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A CLIFFORD-TYPE STRUCTURE 

Introduction 
In the paper a Clifford-type structure is introduced and some considera-

tions on Clifford-type manifolds are developped. First of all an analog of the 
fundamental 2-form of complex analysis is defined and using it a decomposi-
tion analogous to the Hodge Decomposition Theorem for Kahler manifolds 
is given for Clifford-type manifolds. By the Chern Theorem [5] we get an 
increasing sequence of Betti numbers for Clifford-type manifolds. 

1. A Clifford-type structure 
Let V be a real vector space. 

DEFINITION 1.1. An almost Clifford-type structure Cn on V is a set of n 
almost complex structures { i i , . . . , /„} such that 

IaIp + Ipla = —26apld, a, (3 = 1,..., n, 

where Id stands for the identity endomorphism of V, 6 denotes the „Kro-
necker delta". 

REMARK 1.1. a) If n = 1, then Ci = {/} with I2 = -Id. Thus, C\ is nothing 
but an almost complex structure. Recall that the standard form of an almost 
complex structure looks as follows: 

/ O = ( - ° / O ) ' { I = I D ) 

provided that V has an even dimension (see, e.g. [10]). 
b) If n = 2, then C2 = {I, J} with I2 = J2 = -Id and IJ + JI = 0. 

Define K := I J, then IJK = —Id and K2 = —Id. Thus, C2 corresponds to 
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the almost quaternionic structure (see, e.g. [7, 12]). The standard form of 
an almost quaternionic structure looks as follows: 

( 0 I 0 0 \ ( 0 0 I 
-I 0 0 0 1 0 0 0 I 
0 0 0 

- J ' 

Jo = -I 0 0 0 
V o 0 I 0 / \ 0 -I 0 0 / 

/ 0 0 0 J \ 
0 0 -I 0 I 
0 I 0 0 ' 

V - j o o o / 

provided that dim^V — 4n. 
Note that any almost Clifford-type structure Cn = { / i , . . . , / n } induces 

the following set of almost complex structures: 

11,..., In, 
hh, hhy • • I\Ini • • •, In-lln] 
no triple is an almost complex structure; 
hhhh, • • ; In-zIn-2 In—1-^ni 
no odd tuple is an almost complex structure; 
etc. 

Denote by p'n the number of the above almost complex structures, then 

then, for n>3 we have the following general formulae: 

Pn = 2n — 2p'n-i — (n — 3), 
Pn = 2K_! + ( n - 3 ) . 

By the straightforward calculations we get the following numbers: 

Pi = P2 = 3> Pz = 6> Pa = U> 
p'5 = 20, p'6 = 37, p'7 = 70, p's = 135, etc. 

Denote by V(n) a real vector space endowed with a Clifford-type struc-
ture Cn = { i i , . . . , /„}, then 



A Clifford-type structure 565 

THEOREM 1 . 1 . We have 

dim® V(n) = 2n • s, 

where s > 0 is an integer. 

P r o o f . Assume that a real vector space V is equipped with an almost 
Clifford-type structure Cn = {h,.. .,In} with 

G := {a1/! + . . . + a n J n ; a 1 , . . . ,an € R and (a1)2 + . . . + (an)2 = 1} 

is a compact group, then V can be split into a direct sum of irreducible 
vector subspaces (see, e.g. [5], p. 14) and thus the proving of the Theorem 
for V irreducible will suffice. 

Let X € V, X 0. Consider the vector subspace V\ of V generated 
by X, I\X, I2X,..., /„_iX, then InV\ cannot belong to V .̂ Indeed, if In\\ 
belonged to V\, then there would exist a matrix 

IaIß + Ißla = - 2 Saßld, a , ß = l , 

Since 

with d e t s u c h that 

InX = a°0X + alhX + ... + o r 1 / « - i X , 

In(hX) = a\X + a\hX + . . . + o r 1 / « - i * , 

In(In-iX) = a ^ X + a}n_xhX + . . . + alz\ln-iX. 

Since 
In(InX) = -X (72 = - I d ) 

then we get 

IntfnX) = In{a°0X + a\hX + ... + o r 1 / » - i X ) 

= a°InX + a\ln{hX) + . . . + an
0-lIn{In-iX) 

= a°0(a°0X + alhX + ... + an
0~'L/n_1X) 

+ alia^X + a\hX + ... + a ^ I ^ X ) 

+ 
+ ' ( C - i * + a^hX + . . . + o r l/N-IX), 
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[(a°0)2 + ala°1 + ... + an
0-ia°n_1}X+ 

+{a°0a}0 + a\a\ + ... + 
+ 
i r „ o „ n - l , „1 „n—1 | . „n— l„n—li r V 

+ l a o a o + aoa 1 + . . . + 0 0 a^lln-iX = -
T h i s impl i e s 

( a o ) 2 + a o ° l + • • • + a o _ l a n - l = — 1) 

+ a l a \ + • • • + a r ^ u - i = 0, 

„o„n—1 | „1„n—l , | „n—l„n—1 n aoao + aoa 1 + • • • + °o a n- l = 

O n t h e o ther h a n d w e h a v e 

0 = In(IaX) + Ia{InX) for a = l , . . . , n - l 

w h i c h g ives 

a0
0tX + a\tI1X + ... + al-xIn.xX 

+IQ[a0
oX + al

0hX + . . . + an-xIn-iX] = 0, 

i .e. 

a°aX + ax
ahX + ... + aTlIn-1X+ 

+a°IaX + al
0IaI\X + . . . + aZ-'ldn-iX = 0 

For a = 1 w e ge t 

a? - « J = 0, i .e. a' 
a i = 0, i .e. a; 

= « ? = . . , 
•1 

«2 = . . , 
• =

 ao~ 1 

For a = 2 w e ge t 

a-2 = al» 

<A = - < > 

a 2 = o 2 = . . . = a 2 = (J, 
1 - _ _ n 1 
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Generally, for a = m we have 
_ O „ 1 

o i 171 = 1. 
ûS = - a } = -a\ = 

a™ = 0, m= 1,.. l , . . . , n - 1, 
_n— 1 n = = 0 , 
„n— 1 r> = a2 = 

„n—1 n = ... = a3 = 

which is a contradiction. 
Consider the subspace Va of V generated by V\ and InV\. Since VQ is 

invariant under the whole group G then this subspace V0 must be V since it 
is irreducible. Thus 

Then, dimV = dim Vi + dim(/nVi), so dim V = 2 • dim Vi, i.e. dim V(n) = 
2 • dim V(n — 1). Since dim V ( l ) = 2s for some integer s > 0, then 

2. The fundamental form i) 
Let V be a real vector space equipped with an almost Clifford-type struc-

ture Cn - {h,...,In}. 
Denote by An the field of " Clifford-type numbers". A typical element of 

An can be written as 

a := xa + e\X\ + e2X2 + • • • + enxn, xa, x\,..., xn G M 

and the " Clifford-type units" ei, . . . , en satisfy the relations: 

ejfc • em + em • efc = —25km, k,m= 1,..., n. 

Let denote the "Clifford-type" Euclidean p-space with co-
ordinates A = (a1,..., ap), where 

a" = x"0 + eix\ + e2X2 + ... + enxsn, s = 1,..., p 

V = V1®InV1. 

dim V(n) = 2n • s. m 
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and A = Xa + e.\X\ + ... + enXn with 

Xa = (xq, xa, . . 

Xi = (®ii • • •i £?)) 

Xn = (xjj, . . x 

Thus Rp denotes the subset of .4£ with 

X1 = X2 = ... = Xn = 0. 

Note that A1^ can be identified with R ( U + 1 ) P endowed with n almost 
complex structures I i , . . J n satisfying the conditions: 

IaIp + I pi a = —2 6apld, 
hX = eix,..InX = enX, X 6 R(n+1)P, 

where Id stands for the identity mapping in R(n+1)p . 
We can treat ,Ap=R(n + I)p as a p-dimensional right module over An. One 

defines a bilinear form ( , ) on APn as follows: 
if A = (a1,..a?) and B = (6\ . . . , 6") € A*, then 

* a=l 
P 

= Re (A, B) := Re aQba, 
a=l 

where 
d* := x% - exx\ - e2x% - • • • - e„<, s = l,...,p. 

Then (A, B) is an inner product of A£ considered a s a ( n + l)p-dimensional 
real vector space. 

Note that we have the following relation: 

(.A,B) = ±[(A,B) + (B,A)]. 

Let be the dual space of over An and «1,0:2,..., a p be a basis 
of {A^y. We may write 

as =b°3a° + b\ot\ + ... + b°, . . .,6" € R, s = l,.. .,p, 

so that a j , . . . , a " form a basis of (Ap) ' over R. 
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DEFINITION 2.1. Let us define n skew symmetric bilinear forms u>i,... 
. . . ,u>n on A^ as follows: 

UI{A,B) : = (AJXB), 
U2(A,B): = {A,I2B), 

Assume that 

U>N(A,B) : = (A,INB). 

n + 1 = 2W 

for some integer w > 0. 

DEFINITION 2.2. We define a 2w-form Q on APN by 

fi := u)\ A . . . A u>i + u>2 A . . . A + . . . + wn A . . . A ujn. 

w times w times w times 

3. Splitting of forms 
One can extend the definition of the "star" operator * and the operators 

L and A to the "Clifford-type" case. 
Let A(-^n)' be the exterior algebra over R considering («4£)' as a real 

2W • p-dimensional vector space. Every element of AMn) ' a linear combi-
nation of "simple" r-forms 

u> = u>i A . . . A u;r, 

where u>i is one of 

DEFINITION 3.1. Define *, L and A on A("4N)' as follows: 

if u> is a simple r-form then *ui is the simple [(n+l)-p—r] = (2wp—r)-form 
such that u> A is the form: 

A a{ A . . . A a " A . . . A A a^ A . . . A a™. 

Next we extend * by linearity to A MS)'- On an arbitrary exterior form u 
we define 

LOJ := Q. AOJ, Au> := *(ii A *u>). 

REMARK 3.1. 
1. For all u e A(*^n)' we ^ave * * u = u-
2. L : A W — A R + ( N + 1 ) ( ^ Y = NT+2\APN)'-
3. A : A r M n ) ' — » A r _ ( n + 1 ) M n ) ' s A r - 2 V £ ) ' -
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DEFINITION 3.2. Let US define a bilinear form ( , ) on /\R(-4£)' 
r 

(u>, w') := *(w A *w') for w, J e 

LEMMA 3.1. We have 

(Llj, u>') = (u>, Aw') 

/or a; € A ^ ) ' and a;' € A ^ V i Q ' ^ W • 

Proo f . This follows by straightforward calculations. • 

LEMMA 3.2. The mapping 

r r+(n+l) r+2" 
L : f \ { A l ) ' — A W s A 

i s a n isomorphism into for r + (n + 1 ) < p + 1 ( r + 2W < p + 1 ) . 

Proof . It is sufficient to prove that for u> € r + (n + 1) < p + 1, 
the relation 

LUI = i ) A U = 0 implies U = 0. 

Assume that u ^ 0 and write 

' A a A 1 A . . . A a l n , 

where A0, Ai,.. .,An are subsets of the index set {1,.. .,p} and if 

A0 = { t i , . . . , i , } C { l , . . . ,p } , then = a£ A ... Aa£. 

In the summation above, consider the term with the highest total degree, 
say t, in o;0's and a^'s. Let ui' be the sum of these terms: 

where the summation is taken over the indices A a , A i , . . . , An such that 
|-<4o|+|-i4i| = t (|A0|, |Ai| denote the cardinalities of Aa and Ai, respectively). 

Similarly, we express LU — Q A U in A°AO, a^ , . . . , and consider the 
terms with the highest total degree in a°'s and a^'s. From the expressions 
for ui,. . .,u>n, it follows that the sum of these terms is given by 

p 

^ ctfAaJ A c £ A a i Aw'. 
<5,k=1 

The equation LU> = 0 implies that 
p 

Y i a g A a j A a " Aa* Au/ = 0, 
<5,k=1 
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which means that 

£ ( ^AoA1...Ana°5AalAa°AaiAa°AoAa\iya2A2A...AanAn=0. 
A2,...,An 6,K,A0,A\ 
This implies that 

p v 

( j > 2 A a j ) A ( j > ° A a i ) A ( £ T ^ l A a ^ O 
5=1 ac=1 AotAi 

for each fixed A2, • •An, or 

(i)')2 A u" = 0, 
where 

p 
ii' a ] and w" := £ 7 A n a f t „ A < / 0. 

5=1 Ao.̂ l 
Let us consider the p-dimensional complex vector space with the coordi-

nate system 
a j + zaj, ..., a°p + iaxp. 

Then ii' is the fundamental 2-form. Applying the Hodge Decomposition 
Theorem (since degree of uj" < p — 3), the equality 

ii' A (JV A w") = 0 
implies that fV A u>" = 0, which in turn implies that u>" = 0, which is a 
contradiction. • 

DEFINITION 3 . 3 . A r-form u is said to be effective if Aw = 0. We denote by 
Ae/. c A r ( - ^ ) ' the set of all effective r-forms. 

THEOREM 3 . 1 . There is the following direct sum decomposition of /\r(A^) 
namely: for r <p + 1 and z = [^py] (= [fir]), we have 

r r i—(«+1) r—(n+1 )-z 

A M n ) ' = A ® L A A 
ef. ef. ef. 

7* f r—2w r—2W'Z 
( A w = A ® i A ©•••©£* A )• 

ef. ef. ef. 

Proof . By Lemma 3.2 L is an isomorphism into. Moreover, by Lemma 3.1 
A is the adjoint of L and it is therefore onto for r < p + 1. 

We will prove the Theorem by the induction on r. 
The statement is true for r = 0 ,1 ,2 , . . . , [(n + 1) — 1] = 0 ,1 , . . . , n = 

0,1 , . . . , (2W - 1 ) , since A lowers degree by (n+1) = 2W and hence f\r = Ae/. 
for these r's. 
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Let us assume that the Theorem is true for m < r. We shall prove it for 
m = r. We claim that /\e/. is the orthogonal complement of the subspace 

It easy to show the orthogonality. Let ui € /\e/ and 

r—(n+l ) 

L J e L /\ ( A t f , 

then 

(w, L J ) = ( A = (0,u/) = 0. 

To prove that /\e/. is an orthogonal complement of L/\ r~^n + 1^Mn)' 
take u G A r ( ^ ) ' such that (w, Leu') = 0 for all u' € Ar~(n+1)(A?)'. Then 
(Aw, a;') = 0 and hence hu> = 0 because ( , ) is a nondegenerate bilinear 
form. 

Thus, by the induction hypothesis we have 
r r r — ( n + l ) r r—(n+l ) r—2*-z 

A M n ) ' = A « L A (APn)' = A®L
 A ©•••©£* A 

e f . e f . e f . e f . 

T H E O R E M 3 . 2 . & ^ 0 . 

P r o o f . Since 

ft, : = lji A . . . A u>i + ll>2 A . . . A u>2 + • • • + w n A . . . A u>n, 

w times w times w times 

so flp is a sum of 2W • p-forms. Thus, it will be a sum of 

(3.1) ea° A a j A . . . A a " A ol°2 A a^ A . . . A A . . . A a° A a* A . . . A 

where e = ±1. We will show that e equals +1. 
Each term of Qp is a product of the 2-forms: 

o $ A a J , oc2 A a f , . . . , a " - 1 A a" ; 
a°a A o?„ a3s Aa4s,.. , ans~2 A a n ~ l , ans A a f c 

( 3 . 2 ) a°Aa3s, a] A a * ; 

a ? A a £ . 

For example: (recall that n + 1 = 2W implies that n is an odd integer) if 
n = 3, then we have 

a° A a 1 A a 2 A a 3 
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and 
a ' A a 1 , a 2 A a 3 , 

ol° A a 2 , a 3 A a 1 , 

a " A a 3 , a 1 A a 2 . 

For n = 5: 
a° A a 1 A a 2 A a 3 A a 4 A a 5 , 

c*°A a 1 , a 2 A a 3 , a 4 A a 5 , 
a° A a2, a3 A a4, a5 A a1, 

a° A a3, a1 A a2, 

a° A a4, 

a° A a 5 . 
etc. 

Now, let us take one of the summands and rearrange it so that the 
subscripts will be in nondecreasing order, i.e. so that the summand will be 
an exterior product of the (n + 1) • p (= 2W • p) elements: 

a2ia2i • • •i a2 > 

Oii.Oi i OU p f ' p 

such that the first (n + l)-elements in the product will have subscript 1, 
the next (n + 1) will have subscript 2, etc. Since in the original product, we 
multiply pairs with the same indices, in order to achieve the new product, 
we have to permute the elements in the product by an even permutation. 
Hence we do not change the value of the product. 

Take the term in the product consisting of (n + 1) elements with the 
index s. Since it is a product of the terms in (3.2), it must be one of the 
following (n + 1) — 1 forms (else would 0): 

a°sAal A c ^ A . - . A ^ r 1 A c£, 

a°sAa2
s Aa3

sA...Aa? Aal 

a j A a , A a , A . . . A a " - 1 A a™ A a* A a 2 , 

a° A a£ A a j A a 2 A a 3 A . . . A a ? - 2 A 



574 W. Krol ikowski 

which are equal to each other. So, each summand is equal to (3.1) with 
e = +1 and ilp is a nonzero multiple of it. • 

4. Clifford-type manifolds 

DEFINITION 4.1. Assume that ( M , g ) is a Riemannian manifold. An almost 

Clifford-type structure on ( M , g) is defined as a covering {[/'} of the manifold 
M with a set of almost complex structures {I[,..., on each U % such that 

r j y + r0ra = -2SaPid 

and the n-dimensional vector spaces of endomorphisms generated by com-
plex structures I\,...,In\ 

E n d V i : = { a 1 / ! + . . . + a n I n ; a1,..., a n , € M } 

are the same on all of the manifold. 

DEFINITION 4.2. A Riemannian metric g is Clifford-type-Hermitian if g is 
Hermitian for each Ji , . . . ,/„. 

DEFINITION 4.3. a) A Riemannian manifold (M,g) with an almost Clifford-
type structure C n is called almost Clifford-type manifold. 

b) An almost Clifford-type manifold ( M , g, Cn) with a metric g Clifford-
type-Hermitian is called almost Clifford-type-Hermitian. 

Assume that ( M , g , C n ) is an almost Clifford-type-Hermitian manifold. 
Let {/i , . . . , In} € Cn. Consider 2-forms u i , . . , ,un defined as follows: 

M X , Y ) : = g ( X , h Y ) , 

u n ( X , Y ) : = g ( X J n Y ) , 

where X and Y are arbitrary C°°-vector fields on M. 

DEFINITION 4.4. If N + 1 = 2W, let us define the 2^-form fi as follows: 

Cl := uji A . . . A UJ\ + u2 A . . . A u>2 + • • • + v n A . . . A u/n. 
* * ' " V ' * v ' 

w times w times w times 

Denote by Sp[(n + 1) • p] the set of all endomorphisms of A^ which 
preserve the "Clifford symplectic product": 

(A, B ) := £ aPV*, A = (a 1 , . . . , a"), B = ( 6 1 , . . V ) € A p
n . 

0=1 



A Clifford-type structure 575 

A norm of A 6 A^ is defined as usually by 

0=1 
and can be used to express the inverse element of A ^ 0: 

A'1 •= 1 • A 
• \\A\\* 

Let us denote 

Sp(n + 1) := {a G An', ||a|| = 1}. 

Note 
1. Sp(n + 1) is a group, 
2. Sp[(n + l)-p]CSO[(n + l ) -p] . 

DEFINITION 4.5. A (n + 1) • p-dimensional Riemannian manifold M is 
called a Clifford-type manifold if its holonomy group is a subgroup of 
Sp[(n + l ) -p ] x S p ( n + l ) . 

EXAMPLES 4 . 1 . 

1. The basic examples of Clifford-type manifolds are „quaternionic" 
manifolds. Note that for n — 2 I?) there are three almost complex 
structures on a given Riemannian manifold (M, g), namely: h, I2, h '•= I1I2 
and dim^M = 22 = 4. These manifolds are called almost-quaternionic (see 
e.g.[3], [9], [14]). 

If g is Hermitian for I\ and I2 then g is called almost-quaternionic-
Hermitian. 

If the suitable fundamental 4-form fi is closed then an almost-quater-
nionic-Hermitian manifold is called almost-quaternionic-Kahler. The most 
important example of an almost-quaternionic-Kahler manifold is the quater-
nionic projective space HP" with a standard metric (see e.g. [3], [12]). 

2. More generally, in the case when the holonomy group of a given 
almost-quaternionic-Hermitian manifold (M 4 m ,g ) is contained in the group 
Sp(m) x Sp(l) then it is called quaternionic-Kahler (see e.g. [2], [14]). Em-
phasize the important result by Berger [1] that a quaternionic-Kahler mani-
fold (of dimension 4n > 8) is Einstein (Riemannian manifold of constant 
Ricci curvature). Moreover, quaternionic-Kahler manifolds whose dimension 
is a multiple of 8 are spin manifolds ([11], [14]). 

Some examples (but not called Clifford-type) of manifolds with holono-
my group contained in Sp(m), Sp(m) x Sp(l) or Spin(n) one can find 
in [14]. 
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Let M be a (n + 1) • p (2W • p)-dimensional Clifford-type manifold and 
x 6 M. We can identify TXM with However, this Clifford-type structure 
of TXM may not be invariant under parallel displacement. Using this iden-
tification we could define fi which is invariant under parallel displacement. 
One can prove 

THEOREM 4.1 [10]. f l is invariant under the action of 

Sp[(n + 1) • p] x Sp(n + 1 )=Sp(2w • p) x Sp(2w). 

Hence fi is independent of the choice of a Clifford-type structure on 
TXM. By the above discussion and Theorem 3.2 (ttp ± 0) we have 

LEMMA 4 . 1 . The form FI defined above is a closed differential form of degree 
2W and of maximal rank. 

THEOREM 4.2. Let M be a 2W • p-dimensional Clifford-type manifold and let 
Bl denote its ith Betti number, then 

P r o o f . By the above Lemma 4.1 Q is a closed 2^-form of maximal 
rank. Hence fi1 is a nonzero element of ii2*"'l(M, R). Since B2™'1 = 
dim H2W'i(M,'R), so i?2*"'* ^ 0. • 

DEFINITION 4.6. Let us define the operators *, L and A on the space of 
differential forms £ r (M, R), as follows: 

if a; is a differential r-form then *u> is the (2W • p — r)-form such that 

A differential form u> is said to be effective if Au = 0. 

THEOREM 4 . 3 . Let M be a 2W - p-dimensional Clifford-type manifold and u 
— a differential form on M of degree r <p + 1. Then 

B r ' V 0 for ¿ = 0,1, . . . , p. 

(*a;)a; : = *(a>z) for all a: 6 M and 
Lui : = fi Aw, 
Au : — *(fi A *u). 

t ^ I 

i=0 

where u^t denotes an effective k-form. 

P r o o f . Let (M, R) denote the space of effective fc-forms. By Theorem 3.1 
there is a direct sum decomposition for r < p + 1: 
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£r(M, R) = £r
efXM,R)®L£r

eJ2W (M,W)® ... ®Lt£T
eJ2W't(M,'Ë), 

where t = • 

The Chern Theorem [5] states the following: 
Let M denote a compact Riemannian manifold with a structure group 

G and Wi,..., Wk be the irreducible invariant subspaces of £q(M, R) under 
the action of G and let Pwi be the projection map of £q(M, R) into Wi, i.e. 

PWi :£q(M,R)^Wi. 

Then, if a <7-form uj is harmonic, so is Pwt (w) • 
Clearly each of the V £T

eJ2W 4 (M, R) is an invariant subspace of £ r ( M , R) 
under the action of the holonomy group G. So each Ll£^J2 l (M,R) 
is a sum of the Wj's. Therefore the projection of a harmonic form into 

®(M, R) is again harmonic and we have the following: 

THEOREM 4.4. If M is a Clifford-type manifold of dimension 2W • p, then 
there is an increasing sequence of Betti numbers 

Bi < Bi+2- < < Bi+2w-z 

fori + 2w-z<p+l, z = 0 , 1 , 2 , . . . , 2™ — 1, z = [£}. 
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