezists a constant
K = K(v0) > 0 such that
Il Rl + |2 ]|, + 4w Rl
K

< W (”f(l) - Af2”DA(17;+oo) + “f(O) - Afl"DA(n;-l-oo) + ||f"C2’7(E)) .

2. If f(0) — Afi€ Da(n; +00), then there exists a constant K=K (70)>0
such that
/%
K
< 7 (170) = 41l o) + I lomn) -

The space B(D4(1/2;+00)) is the subset of X consisting of all u such
that

luu,S”x + u:u,snx + ”u#,S"B(DA(1/2;+oo))

supt € [0, 1} [|u(t)llp ,(1/2;400) < O©-
Proof. For simplicity we deal with the case f = 0. The other case is left to
the reader.

1. The first part of u,, R
Ru(t)fa= 5= S 9/=55(8) (A — AI)71 fod,

can be written as

A(A — pul = M)~ Af,

u(t t dA
)f2 ’)S /\a( ) (A +u)2 ’
SO
| [dA
lul |Ru(t) follp < K § il |4 S 14721l p 4 7;+.00)

qo A+ ulIA+p
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K
< W ”Af2”DA(7I§+oo) .
We also have
-1
R,(t)f2 = o S Agy=xa(t)(Au - AD)™! fad
Yo

-1 A(A = pI = \I)~LAf,
- 2mi Yo )\g\/:xﬂ(t) (A4 p)?

),

thus

" |Al1dA]
R,,(t)f2”E < Kéo P lAf2ll D 4 (m+00)

K
< (M 142l o 500 -

The same estimate follows for AR, (t)f2. The second part of u, g can be
treated similarly.
2. Now for the singular part, it suffices to deal with

& A(A = ul = A~
S.Oh = o | /a2 s A
2 (‘]

which gives

/2 |ul /2 |d)]

b8, il < K VN S 14l oo

Yo
K
< Tt 1ASlDa@mioo)
Similarly, we get
IS, <x S

K
< M 1A f1lp 5 (m;+00) -

2
Dt 1411l D 4 (5400)

Let 7 > 0. When r < 2|y, it is not difficult to prove that
K
|4 - Dt 5,08, < o 1Al AGien

For r > 2|uj, one has
A(A -y (Su(®) 1)

_ _ -1
_i s ﬂ;(t)A(A I)-lA(A (/\“f#);\l) Afid),
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and from

A(A=rD)TAA - puI - 2D7?
A+ wAA—pl =2t rA(A-rD)t
= +
rT—A— U r—A—p

b

it follows that

A(A= D) (Su0 ) = T et )é(i #);(LI )\I)—)

AfrdA,

notice that on ~p, r — A — u # 0. Therefore

|aca-rn= (s.05)|

IMY21dA|
| 1Afill, s
o A+ = A= 2 = A pft/? Almi+o0)

A2 1dA|
K] A+ T r1/2 |22 1AF 11D 4 400)

Y0
K |[dA|

< lAf1llp oo,
r1/2 750 I)\+#|1+n D a(n;+00)

K
< lul" ri/2 I A£11| p o 754009

we have used the fact that for A € o and r > 2|pu|, there exists a constant
K such that

|r—A—p|>Kr and |r—A—pu|>K|A.

4. Examples

In the square Q =|0, 1[x]a, b[, we consider the nonlocal boundary value
problem of elliptic type

[ 52y 5%y
32 (t,z) + (t z) = Au(t,z) = f(t, z),

U(O,.’E) fl(x)’ RS (aa b),
a22(0,2) +u(1,2) = fola), = € (a,b)
u(t,a) = u(t,b) =0, te(0,1),

(P1) .
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and the corresponding speétral problem

& & '
( 57 (42 + 55 () — pu(t,2) = Ault, @) — pu(t,2) = £(¢,2),

(Py) { u(g;x) = fi(z), z € (a,b),
&E(Ov :l:) + u’(lam) = f2(1}), T € (aa b)a
u(t,a) = u(t,b) =0, t € (0,1),

where :
a>0, fecC([0,1];E),
a€C, Re(u) >0 large,
E = C((a,4) or E = I*(a,b), p €]1, 0,
fi €E, i=1,2.
Setting, in the case E = C([a, b]),
(16) {D(A) = {9 € C*([a,t]) : g(a) = g(b) = 0}
(Ag)(z) = ¢"(z),
or

{D(A) = {g € W??(a,b) : g(a) = g(b) = 0}
(Ag)(z) = ¢"(z),

in the case E = LP(a,b). Note that in the first case of space E = C([a, b)),
we have

D(A) = Co(la, b)) = {g € C([a,b]) : g(a) = g(b) = 0} # E.

Then we can apply our previous results, since it is well known that (H;)
and (Hj) are respectively verified. on the other hand, we have (for 29 < 1)
D a(n; +00) = C*([a, b]) N Co(la, b]),

for E = C([a,b]) and
W2nP(a,b) N WiP(a,b) if 27> 1
WenP(a,b) if 2n<1/p,

for E = LP(0,1). See [5].
Now, let us assume that

{f € ¢*1([0,1]; C([a, B]))
fi € 02([0', b]) and fi(a’) = fz(b) = 01 fori= 172’

then due to Theorem 2, we have
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THEOREM 4. Problem (P;) have a unique solution u(t,.) which can be written
in the form

u(t,.) = up(t,.) + us(t,.)
and such that
1. ug € C*(]0, 1[;C([a,8])) N C(10, 1[; C*([a, b])),
2. up € C*([0,1];C([a, b)) N C([0,1]; C*([a, B])) if and only if
{ £(0,a) - f{(a) = f(0,b) — f{'(b) =
f(,a) - f3(a) = f(1,b) — f3(b) =
3. uf, Aup € 02"([0, 1];C([a,b]) if and only if

£(0,.) - f1 € C*(la,b]), £(1, )— € C*([a, b))
f(0,a) - 1(a) = f(0,5) - fi(b) =
f(1,a) - f2(a) = f(1,b) - f(b) =
4. ug € C%([0,1[; C([a, b]) N C([0, 1[; C?*([a, b))
5. ug € C([0,1]; C{[a,b]) if and only if
f(0,a) — f{'(a) = £(0,b) — f{'(b) =0.
6. ug € C1*21({0,1); E) if and only if

£0,.) = fi' € C*([a,B)])
f(0,a) — f{'(a) = f(0,b) — f{(b) =
We similarly obtain the result in LP-case and also for the second spectral
problem (P).

By the same way, we can apply our results to general elliptic problems
written in the strip Q2 =0, l[xG’ as

( 2
(6%2 (t,z) + Z a,_,(:z:)a 3 (t,z) + Zbk(x) (t z) + c(z)u(t, x)

i,j=1

= f(t1 :B),
(Ps) 4 u(0,z) = fi(z), z € G,

0
aa—:(O, z) + u(l,z) = fo(z), z € G,
\ u(ta ')I@G =0,te (Oa l)a
with E = C(G) or E = LP(G) and G is an open bounded regular set of R™.
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REMARK 2. We can also consider, instead of A described in (16), the fol-
lowing more general operator of Sturm-Liouville type

D(A) =

{g € C*([a, b)) : Bog(a) — B1g'(a) = Bag(b) + Bag(b) = 0}
(Ag)(z) = ¢" (=),

with 8; > 0, Bo + 81 >0 and B2 + B3 > 0,

with the change of the last boundary condition in problem (P;). For the
analysis of this operator, see [§].
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