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INTEGRODIFFERENTIAL INCLUSIONS 
IN NON SEPARABLE BANACH SPACES 

Abstract. We consider a Cauchy problem for a nonlinear integrodifferential inclu-
sion in non separable Banach spaces under Filippov type assumptions and we prove the 
existence of solutions. This result allows to obtain a relaxation theorem for the problem 
considered. 

1. Introduction 
In this paper we study nonlinear integrodifferential inclusions of the form 

(1.1) x' eF(t,x,V(x)(t)), a.e.([0,1]), rc(0) = x0, 
where F : [0,1] x X x X -»• V{X) is a set-valued map and V : C([0,1], X) 
C([0,1], X) is a nonlinear Volterra integral operator. 

Qualitative properties and structure of the set of solutions of this problem 
have been studied by many authors ([1], [3], [4], [5], [6], [7], [10], [12] etc). 
In [3], [4] it is shown that if X is a separable Banach space, Filippov's ideas 
([9]) can be suitably adapted in order to prove the existence of solutions to 
the problem (1.1). 

Recently, De Blasi and Pianigiani ([8]) established the existence of mild 
solutions for semilinear differential inclusions in an arbitrary, not neces-
sarily separable, Banach space X. Even if the idea of Filippov are still 
present, the approach in [8] has a fundamental difference which consists 
in the construction of the measurable selections of the multifunction. This 
construction does not use classical selection theorems as Kuratowsky and 
Ryll-Nardzewski ([11]) or Bressan and Colombo ([2]). 

The aim of this paper is to obtain an existence result for problem (1.1) 
similar to the one in [8]. We will prove the existence of solutions for problem 
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(1.1) in an arbitrary space X under assumptions on F of Filippov type. The 
proof of our main result follows the general ideas in [3], [4] and [8]. Prom 
this result we obtain a relaxation theorem for the problem considered. 

The paper is organized as follows: in Section 2 we present notations, 
definitions and preliminary results to be used in the sequel. Section 3 is 
devoted to our main results. 

2. Preliminaries 
Consider X an arbitrary real Banach space with norm ||.|| and let V(X) 

be the space of all bounded nonempty subsets of X endowed with the Haus-
dorff pseudometric 

dH(A,B) = max{d*(A,B),d*(B,A)}, d*(A,B) = sup d(a,B), 
a£A 

where d{x, A) = infaG>4 ||x — a||, A C X, x 6 X. 
Let C be the cr-algebra of the (Lebesque) measurable subsets of R and, 

for Ae. C, let [¿(A) be the Lebesque measure of A. 
Let Y be a metric space. An open (resp. closed) ball in Y with center 

y and radius r is denoted by B y ( y , r ) (resp. B y ( y , r ) . In what follows B = 
Bx(0,1) and I = [0,1]. 

A multifunction F : Y —> V(X) with closed bounded nonempty values 
is said to be (¿//-continuous at yo G Y if for every e > 0 there exists <5 > 0 
such that for any y G By(yo,r) we have df{(F(y),F(yo)) < e. F is called 
du-continuous if it is so at each point yo € Y. 

Let A e £, with ¡x{A) < oo. A multifunction F :Y V{X) with closed 
bounded nonempty values is said to be Lusin measurable if for every e > 0 
there exists a compact set Ke C A, with n(A\Ke) < e such that F restricted 
to Ke is ¿//-continuous. 

It is clear that if F, G : A —* V(X) and f : A —> X are Lusin mea-
surable then so are F restricted to B (B C A measurable), F + G and 
t —> d(f(t), F(t)). Moreover, the uniform limit of a sequence of Lusin mea-
surable multifunctions is also Lusin measurable. 

As usual we denote by C(I, X) the Banach space of all continuous func-
tions x(.) : I —• X endowed with the norm ||x(.)| |c = sup t e J ||x(i)|| and by 
L 1( / , X) the Banach space of all Bochner integrable functions x(.) : I —• X 
endowed with the norm ||a;(.)||i = ^ ||a;(s)||ds. 

Let V : C([0,1],X) C([0,1],X) be the nonlinear Volterra integral 
operator defined by V ( x ) ( t ) = JQ k(t, s, x(s))ds. 

In what follows X is a real Banach space and we assume the following 
hypotheses. 
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HYPOTHESIS 2.1. (i) F(.,.,.) : I x X x X V(X) has nonempty closed 
bounded values and for any x,y € X F(.,x,y) is Lusin measurable on I. 

(ii) There exists L(.) € Ll {I, R+) such that, Vi 6 I 
dH(F(t, xuVl), F(t, x2,2/2)) < L{t)( ||x! - x2 | | + \\yi ~ 2/211), 

Vxi,x2,1/1,2/2 e X. 
(iii) There exists q(.) 6 Ll{I, R+) such that Vi € J we have 

F(t, 0,0) C q(t)B. 
HYPOTHESIS 2 . 2 . (i) k(.,.,.) : I x X x X ^ X is a function such that 
Vx € X, (t, s) —> s, x) is Lusin measurable. 

(ii) | | fc(í ,s,x)-fc(í ,s,y) | | <L(t)\\x-y\\ a.e.{t, s) e I x I, V x , y £ X . 
(iii) There exists r(.) € L1 (I, R+) such that Vi, s 6 I we have 11k(t, s, 0) 11 

< 
We shall use the following notations 

Í (x + l ) 2 - l 
m(t) = \L(u)du, a(x) = ^ , x € R. 

6 2 

By a solution of the Cauchy problem (1.1) we mean a function x(.) : I —+ 
X such that there exists a Lusin measurable function f(.):I—*X, Bochner 
integrable, satisfying 

f(t)eF(t,x(t),V(x)(t)), V i e / , 
t 

x(t) = x0 + \ f(s)ds, Vi € I. 
o 

LEMMA 2 .3 ([8]) Let Fi : I V(X), i — 1 , 2 be two Lusin measurable 
multifunctions and let e¿ > 0, i = 1,2 be such that 

(2.1) G(t):=(F1(t) + e1B)n(F2(t) + e2B)¿$, Vi G I. 

Then the multifunction G : I —> V(X), defined by (2.1) has a Lusin 
measurable selection f : / —» X. 

In order to prove our main result we need the following result. 

LEMMA 2.4 . We assume that Hypothesis 2 . 1 - 2 . 2 are satisfied. Then for any 
x(.) : I —> X continuous, u(.) : I —> X measurable and e > 0 we have: 

a) the multifunction t —• F(t, x(t), V(x)(t)) is Lusin measurable on I. 
b) the multifunction G : I —> V{X) defined by 

G(t) := (F(t, x(t),V(x)(t)) + eB) n Bx(u(t),d(u(t), F(i, x(i), V(x)(t))) + e) 

has a Lusin measurable selection f : I —> X. 
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P r o o f , a) Let {xn}n be a sequence of piecewise constant functions xn(.) : 
I —• X converging to x(.) uniformly on I. Given e > 0, let Ke C I be a 
compact set, with n(I\Ke) < e, such that L{.) restricted to Ke is continuous, 
and, for each n e N the multifunction t h-> F(t, xn(t), V(xn)(t)) restricted 
to Ke is ¿//-continuous. Set Me := sup i e /^ L(s). Let to, t € Ke be arbitrary. 
We have 

d„(F(t, x(t),V(x)(t)), F(t0, x(to), V(x)(t0))) 
< dff(F(t, x(t), V(x)(t)), F(t, xn(t), V(xn)(t))) 

+ dff(F(t, xn(t), V(xn)(t)), F(t0, xn(t0), V(xn)(t0))) 

+ d„(F(t0, xn(t0), V(xn)(t0)),F(t0, x(t0),V(x)(t0))) 

< L(i)[||x(t) - xn(t)\\ + ||V(*)(t) - V(xB)(t)||] 

+ dH(F(t, xn(t), V(xn){t)), F(t0, xn(t0), V(xn)(t0))) 

+ L(t)[\\x(t0) - xn(t0) | | + ||V(x)(t0) - V(xn)(to)||]. 
Since 

| | f (s)(t) - V(y)(t)|| < j LW||x(i) - y(s)\\ds 
o 

if we denote crn := sup i 6 / ||a;n(i) — x(i)|| we obtain 
d„(F(t, x(t), V(x)(t)), F(to, x(to), V(x)(t0))) 

< 2M e{an + Mean) + dH(F(t, xn{t), V(xn)(t)), F(t0, xn(t0), V(xn)(t0))). 
Since an —• 0 as n —• oo and t1—• F(t,xn(t), V(xn)(t)) restricted to Kt 

is ¿//-continuous, the multifunction t F(t, x(t), V(i)(i)) restricted to Ke 
is (¿//-continuous, 

b) For t s I, set 

G^t) := F(t, x(t), V(x)(t)), G2(t) := B(u(t), d(u(t), G^t))) 
and observe that Gi and G<z are Lusin measurable on I . On the other hand, 
for any t G I 

G(t) := (Gi(t) + eB) D (G2(t) + eB) ± 0. 
Therefore, by Lemma 2.3, G(.) has a Lusin measurable selection /( . ) : 
I-+X. 

3. The main result 
We are able now to prove our main result. 

THEOREM 3.1. We assume that Hypotheses 2.1-2.2 are satisfied. Then, for 
every xq €E X the Cauchy problem (1.1) has a solution x(.) : I X. 
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P r o o f . Let us note first that, if z(.) : I —• X is continuous, then every Lusin 
measurable selection u : I —* X of the multifunction t —> F(t, z(t), V(z)(i))+ 
B is Bochner integrable on I. More exactly, for any t € I we have 

\Ht)\\ < d„(F(t,z(t),V(z)(t)) + B,0) 

< dH(F(t, z(t), V(z)(t)), F(t, 0,0)) + dH(F(t, 0,0), 0) + 1 

<L( t ) ( IKi ) l l + I I^W(0l l ) + 9 ( 0 + 1 
t t 

< L(t)(\\z(t)\\ + L(t) S\\x(s)\\ds + S r(s)ds) + q(t) + 1. 
0 0 

Let 0 < e < 1, €n = 
Consider /o(.) : I —> X an arbitrary Lusin measurable function, Bochner 

integrable and define 
t 

x0{t) = x0 + \fo(s)ds, Vi G I . 
0 

Since xo(.) is continuous, by Lemma 2.4 there exists a Lusin measurable 
function / i ( . ) : I —> X satisfying, for t G / , 

n B ( f 0 ( t ) , d ( f 0 ( t ) , F(t, x0(t), V(x0)(t))) + ex). 

Obviously, / i ( . ) is Bochner integrable on I. Define xi(.) : I —> X by 
t 

x1(t) = x0 + \fi(s)ds, V i e / . 
0 

By reccurence, we construct a sequence xn : I —> X, n > 2 given by 
t 

(3 .1) xn(t) = xQ + \ fn(s)ds, t G / , 
o 

where / n ( . ) : I —y X a Lusin measurable function satisfying, for t G I, 

(3.2) fn(t) G ( F ( t , z n _ i ( i ) , F(x n_!)( i ) ) + enB)H 

n 5 ( / n _ i ( í ) , d( /n_!(í) , F(í , ®„_i(t), F(xn_!)( í))) + en). 

At the same time, as we have seen at the beginning of the proof, / n ( . ) 
is also Bochner integrable. 

Prom (3.2), for n > 2, and t G I we obtain 

II fn(t) ~ fn-1 (t) 11 < d( / n _l (t), F(t, Xn_! (í), V"(¡rn_i (í))) + €n 
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< d(/n_i(t), F(t, xn.2(t), V(xn_2)(t))) 

+ d„(F(t, Xn_2(t), V(xn_2)(t)), F(t, Xn.^t), y(x n _i) ( i ) ) ) + €n 

t 
< en_i +L(i)(||a:n_i(i) - xn_2(i)|| + $ L(s)||x„_i(s) - xn_2(s)||ds) + en. 

o 
Since en_i + en < tn-i we deduce, for n > 2, that 

(3.3) ||/„(t)-/n-l(t)|| 
t 

< e n _ 2 + L ( t ) ( | | a : „ - i ( t ) - ® n - 2 ( « ) l l + \ £ ( « ) l l * n - i ( « ) - ® n _ 2 ( s ) | | d a ) . 
0 

Denote po(t) := d(fo(t),F(t,xo(t))),t € I. We prove, next, by recur-
rence, that, for n > 2 and t e I we have 

/„ ,, ^ /mi \a(m(t) — m(u))]k , (3.4) I M i ) - ar„_i(t)|| < £ S -k ,, du 
k=oo 

{ [a(m(t) — m^tt))]" -1 

o 
We start with n = 2. In view of (3.1), (3.2) and (3.3), for t € I, one has 

I M i ) - * i ( i ) l l < j I I / 2 W -h(s)\\ds 
0 
t s 

< J[e0 + L(s)(||xi(s) - ®o(a)|| + jL(u)||xi(u) 
0 0 

t s 
< e0t + J L ( s ) ( | | ® i ( s ) - x0(s)|| + J L ( u ) | | ® ! ( u ) - x0(u)\\du)ds 

0 0 
t 

< e0t + \L(s)(l + m(t)-m(s))\\x1(s)-x0(s)\\ds 
0 
t s 

< e0t + \L{s)(l + m(t) - m(a))($ ||/i(u) - f0(u)\\du)ds 
0 0 
t s 

< e0t + J L{s){ 1 + m(t) - m(s))($[p0(u) + 61 ]du)ds 
0 0 
t s 

= e0t - J[a(m(i) - m(s))]'(J[p0(u) + ei]du)ds = 
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t 
= e0t + J[a(m(t) - m(s))](po(s) + ei]ds 

o 
t 

< e0t + J [ a ( m ( i ) - m ( s ) ) ] ( p 0 ( s ) + e 0 ]ds . 

Before proving tha t if (3.4) is true for n then (3.4) holds for n + 1 let us 
note that (e.g. [4]) 

. \ (a(m(u) — m ( r ) ) ) ) n _ 1 . . . . , 
( 3 . 5 ) \ v v ; ( i + m(t) - m(u))L(u)du 

J ( n — 1)! 

< (a(rn(t)-m(r)))n 

n\ 

Using again (3.3) , (3.4) and (3.5) we have 

t 

I k n + l W - x n ( t ) | | < S H / n + l M - / „ ( a ) | | d a 
0 

t s 
< $ [ e n - i + L ( s ) ( | | x n ( s ) - a ; „ - i ( s ) | | + J L ( u ) | | x n ( u ) - x n _i ( i t ) | |du)]ds 

0 0 
t 

< e n _ it + j L ( s ) ( l + m(t) - m ( s ) ) | | x n ( s ) - x „ _ i ( s ) | | d s 
o 
t 

< c „ _ i t + j L ( s ) ( l + m ( t ) - m ( a ) ) 
o 

^ f [ a ( m ( s ) - m(u))]k , r [ a ( m ( s ) - m ( u ) ) l n _ 1 . . . 
x J2 ) e n - 2 - f c 1 V W , V JJ> du + J 1 k / „ IPo(u) + e0]du 

k=0 0 " 0 

n—2 t 
< en-\t + e n _ 2 _ f c \ L(s)( 1 + m ( t ) - m(s)) 

k=0 0 

x ( 5 [ Q ( m ( s ) - , m ( u ) ) ] f e d u ) ^ + j L(S)(1 + m(t) - m(s)) 

o 
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n—2 t t 
< en-it + ¿ e„_2_ fc 5 (5 L(s)( 1 + m(t) - m(s))[a{m{s)-m{u))] ds)du 

k=0 0 u 

+ 5 ( 5 L(s)( 1 + m(t) - m ( J ) ) [ a ( r o ( ^ ( ; ) ) 1 W " 1
< f a ) bo(u) + *o)du 

0 u 
n—2 

< 6n-lt + E Í [ a ( m ( t " + t r ) ) ] f c + l d U 

+ ^Hm(s)-m(u)r 

o n ! 

< en-xí + E Í [ Q ( m ( S ) " m ( " ) ) ] f e ^ 
k=0 0 

6 n ! 

and the statement (3.4) is proved. 
From (3.4) it follows that, for n > 2 and t 6 I one has 

(3.6) ||zn(í) - arn-i(í)ll ^ an, 

where 

[a(m(l))]fc [«(mil))]"-1 .} . 

fc=0 " V >' 0 

Obviously, the series whose nth term is a n is convergent. So, from (3.6) 
we have that xn(.) converges uniformly on I to a continuous function, x(.) : 

On the other hand, in view of (3.3) we have 

||/n(i) - fn—l(t) 11 < fn-2 + L(t)( 1 + m(í))On-l, Í € J, Tl > 3 

which implies that the sequence fn(.) converges to a Lusin measurable func-
tion / ( . ) : I - > X . 

Since x„(.) is bounded and 
t t 

| | /n( t) | | < L(t)( | |x„-i( t ) | | + L(t) 5 ||:cn_i(a)||<fa + 5r (s )ds) + q(t) + 1 
0 0 

we infer that / ( . ) is also Bochner integrable. 
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Passing with n —• oo in (3.1) and using Lebesgue dominated convergence 
theorem we obtain 

t 
x(t) = x0 + J f{s)ds, Vi G I. 

o 
On the other hand, from (3.2) we get 

fn(t) G F(t, xn(t), V(xn)(t)), tel,n> 1 

and letting n —• oo we have 

f(t)eF(t,x(t),V(x)(t)), t e l . 

and the proof is complete. 

REMARK 3 . 2 . If the multifunction F does not depends on the last variable, 
(1.1) reduces to 

x' G F(t,x), x(0) = xo 

and Theorem 3.1 yields known results, namely Corollary 3.1 in [8]. 

Theorem 3.1 allows us to compare the solutions of (1.1) and of the con-
vexified (relaxed) problem 

(3.7) x' G coF{t,x,V{x){t)), a.e.(I), z(0) = x0, 

where by coA we denote the closed convex hull of the set A C X. Namely, 
we show that the set of solutions of the problem (1.1) is dense in the set of 
solutions of the relaxed problem (3.7). 

In order to prove this relaxation result we need the following lemma 
which is a variant of Lemma 4.2 in [8]. 

LEMMA 3.1 . We assume that Hypotheses 2 . 1 - 2 . 2 are satisfied. Let xo G X 
and let y(.) : I —> X be a solution of the problem ( 3 .7 ) . Then, for any 
0 < a < 1 there exists a solution xo(.): I X of the Cauchy problem 

(3.8) x' € F{t,x,V(x)(t)) + <l>a(t)B, a.e.(I), x(0) = x0t 

where (f>a{.) € ¿ 1 ( / , [0, oo)) with < 2a, such that 

I M i ) - y ( i ) l l < * . V i e J. 
The proof, rather long and technical, can be easily performed through 

the same arguments employed to establish Lemma 4.2 in [8]. 

THEOREM 3.4 . We assume that Hypotheses 2 . 1 - 2 . 2 are satisfied. LetxO G X 
and let y(.) : I X be a solution of the convexified problem ( 3 .7 ) . Then, 
for every e > 0 there exists a solution x(.) : I —» X of the problem (1.1) such 
that: 

\\x(t)-y(t)\\<e, V t e J . 
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Proof . Let y(.) : I —> X be an arbitrary solution of the Cauchy problem 
(3.7) and let 0 < e < 1. 

Fix cr such that 0 < a < 7 „^,(1». Let <f>a(.) € L l ( I , [0, oo)) be such that 
4>a(t)dt < 2 a . 

By Lemma 3.3 there exists a solution xo(-) : I —* X of the problem (3.8) 
such that: 

( 3 . 9 ) \ \ x 0 ( t ) - y ( t ) \ \ < a , V i € / . 

Therefore, there exists a Lusin measurable function /o(.) : I —* X, 
Bochner integrable such that 

(3.10) / o ( ¿ ) e F ( t , i o ( í ) , ^ o ) ( t ) ) + i ( í ) B , te I, 

t 

(3.11) x0(i) = x 0 + \ f 0 ( s ) d s , t e I . 

0 
Define a n = ^ and p 0 ( t ) : = d ( f 0 ( t ) , F ( t , x 0 ( t ) , V(x0)(t))), t e I . 

By reccurence, as in the proof of Theorem 3.1, we can construct a se-
quence { x n } n of continuous functions xn : I —• X, n > 1 given by 

t 

(3.12) x n ( t ) = x0 + \ f n ( s ) d s , t e / , 

0 
with fn(.) : I —• X a Lusin measurable function satisfying, for t € / , 
(3.13) f n ( t ) e (F(í, xn_i(i) , V(zn_x)(t)) + < r n B ) n 

nB(/„_i(i), d(/„-i(t), F ( t , x n - i ( t ) , V i x ^ i t ) ) ) + a n ) . 

From (3.13), for n > 2, we obtain, as in the proof of Theorem 3.1 

(3.14) ||/„(i)-/n-l(t)ll 
t 

< Crn-2 + L(t)(||*n-l(t) - Xn_2(í)|| + \ ¿(«)ll®n-l(«) ~ ¡E„-2(«)| !<*«)• 
0 

By reccurence, as in the proof of Theorem 3.1, one can prove that, for 
n > 2, one has 
(3.15) | M í ) - X n - i ( í ) l l 

^ r \ a ( m ( t ) - m(tz))]fc J f [a(m(t) - m(u))]""1 . , , 
< ¿ 2 \ a n - 2 - k fci d u + ) ( n - l Y M«)+<*>]<*«. 

fc=0 0 ' o 
From (3.15) we obtain 

n 
(3.16) ||xn(t) - z0(t)ll < IÎ KO " x i - i ( t ) \ \ < + ||x!(t) - x0(t)||, 

i>l 1=2 
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where 
1z_2 r^^mMfc 1 

0-n = an-2-k -n 1 / _ [)Po{U)du + CT0J. 
fc=0 ' ^ 0 

One has 

^ jfei + ( I - I V [)Po{u)du + (To 
1=2 1=2 k=0 ' i=2 0 

n=0 n=0 ' n=2 v >' 
< £>(m(i)) + + < S a e * ^ 1 » . 

2 4 

By (3.10), poW < <M*)> Vi € J, hence 
l l 
( p o C O ^ < \ M ) d t < 2(7. 
0 0 

At the same time, from (3.13), if t € / we have 
t t 

IMO - x0(t)|| < \ ll/iOO " fo(s)\\ds < 5 [ p 0 ( s ) + cr]ds < 3a. 

0 0 
Hence, from (3.16) and from the last estimation we deduce that, for 

n > 2 and t £ I we have 
||xn(t) - x0(t)| | < 3<7eQ(m(1)) +3a< 

As it is already proved in Theorem 3.1 the sequence {xn}n converges 
uniformly on I to a continuous function, x(.) : I —> X, which satisfy the 
inequality 

||x(i) - rro(t)11 < 6<rea(mW\ Vi € I . 
Using, now, (3.9) we have 

IMO - y(t)\\ < ||x(i) - x0(i)|| + lko(i) - 3/(i)|| 

< 6creQ(m(1)) + a = 7aeQ(m(1) ) 

and according to the choice of a we infer that 
\ \ x ( t ) - y ( t ) \ \ < e , V i 6 / . 

R e m a r k 3 . 5 . If the multifunction F does not depends on the last variable, 
Theorem 3.4 yields Corollary 4.1 in [8]. 
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