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A GRUSS TYPE INEQUALITY FOR ISOTONIC LINEAR 
FUNCTIONALS A N D APPLICATIONS 

A b s t r a c t . An inequality for a normalised isotonic linear functional of Griiss type 
and particular cases for integrals and norms Eire established. Applications in obtaining a 
counterpart for the Cauchy-Buniakowski-Schwartz inequality for functionals and Jessen's 
inequality for convex functions are also given. 

1. Introduction 
Let I be a linear class of real-valued functions g : E —• R having the 

properties 
(LI) f,g € L imply (a f + ¡3g) e L for all a,¡3 6 R; 
(L2) 1 € L, i.e., if / (t) = 1, t e E, then f € L. 

An isotonic linear functional A : L —> R is a functional satisfying 
(Al) A (af + fig) = aA ( / ) + /3A (g) for all / , g € L and a, 0 G R; 
(A2) If / G L and / > 0, then A ( /) > 0. 

The mapping A is said to be normalised if 
(A3) A (1) = 1. 
Usual examples of isotonic linear functionals that are normalised are the 

following ones 

M f ) = ^ ) \ f ^ ) d p i ( x ) if / x P 0 < o o 

or 
A w W : = f \ w ( x ) f ( x ) ( 1 ) ' ix w (x) W x 
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where w (x) > 0, \ x w (x) d/i (x) > 0, X is a measurable space and /i a 
positive measure on X. 

In particular, for x = ( x j , . . . , xn), w := (wi,..., wn) G Rn with Wi > 0, 
Wn := Wi > 0, we have 

1 n 

A(x) := - Y\xi n —* n 1-t=i 
and 

1 n 

Am (x) := y \vjXj, 
Wn i=l 

are normalised isotonic functionals on Rn . 
In 1988, D. Andrica and C. Badea [1], proved the following generalisation 

of the Griiss inequality for isotonic linear functionals. 
THEOREM 1. If f,g € L so that fgeL and m<f<M,n<g<N where 
m, M, n, N are given real numbers, then for any normalised isotonic linear 
functional A : L —• M one has the inequality 

(1.1) \A ( f g ) -A{f)A{g)\<\{M- m) (N - n). 

The constant j in (1.1) is best possible in the sense that it cannot be replaced 
by a smaller constant. 

In this paper we point out a refinement of the Griiss inequality (1.1) 
for isotonic linear functionals. Applications for the Cauchy-Buniakowski-
Schwartz and Jessen's inequality are also provided. 

2. A Griiss type inequality 
The following result holds. 

THEOREM 2. Let f,g € L be such that fg 6 L and assume that there exists 
the real numbers n and N so that 
(2.1) n < g < N . 
Then for any normalised isotonic linear functional A : L —> E for which 
\f — A ( / ) • 1| € L one has the inequality 

(2.2) \A ( f g ) -A(f)A(g)\<±(N-n)A (|/ - A ( / ) • 1 | ) . 

The constant ^ in (2.2) is best possible in the sense that it cannot be replaced 
by a smaller constant. 
P r o o f . Using the linearity property of A, we have 

(2.3) ; < / - i U / M ) ( « - = ± £ i ) ; 
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= A [(/ - A (/) • 1) g] - ^ A [ f - A (/) • 1] 

= A ( f g ) - A ( f ) A (g) - ^ [A (/) - A (/) • A (1)] 

= A ( f g ) - A ( f ) A ( g ) 

since, by the normality property of A, A (1) = 1. 
Prom (2.1) we may easily deduce that 

(2.4) 
n + N 

9 • 1 

It is known that if h G L so that \h\ 6 L, then, by the monotonicity and 
linearity of A, one has 
(2.5) 1 ^ ) 1 5 U ( N ) . 

Using this property, the monotonicity property of A and condition (2.4), we 
deduce 

\ f - A ( f ) . l ) ( 9 - "
 + W (2.6) 

Utilising (2.3) and (2.6) we deduce the desired result (2.2). 
To prove the sharpness of the constant 5, we assume that (2.2) holds 

with a constant c > 0 for A — \ba, L = L [a, b] (the Lebesgue space of 
integrable functions on [a, 6]) and g satisfying the condition (2.1) on the 
interval [a, b], i.e., one has the inequality 

- , 6 b - , 6 

(2.7) 
1 1 1 
— \ f ( x ) 9 ( x ) d x ~ \ f dx ' \9 dx 

b — a b — a 

< c ( N - n ) . - ^ - \ f ( x ) - ^ \ f ( y ) d y 
b — aJ b — a a a 

If we choose g = f and / : [a, b] —• E, 

/(*) = 

then 

dx. 

- 1 if x € [a, 

1 if x € (2^,6] 

é - a l f 2 ^ d x - ( é - a \ f ^ d x ] 
= 1, 
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r b i ' M - r b i ' M * * - 1 -
a a 

m = - 1, M = 1 

and by (2.7) we deduce c > 5. • 

The following corollaries are natural consequences of the above result. 

COROLLARY 1. Let f € L be such that f2 € L and there exists the real 
numbers m, M so that 
(2 .8) m < f < M. 

Then for any A : L —> R a normalised isotonic linear functional so that 
\f — A (/) • 1| 6 L one has the inequality 

(2.9) 0 < A ( / 2 ) - [A U)f <\(M-m)A(\f-A ( / ) • 1|). 

The constant 5 is sharp. 

COROLLARY 2. Let f,g e L so that fg e L and f satisfy (2.8) while g 
satisfies (2.1). Then for any normalised isotonic linear functional A \ L R 
so that | f — A ( / ) • 1|, \g — A (g) • 1| 6 L one has the inequality: 

(2.10) \A(fg)-A(f)A(g)\ 

<\[{M- m) (N - n)]i [A (| / - A(f) • 1|) A(\g- A (g) • l|)]i . 

The constant 5 is sharp. 

REMARK 1. Using Holder's inequality for isotonic linear functionals, we may 
state the following inequalities as well 

(2.11) \A(fg)-A(f)A(g)\ 

<±(N-n)A(\f-A(f)-l\) if \f — A ( / ) • 1| € L, 

<l(N-n)[A(\f-A(f)-iy)]* if \f-A(f)-l\peL,P>l 
<sup|/( i ) -^(/)| ; 

te£ 
provided f,g € L and fg € L while g satisfies the condition (2.1). 

If / and g fulfill the conditions (2.8) and (2.1), then we have the following 
refinement of the Griiss inequality (1.1) 

(2.12) \A (fg) -A(f)A(g)\<±(N-n)A (| / - A ( / ) • 1|) 

<UN-n)[A(f2)-[A(f)f 
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< ^ (M -m)(N -n). 

The constants ^ and j are sharp in (2.12). 
The following weighted version of Theorem 2 also holds. 

THEOREM 3. Let f,g,h € L be such that h> 0, fh, gh, fgh € L and there 
exists the real constants n,N so that (2.1) holds. Then for any B : L —• R 
an isotonic linear functional so that B (h) > 0, h |/ — -^y • 1 € L one has 
the inequality: 

(2.13) B ( f 9 k ) B { f k ) B { g k ) 
B (h) B (h) 

< i ( i V - n ) 1 

B(h) 

B h f - B(h) 
B(hf)-1 

2V~ B{h) 

The constant ^ is best possible. 

Proof . Apply Theorem 1 for the functional Ah '• L —> R, 

that is a normalised isotonic linear functional on L. m 

Similar corollaries may be stated from the weighted inequality (2.13), 
but we omit the details. 

3. Applications for integral and discrete inequalities 
Let (ii, A, /x) be a measurable space consisting of a set fi, a a—algebra 

of parts of Q and a countably additive and positive measure fj, on A with 
values in RU {oo} . 

For a fi—measurable function w : fi —• R with w (x) > 0 for /x—a.e. x 6 Q, 
assume w (x) dfi (x) > 0. Consider the Lebesgue space Lw (fi, /J.) := {/ : 
i) —• R, / is measurable on w(x)\f (a;)| dfj,(x) < oo}. 

If / , g : fl —• R are y,—measurable functions and / , g, fg € Lw (Q, /¿), 
then we may consider the Cebysev functional 

T~lf"9) := fa «•>(*)»(*) lw(x)f (I)9(I)d"W 
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We may also consider the functional 
1 

Dw(f) := lüw(x)dfx(x) 

H x ) ~ ^ ( y ) M y ) l w { y ) H y ) d ß l y ) 

1 dfi (x). X J w (x) 
n 

Applying Theorem 2 for the normalised isotonic linear functional 

Jn w (*) W Q 

A : Lw (fi, n) —• R, we may recapture the following result due to Cerone and 
Dragomir [2]. Note that the proof of this result in [2] is different to the one 
in Theorem 2. 

THEOREM 4. Let w, f , g : fi —• R be fj,—measurable functions with w > 0 
H~a.e. on Q and w (x) dfi (x) > 0. If / , g, fg € Lw (ii, n) and there exists 
the constants n, N so that 

(3.1) — oo < n < g (x) < N < oo for fi-a.e. x 6 fi, 

then we have the inequality 

(3.2) \Tw(f,g)\<±(N-n)Dw(f). 

The constant \ is sharp in the sense that it cannot be replaced by a smaller 
constant. 

REMARK 2. If fi = [a, 6] and w (x) — 1 in Theorem 4, then we recapture the 
result obtained in [3] 

1 b 1 6 1 6 

\ f (x) 9 ( x ) d x ~ \ f (x) dx • -g-—^ \ g (x) dx (3.3) 

dx 2 v" b — a 3 b — a a a 

provided n < g(x) < N for a.e. x G [o, b]. 

Note that the proof in Theorem 2 is different to the one in [3], using only 
the linearity and monotonicity properties of the functional A. We should also 
remark that in [3] the authors did not show the sharpness of the constant 

Now, if we consider the normalised isotonic linear functional 

(3.4) 
1 71 

An, (x) := 77rJ2WiXi> 
Wn i=l 
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Am : Rn R, where Wi > 0 (i = I~n) and Wn := 1 > 0, the by-
Theorem 2 we may obtain the following discrete inequality obtained by 
Cerone and Dragomir in [2]. 

THEOREM 5. Let a = ( o i , . . . , an), b = (bi,... ,bn) € R be such that there 
exists the constants b, B € R so that 

(3.5) b <bi < B for each i G {1 , . . . , n} . 

Then one has the inequality 

4. A counterpart of the (CBS)-inequality 
The following inequality is known in the literature as the Cauchy-Bunia-

kowski-Schwartz's inequality for isotonic linear functionals or the (CBS)-
inequality, for short, 

provided f,g : E —• R are with the property that fg,f2,g2 G L and A : 
L —• R is any isotonic linear functional. 

Making use of the Griiss inequality (2.13), we may prove the following 
counterpart of the (CBS)-inequality for isotonic linear functionals. 

THEOREM 6. Let k, I : E —> R be such that k2,12, kl 6 L and there exists the 
real constants 7, T G R so that 

The constant ^ is sharp in (3.6). 

(4.1) 

(4.2) 7 < 7 < r -

Then for any isotonic linear functional A : L —• R so that 

\l\\A(l2^k-A{kl)l\ eL, 

one has the inequality: 

(4.3) 

The constant \ is sharp. 



558 S. S. Dragomir 

P r o o f . We choose in (2.13) / = g = h = I2 and B = A to get 

A(k2) [A (kl)]2 

0 < 
A (I2) [A (I2)}2 

I A (I2) 

provided A (I2) / 0, which is equivalent to 

0 < A (fc2) A (Z2) - [A (kl)]2 

A (kl) 

< l ( r - j ) A ( i 2 ) A kl-
l2 

A (I2) 
A (kl) 

which is clearly equivalent to (4.3). • 

The following integral inequality holds. 

COROLLARY 3. Let w, f,g : i) —> R be a p—measurable function with w > 0 
/x-a.c. on a If f , g € L2

W (n, fi):={f:Q^ R, w (y) f2 (y) dfi (y) < oo} 
and there exists 7, T so that 

f — o o < 7 < — < T < o o for n-a.e. x G fl, 
9 

(4.4) 

then one has the inequality: 

(4.5) 0 <\w(x)f2 (x) dfi (x) \ w (x) g2 (x) dn (x) 
n n 

I 2 

\w(x)f (x) g (x) dfi (x) 
Ln 

< I ( r _ 7 ) jwOr) \g(x)\ S u> (y) 92 (y) dn (y)) / (®) 

- g(x)\w (y) f (y) g (y) dfi (y) 
n 

dfi (x) 

= £ ( r - 7 ) J u > ( s ) | 0 ( s ) | 
n 

\™(y) 9 (y) 
/ (x) 9 (x) 
f (y) 9 (y) 

dfi (y) dfi (x). 

The constant ^ is sharp. 

REMARK 3. In particular, if f,g 6 L2 (fI, fi) and the condition (4.4) holds, 
then 

(4.6) 0 <\f2(x)dfi(x)\g2(x)dfi(x)-
n n 

\f(x)g (x) dfi (x) 
Ln 
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n 
S 9 ( y ) 
n 

/ (x) 9 (x) 

f ( y ) 9 ( y ) 
dn(y) dfi (x). 

The constant ^ is sharp. 
The following discrete inequality also holds. 

COROLLARY 4. Let a = ( a i , . . . , an), b = (i>i,..., bn) and w = ( toi, . . . , wn) 
be the sequences of real numbers so that Wi > 0 (i = l , . . . , n ) , Wn := 

W{> 0 and 
ai (4.7) 

Then one has the inequality 

(4.8) 

7 < — < r for each i 6 { 1 , . . . , n} . 
Oi 

0 < w i a ì H wibi ~ I wiQibi 
i=i ¿=1 \i=i 

^ i=i 
H wJbj 
j=i 

Oi bi 

a j bi 

The constant ^ is sharp. 

Remark 4. If a, 6 satisfy (4.7), then one has the inequality 

(4.9) 
¿=i i=i 

< § ( t - 7 ) 5 > 
i=i 

i=i 
n 

i=l 

ai bi 

aj bj 

The constant A is sharp. 

5. A converse for Jessen's inequality 
In [4], the author has proved the following converse of Jessen's inequality 

for normalized isotonic linear functionals. 
THEOREM 7. Let $ : (a, /?) C R —> R be a differentiate convex function on 
(ot,/3), f : E —* (a, /?) so that $ o / , / , $ ' o / , ($' o / ) • / e L. If A : L - R 
i s an isotonic linear and normalised functional, then 

( 5 . 1 ) 0 < A { < ! > ° f ) - $ ( A ( f ) ) 

< A [ ( & o f ) . f ] - A ( f ) A ( & o f ) 

< i (/3) - ( a ) ] (/? - a) (if a, f3 are finite). 

We can state the following result improving the inequality (5.1). 
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THEOREM 8. Let $ : [a, ¡3] —» R with -oo < a < ¡3 < oo, and / , A are as in 
Theorem 7, then one has the inequality 

(5.2) 0<A($of)-<i>(A(f)) 
<A[(*'of).f]-A(f)A(*'of) 

< i [ t f ( f l - # { a ) ] A ( \ f - A ( f ) - l \ ) t 

provided \f — A ( / ) • 1| € L. 
Proof. Taking into account that a < f < ¡3 and is monotonic on [a,(3], 
we have (a) < o / < <£' (/3). Applying Theorem 2, we deduce 

and the theorem is proved. • 

The following corollary addressing the integral case also holds. 

COROLLARY 5. Let $ : [a, ¡3} C M. —> R be a differentiable convex function on 
(a, (3) and f : fi —• [a, /?] so that / , / , $'o/, ($' o / ) • / G (ft, /n), w/iere 
u; > 0 (jL-a.e. on fi with w (x) dfi (x) > 0. T/ien toe have the inequality: 

^ t ,„ ! 1 0 ( x ) ( / ( x ) ) / ( x ) d f i ( x ) 
in f (®) d-V (®) n 

\nw(x)dn{x) J 

Jn w W (x) n 

< i [$'(/?)-<!>'(a)] 1 

2 Jn10 0«0 ¿1* 

x j w (x) 
Q 

d[i {x). 

REMARK 5. If /i (FI) < oo and $ o / , / , $ ' o / , o / ) • / e L (I), y), then 
we have the inequality: 
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{ 5 A ) m l * { f { x ) ) d f X { x ) ~ * { m l f { x ) d " ( x ) ) 

n 

- : 7 7 m 5 t f - ¿ m l * ( l ) d » ( x ) 

s i ^ O T - i ' W l ^ y S l / W - ^ S / M ^ W 

The case of functions of a real variable is embodied in the following 
inequality that provides a counterpart for the Jensen integral inequality 

(5.5) 0 < — ! — \ $ ( f ( x ) ) d x - $ ( - ± - \ f ( x ) d x ) 
b ~ a a \ b ~ a a J 

b — a i 

dp (x). 

a a 

dx 

f { x ) - — a \ f { y ) d y dx. 

The following discrete inequality is valid as well. 

COROLLARY 6. Let $ : [A, (3] —> R be a differentiable convex function on 
(a, ¡3). If Xi G [a, f3] and Wi > 0 (i = 1 , . . . , n) with Wn > 0, then one has 
the counterpart of Jensen's discrete inequality: 

(5-6) 0 ^ w n % { x i ) " * ( t f c 5 
^ 7 1 \ 71 1 71 

— w~ ( X i ) X i - w (Xi) u r 5Z 

W'ni . l 
W 

3=1 

REMARK 6. In particular, we get the discrete inequality: 

1 " 
(5.7) " ' ^ 

1 " / 1 

n f , n r . i=i 
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< - £ ( X i ) (Xi) - £ X i 

W) - * » ] 
n t i= i 

1 n 

j=i 
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