

Sever S. Dragomir

A GRÜSS TYPE INEQUALITY FOR ISOTONIC LINEAR FUNCTIONALS AND APPLICATIONS

Abstract. An inequality for a normalised isotonic linear functional of Grüss type and particular cases for integrals and norms are established. Applications in obtaining a counterpart for the Cauchy-Buniakowski-Schwartz inequality for functionals and Jessen's inequality for convex functions are also given.

1. Introduction

Let L be a linear class of real-valued functions $g : E \rightarrow \mathbb{R}$ having the properties

- (L1) $f, g \in L$ imply $(\alpha f + \beta g) \in L$ for all $\alpha, \beta \in \mathbb{R}$;
- (L2) $\mathbf{1} \in L$, i.e., if $f(t) = 1$, $t \in E$, then $f \in L$.

An isotonic linear functional $A : L \rightarrow \mathbb{R}$ is a functional satisfying

- (A1) $A(\alpha f + \beta g) = \alpha A(f) + \beta A(g)$ for all $f, g \in L$ and $\alpha, \beta \in \mathbb{R}$;
- (A2) If $f \in L$ and $f \geq 0$, then $A(f) \geq 0$.

The mapping A is said to be normalised if

- (A3) $A(\mathbf{1}) = 1$.

Usual examples of isotonic linear functionals that are normalised are the following ones

$$A(f) = \frac{1}{\mu(X)} \int_X f(x) d\mu(x) \quad \text{if } \mu(X) < \infty$$

or

$$A_w(f) := \frac{1}{\int_X w(x) d\mu(x)} \int_X w(x) f(x) d\mu(x),$$

1991 *Mathematics Subject Classification*: Primary 26D15; Secondary 26D10

Key words and phrases: Grüss inequality, isotonic linear functionals, Cauchy-Buniakowski-Schwartz inequality, Jessen's inequality, Jensen discrete and integral inequalities.

where $w(x) \geq 0$, $\int_X w(x) d\mu(x) > 0$, X is a measurable space and μ a positive measure on X .

In particular, for $\bar{x} = (x_1, \dots, x_n)$, $\bar{w} := (w_1, \dots, w_n) \in \mathbb{R}^n$ with $w_i \geq 0$, $W_n := \sum_{i=1}^n w_i > 0$, we have

$$A(\bar{x}) := \frac{1}{n} \sum_{i=1}^n x_i$$

and

$$A_{\bar{w}}(\bar{x}) := \frac{1}{W_n} \sum_{i=1}^n w_i x_i,$$

are normalised isotonic functionals on \mathbb{R}^n .

In 1988, D. Andrica and C. Badea [1], proved the following generalisation of the Grüss inequality for isotonic linear functionals.

THEOREM 1. *If $f, g \in L$ so that $fg \in L$ and $m \leq f \leq M$, $n \leq g \leq N$ where m, M, n, N are given real numbers, then for any normalised isotonic linear functional $A : L \rightarrow \mathbb{R}$ one has the inequality*

$$(1.1) \quad |A(fg) - A(f)A(g)| \leq \frac{1}{4} (M - m)(N - n).$$

The constant $\frac{1}{4}$ in (1.1) is best possible in the sense that it cannot be replaced by a smaller constant.

In this paper we point out a refinement of the Grüss inequality (1.1) for isotonic linear functionals. Applications for the Cauchy-Buniakowski-Schwartz and Jessen's inequality are also provided.

2. A Grüss type inequality

The following result holds.

THEOREM 2. *Let $f, g \in L$ be such that $fg \in L$ and assume that there exists the real numbers n and N so that*

$$(2.1) \quad n \leq g \leq N.$$

Then for any normalised isotonic linear functional $A : L \rightarrow \mathbb{R}$ for which $|f - A(f) \cdot \mathbf{1}| \in L$ one has the inequality

$$(2.2) \quad |A(fg) - A(f)A(g)| \leq \frac{1}{2} (N - n) A(|f - A(f) \cdot \mathbf{1}|).$$

The constant $\frac{1}{2}$ in (2.2) is best possible in the sense that it cannot be replaced by a smaller constant.

Proof. Using the linearity property of A , we have

$$(2.3) \quad A \left[(f - A(f) \cdot \mathbf{1}) \left(g - \frac{n+N}{2} \cdot \mathbf{1} \right) \right]$$

$$\begin{aligned}
&= A[(f - A(f) \cdot \mathbf{1})g] - \frac{n+N}{2}A[f - A(f) \cdot \mathbf{1}] \\
&= A(fg) - A(f)A(g) - \frac{n+N}{2}[A(f) - A(f) \cdot A(\mathbf{1})] \\
&= A(fg) - A(f)A(g)
\end{aligned}$$

since, by the normality property of A , $A(\mathbf{1}) = 1$.

From (2.1) we may easily deduce that

$$(2.4) \quad \left| g - \frac{n+N}{2} \cdot \mathbf{1} \right| \leq \frac{M-n}{2} \cdot \mathbf{1}.$$

It is known that if $h \in L$ so that $|h| \in L$, then, by the monotonicity and linearity of A , one has

$$(2.5) \quad |A(h)| \leq A(|h|).$$

Using this property, the monotonicity property of A and condition (2.4), we deduce

$$\begin{aligned}
(2.6) \quad & \left| A \left[(f - A(f) \cdot \mathbf{1}) \left(g - \frac{n+N}{2} \cdot \mathbf{1} \right) \right] \right| \\
& \leq A \left(\left| (f - A(f) \cdot \mathbf{1}) \left(g - \frac{n+N}{2} \cdot \mathbf{1} \right) \right| \right) \\
& \leq \frac{N-n}{2} A(|f - A(f) \cdot \mathbf{1}|).
\end{aligned}$$

Utilising (2.3) and (2.6) we deduce the desired result (2.2).

To prove the sharpness of the constant $\frac{1}{2}$, we assume that (2.2) holds with a constant $c > 0$ for $A = \frac{1}{b-a} \int_a^b$, $L = L[a, b]$ (the Lebesgue space of integrable functions on $[a, b]$) and g satisfying the condition (2.1) on the interval $[a, b]$, i.e., one has the inequality

$$\begin{aligned}
(2.7) \quad & \left| \frac{1}{b-a} \int_a^b f(x)g(x)dx - \frac{1}{b-a} \int_a^b f(x)dx \cdot \frac{1}{b-a} \int_a^b g(x)dx \right| \\
& \leq c(N-n) \cdot \frac{1}{b-a} \int_a^b \left| f(x) - \frac{1}{b-a} \int_a^b f(y)dy \right| dx.
\end{aligned}$$

If we choose $g = f$ and $f : [a, b] \rightarrow \mathbb{R}$,

$$f(x) = \begin{cases} -1 & \text{if } x \in [a, \frac{a+b}{2}] \\ 1 & \text{if } x \in (\frac{a+b}{2}, b] \end{cases}$$

then

$$\frac{1}{b-a} \int_a^b f^2(x)dx - \left(\frac{1}{b-a} \int_a^b f(x)dx \right)^2 = 1,$$

$$\frac{1}{b-a} \int_a^b \left| f(x) - \frac{1}{b-a} \int_a^b f(y) dy \right| dx = 1,$$

$$m = -1, M = 1$$

and by (2.7) we deduce $c \geq \frac{1}{2}$. ■

The following corollaries are natural consequences of the above result.

COROLLARY 1. *Let $f \in L$ be such that $f^2 \in L$ and there exists the real numbers m, M so that*

$$(2.8) \quad m \leq f \leq M.$$

Then for any $A : L \rightarrow \mathbb{R}$ a normalised isotonic linear functional so that $|f - A(f) \cdot \mathbf{1}| \in L$ one has the inequality

$$(2.9) \quad 0 \leq A(f^2) - [A(f)]^2 \leq \frac{1}{2} (M - m) A(|f - A(f) \cdot \mathbf{1}|).$$

The constant $\frac{1}{2}$ is sharp.

COROLLARY 2. *Let $f, g \in L$ so that $fg \in L$ and f satisfy (2.8) while g satisfies (2.1). Then for any normalised isotonic linear functional $A : L \rightarrow \mathbb{R}$ so that $|f - A(f) \cdot \mathbf{1}|, |g - A(g) \cdot \mathbf{1}| \in L$ one has the inequality:*

$$(2.10) \quad |A(fg) - A(f)A(g)|$$

$$\leq \frac{1}{2} [(M - m)(N - n)]^{\frac{1}{2}} [A(|f - A(f) \cdot \mathbf{1}|)A(|g - A(g) \cdot \mathbf{1}|)]^{\frac{1}{2}}.$$

The constant $\frac{1}{2}$ is sharp.

REMARK 1. Using Hölder's inequality for isotonic linear functionals, we may state the following inequalities as well

$$(2.11) \quad |A(fg) - A(f)A(g)|$$

$$\leq \frac{1}{2} (N - n) A(|f - A(f) \cdot \mathbf{1}|) \text{ if } |f - A(f) \cdot \mathbf{1}| \in L,$$

$$\leq \frac{1}{2} (N - n) [A(|f - A(f) \cdot \mathbf{1}|^p)]^{\frac{1}{p}} \text{ if } |f - A(f) \cdot \mathbf{1}|^p \in L, p > 1$$

$$\leq \sup_{t \in E} |f(t) - A(f)|;$$

provided $f, g \in L$ and $fg \in L$ while g satisfies the condition (2.1).

If f and g fulfill the conditions (2.8) and (2.1), then we have the following refinement of the Grüss inequality (1.1)

$$(2.12) \quad |A(fg) - A(f)A(g)| \leq \frac{1}{2} (N - n) A(|f - A(f) \cdot \mathbf{1}|)$$

$$\leq \frac{1}{2} (N - n) [A(f^2) - [A(f)]^2]^{\frac{1}{2}}$$

$$\leq \frac{1}{4} (M - m) (N - n).$$

The constants $\frac{1}{2}$, $\frac{1}{2}$ and $\frac{1}{4}$ are sharp in (2.12).

The following weighted version of Theorem 2 also holds.

THEOREM 3. *Let $f, g, h \in L$ be such that $h \geq 0$, $fh, gh, fgh \in L$ and there exists the real constants n, N so that (2.1) holds. Then for any $B : L \rightarrow \mathbb{R}$ an isotonic linear functional so that $B(h) > 0$, $h \left| f - \frac{1}{B(h)} \cdot 1 \right| \in L$ one has the inequality:*

$$(2.13) \quad \begin{aligned} & \left| \frac{B(fgh)}{B(h)} - \frac{B(fh)}{B(h)} \cdot \frac{B(gh)}{B(h)} \right| \\ & \leq \frac{1}{2} (N - n) \frac{1}{B(h)} B \left[h \left| f - \frac{1}{B(h)} B(hf) \cdot 1 \right| \right]. \end{aligned}$$

The constant $\frac{1}{2}$ is best possible.

Proof. Apply Theorem 1 for the functional $A_h : L \rightarrow \mathbb{R}$,

$$A_h(f) := \frac{1}{B(h)} B(hf),$$

that is a normalised isotonic linear functional on L . ■

Similar corollaries may be stated from the weighted inequality (2.13), but we omit the details.

3. Applications for integral and discrete inequalities

Let $(\Omega, \mathcal{A}, \mu)$ be a measurable space consisting of a set Ω , a σ -algebra of parts of Ω and a countably additive and positive measure μ on \mathcal{A} with values in $\mathbb{R} \cup \{\infty\}$.

For a μ -measurable function $w : \Omega \rightarrow \mathbb{R}$ with $w(x) \geq 0$ for μ -a.e. $x \in \Omega$, assume $\int_{\Omega} w(x) d\mu(x) > 0$. Consider the Lebesgue space $L_w(\Omega, \mu) := \{f : \Omega \rightarrow \mathbb{R}, f \text{ is measurable on } \int_{\Omega} w(x) |f(x)| d\mu(x) < \infty\}$.

If $f, g : \Omega \rightarrow \mathbb{R}$ are μ -measurable functions and $f, g, fg \in L_w(\Omega, \mu)$, then we may consider the Čebyšev functional

$$\begin{aligned} T_w(f, g) := & \frac{1}{\int_{\Omega} w(x) d\mu(x)} \int_{\Omega} w(x) f(x) g(x) d\mu(x) \\ & - \frac{1}{\int_{\Omega} w(x) d\mu(x)} \int_{\Omega} w(x) f(x) d\mu(x) \\ & \times \frac{1}{\int_{\Omega} w(x) d\mu(x)} \int_{\Omega} w(x) g(x) d\mu(x). \end{aligned}$$

We may also consider the functional

$$D_w(f) := \frac{1}{\int_{\Omega} w(x) d\mu(x)} \times \int_{\Omega} w(x) \left| f(x) - \frac{1}{\int_{\Omega} w(y) d\mu(y)} \int_{\Omega} w(y) f(y) d\mu(y) \right| d\mu(x).$$

Applying Theorem 2 for the normalised isotonic linear functional

$$A(f) := \frac{1}{\int_{\Omega} w(x) d\mu(x)} \int_{\Omega} w(x) f(x) d\mu(x),$$

$A : L_w(\Omega, \mu) \rightarrow \mathbb{R}$, we may recapture the following result due to Cerone and Dragomir [2]. Note that the proof of this result in [2] is different to the one in Theorem 2.

THEOREM 4. *Let $w, f, g : \Omega \rightarrow \mathbb{R}$ be μ -measurable functions with $w \geq 0$ μ -a.e. on Ω and $\int_{\Omega} w(x) d\mu(x) > 0$. If $f, g, fg \in L_w(\Omega, \mu)$ and there exists the constants n, N so that*

$$(3.1) \quad -\infty < n \leq g(x) \leq N < \infty \text{ for } \mu\text{-a.e. } x \in \Omega,$$

then we have the inequality

$$(3.2) \quad |T_w(f, g)| \leq \frac{1}{2} (N - n) D_w(f).$$

The constant $\frac{1}{2}$ is sharp in the sense that it cannot be replaced by a smaller constant.

REMARK 2. If $\Omega = [a, b]$ and $w(x) = 1$ in Theorem 4, then we recapture the result obtained in [3]

$$(3.3) \quad \left| \frac{1}{b-a} \int_a^b f(x) g(x) dx - \frac{1}{b-a} \int_a^b f(x) dx \cdot \frac{1}{b-a} \int_a^b g(x) dx \right| \leq \frac{1}{2} (N - n) \cdot \frac{1}{b-a} \int_a^b \left| f(x) - \frac{1}{b-a} \int_a^b f(y) dy \right| dx$$

provided $n \leq g(x) \leq N$ for a.e. $x \in [a, b]$.

Note that the proof in Theorem 2 is different to the one in [3], using only the linearity and monotonicity properties of the functional A . We should also remark that in [3] the authors did not show the sharpness of the constant $\frac{1}{2}$.

Now, if we consider the normalised isotonic linear functional

$$(3.4) \quad A_{\bar{w}}(\bar{x}) := \frac{1}{W_n} \sum_{i=1}^n w_i x_i,$$

$A_{\bar{w}} : \mathbb{R}^n \rightarrow \mathbb{R}$, where $w_i \geq 0$ ($i = \overline{1, n}$) and $W_n := \sum_{i=1}^n w_i > 0$, the by Theorem 2 we may obtain the following discrete inequality obtained by Cerone and Dragomir in [2].

THEOREM 5. *Let $\bar{a} = (a_1, \dots, a_n)$, $\bar{b} = (b_1, \dots, b_n) \in \mathbb{R}$ be such that there exists the constants $b, B \in \mathbb{R}$ so that*

$$(3.5) \quad b \leq b_i \leq B \text{ for each } i \in \{1, \dots, n\}.$$

Then one has the inequality

$$(3.6) \quad \begin{aligned} & \left| \frac{1}{W_n} \sum_{i=1}^n w_i a_i b_i - \frac{1}{W_n} \sum_{i=1}^n w_i a_i \cdot \frac{1}{W_n} \sum_{i=1}^n w_i b_i \right| \\ & \leq \frac{1}{2} (B - b) \frac{1}{W_n} \sum_{i=1}^n w_i \left| a_i - \frac{1}{W_n} \sum_{j=1}^n w_j a_j \right|. \end{aligned}$$

The constant $\frac{1}{2}$ is sharp in (3.6).

4. A counterpart of the (CBS)-inequality

The following inequality is known in the literature as the Cauchy-Bunia-kowski-Schwartz's inequality for isotonic linear functionals or the (CBS)-inequality, for short,

$$(4.1) \quad [A(fg)]^2 \leq A(f^2) A(g^2),$$

provided $f, g : E \rightarrow \mathbb{R}$ are with the property that $fg, f^2, g^2 \in L$ and $A : L \rightarrow \mathbb{R}$ is any isotonic linear functional.

Making use of the Grüss inequality (2.13), we may prove the following counterpart of the (CBS)-inequality for isotonic linear functionals.

THEOREM 6. *Let $k, l : E \rightarrow \mathbb{R}$ be such that $k^2, l^2, kl \in L$ and there exists the real constants $\gamma, \Gamma \in \mathbb{R}$ so that*

$$(4.2) \quad \gamma \leq \frac{k}{l} \leq \Gamma.$$

Then for any isotonic linear functional $A : L \rightarrow \mathbb{R}$ so that

$$|l| \left| A(l^2) k - A(kl) l \right| \in L,$$

one has the inequality:

$$(4.3) \quad \begin{aligned} 0 & \leq A(k^2) A(l^2) - [A(kl)]^2 \\ & \leq \frac{1}{2} (\Gamma - \gamma) A \left[|l| \left| A(l^2) k - A(kl) l \right| \right]. \end{aligned}$$

The constant $\frac{1}{2}$ is sharp.

Proof. We choose in (2.13) $f = g = \frac{k}{l}$, $h = l^2$ and $B = A$ to get

$$\begin{aligned} 0 &\leq \frac{A(k^2)}{A(l^2)} - \frac{[A(kl)]^2}{[A(l^2)]^2} \\ &\leq \frac{1}{2}(\Gamma - \gamma) \frac{1}{A(l^2)} A \left[l^2 \left| \frac{k}{l} - \frac{1}{A(l^2)} A(kl) \right| \right], \end{aligned}$$

provided $A(l^2) \neq 0$, which is equivalent to

$$\begin{aligned} 0 &\leq A(k^2) A(l^2) - [A(kl)]^2 \\ &\leq \frac{1}{2}(\Gamma - \gamma) A(l^2) A \left[\left| kl - \frac{l^2}{A(l^2)} A(kl) \right| \right], \end{aligned}$$

which is clearly equivalent to (4.3). ■

The following integral inequality holds.

COROLLARY 3. *Let $w, f, g : \Omega \rightarrow \mathbb{R}$ be a μ -measurable function with $w \geq 0$ μ -a.e. on Ω . If $f, g \in L_w^2(\Omega, \mu) := \{f : \Omega \rightarrow \mathbb{R}, \int_{\Omega} w(y) f^2(y) d\mu(y) < \infty\}$ and there exists γ, Γ so that*

$$(4.4) \quad -\infty < \gamma \leq \frac{f}{g} \leq \Gamma < \infty \text{ for } \mu\text{-a.e. } x \in \Omega,$$

then one has the inequality:

$$\begin{aligned} (4.5) \quad 0 &\leq \int_{\Omega} w(x) f^2(x) d\mu(x) \int_{\Omega} w(x) g^2(x) d\mu(x) \\ &\quad - \left[\int_{\Omega} w(x) f(x) g(x) d\mu(x) \right]^2 \\ &\leq \frac{1}{2}(\Gamma - \gamma) \int_{\Omega} w(x) |g(x)| \left| \left(\int_{\Omega} w(y) g^2(y) d\mu(y) \right) f(x) \right. \\ &\quad \left. - g(x) \int_{\Omega} w(y) f(y) g(y) d\mu(y) \right| d\mu(x) \\ &= \frac{1}{2}(\Gamma - \gamma) \int_{\Omega} w(x) |g(x)| \left| \int_{\Omega} w(y) g(y) \left| \frac{f(x) g(x)}{f(y) g(y)} \right| d\mu(y) \right| d\mu(x). \end{aligned}$$

The constant $\frac{1}{2}$ is sharp.

REMARK 3. In particular, if $f, g \in L^2(\Omega, \mu)$ and the condition (4.4) holds, then

$$(4.6) \quad 0 \leq \int_{\Omega} f^2(x) d\mu(x) \int_{\Omega} g^2(x) d\mu(x) - \left[\int_{\Omega} f(x) g(x) d\mu(x) \right]^2$$

$$\leq \frac{1}{2} (\Gamma - \gamma) \int_{\Omega} |g(x)| \left| \int_{\Omega} g(y) \begin{vmatrix} f(x) & g(x) \\ f(y) & g(y) \end{vmatrix} d\mu(y) \right| d\mu(x).$$

The constant $\frac{1}{2}$ is sharp.

The following discrete inequality also holds.

COROLLARY 4. Let $\bar{a} = (a_1, \dots, a_n)$, $\bar{b} = (b_1, \dots, b_n)$ and $\bar{w} = (w_1, \dots, w_n)$ be the sequences of real numbers so that $w_i \geq 0$ ($i = 1, \dots, n$), $W_n := \sum_{i=1}^n w_i > 0$ and

$$(4.7) \quad \gamma \leq \frac{a_i}{b_i} \leq \Gamma \text{ for each } i \in \{1, \dots, n\}.$$

Then one has the inequality

$$(4.8) \quad \begin{aligned} 0 &\leq \sum_{i=1}^n w_i a_i^2 \sum_{i=1}^n w_i b_i^2 - \left(\sum_{i=1}^n w_i a_i b_i \right)^2 \\ &\leq \frac{1}{2} (\Gamma - \gamma) \sum_{i=1}^n w_i b_i \left| \sum_{j=1}^n w_j b_j \begin{vmatrix} a_i & b_i \\ a_j & b_j \end{vmatrix} \right|. \end{aligned}$$

The constant $\frac{1}{2}$ is sharp.

REMARK 4. If \bar{a}, \bar{b} satisfy (4.7), then one has the inequality

$$(4.9) \quad \begin{aligned} 0 &\leq \sum_{i=1}^n a_i^2 \sum_{i=1}^n b_i^2 - \left(\sum_{i=1}^n a_i b_i \right)^2 \\ &\leq \frac{1}{2} (\Gamma - \gamma) \sum_{i=1}^n b_i \left| \sum_{j=1}^n b_j \begin{vmatrix} a_i & b_i \\ a_j & b_j \end{vmatrix} \right|. \end{aligned}$$

The constant $\frac{1}{2}$ is sharp.

5. A converse for Jessen's inequality

In [4], the author has proved the following converse of Jessen's inequality for normalized isotonic linear functionals.

THEOREM 7. Let $\Phi : (\alpha, \beta) \subseteq \mathbb{R} \rightarrow \mathbb{R}$ be a differentiable convex function on (α, β) , $f : E \rightarrow (\alpha, \beta)$ so that $\Phi \circ f$, f , $\Phi' \circ f$, $(\Phi' \circ f) \cdot f \in L$. If $A : L \rightarrow \mathbb{R}$ is an isotonic linear and normalised functional, then

$$(5.1) \quad \begin{aligned} 0 &\leq A(\Phi \circ f) - \Phi(A(f)) \\ &\leq A[(\Phi' \circ f) \cdot f] - A(f) A(\Phi' \circ f) \\ &\leq \frac{1}{4} [\Phi'(\beta) - \Phi'(\alpha)] (\beta - \alpha) \quad (\text{if } \alpha, \beta \text{ are finite}). \end{aligned}$$

We can state the following result improving the inequality (5.1).

THEOREM 8. Let $\Phi : [\alpha, \beta] \rightarrow \mathbb{R}$ with $-\infty < \alpha < \beta < \infty$, and f, A are as in Theorem 7, then one has the inequality

$$(5.2) \quad \begin{aligned} 0 &\leq A(\Phi \circ f) - \Phi(A(f)) \\ &\leq A[(\Phi' \circ f) \cdot f] - A(f)A(\Phi' \circ f) \\ &\leq \frac{1}{2} [\Phi'(\beta) - \Phi'(\alpha)] A(|f - A(f) \cdot 1|), \end{aligned}$$

provided $|f - A(f) \cdot 1| \in L$.

Proof. Taking into account that $\alpha \leq f \leq \beta$ and Φ' is monotonic on $[\alpha, \beta]$, we have $\Phi'(\alpha) \leq \Phi' \circ f \leq \Phi'(\beta)$. Applying Theorem 2, we deduce

$$\begin{aligned} &A[(\Phi' \circ f) \cdot f] - A(f)A(\Phi' \circ f) \\ &\leq \frac{1}{2} [\Phi'(\beta) - \Phi'(\alpha)] A(|f - A(f) \cdot 1|), \end{aligned}$$

and the theorem is proved. ■

The following corollary addressing the integral case also holds.

COROLLARY 5. Let $\Phi : [\alpha, \beta] \subset \mathbb{R} \rightarrow R$ be a differentiable convex function on (α, β) and $f : \Omega \rightarrow [\alpha, \beta]$ so that $\Phi \circ f, f, \Phi' \circ f, (\Phi' \circ f) \cdot f \in L_w(\Omega, \mu)$, where $w \geq 0$ μ -a.e. on Ω with $\int_{\Omega} w(x) d\mu(x) > 0$. Then we have the inequality:

$$(5.3) \quad \begin{aligned} 0 &\leq \frac{1}{\int_{\Omega} w(x) d\mu(x)} \int_{\Omega} w(x) \Phi(f(x)) d\mu(x) \\ &\quad - \Phi \left(\frac{1}{\int_{\Omega} w(x) d\mu(x)} \int_{\Omega} w(x) f(x) d\mu(x) \right) \\ &\leq \frac{1}{\int_{\Omega} w(x) d\mu(x)} \int_{\Omega} w(x) \Phi'(f(x)) f(x) d\mu(x) \\ &\quad - \frac{1}{\int_{\Omega} w(x) d\mu(x)} \int_{\Omega} w(x) \Phi'(f(x)) d\mu(x) \\ &\quad \times \frac{1}{\int_{\Omega} w(x) d\mu(x)} \int_{\Omega} w(x) f(x) d\mu(x) \\ &\leq \frac{1}{2} [\Phi'(\beta) - \Phi'(\alpha)] \frac{1}{\int_{\Omega} w(x) d\mu(x)} \\ &\quad \times \int_{\Omega} w(x) \left| f(x) - \frac{1}{\int_{\Omega} w(y) d\mu(y)} \int_{\Omega} w(y) f(y) d\mu(y) \right| d\mu(x). \end{aligned}$$

REMARK 5. If $\mu(\Omega) < \infty$ and $\Phi \circ f, f, \Phi' \circ f, (\Phi' \circ f) \cdot f \in L(\Omega, \mu)$, then we have the inequality:

$$\begin{aligned}
(5.4) \quad 0 &\leq \frac{1}{\mu(\Omega)} \int_{\Omega} \Phi(f(x)) d\mu(x) - \Phi\left(\frac{1}{\mu(\Omega)} \int_{\Omega} f(x) d\mu(x)\right) \\
&\leq \frac{1}{\mu(\Omega)} \int_{\Omega} \Phi'(f(x)) f(x) d\mu(x) \\
&\quad - \frac{1}{\mu(\Omega)} \int_{\Omega} \Phi'(f(x)) d\mu(x) \cdot \frac{1}{\mu(\Omega)} \int_{\Omega} f(x) d\mu(x) \\
&\leq \frac{1}{2} [\Phi'(\beta) - \Phi'(\alpha)] \frac{1}{\mu(\Omega)} \int_{\Omega} \left| f(x) - \frac{1}{\mu(\Omega)} \int_{\Omega} f(y) d\mu(y) \right| d\mu(x).
\end{aligned}$$

The case of functions of a real variable is embodied in the following inequality that provides a counterpart for the Jensen integral inequality

$$\begin{aligned}
(5.5) \quad 0 &\leq \frac{1}{b-a} \int_a^b \Phi(f(x)) dx - \Phi\left(\frac{1}{b-a} \int_a^b f(x) dx\right) \\
&\leq \frac{1}{b-a} \int_a^b \Phi'(f(x)) f(x) dx \\
&\quad - \frac{1}{b-a} \int_a^b \Phi'(f(x)) dx \cdot \frac{1}{b-a} \int_a^b f(x) dx \\
&\leq \frac{1}{2} [\Phi'(\beta) - \Phi'(\alpha)] \frac{1}{b-a} \int_a^b \left| f(x) - \frac{1}{b-a} \int_a^b f(y) dy \right| dx.
\end{aligned}$$

The following discrete inequality is valid as well.

COROLLARY 6. *Let $\Phi : [\alpha, \beta] \rightarrow \mathbb{R}$ be a differentiable convex function on (α, β) . If $x_i \in [\alpha, \beta]$ and $w_i \geq 0$ ($i = 1, \dots, n$) with $W_n > 0$, then one has the counterpart of Jensen's discrete inequality:*

$$\begin{aligned}
(5.6) \quad 0 &\leq \frac{1}{W_n} \sum_{i=1}^n w_i \Phi(x_i) - \Phi\left(\frac{1}{W_n} \sum_{i=1}^n w_i x_i\right) \\
&\leq \frac{1}{W_n} \sum_{i=1}^n w_i \Phi'(x_i) x_i - \frac{1}{W_n} \sum_{i=1}^n w_i \Phi'(x_i) \frac{1}{W_n} \sum_{i=1}^n w_i x_i \\
&\leq \frac{1}{2} [\Phi'(\beta) - \Phi'(\alpha)] \frac{1}{W_n} \sum_{i=1}^n w_i \left| x_i - \frac{1}{W_n} \sum_{j=1}^n w_j x_j \right|.
\end{aligned}$$

REMARK 6. In particular, we get the discrete inequality:

$$(5.7) \quad 0 \leq \frac{1}{n} \sum_{i=1}^n \Phi(x_i) - \Phi\left(\frac{1}{n} \sum_{i=1}^n x_i\right)$$

$$\begin{aligned}
&\leq \frac{1}{n} \sum_{i=1}^n \Phi'(x_i) x_i - \frac{1}{n} \sum_{i=1}^n \Phi'(x_i) \frac{1}{n} \sum_{i=1}^n x_i \\
&\leq \frac{1}{2} [\Phi'(\beta) - \Phi'(\alpha)] \frac{1}{n} \sum_{i=1}^n \left| x_i - \frac{1}{n} \sum_{j=1}^n x_j \right|.
\end{aligned}$$

References

- [1] D. Andrica, C. Badea, *Grüss' inequality for positive linear functionals*, Periodica Math. Hungarica 19(2)(1988), 155–167.
- [2] P. Cerone, S. S. Dragomir, *A refinement of the Grüss inequality and applications*, (Preprint) RGMIA Res. Rep. Coll. 5 (2) (2002), Article 14 [on line: <http://rgmia.vu.edu.au/v5n2.html>].
- [3] X.-L. Cheng, J. Sun, *A note on the perturbed trapezoid inequality*, J. Ineq. Pure & Appl. Math. 3 (2002), No. 2, Article 29. [on line: <http://jipam.vu.edu.au>].
- [4] S. S. Dragomir, *On a reverse of Jessen's inequality for isotonic linear functionals*, J. Ineq. Pure & Appl. Math. 2 (2001), No. 3, Article 36. [on line: <http://jipam.vu.edu.au>].

SCHOOL OF COMPUTER SCIENCE AND MATHEMATICS
 VICTORIA UNIVERSITY OF TECHNOLOGY
 PO BOX 14428
 MCMC 8001, VICTORIA, AUSTRALIA
 E-mail: sever@matilda.vu.edu.au
<http://rgmia.vu.edu.au/SSDragomirWeb.html>

Received May 20, 2002.