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A GRUSS TYPE INEQUALITY FOR ISOTONIC LINEAR
FUNCTIONALS AND APPLICATIONS

Abstract. An inequality for a normalised isotonic linear functional of Griiss type
and particular cases for integrals and norms are established. Applications in obtaining a
counterpart for the Cauchy-Buniakowski-Schwartz inequality for functionals and Jessen’s
inequality for convex functions are also given.

1. Introduction

Let L be a linear class of real-valued functions g : E — R having the
properties

(L1) f,g € L imply (of + Bg) € L for all o, B € R;

(L2)1€L,ie.,if f(t)=1,t€ E, then f € L.
An isotonic linear functional A : L — R is a functional satisfying

(A1) A(af +Bg) =aA(f)+ BA(g) for all f,g € L and «, € R;
(A2)If fe Land f >0, then A(f) > 0.

The mapping A is said to be normalised if
(A3) A(1) =1.

Usual examples of isotonic linear functionals that are normalised are the
following ones

A(f)=mly))§(f(r)du(x) i (X) < oo

or

1
Ay (f) = W}S{“’(z)f(x)dﬂ(m),
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where w(z) > 0, {y w(z)du(z) > 0, X is a measurable space and y a
positive measure on X.

In particular, for = (z1,...,2,), w:= (wy,...,w,) € R® with w; > 0,
Wy =37 w; > 0, we have

1 n
-2
and
1 & '
Ag (1-:) = e w;T;,
7, &

are normalised isotonic functionals on R™.
In 1988, D. Andrica and C. Badea [1], proved the following generalisation
of the Griiss inequality for isotonic linear functionals.

THEOREM 1. If f,g€ L so that fg€ L andm < f < M, n < g < N where
m,M,n, N are given real numbers, then for any normalised isotonic linear
functional A : L — R one has the inequality

1
(1.1) 14(F9) - A(H)A(9)l < 7 (M —m)(N —n).
The constant 1 in (1.1) is best possible in the sense that it cannot be replaced
by a smaller constant.

In this paper we point out a refinement of the Griiss inequality (1.1)
for isotonic linear functionals. Applications for the Cauchy-Buniakowski-
Schwartz and Jessen’s inequality are also provided.

2. A Griiss type inequality
The following result holds.

THEOREM 2. Let f,g € L be such that fg € L and assume that there ezists
the real numbers n and N so that

(2.1) n<g<N.

Then for any normalised isotonic linear functional A : L — R for which
|f — A(f)-1| € L one has the inequality

1
(2.2) |A(fg) - AN A< 5(N-n)A(If - A(F) - 1]).
The constant % in (2.2) is best possible in the sense that it cannot be replaced
by a smaller constant.

Proof. Using the linearity property of A, we have

(2.3) A[(f—A(f)-l)(g‘nJ;N'lﬂ
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n+N

=A[(f-A(f)-Dg]-

= A(fg) - A(f) A(9) -

=A(fg) - A(f) A(g)
since, by the normality property of A, A(1) = 1.
From (2.1) we may easily deduce that
n+ N
DUMPETEIN
It is known that if h € L so that |h| € L, then, by the monotonicity and
linearity of A, one has

(2.5) |[A(R)| < A(|R]).

Using this property, the monotonicity property of A and condition (2.4), we
deduce

Alf—A(f) 1]
n+N[A(f)—A(f)-A(1)]

M-n

(2.4)

g_

26 4[r-a0-1(s- 25 1)
sA(‘(f—A(f)-l)(g“n;N'l)D
<N- —Af - AW 1)),

Utilising (2.3) and (2.6) we deduce the desired result (2.2).
To prove the sharpness of the constant %, we assume that (2.2) holds
with a constant ¢ > 0 for A = gL {, L = Lla,b] (the Lebesgue space of
integrable functions on [a,b]) and g satisfying the condition (2.1) on the
interval [a, b], i.e., one has the inequality
1 ? 1 ! 1 !
(2.7) b—_"zgf(m)g(z)dm—mw(m)dm'b_aig(x)df

a

b

— | f (y) dy| d=

a

<c(N -

If we choose g = f and f : [a,b] = R,

—-1if z € [a, &)
f@={ k
1 if ze (%2,
then
2

b 1 b
_axfz(:z)dm— (me(x)dm) =1,
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16 1
b—ax f(m)_b

a

b

_agf(y)dy dz =1,
m=-1, M=1

and by (2.7) we deduce ¢ > % =
The following corollaries are natural consequences of the above result.

COROLLARY 1. Let f € L be such that f2 € L and there ezists the real
numbers m, M so that

(2.8) m< f<M.

Then for any A : L — R a normalised isotonic linear functional so that
|f — A(f)-1| € L one has the inequality

29 0<A(P)-[ANF <5 (M-m)A(f - A()-1).
The constant %— is sharp.

COROLLARY 2. Let f,g € L so that fg € L and f satisfy (2.8) while g
satisfies (2.1). Then for any normalised isotonic linear functional A: L — R
so that |f — A(f)-1], |g — A(g) - 1| € L one has the inequality:

(2.10) |A(fg) —A(f) A(g)l
< 5[ = m) (N = m)} [A(If - A(7) - 1) A(lg - Alg) - 1]}
The constant % is sharp.

REMARK 1. Using Holder’s inequality for isotonic linear functionals, we may
state the following inequalities as well

(2.11) |A(fg) - A(f) A(g)|
(N-n)A(f —A(f)-1]) if [f-A(f) -1 €L,
(N=n)[A(f—A()-1P)7 if |f—A(f)- 1P €L, p>1
ngglf(t)—A(f)l;

provided f,g € L and fg € L while g satisfies the condition (2.1).

If f and g fulfill the conditions (2.8) and (2.1), then we have the following
refinement of the Griss inequality (1.1)

(212)  |A(fg) - A(f) A(g)| < = (N —n) A(If — A(f) - 1)

<sv-ma() -’
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<7 (M —m)(N-n).

The constants 3, 1 and } are sharp in (2.12).
The following weighted version of Theorem 2 also holds.

THEOREM 3. Let f,g,h € L be such that h > 0, fh, gh, fgh € L and there
ezists the real constants n, N so that (2.1) holds. Then for any B: L — R

an isotonic linear functional so that B (h) > 0, h | f- mlm - 1| € L one has
the inequality:

(2.13)

B(fgh) B(fh) B(gh)’
B(h)y ~ B(h) B(h)

< 5V =) 5B [B]f - B e -1]).

The constant % is best possible.

Proof. Apply Theorem 1 for the functional A : L — R,

A (f) = B 1),

that is a normalised isotonic linear functional on L. =

Similar corollaries may be stated from the weighted inequality (2.13),
but we omit the details.

3. Applications for integral and discrete inequalities

Let (2, A, 1) be a measurable space consisting of a set €2, a o—algebra
of parts of Q2 and a countably additive and positive measure y on A with
values in RU {o0} .

For a p—measurable function w : § — R with w (z) > 0 for p—a.e.z € Q,
assume {q w (z) dp (z) > 0. Consider the Lebesgue space Ly, (2, ) := {f :
Q — R, f is measurable on {ow (z)|f (z)|dp (z) < oo}.

If f,g : & — R are y—measurable functions and f,g, fg € L, (Q,u),
then we may consider the Cebysev functional

Tw(f,9) = S—w(an—)-Sw(z)f(z g9(x)dp(z)

Wx—)sw(f f (z) du(z)

1
Xm})w(z)g(z)d#(l‘%
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We may also consider the functional

1
Dy (f) = ——=57=
D= @@
1
x\w(z)if(x) ~ ———— \w(y) f(y)d du(z).
(Sz () |f () Sﬂw(y)d#(y)é (¥) f () du (y)|du (2)
Applying Theorem 2 for the normalised isotonic linear functional

1
A(f) = S—wa(z)f(x)d#(x),

A: L, (9, 1) — R, we may recapture the following result due to Cerone and
Dragomir [2]. Note that the proof of this result in [2] is different to the one
in Theorem 2.

THEOREM 4. Let w, f,g : 8 — R be p—measurable functions with w > 0
p—a.e. on Q and §qw (z)dp (z) > 0. If f,g, fg € Ly (2, 1) and there erists
the constants n, N so that

(3.1) —o<n<g(r)<N<oo forp-ae €,

then we have the inequality

(32) (T (£,9)] < 5 (N =) Du (7).

The constant % is sharp in the sense that it cannot be replaced by a smaller
constant.

REMARK 2. If Q = [a,b] and w (z) = 1 in Theorem 4, then we recapture the
result obtained in [3]

1 ¢ 1 0
33) [ (f@s@)d- (@) do = a§g<w>dm
b b
< W -m) @) - 5 [ ) do|de

provided n < g(z) < N for a.e. z € [a,})].

Note that the proof in Theorem 2 is different to the one in [3], using only
the linearity and monotonicity properties of the functional A. We should also
remark that in [3] the authors did not show the sharpness of the constant 3.

Now, if we consider the normalised isotonic linear functional

(3.4) Az (Z) —-——Zw,:c,,

n i=1
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Ag : R* > R, where w; > 0 (i=1,n) and W, := 37, w; > 0, the by
Theorem 2 we may obtain the following discrete inequality obtained by
Cerone and Dragomir in [2].

THEOREM 5. Let @ = (ay,...,an), b = (b1,...,bn) € R be such that there
ezists the constants b, B € R so that

(3.5) b<b; <B for eachie{l,...,n}.
Then one has the inequality
1 & 1 & 1 &
(3.6) Wn ;::1 w;a;b; —.Wn izz:lwia,- . Wn ;wibi
1 1 & 1 &
SE(B_b)WZwi a; —ija]
" =1 n j=1

The constant -% is sharp in (3.6).

4. A counterpart of the (CBS)-inequality

The following inequality is known in the literature as the Cauchy-Bunia-
kowski-Schwartz’s inequality for isotonic linear functionals or the (CBS)-
inequality, for short,

(41) [Afa? < A(f2) A(?),

provided f,g : E — R are with the property that fg, f%,g> € L and A :
L — R is any isotonic linear functional.

Making use of the Griiss inequality (2.13), we may prove the following
counterpart of the (CBS)-inequality for isotonic linear functionals.

THEOREM 6. Let k,1 : E — R be such that k2,12, kl € L and there exists the
real constants v,I" € R so that

(42) 1<¥<r
Then for any isotonic linear functional A: L — R so that
1] |A (1) ke - A (kD) l| €L,
one has the inequality:
(4.3) 0< A(k?)A(1%) - [A(kD)
< % C-mAflua(®) k-]
The constant % is sharp.
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Proof. We choose in (2.13) f=g= %, h =12 and B = A to get

AR (AR
1 1 k
provided A (l2) # 0, which is equivalent to

0< A(k?) A(1%) - [A (kD)

< %(F—'y)A (%) 4 sz

which is clearly equivalent to (4.3). =

12
|
The following integral inequality holds.

COROLLARY 3. Let w, f,g : 0 — R be a u—measurable function with w > 0

p-a.e. on Q. If f,9 € L, (Q,p) == {f : Q> R, fquw(y) f*(y) du (y) < oo}
and there exists v,T" so that

(4.4) —oo<7§§§f‘<oo for p-a.e. z € Q,

then one has the inequality:

(45) 0<[w(@) (@) du(o) [w(2) e (@) du ()
Q Q

2
= [{w (@) f(z)g(z)dp (w)}

Q

<

(T = fw(z)lg ()

Q

(S w (y) ¢° (y) dp (y)) f(z)

Q

N =

—g(@ {w®) f@) g du(y)

S

Q

du ()

=%@-wyuwmun

Q

f(z) g(z) .
w(y)g(y)‘f(y)g(y)‘du(y)ldu( )-

The constant % is sharp.

REMARK 3. In particular, if f,g € L?(Q, 1) and the condition (4.4) holds,
then

2
4.6) 0<|f%(z)du(z)|g® () du(z) - [Sf(z)g(w du(z)]
Q 9]
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f()g()

Sg(y) ) g

3@l

(y)' du (z).

The constant % is sharp.
The following discrete inequality also holds.
COROLLARY 4. Let @ = (a3,...,a,), b= (b1,...,by) and @ = (wy, ..., ws)

be the sequences of real numbers so that w; > 0 (i=1,...,n), W, :=
Yo iw; >0 and
4.7 'y_<_-g-i§1" for eachie {1,...,n}.

i

Then one has the inequality
(4.8) 0< sz 2Zw,b2 (Z )
i=1
=1

S%(F_'Y)sz

i=1

a‘J b]
The constant % is sharp.
REMARK 4. If @, b satisfy (4.7), then one has the inequality

n n n 2
@9) 0<3 23 8 - (z aibi)
IBLPBLEVD

= (T - ~y)Zb TN
=1

j=1 [%j 05

The constant % is sharp.

5. A converse for Jessen’s inequality

In [4], the author has proved the following converse of Jessen’s inequality
for normalized isotonic linear functionals.

THEOREM 7. Let ® : (o, ) C R — R be a differentiable convez function on
(@,B8), f: E—(a,B) sothat®of, f,® of, (¥'of)-feL IfA:L—-R

is an isotonic linear and normalised functional, then
(5.1) 0<A(®of)-2(A(S))
SA[(@of) - f1-A(H)A(P o)
< -}I [®' (B) - ' ()] (B— ) (if a,B are finite).
We can state the following result improving the inequality (5.1).
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THEOREM 8. Let & : [a, 8] —» R with —00 < a < 8 < 00, and f, A are as in
Theorem 7, then one has the inequality

52 0< Ao f) - (A(f))
<A[@ 1) f]-A()A@ o)
<3 0)- @ @Af - A1),
provided |f — A(f)-1] € L.

Proof. Taking into account that a < f < 8 and &' is monotonic on [a, ],
we have ¢’ (a) < &' o f < &' (8). Applying Theorem 2, we deduce

A[(® o f)-f1-A())A(¥ o)
<3 (2 (8) - ¥ (@] A(f - A(H)-1]),
and the theorem is proved. =
The following corollary addressing the integral case also holds.

COROLLARY 5. Let ® : [a, 8] C R — R be a differentiable convez function on
(0, B) and f : @ — [, B] so that Dof, f, ®'of, (D' o f)-f € Ly, (R, u), where
w >0 p-a.e. on Q with {qw (z)du (z) > 0. Then we have the inequality:

1

(63) 0< W S w(z) @ (f (z)) du (z)

1
- (mé“’“’f (z)du “”)
1 '
< W fw ()@ (f () f (z) du(z)

WSW@)‘I" (f (z)) dp (z)
1

* w @@
@ (6) -

w(z) f () dp ()

N)lv—ﬂ

R R
YO e @aE

1
x éw“”) 1@ - W )

REMARK 5. If u(2) <occand ®o f, f, ®' o f, (¥’ o f)-f € L(Q,p), then
we have the inequality:

w (y) f (y) du (y)| dp (z) -
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m> 8 (f (2)) dps (2) - (L | £ (2) dp (z))

(54) 0< ——= A )

M) S ' (f (2)) f () du (=)
G ) F @) (@) ey 1 f @ du(e
Q Q

(&' (8) — &' (0)] =5 V |f (=) - m SS) £ (y)dp (y)

l\DIr—A
/'\I

du (z) .

" },

The case of functions of a real variable is embodied in the following
inequality that provides a counterpart for the Jensen integral inequality

b
(5.5) ®(f(z))de — ® (b—i—ag f(x) dz)

b a§
b
S3o aS‘I"(f(l‘)f(-T
1 /
- S‘I’(f(l'))dx - Sf(z)df'«”
1 , 2 1
5[‘1’ B) - ‘1’(0) aif 1)—b—_5§f(y)dy dz

The following discrete inequality is valid as well.

COROLLARY 6. Let @ : [a, 8] — R be a differentiable convezr function on
(,8). Ifzi € [, B8] and w; >0 (i=1,...,n) with W, > 0, then one has
the counterpart of Jensen’s discrete inequality:

(5.6) 0< — Z w;® <_W1_ Zn: wiivi)
n =1

Xn; w; ' (z;) z; — Z w;® (x;) Wln zj:lwi:vi

n =1
1 n
Ty — s Z w_,-a:j .
Wn

REMARK 6. In particular, we get the discrete inequality:

(5.7) 0< %i@(mi)—é(%imi)
i=1 =1

§|~ s

1., , 1 &
<3 EO-F@)E>
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Z@'(x,)xl——ZQ' T;) — Zx,

1—1

%[«b’(ﬂ) V@) 53 |- D)
Z

=1
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