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A CLIFFORD-TYPE STRUCTURE

Introduction

In the paper a Clifford-type structure is introduced and some considera-
tions on Clifford-type manifolds are developped. First of all an analog of the
fundamental 2-form of complex analysis is defined and using it a decomposi-
tion analogous to the Hodge Decomposition Theorem for Kéhler manifolds
is given for Clifford-type manifolds. By the Chern Theorem [5] we get an
increasing sequence of Betti numbers for Clifford-type manifolds.

1. A Clifford-type structure
Let V be a real vector space.

DEFINITION 1.1. An almost Clifford-type structure C, on V is a set of n
almost complex structures {Ij,..., I} such that

I Ig + Igl, = —204p1d, a,f=1,..,n,
where Id stands for the identity endomorphism of V, é§ denotes the ,Kro-
necker delta”.

REMARK 1.1. a) If n = 1, then C; = {I} with I2 = —Id. Thus, C; is nothing
but an almost complex structure. Recall that the standard form of an almost
complex structure looks as follows:

e=(% D). u-m

provided that V' has an even dimension (see, e.g. [10]).
b) If n = 2, then C; = {I,J} with I? = J2 = —Id and IJ + JI = 0.
Define K := IJ, then IJK = —Id and K? = —Id. Thus, C; corresponds to
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the almost quaternionic structure (see, e.g. [7, 12]). The standard form of
an almost quaternionic structure looks as follows:

0 I 0 0 0 0 I 0
100 0 0 0 0 I
=19 00 -1l %=|-1 0 0ol
0 011 0 0 —-I 0 0
0 0 0 I
0 0 —-I 0
Ko=1l9o 17 0 of"
10 0 0

provided that dimgrV = 4n.
Note that any almost Clifford-type structure C, = {I1,...,I,} induces
the following set of almost complex structures:

Il, ey In;

L Lhs,.. 1y, .. Iy 1]y

no triple is an almost complex structure;
Lilsly,.. . Iy 31, oI, 11Iy;

no odd tuple is an almost complex structure;
etc.

Denote by p], the number of the above almost complex structures, then

n n n n . .
. (1)+(2)+(4)+...+<n_1>, if n is odd,
Pn = n + n + n + + n i is ev

1 2 4 n)’ 1 even.

Let us denote
Pp=2"-p,
then, for n>3 we have the following general formulae:
Prn=2"-2p, ;- (n-3),
Pp = 2pp_1 + (n—3).
By the straightforward calculations we get the following numbers:
p’1=1) p’2=3) p.{3=6a pf;=11,
ps =20, pg=37, ph,="70, pg=135, etc.

Denote by V(n) a real vector space endowed with a Clifford-type struc-
ture C, = {I1,..., I}, then
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THEOREM 1.1. We have
dimg V(n) = 2" - s,
where s > 0 is an integer.

Proof. Assume that a real vector space V is equipped with an almost
Clifford-type structure C,, = {I1,...,I,} with

I g+ Igl, = —26,41d, a,fB=1,..,n.
Since
G:={a' +...4a"I;; a},...,a" €R and (a')? +... 4+ (a™)? = 1}

is a compact group, then V can be split into a direct sum of irreducible
vector subspaces (see, e.g. [5], p. 14) and thus the proving of the Theorem
for V irreducible will suffice.

Let X € V, X # 0. Consider the vector subspace V) of V generated
by X, 1 X, LbX,..., I,.1X, then I,,V; cannot belong to V;. Indeed, if I,V}
belonged to Vi, then there would exist a matrix

o n-—1
a ... a?
A= ) e ’ € M(n;R)
o n—1
an_1 Gn-1

with det A # 0 such that
LLX=aX+aLhX+...+a 1, X,
L(hX)=aX+adL X +... + al"lIn_lX,
Li(In.1X)=a% 1 X +a} [ X +...+a’1, 1 X.
Since
L(I,X)=-X (I2 = —Id)
then we get
L(InX) = I,(a2X +alh X + ...+ a2 ,_1 X)
= a2l X +al[,(hX)+...+al  [,(In—1 X)
=a2(aX +al[ X +...+a? 1, 1 X)
+at(@fX +alh X +...+ a7, 1 X)

+at Yal 1 X +al L X +...+a? 1 X),
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SO
(@22 +alaS +...+a7 1a®_, )X+
+[a%al +alal +... + a7 tal_ L X+

e AP T
+la2a? +ala?t + ...+ a1 X = =X,
This implies
(a9)? +azaf + ...+ a5 ap_; = —1,
o 1 1.1 n-1_1 —
a8, ta,a;+...+a, a,_; =0,

(1.1)

ala? ! +ala? 4 ... +ar" el =0,
On the other hand we have |
0=I,(I,X)+ I,(I,X) for a=1,...,n-1,
which gives

aX+aih X +...+a 1 X
X + i1 X+ ...+ a2, 1X] =0,
i.e.
alX + a},IlX +...+ aZ'lIn_1X+
+aSl X +all, L X + ...+ a1, 1 X = 0.

For o =1 we get

a—al=0, ie af=al,
al +a2=0, ie af=—aj,
ad=d=...=a}1 =0,
a2=ad=...=a"!=
For a = 2 we get
a3 = ag,
aj = —aj,
d=ad=..=a =0
al=ad=...=a1=0



A Clifford-type structure 567

Generally, for a = m we have

a$71=a;n7 m=1,..,n 1’
az=_a%=—a%=...= az:ia
a:)n=0, m=1,..,n-1
d=al=.. =a =0,
a%:ag:...=ag—l= )
aj=af=af=..=aj" =0,
a},.-_1=a$;-1= =a2j=0

Substituting the above relations to the system (1.1) we get

(ag)? = -
which is a contradiction.

Consider the subspace V, of V' generated by Vi and I,V;. Since V, is
invariant under the whole group G then this subspace V, must be V since it
is irreducible. Thus

V=Wiel,h.

Then, dimV = dimV; + dim(I,V}), so dimV = 2 -dim V;, i.e. dimV(n) =
2.dimV(n — 1). Since dim V(1) = 2s for some integer s > 0, then

dimV({n)=2"-s. n

2. The fundamental form (2

Let V be areal vector space equipped with an almost Clifford-type struc-
ture Cp, = {I1,...,In}.

Denote by .A the field of ” Chﬁord-type numbers”. A typical element of
A, can be written as

a:=z,+e1T1 +exxrs+ ...+ epTn, ToyT1,..-,Tn ER
and the " Clifford-type units” ey, ..., e, satisfy the relations:-
ek em + em - e = —20km, kkm=1,...,n

Let A2=R{"+1P denote the ”Clifford-type” Euclidean p-space with co-
ordinates A = (al,...,aP), where

8 __ .8 ] s s —
a’ =z, +ex]+exs+...+enx,, s=1,..,p
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and A= X,+e1 X1 +...+ e, X, with

X, = (zL,22%,...,2P),
X1 = (23{, x%v .- wzll,)’
Xn= (a:,ll,:z:ﬁ, e Th)
Thus R? denotes the subset of AP with
Xi=Xo=...=X,,=0.

Note that AP can be identified with R("+1)P endowed with n almost
complex structures Iy, ..., I, satisfying the conditions:
IaIg + IBIa = —250,[3[(1,
LX=eX,. .. I.X=eX, XeRrtr

where Id stands for the identity mapping in R(»+1)?,

We can treat A2=R(™*+1)? a5 a p-dimensional right module over A,,. One
defines a bilinear form (, ) on A? as follows:

if A= (al,...,a?) and B = (b!,...,b?) € A2, then

1N, o ras
(A,B) : = §Z(a b + b%a®) =
a=1
P —
= Re (A,B) :== Re ) _ a°b",
a=1
where
a® =z} — e1x] — €Ty — ... — en Ty, s=1,..,p

Then (A, B) is an inner product of AP, considered as a (n + 1)p-dimensional
real vector space.

Note that we have the following relation:
1

Let (AR)’ be the dual space of A%, over A, and ai,as,...,ap be a basis
of (AR)’. We may write
a, =b%a? + blal +...+bra?, b2,bl,.., b0 eR, s=1,..,p,

so that a2, al,...,a? form a basis of (A2)’ over R.
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DEFINITION 2.1. Let us define n skew symmetric bilinear forms wy,...
...,wn on AP as follows:

w1(A,B) : = (A, 1 B),
wa(A, B) : = (A, I, B),

Assume that

for some integer w > 0.
DEFINITION 2.2. We define a 2*-form 2 on AP by

Qi=w A Awitwa A Awa+ ... +wp AL Aw,.
y LT 2 . )

~~ ~~
w times w times w times

3. Splitting of forms

One can extend the definition of the ”star” operator * and the operators
L and A to the "Clifford-type” case.

Let A(AR) be the exterior algebra over R considering (AP)’ as a real
2% . p-dimensional vector space. Every element of A(A2)’ is a linear combi-
nation of ”simple” r-forms

w=wA... A\w,,
where w; is one of
o 1 n —
04,0, ..., Y, s=1,...,p

DEFINITION 3.1. Define %, L and A on A\(AR) as follows:

if w is a simple r-form then w is the simple [(n+1)-p~r] = (2¥p—r)-form
such that w A *w is the form:

afAalA...AQ}A...AQS AL A...Naj.
Next we extend * by linearity to A(AR)’. On an arbitrary exterior form w
we define
Lw:=QAw, Aw := *(Q A xw).

REMARK 3.1.

1. For all w € A(AR)" we have * xw = w.

2. L: \T(AB) — AT ARy = AT (A

3 AN (AB) — AT = N (AR
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DEFINITION 3.2. Let us define a bilinear form ( , ) on A"(AR) by

r

(w,w') := *(w A xw') forw,u € /\(Aﬁ)’.

LEMMA 3.1. We have
(Lw,w') = (w, AW')
forwe \'(ARY and o’ € ATTD (AR Y= ATTEE (ARY
Proof. This follows by straightforward calculations. =
LEMMA 3.2. The mapping
r r+(n+1) r4+2%

L: A — A\ )= A\ )
is an isomorphism into forr+ (n+ 1) <p+1(r+2¥ <p+1).
Proof. It is sufficient to prove that for w € A"(A2), 7+ (n+1) < p+1,
the relation _

Lo=OAw=0 implies w=0.
Assume that w # 0 and write
Cw= Z YAo A1y, An OA, /\a}4l A...ANoj

AcyAlyyAn

where A,, Ay, ..., A, are subsets of the index set {1,...,p} and if
Ao ={i1,..,i} € {1,...,p}, then o =af A...Aq,.
In the summation above, consider the term with the highest total degree,
say t, in a°’s and a!’s. Let w’ be the sum of these terms:
W= Z’YAaAl...A,.aio Aoj A...Naj #0,

where the summation is taken over the indices A,, Ay,..., A, such that
|Ao]+|A1| =t (JAsl, |A1| denote the cardinalities of A, and A;, respectively).

Similarly, we express Lw = Aw in a , aly ,»+- Q%  and consider the
terms with the highest total degree in a°’s and a!’s. From the expressions
for wy,...,wn, it follows that the sum of these terms is given by

P
Z S AalAaS Aol AW
é,k=1

The equation Lw = 0 implies that

P
Z adNai Ao Aok AW =0,
§,k=1



A Clifford-type structure 571

which means that

> (X Yaai.a.08rcdncgnalneg Ack, )Acd,A. . Aaj =0.
Az2,...,An  6,5,A0, AL
This implies that

P P
(Zag /\a}) A (zaz /\a,le) A ( Z YAo..AnQZ, /\0‘1141) =0
§=1 k=1

Ao,Al
for each fixed A,,...,A,, or

() AW =0,

where

P
! . 1 " .__ 1
Q= E afAa; and w':= E YA,.. A, 0%, Ny, #0.
6=1 AoyAl

Let us consider the p-dimensional complex vector space with the coordi-

nate system
of +iog, ..., af +ioy.
Then Q’ is the fundamental 2-form. Applying the Hodge Decomposition
Theorem (since degree of w” < p — 3), the equality
XAQ AS)=0

implies that ' A w” = 0, which in turn implies that w” = 0, which is a
contradiction. m

DEFINITION 3.3. A r-form w is said to be effective if Aw = 0. We denote by
Aes. € N (AR) the set of all effective r-forms.

THEOREM 3.1. There is the following direct sum decomposition of \"(AR),
namely: forr <p+1 and z =[] (= [5%]), we have

r r r—{(n+1) r—{n+1)-z

ANy =AeL A o..eoL* A
ef. ef. ef.

r r r-2% r—2%.z

(N@Y=AeL \ &...0L* A ).
ef. ef. ef.

Proof. By Lemma 3.2 L is an isomorphism into. Moreover, by Lemma 3.1
A is the adjoint of L and it is therefore onto for r < p + 1.

We will prove the Theorem by the induction on r.

The statement is true for r = 0,1,2,...,[(n+ 1) - 1] = 0,1,...,n =
0,1,...,(2¥~1), since A lowers degree by (n+1) = 2 and hence A" = A
for these r’s.
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Let us assume that the Theorem is true for m < r. We shall prove it for
m = r. We claim that A7, is the orthogonal complement of the subspace

LN (AR) in AT(A2)"
It easy to show the orthogonality. Let w € A] s, and
r—(n+1)
Luv' el /\ (AR,
then
(w, Lo') = (Aw, ) = (0,w) = 0.
To prove that A is an orthogonal complement of LA~ 4p)

take w € \"(AP)’ such that (w, Lw') = 0 for all ' € A"~V (AP Then
(Aw,w’) = 0 and hence Aw = 0 because ( , ) is a nondegenerate bilinear
form.

Thus, by the induction hypothesis we have

r r r—(n+1) r r—(n+1) r—2%.2z
NaYy=AeL A BY=AeoL A o..0L /\ .=
ef. ef. ef. ef.

THEOREM 3.2. QP # 0.
Proof. Since

Q= A Awpt+weA...Aws+ ...+ wn AL Awn,

~

~
w times w times w times

so ¥ is a sum of 2% - p-forms. Thus, it will be a sum of

(3.1) ea‘l’/\a%/\.../\a;‘/\ag/\aé/\.../\aa‘/\.../\a;/\azl,/\.../\a;‘,

where ¢ = £1. We will show that € equals +1.
Each term of QP is a product of the 2-forms:

o 1 2 3 n—1 n.
as/\a3? agNag,..,a " ANay,
a?Aa? adAnad,..., a2 At o Aol
(3.2) a?Aad, al Ao
ag Aaj.

For example: (recall that n + 1 = 2 implies that n is an odd integer) if
n = 3, then we have

a®Aal Aa? Aad
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and
a’® A at, a? A od,
a® A a?, o Aal,
a® A ad, ol A2
For n = &:
a®Aat Aa? Aad Aot A b,
a®Aat, a’Aad, ot Add,
a’Aa?, adAat, P Aal,
a’Anad, ol Aa?,
a® Aat,
a® Aad.
etc.

Now, let us take one of the summands and rearrange it so that the
subscripts will be in nondecreasing order, i.e. so that the summand will be
an exterior product of the (n + 1) - p (= 2% - p) elements:

o 1 n
aq,0q, y O
o 1 n

such that the first (n + 1)-elements in the product will have subscript 1,
the next (n + 1) will have subscript 2, etc. Since in the original product, we
multiply pairs with the same indices, in order to achieve the new product,
we have to permute the elements in the product by an even permutation.
Hence we do not change the value of the product.

Take the term in the product consisting of (n + 1) elements with the
index s. Since it is a product of the terms in (3.2), it must be one of the
following (n + 1) — 1 forms (else would 0):

AAaln2A.. . Aa? AT,
AAnainad A .. Aa? NG,
AAadAaiA. . AaPT AT Aol A G2,

.......................................................................
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which are equal to each other. So, each summand is equal to (3.1) with
€ = +1 and O” is a nonzero multiple of it. m

4. Clifford-type manifolds

DEFINITION 4.1. Assume that (M, g) is a Riemannian manifold. An almost
Clifford-type structure on (M, g) is defined as a covering {U*} of the manifold
M with a set of almost complex structures {I%,..., It} on each U such that

LI+ IIL = —28,51d

and the n-dimensional vector spaces of endomorphisms generated by com-
plex structures I, ..., I,:

Endy: := {a'I; + ...+ a™I,; da},...,a", € R}
are the same on all of the manifold.

DEFINITION 4.2. A Riemannian metric g is Clifford-type-Hermitian if g is
Hermitian for each Iy, ..., I,.

DEFINITION 4.3. a) A Riemannian manifold (M, g) with an almost Clifford-
type structure C,, is called almost Clifford-type manifold.

b) An almost Clifford-type manifold (M, g,C,) with a metric g Clifford-
type-Hermitian is called almost Clifford-type- Hermitian.

Assume that (M, g,C,) is an almost Clifford-type-Hermitian manifold.
Let {I1,...,I,} € C,. Consider 2-forms wy,...,w, defined as follows:

wl(X7 Y) = g(Xv 11Y),

wn(X,Y) =9(X,,Y),

where X and Y are arbitrary C*°-vector fields on M.
DEFINITION 4.4. If n + 1 = 2%, let us define the 2*-form  as follows:

Qi=wA...Awi+waA...Awa+...+wWp A... Awy.
— v~ - (A

v v

w times w times w times

Denote by Sp[(n + 1) - p] the set of all endomorphisms of A% which
preserve the ”Clifford symplectic product”:

p
(A,B):=) dftf, A=(d,...,a"), B=(b),...,bF) € AL,
p=1
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A norm of A € AP is defined as usually by
P
IAIIP = (4, 4) = ) _ ofaf
p=1

and can be used to express the inverse element of A # 0:

1 -
A l.= <A
||A][2

Let us denote
Sp(n + 1) := {a € A,;||a]| = 1}.

Note
1. Sp(n + 1) is a group,
2. Sp[(n+1) - p]CSO[(n + 1) - p].

DEFINITION 4.5. A (n + 1) - p-dimensional Riemannian manifold M is
called a Clifford-type manifold if its holonomy group is a subgroup of
Sp[(n+1) - p] x Sp(n + 1).

EXAMPLES 4.1.

1. The basic examples of Clifford-type manifolds are ,quaternionic”
manifolds. Note that for n = 2 (I, I2) there are three almost complex
structures on a given Riemannian manifold (M, g), namely: Iy, I, I3 := I I»
and dimgpM = 22 = 4. These manifolds are called almost-quaternionic (see
e.g.3], 9, [14)).

If g is Hermitian for I; and I, then g is called almost-quaternionic-
Hermitian.

If the suitable fundamental 4-form  is closed then an almost-quater-
nionic-Hermitian manifold is called almost-quaternionic-Kahler. The most
important example of an almost-quaternionic-Kéhler manifold is the quater-
nionic projective space HP™ with a standard metric (see e.g. [3], [12]).

2. More generally, in the case when the holonomy group of a given
almost-quaternionic-Hermitian manifold (M*4™, g) is contained in the group
Sp(m) x Sp(1) then it is called quaternionic-Kahler (see e.g. [2], [14]). Em-
phasize the important result by Berger [1] that a quaternionic-K&hler mani-
fold (of dimension 4n > 8) is Einstein (Riemannian manifold of constant
Ricci curvature). Moreover, quaternionic-Kéhler manifolds whose dimension
is a multiple of 8 are spin manifolds ([11], [14]).

Some examples (but not called Clifford-type) of manifolds with holono-
my group contained in Sp(m), Sp(m) x Sp(1) or Spin(n) one can find
in [14].
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Let M be a (n+ 1) -p (2* - p)-dimensional Clifford-type manifold and
z € M. We can identify T, M with A?. However, this Clifford-type structure
of T, M may not be invariant under parallel displacement. Using this iden-
tification we could define Q2 which is invariant under parallel displacement.
One can prove

THEOREM 4.1 [10]. Q is invariant under the action of
Spl(n +1) - p] x Sp(n + 1)=5p(2* - p) x Sp(2¥).

Hence §) is independent of the choice of a Clifford-type structure on
T.M. By the above discussion and Theorem 3.2 (2P # 0) we have

LEMMA 4.1. The form Q defined above is a closed differential form of degree
2% and of mazimal rank.

THEOREM 4.2. Let M be a 2% - p-dimensional Clifford-type manifold and let
Bt denote its ith Betti number, then

B?i 40 for i=0,1,.

Proof. By the above Lemma 4.1 € is a closed 2*-form of maximal
rank. Hence Q' is a nonzero element of H?"'*(M,R). Since B?"* =
dim H?"(M,R), so B2"* #£0. =

DEFINITION 4.6. Let us define the operators *, L and A on the space of
differential forms £"(M, R), as follows:

if w is a differential r-form then *w is the (2% - p — r)-form such that
(*w)z : = *(wz) for all z € M and
Lu:=QAw,
Aw : = *(Q A *w).
A differential form w is said to be effective if Aw = 0.

THEOREM 4.3. Let M be a 2¥ - p-dimensional Clifford-type manifold and w
— a differential form on M of degreer < p+1. Then

(3%]

w_ELz p2 z

=0

where w _ denotes an effective k-form.

Proof. Let £* or.(M, R) denote the space of effective k-forms. By Theorem 3.1
there is a direct sum decomposition for r < p+ 1:
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E7(M,R) = £7; (M,R)OLE;;> (M,R)® ... L], (M, R),
where t = [75]. »

The Chern Theorem [5] states the following:

Let M denote a compact Riemannian manifold with a structure group
G and Wy, ..., W be the irreducible invariant subspaces of £9(M, R) under
the action of G and let Py, be the projection map of £9(M,R) into W;, i.e.

Py, : E9(M,R)—W;.

Then, if a g-form w is harmonic, so is Pw, (w).
Clearly each of the Lié':;z *(M,R) is an invariant subspace of £" (M, R)

under the action of the holonomy group G. So each Liggff M, R)
is a sum of the W;’s. Therefore the projection of a harmonic form into
LE; 7 2"4(M,R) is again harmonic and we have the following:

THEOREM 4.4. If M is a Clifford-type manifold of dimension 2V - p, then
there is an increasing sequence of Betti numbers

Bi<B#*?™ < ... < A
fori+2“’-z§p+1, i=0a1)2>"'72w_1’ Z=['2%]
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