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LA REPRESENTATION NUMERIQUE
DE LA PSEUDO-ALGEBRE DE BOOLE

Introduction

Soit A une pseudo-algebre de Boole. Soit R(.A) 'ensemble de tous les
éléments réguliers de A. L’ensemble R(.A) n’est pas vide car il contient les
éléments V4 et A 4. On sait déja que R(A) est une pseudo-algébre de Boole
avec la somme U* qui est telle que quelques soient a,b € R(.4) nous avons
aU*b = —(a Ub) voir [1]. La pseudo-algébre de Boole R(.A) est aussi une
algebre de Boole qui peut étre le centre de différentes pseudo-algebres de
Boole. Comme Maciej J. Maczynski dans son travail [2] a montré que ’on
peut représenter chaque algebre de Boole, donc R(A) est représentable et la
mesure sur 1’algébre R(.A) est toute application m de R(.A) dans l'intervalle
fermé [0, 1] telle que :

1) Va,b € R(A) (a < b) = (m(a) < m(b));

2) m(a U* b) = m(a) + m(b) pour a Nb = Ag(4);

3) m(Va)) = 1, m(Ag() = 0.
L’ensemble M des mesures sur R(.A) est plein si la condition 4) suivante est
satisfaite :

4) m(a) < m(b) = a < bVm € M, pour a,b € R(A).

Le but principal ici est de trouver une extension de la mesure m sur
R(A) en une mesure m sur une pseudo-algébre de Boole quelconque dans
I'intervalle fermé [0, 1] telle que :

1") Va,b € A, a <b=m(a) < m(b);

2Y m\ R(A) = m;

3) m(V) = 1, m(A4) =0.
Si X # 0 est un ensemble alors [0,1]X signifie 'ensemble de toutes les
fonctions de X dans l'intervalle fermé [0, 1]. Quelques soient les éléments
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f,9 € [0,1]%, f+g est la somme des fonctions f et g; f—g est leur différence.
La fonction nulle sera représentée par zéro 0 et la fonction identiquement
égale a 1'unité sera représentée par 1, Vz € X. Pour f,g € [0,1]X, f < g
signifie que f(z) < g(z) quelque soit z € X.

DEFINITION 1. (Sur la pseudo-algébre numérique de Boole).

Soit A C [0,1]* l'ensemble des fonctions de X # @ dans [0,1]. Nous
disons que A est une pseudo-algebre numérique de Boole si :

1) A est une pseudo-algébre de Boole par rapport & ’ordre naturel
(a C b) © (a < b) avec Popération d’implication «=» et le relatif pseudo
complément élément o’ = (a = A4) = —a;

2)Va,be A; aUb+aNb=a+b; ol U, N sont les opérations de Boole
et + est P'opération arithmétique de 1’addition.

REMARQUE 1. Nous savons déja que dans chaque pseudo-algeébre de Boole
A, a’Ub < a= b Vab e A, donc dans la pseudo-algébre numérique de
Boole A nous avons a’ + b—a'Nb < a= bVa,be€ A. Si A est une pseudo-
algebre numérique de Boole alors quelque soit ’élément a € A nous avons
a’ = a = Ay. Par conséquent pour a = A4 nous avons A’y = (A4 = A,).
Pour a = b = A4 dans une pseudo-algébre numérique de Boole nous avons
" A4+ A NAL < (Ag = A4) = V4. Puisque dans toute pseudo-algebre
de Boole A/y = V4 et V) = A4 donc A4 < 0 cest-a-dire que A4 = 0.
Ainsi la fonction nulle appartient & A et est zéro 0. Puisque dans toute
pseudo-algebre de Boole A, les élément V4 et A4 sont complémentaires
alors A4 = 1 — V4 c’est-a-dire que V4 = 1. Par conséquent la fonction égale
a 'unité appartient & A et est 1.
Le théoréme suivant est ’extension du théoréme Maciej J. Maczynski [2]
a la pseudo-algebre numérique de Boole.

THEOREM 1. Soit X # 0 un ensemble, soit A C [0,1]% U’ensemble des
fonctions de X wvers [0,1]. Soit ,= » une opération binaire dans A telle que
Vab € A, il existe (a = b) dans A. Soit «’'» une opération unaire dans A
telle que pour tout a € A on associe ’élément a’ € A, c’est-a-dire, a — a’,
tel que a +a’ € A.

On dit que la suite (a1, ag, a3) des éléments de 1’ensemble A est un tri-
anglesi a; +a; —a;Na; <1,i=1,2,3.

A est une pseudo-algebre numérique de Boole si et seulement si les con-
ditions suivantes sont satisfaites :

1) A est un treillis distributif;
2) La fonction nulle a = 0 appartient & A;
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3) Pour tout triangle (a1, ag, a3), a; € A, i = 1,2, 3, nous avons :
ay +az+az—ayNaz—a;Naz—azNaz+a;NazNag € A;

4) Pout toute paire a,b € A, il existe un triangle (¢, c2,c3), ¢; € A,
1=1,2,3,tel que, aN(b+b') <ec; +cp et aussi bN (a+ a’) < ez + cs.

Preuve. Soit A une pseudo-algébre numérique de Boole. 1l résulte de la
définition que A satisfait les conditions 1) et 2). Soit (ai, ag,as), a; € A,
i = 1,2,3 un triangle donc a; U ay < 1. Supposons que d = a; U ag, ainsi
(apUag)Uaz=dUag =d+az—dNag=a;Uas+az— (a1 Uaz) Nag =
a1 +az+az—ayNag —azNazg+ (a; Nag) Nag < 1 et il en résulte que
ai +ag+az—ayNag—a;Nas—azNaz+ (a3 Naz)Nas € A c’est-a-dire que la
condition 3) en résulte. Pour a,b € A soit ca = aNb;c; = aNch; ez = bNcy.
Nous avons ¢; Ucy = (aNbd)U(aNch) = (aN(anbd)’)U(anbd). Puisque dans
une pseudo-algebre de Bolle A on sait que Vz,y € Aonaz' Uy < (zNy),
par conséquent ¢; Uce = (anNb)U(ancy) = (an(and))u(and) >
(an(a'UY)) U (anb) c’est-a-dire ¢; Ucy > (aNb’) U (aNb). De la regle de
distributivité nous avons (aNbd’)U(aNb) = aN(bUY’), donc ¢; Ucy > aN(bUb’).
Comme ¢y Neg =PetbNd =P alorsc; Ucg =c¢; +¢c3 > an(b+b). Dela
méme maniére nous obtenons aussi que, coUcs =ca+c¢3 > bN(a+a’) et
la condition 4) en résulte, et d’olt la démonstration du théoréme 1.

REMARQUE 2. Si A est une algébre de Boole I'inégalité o’ Ub < (aNb)
devient une égalité et par conséquent les inégalités ¢; + ca > anN(b+¥') et
c2 +c3 > bN(a+ a’) deviennent aussi des égalités.

Maintenant supposons que A C [0, 1}X satisfasse les conditions 1)-4) du
théoréme 1. Considérons dans A ’ordre naturel (a < b) = (a(z) < b(z))
pour z € A, et I'opération binaite «<» d’implication dans A, telle que
Va,b € A, (a,b) — a = b, nous monterons que (a = b) € A. Soit «’» une
opération unaire dans A qui associe & tout élément a € A 'élément a’ € A,
c’est-3-dire a — a’ ol @’ = a = A 4. La fonction a’ depend de la fonction
a. A l'aide des conditions 1 et 4 de notre théoreéme, 1’algébre (a, <) est un
treillis distributif qui contient 1’élément nul zéro. Nous devons montrer que
Vz,y € A il existe (z = y) dans A.

. Pour a,b € A, il existe a’,b’ € A. Pour o’ € A il existe aussi (a')’ € A
tel que a’ + (a’)’ € A. Comme A est un treillis alors Vz,y € A, zUy € A et
zNy € A. Par conséquent pour a, b € A, il existe a’,a”,b’ € A, et a”Ub € A.
On sait que Vz,y € Ail existe (x = y) € Aet queVa,b€ Aona;b<a=b,
donc (a = b)) < b eta' =a= Ay <a=b, par conséquent (a = b)’ < a”.
Comme (a = b) < b et (a = b) < a” alors (a = b) <a”"NV.



534 O. B. Fofana

Dans la suite, nous designerons par M l’ensemble des mesures sur la
pseudo-algebre de Boole et par m une mesure sur une pseudo-algebre de
Boole.

D’autre part, (a” N¥')N(a = b) = (@"NV)N(ant = bNd) =
d’"NVN@nt = A44) =@ nd)N@nd = A4,NY)= (" N¥)N(a=>
Ag) = (d"Nb')Na’ = A4 c’est-a-dire (a”" NV )N(a = b) = (" Nb)Na’ = A4
ou encore (a” Nd') N (a = b) = Ay, cest-d-dire (a”" NV)N (a = b) =
(@”"N¥)Na’ = A4 ou encore (a” NY)N (a = b) = A4, ce qui est équivalent
aad’"Nb < (a=b) = A4 ouencore a” Nb < (a = b).

(a=b) <d’"Nb etad’" Nt <(a=b) donca’ NV =(a=1).

Puisque Va,b € A, a"'NV € A, donc (a = b)’ € A c’est-a-dire que (a = b)
existe dans A et par conséquent (A, <, A4,’,=>) est une pseudo-algebre de
Boole.

Soit A une pseudo-algebre de Boole. Nous définissons I’opération d’im-
plication ,=» dans A de la maniére suivante :

Poura,be A

1)a= b=V, quand a < b;
2) a = b = a9 € A autrement, ou ag # V4 et ap remplit les conditions
suivantes :

a) ao=>a0=VA,

b)Sibce A ag=>b=V4etb=>c=V alorsag=>c=Vy
c)Sipourb€ A, ag=>b=V 4etb=a9=V, alorsagy=1>
d) ag = V4=V4

DEFINITION 2. (La mesure sur une pseudo-algébre de Boole : voir {3]).
La mesure sur la pseudo-algébre de Boole A est 'application (que nous
notons m) de 1’algébre dans l'intervalle fermé [0, 1] telle que :

1) Va,be A, a < b= m(a) <m(b);
2') Ya,b € A, m(aUb) = m(a) + m(b) — m(aNb);
) m(Va) =1, m(A4) = 0.

REMARQUE 3. Dans toute pseudo-algébre de Boole A, on sait que Va,b € A
a’Ub < a = b donc m(a’ Ub) < m(a = b) pour toute mesure m, par
conséquent m(a) + m(b) — m(anNbd) < m(a = b), et aussi m(a) +m(a’) < 1.
Dans A nous avons (a < b) & (a =>b=V,4) Va,be A.

Notamment (a > b=V ) (Vai<a=b o (aNVy<b) < (a=1D).
De la définition de la mesure sur la pseudo-algebre de Boole A, si a < b alors
m(a) < m(b) Va,b € Aet Vm € A. Puisquedans A (a < b) & (a=>b="Vy,)
donc pour toute mesure m sur A si a < b alors m{a = b) = 1 pour q,b € A.
Par conséquent si a < b alors m(a) < m(b) aussi m(a = b) =1 poura,be A
et Ym € A. Nous concluons que Va,b € A et pour toute mesure m sur A,
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I’expression (a < b entraine m(a) < m(b)) est équivalente & I’expression
(a < b entraine m(a = b) = 1).

DEFINITION 3. (Sur I’ensemble plein des mesures sur la pseudo-algébre de
Boole).

L’ensemble des mesures sur la pseudo-algebre de Boole A (que nous
désignons par M) est plein lorsque m(a) < m(b) Ym € M implique a < b
Va,b € A.

DEFINITION 4. (Sur ’ensemble *-plein des mesures sur la pseudo-algébre de
Boole.)

L’ensemble M des mesures sur la pseudo-algébre de Boole A est *-plein
si m(a = b) =1 Vm € M implique a < b Va,b € A.

DEFINITION 5. (Sur la mesure pleine sur la pseudo-algébre de Boole.)

Soit M un ensemble plein de mesures sur la pseudo-algébre de Boole A.
La mesure m € M est pleine lorsque Va,b € Asim(a) =1et m(a=>b) =1
alors m(b) =1Vm € M.

COROLLAIRE 1. Tout ensemble plein de mesures M sur la pseudo-algébre
de Boole A est M *-plein.

Preuve. Soit A une pseudo-algebre de Boole et soit M un ensemble plein
de mesures sur A. [Vm € M m(a = b) = 1] alors [Vm € M, m(a = b) =
m(V4)] donc (a = b = Vy) car M est plein; (a = b=Vy) < (a < b) et
par conséquent M est *-plein.

COROLLAIRE 2. Si la mesure m est pleine alors m (a = b) = 1 implique
m(a) < m(b).

Preuve. Soit m une mesure pleine sur la pseudo-algebre de Boole A, et
soit m(a = b) = 1 et m(a) = 1 pour a,b € A. Puisque m est ume mesure
pleine alors m(b) = 1, c’est-a-dire m(a) = m(a = b) = m(b) = 1; m(a) =
m(b) = m(a) < m(b) < m(a). Par conéquent ’expression (m(a = b) =1 et
m(a) = 1) implique, que m(a) < m(b) pour la mesure pleine m.

COROLLAIRE 3. Dans la généralité I’ensemble M *-plein de mesures ne doit
pas étre M -plein.

COROLLAIRE 4. Si M est un ensemble de mesures x-plein sur une pseudo-
algébre de Boole A et si chaque mesure m € M est pleine alors l’ensemble
M est plein.

Preuve. Soit M un ensemble de mesure *-plein sur la pseudo-algebre de
Boole A, soit m € M une mesure pleine quelconque. Quelques soient les
éléments a,b € A soit m(a) < m(b) pour la mesure pleine m € M pour



536 O. B. Fofana

’ensemble *-plein de mesure M. On sait que m(a) < m(b) implique m(a =
b) =1, donc m(a) < m(b) = m(a=b)=1,Vm e M.

Puisque M est *-plein, alors m(a = b) = 1 = a < b, c’est-a-dire que
m(a) < m(b) = m(a = b) =1=a <b doit m(a) <m) = a<b
¥Ym € M et par conséquent M est plein.

THEOREME 2. Toute pseudo-algébre de Boole A admet un ensemble plein
de mesures et par conséquent peut étre représentée numériquement.

Preuve. Soit A un filtre dans A, et soient a,b éléments de A, soit A*
un filtre principal engendré par A at a. La fonction caractéristique ma-
du filtre principal A* est une mesure sur A et I’ensemble M des fonctions
caractéristiques de A* est une mesure sur A et ’ensemble M des fonctions
caractéristiques de I’ensemble A* est plein. En effet, soit ma«(a) < ma«(b);
VYma- € M. Supposons que la condition a < b ne soit pas réalisée et que
b & A. Par conséquent b ¢ A* et donc ma-(b) = 0. Puisque a € A*, alors
ma-(a) = 1 et nous tombons dans la contradiction que ma«(b) < ma-(a).
Par conséquent si ma-«(a) < ma«(b) alors a < b et donc ’ensemble M est
plein.
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