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INTEGRODIFFERENTIAL INCLUSIONS
IN NON SEPARABLE BANACH SPACES

Abstract. We consider a Cauchy problem for a nonlinear integrodifferential inclu-
sion in non separable Banach spaces under Filippov type assumptions and we prove the
existence of solutions. This result allows to obtain a relaxation theorem for the problem
considered.

1. Introduction
In this paper we study nonlinear integrodifferential inclusions of the form

(1.1) z' € F(t,z,V(z)(t)), a.e([0,1]), z(0)= xo,

where F': [0,1] x X x X — P(X) is a set-valued map and V' : C([0,1], X) —
C([0,1], X) is a nonlinear Volterra integral operator.

Qualitative properties and structure of the set of solutions of this problem
have been studied by many authors ([1], [3], [4], [5], [6], [7], [10], [12] etc).
In [3], [4] it is shown that if X is a separable Banach space, Filippov’s ideas
([9]) can be suitably adapted in order to prove the existence of solutions to
the problem (1.1).

Recently, De Blasi and Pianigiani ([8]) established the existence of mild
solutions for semilinear differential inclusions in an arbitrary, not neces-
sarily separable, Banach space X. Even if the idea of Filippov are still
present, the approach in [8] has a fundamental difference which consists
in the construction of the measurable selections of the multifunction. This
construction does not use classical selection theorems as Kuratowsky and
Ryll-Nardzewski ([11]) or Bressan and Colombo ([2]).

The aim of this paper is to obtain an existence result for problem (1.1)
similar to the one in [8]. We will prove the existence of solutions for problem
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(1.1) in an arbitrary space X under assumptions on F of Filippov type. The
proof of our main result follows the general ideas in (3], [4] and [8]. From
this result we obtain a relaxation theorem for the problem considered.

The paper is organized as follows: in Section 2 we present notations,
definitions and preliminary results to be used in the sequel. Section 3 is
devoted to our main results.

2. Preliminaries

Consider X an arbitrary real Banach space with norm ||.|| and let P(X)
be the space of all bounded nonempty subsets of X endowed with the Haus-
dorff pseudometric

du(A, B) = max{d*(4, B),d*(B,A)}, d*(A,B) =supd(a,B),
ac€A
where d(z, A) = infeeallz —al|, AC X,z € X.

Let £ be the o-algebra of the (Lebesque) measurable subsets of R and,
for A € L, let u(A) be the Lebesque measure of A.

Let Y be a metric space. An open (resp. closed) ball in Y with center
y and radius r is denoted by By (y,r) (resp. By (y,r). In what follows B =
Bx(0,1) and I = [0, 1].

A multifunction F : Y — P(X) with closed bounded nonempty values
is said to be dy-continuous at yo € Y if for every € > 0 there exists § > 0
such that for any y € By (yo,r) we have dg(F(y), F(yo0)) < €. F is called
dy-continuous if it is so at each point 4o € Y.

Let A € £, with u(A) < co. A multifunction F : Y — P(X) with closed
bounded nonempty values is said to be Lusin measurable if for every ¢ > 0
there exists a compact set K, C A, with u(A\K.) < € such that F restricted
to K, is dy-continuous.

It is clear that if /G : A — P(X) and f : A — X are Lusin mea-
surable then so are F restricted to B (B C A measurable), F + G and
t — d(f(t), F(t)). Moreover, the uniform limit of a sequence of Lusin mea-
surable multifunctions is also Lusin measurable.

As usual we denote by C(I, X) the Banach space of all continuous func-
tions z(.) : I — X endowed with the norm ||z(.)||c = sup,¢; ||z(t)|| and by
L(I, X) the Banach space of all Bochner integrable functions z(.): I — X
endowed with the norm ||z(.)||; = {g ||z(s)||ds.

Let V : C([0,1],X) — C([0,1],X) be the nonlinear Volterra integral
operator defined by V(z)(t) = S:) k(t,s,z(s))ds.

In what follows X is a real Banach space and we assume the following
hypotheses.
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HypoTHESIS 2.1. (i) F(.,.,.) : I x X x X — P(X) has nonempty closed
bounded values and for any z,y € X F(.,z,y) is Lusin measurable on 1.
(ii) There exists L(.) € L*(I, R, ) such that, Vt € I

dH(F(ta xlvyl)aF(t7 -'132,y2)) S L(t)(”l'l - 122“ + Hyl - y2||)a
Vzl,x%yl)yZ € X.

(iii) There exists g(.) € L!(I, R;) such that V¢ € I we have
F(t,0,0) C q(t)B.

HypoTHEsIS 2.2. (i) k(.,.,.) : I x X x X — X is a function such that
Vz € X, (t,s) — k(t, s, z) is Lusin measurable.
(ii) ||k, s, 2) — k(t, s, 9)|| < L(t)||z—y|| a.e.(t,s) €eIxI, Vzr,yeX.
(iii) There exists r(.) € L*(I, Ry) such that Vt, s € I we have ||k(t, s,0)||
< r(t).
We shall use the following notations
¢ 2
m() = | Lwdu, a(z)=ZF L
0

z € R.

By a solution of the Cauchy problem (1.1) we mean a function z(.) : I —
X such that there exists a Lusin measurable function f(.) : I — X, Bochner
integrable, satisfying

f(t) € F(t,z(t),V(z)(t)), Vtel,
z(t) = zo + Sf(s)ds, vte I
0

LEMMA 23 ([8]) Let F; : I — P(X), i = 1,2 be two Lusin measurable
multifunctions and let €; > 0, i = 1,2 be such that

(21) G(t) = (F] (t) + €1B) N (F2(t) + €2B) 75 0, vtel.

Then the multifunction G : I — P(X), defined by (2.1) has a Lusin
measurable selection f:1 — X.

In order to prove our main result we need the following result.

LEMMA 2.4. We assume that Hypothesis 2.1-2.2 are satisfied. Then for any
z(.) : I - X continuous, u(.) : I — X measurable and € > 0 we have:

a) the multifunction t — F(t, z(t), V(z)(t)) is Lusin measurable on I.
b) the multifunction G : I — P(X) defined by

G(t) := (F(t,2(2), V(2)()) + B) N Bx (u(t), d(u(t), F(t, z(2), V() (1)) + €)

has a Lusin measurable selection f: I — X.
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Proof. a) Let {z,}» be a sequence of piecewise constant functions z,(.) :
I — X converging to z(.) uniformly on I. Given € > 0, let K. C I be a
compact set, with pu(I\K,) < ¢, such that L(.) restricted to K, is continuous,
and, for each n € N the multifunction ¢t — F(t,z,(t), V(z,)(t)) restricted
to K. is dy-continuous. Set M, := sup, K. L(s). Let tg,t € K, be arbitrary.
We have
du(F(t,z(t), V(z)(¢)), F(to, z(to), V(z)(t0)))
< du(F(t,z(t), V(z)(1), F(t, zn(t), V(z4)(t)))
+ dg(F(t, zn(t), V(2n) (1)), F(to, Zn(to), V(zn)(t0)))
+ du(F(to, zn(to), V(zr)(t0)), F (2o, z(20), V(z)(t0)))
< L(&)[||z(t) — za (O} + |V (z)() — V(zn) OII]
+ dg(F(t, zn(t), V(za)(2)), F(to, zn(t0), V(zn) (o))
+ L(t){||z(to) — zn (o)l + [[V(2)(to) — V(za) (ta)ll)-

Since
t

IV(@)() - V)OIl < [L(s)lle(s) — y(s)]|ds
0
if we denote o, := sup;¢; ||zn(t) — z(t)|| we obtain

dy(F(t, z(t), V(2)(t)), F(to, z(to), V(z)(t0)))
L 2M(on+ Mcon) +du(F(t, zn(t), V() (1)), F(to, zn(to), V(zn)(to)))-

Since 0, — 0 as n — oo and t — F(t,z,(t), V(z,)(t)) restricted to K,
is dg-continuous, the multifunction ¢t — F(t, z(t), V(z)(t)) restricted to K,
is dgy-continuous.

b) For t € I, set

Gi(t) 1= FPlt,a(t), V()(®),  Galt) i= Blu(t), d(u(t), Gx(t))
and observe that G; and G5 are Lusin measurable on I. On the other hand,
foranytel
G(t) := (G1(t) + eB) N (Ga(t) + €B) # 0.

Therefore, by Lemma 2.3, G(.) has a Lusin measurable selection f(.) :
I-X.

3. The main result
We are able now to prove our main result.

THEOREM 3.1. We assume that Hypotheses 2.1-2.2 are satisfied. Then, for
every Tg € X the Cauchy problem (1.1) has a solution z(.) : I — X.
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Proof. Let us note first that, if z(.) : I — X is continuous, then every Lusin
measurable selection u : I — X of the multifunction t — F(t, 2(t), V(2)(t))+
B is Bochner integrable on I. More exactly, for any ¢ € I we have
lu(®)I] < du(F(t, z(8), V(2) (%)) + B,0)
< dH(F(t7 z(t)’ V(Z)(t))a F(t7 0, O)) + dH(F(t7 0, O)a 0) +1
< L@ + IVE @) + gt + 1

< L)1zl + L2) § ll2(9)llds + [ r(s)ds) + q(2) + 1.
0 0

Let 0 <e<1, €n = 5arz.
Consider fo(.) : I — X an arbitrary Lusin measurable function, Bochner
integrable and define

t
zo(t) = zo + | fo(s)ds, Vtel.
0

Since zg(.) is continuous, by Lemma 2.4 there exists a Lusin measurable
function f1(.) : I — X satisfying, for t € I,

f1(t) € (F(t, 2o(t), V(20)(t)) + €1B)
N B(fo(), d(fo(t), F'(t, 2o(t), V (z0)(1))) + €1).-
Obviously, fi(.) is Bochner integrable on I. Define z1(.) : I — X by

t
z1(t) = zo + | fu(s)ds, Vtel
0

By reccurence, we construct a sequence z,, : I — X,n > 2 given by

(3.1) ZTn(t) = zo + an(s)ds, tel,
0

where f,(.) : I — X a Lusin measurable function satisfying, for t € I,

(3.2) fn(t) € (F(t,zn-1(t), V(zn-1)(t)) + e B)N

NB(fa-1(t), d(frn-1(t), F(t, Zn-1(2), V(2a-1)(1))) + €n).

At the same time, as we have seen at the beginning of the proof, f,(.)
is also Bochner integrable.

From (3.2), for n > 2, and t € I we obtain
I7n(t) = fa—1(®] < d(fn-1(8), F(t, Tn-1(t), V(zn-1(t))) + €n
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< d(fa-1(8), F(t, 2n-2(t), V(zn-2)(1))) -
+dy (F(t, 2n2(t), V(2r-2)(t)), F(t, 2n-1(2), V(zn-1)(1))) + €n

t

< nt + L) (llen-1(t) = zn-2(t)l| + | L(5)llon-1(s) = 2n-2(s)||ds) + €.
0

Since €,_1 + €, < €,_2 we deduce, for n > 2, that

(3'3) ”fn(t) - fn—l(t)”
< encz + L) ([en-1(8) = 2a—a(®)]] + | L(8)l[2n—1(s) — Tn_a(s)]|ds).

Denote po(t) := d(fo(t), F(t,zo(t))),t € I. We prove, next, by recur-
rence, that, for n > 2 and t € I we have

n—21 — mlu k
(34) |lzn(t) = zaca (I < ) Jen—2k [2(m(t) — mW)"

k!
k=00
‘ [a(m(t) — 'm(u))]"—l
+(S) (n—=1)! [po(w) + €o]du.

We start with n = 2. In view of (3.1), (3.2) and (3.3), for ¢t € I, one has

l|lz2(t) — z1(B)]] < Ilfz(S) fi(s)llds

< Yleo + L(s)(llz1(s) = zo(s)ll + § L(w)l|z1(u) — 2o(w)||du)]ds

O tawy T O Cuwm o
Ot i O L o

l/\
+

L(s)(llz1(s) — zo(s)l| + § L(u)l|z1(u) — zo(w)||du)ds
L(s)(1 + m(t) — m(s))||z1(s) — zo(s)||ds
|1 f1 () ~ fo(u)||du)ds

L(s)(1 +m(t) — m(s))(}{po(u) + €1]du)ds

O e (6 O e o

I
o
=)
L 3
|

“)
S
0
< eot + [ L(s)(1 + m(t) = m(s))(
0
S
0
|
0

[e(m(2) = m(s)))' (§[po(w) + ex]du)ds =
0
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eot + Y[a(m(2) — m(s))](po(s) + e1]ds

< et +

O ™) b O L o+

[a(m(t) — m(s))](po(s) + €o]ds.

Before proving that if (3.4) is true for n then (3.4) holds for n + 1 let us
note that (e.g. [4])

t

a(m(u) — m(r))))*~1
(3.5) g( (m( ()n_ 1()!)))) (14 m(t) — m(u))L(u)du

T

_ (a(m(®) - mr)"

- n!

Using again (3.3), (3.4) and (3.5) we have

ll2n+1(8) = 2a ()] < {11 fas1(s) = fu(s)llds

]

< Ylen-1+ L(s)(llzn(s) = 2n-1(s)l| + | L(w)l|zn(u) = 2n-1(u)l|du))ds
0 0

< en—1t + J L(s)(1 + m(2) — m(s))||zn(s) — 2n-1(s)l|ds

S en—lt +

O tawmy o O tunm) o

L(s)(1 + m(t) — m(s))

n—2s

a(m(s) — m(u))]* ¢ [a(m(s) = m(u))]*1
XZSen_z_k[ ( ()k! ()] du+§[ ( (()n—1§l))] [po(u) + €o]du
k=00 0 ’
n—2 t
<é€n-1t+ Z €n—2—k S L(s)(1 + m(t) — m(s))
k=0 0

: aymis) —miu k ;
x'(S[ ( ()k! )] du)ds+§L(s)(1+m(t)-m(s))
(

a(m(s) — m(u))]*!
o) =D ) 4 g

Qs O
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n—2 t

< €n-1t+ Z 5n—2—k§ (S L(s)(1 4+ m(t) — m(s)) [ex(m(s)

k=0

mlu k
- (u))] ds)du

u

+

(S +m(e) - me) 2 =B 40) o) + el

O =y o

et in- | lom() —mla)
k=0 0

k+1)!
+S [a(m(s ~ m(u))] [P (’U,) +60]d’u
0
n-—1 t
<en_it+ Zen_ "’“S [a(m(s) ))]kdu
k=0 0

+{latm(s) = m

n!

(@) [po(w) + eo]du

and the statement (3.4) is proved.
From (3.4) it follows that, for n > 2 and ¢ € I one has

(3.6) ||2a(t) = Za-1 (|| < an,

where

not 1
o O

Obviously, the series whose nth term is a, is convergent. So, from (3.6)

we have that z,(.) converges uniformly on I to a continuous function, z(.) :
I-X.

On the other hand, in view of (3.3) we have
I7n(t) = fr1(t)]| < €n—2 + L(H) (A +m(t))an-1, tel,n23
which implies that the sequence f,(.) converges to a Lusin measurable func-
tion f(.): I — X.
Since z,(.) is bounded and

t

1£2ON < LElon-1()]| + L) § [|zn-1(s)llds + [ r(s)ds) + q(t) + 1
0 0

we infer that f(.) is also Bochner integrable.
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Passing with n — oo in (3.1) and using Lebesgue dominated convergence
theorem we obtain
t

z(t) = zo + S f(s)ds, Vtel.
0
On the other hand, from (3.2) we get

fn(t) € F(t,xz,(t),V(zn)(t), tel,n>1
and letting n — oo we have
f(t) € F(t,z(t),V(z)(t)), tel.
and the proof is complete.
REMARK 3.2. If the multifunction F' does not depends on the last variable,
(1.1) reduces to
z' € F(t,z), z(0)=zo
and Theorem 3.1 yields known results, namely Corollary 3.1 in [8].

Theorem 3.1 allows us to compare the solutions of (1.1) and of the con-
vexified (relaxed) problem

(3.7) ¢’ € WF(t,z,V(2)(t), ae(l), z(0)= g0,

where by €0A we denote the closed convex hull of the set A C X. Namely,
we show that the set of solutions of the problem (1.1) is dense in the set of
solutions of the relaxed problem (3.7).

In order to prove this relaxation result we need the following lemma
which is a variant of Lemma 4.2 in [8].

LEMMA 3.1. We assume that Hypotheses 2.1-2.2 are satisfied. Let o € X
and let y(.) : I — X be a solution of the problem (3.7). Then, for any
0 < 0 < 1 there ezists a solution zo(.) : I — X of the Cauchy problem
(3.8) ' € F(t,z,V(z)(t)) + ¢, (t)B, a.e.(I), z(0)= zo,
where o (.) € LY(1, [0, 00)) with {g ¢o(t)dt < 20, such that
l|zo(t) —~y(®)|| <o, Vtel.

The proof, rather long and technical, can be easily performed through

the same arguments employed to establish Lemma 4.2 in [8].

THEOREM 3.4. We assume that Hypotheses 2.1-2.2 are satisfied. Let zg € X
and let y(.) : I — X be a solution of the convezified problem (3.7). Then,
for every € > 0 there ezists a solution z(.) : I — X of the problem (1.1) such
that:

llz(t) —y(®)|| <e, Vtel.
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Proof. Let y(.) : I — X be an arbitrary solution of the Cauchy problem
(3.7) andlet 0 <e< 1.

Fix o such that 0 < 0 < z—&my. Let ¢4(.) € L'(1, [0, 00)) be such that
So $-(t)dt < 20.

By Lemma 3.3 there exists a solution zo(.) : I — X of the problem (3.8)
such that:

(3.9) lleo(t) —y(Dll <o, VeeL.

Therefore, there exists a Lusin measurable function fo(.) : I — X,
Bochner integrable such that

(3.10) ~ fo(t) € F(t,zo(t), V(z0)(t)) + ¢ (t)B, tel,
(3.11) zo(t) = zo + Sfo(s)ds, tel
0

Define 0, = 557 and po(t) := d(fo(t), F(t, zo(t), V(z0)(t))),t € I.
By reccurence, as in the proof of Theorem 3.1, we can construct a se-
quence {z,}n of continuous functions z, : I — X,n > 1 given by
¢

(3.12) Tn(t) =20+ | fu(s)ds, tel,

0
with fn(.): I = X a Lusin measurable function satisfying, for ¢ € I,
(3.13) fa(t) € (F(t, zn-1(t), V(zn-1)(t)) + onB)N

NB(fn-1(t), d(fa-1(t), F(t, 2n-1(t), V(za-1)(t))) + on).
From (3.13), for n > 2, we obtain, as in the proof of Theorem 3.1

(3'14) ”fn(t) - fn—l(t)”

< 0n-2 + L(t)(||2n-1(t) = Zn-2(t)|| + | L(s)ll2n-1(5) — 2n2(s)l|ds).
0

By reccurence, as in the proof of Theorem 3.1, one can prove that, for
n > 2, one has

(3.15)  |lzn(t) — zn-1 ()|
n—-2t t n—
< 5 sy ) = mCu)* PR CLURL Ol ! o) +ocld
k! 0

k=00 -1
From (3.15) we obtain

(3.16) |lza(t) = zo(®)ll < D llr(t) = zia (D} < Zaz +lz1(2) — zo (B},

>1
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where
ey a(m ko la(m n-1 1
a, = Z 0'n—2—k[ ( k('l))] + [ ((n(_l)i])l [SPO(u)du + op).
k=0 Y0
One has
i n =2 m(1))]* a(m(1)))'-? :
;az = ;k=oal_2_k[ (m(1)] Z [ ( )1)], “P (u)du + Uo]
a(m(1))]™ a(m(1)) n-1
S(n=0 )(Z[ ( ()] )+ Z[ ( ( 1])' (20 + 00)
< %ea(m(l» + 20e(mD) 4 Zea(m(l)) < 3gea(m(D).
By (3.10), po(t) < ¢o(t), Vt € I, hence
1 1
{po(t)dt < | 4o (t)dt < 20.
0 0

At the same time, from (3.13), if ¢ € I we have
t

llz1(t) = zo@)Il < J11f1(s) = fo(s)llds < §[po(s) + o1ds < 3o.
0 0

Hence, from (3.16) and from the last estimation we deduce that, for
n > 2 and t € I we have
||Zn(t) — zo(t)]| < 30e2(™) 4 30 < 6ge>(™(1),

As it is already proved in Theorem 3.1 the sequence {z,}, converges
uniformly on I to a continuous function, z(.) : I — X, which satisfy the
inequality

||lz(t) — zo(t)]] < 60eX™W) wtel.
Using, now, (3.9) we have
lz(®) =yl < ll=(8) — zo(@)]] + llzo(t) — y(®)]]
and according to the choice of o we infer that
llz(®) -yl <e, Vil

REMARK 3.5. If the multifunction F' does not depends on the last variable,
Theorem 3.4 yields Corollary 4.1 in [8].
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