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CLASSIFICATION DES ANNEAUX DE HEYTING 

Introduction 
Soit un ensemble X ^ 0 ayant n éléments. Il existe des familles de 

sous-ensembles de l'ensemble 2X (2X est l'ensemble des sous-ensembles de 
l'ensemble X). Certaines de ces familles sont des anneaux de Heyting sur 
l'ensemble X. Certains de ces anneaux de Heyting sont des algèbres de Boole. 
Nous avons fait une classification de ces anneaux de Heyting et fait une 
représentation de la pseudo-algèbre de Boole dans la théorie des ensembles. 

1. Anneaux de Heyting 

1 . 1 . DEFINITION. On appelle anneau de Heyting sur un ensemble non vide X 
toute famille H Ç 2X (où 2X est l'ensemble des sous-ensembles de l'ensemble 
X) qui satisfait les conditions suivantes : 

î.XeH, 

Quelques soient les éléments A,Be 2X 

2. Si A, B G H alors 

a) A U B e H, A n B e H, 
b) A =>• B G H, où A =S> B = max{y e H : A D y Ç B} est le relatif 

pseudo complément élément de l'ensemble A h B. 
De plus, si H satisfait la condition 3 suivante : 

3. U H e H , 

alors H est dit anneau de Heyting avec l'élément nul zéro. 

1 . 2 . REMARQUES 

1. Tout anneau de Heyting contenant l'élément nul zéro est une pseudo-
algèbre de Boole. Les éléments de cette pseudo-algèbre sont des ensembles. 
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2. Si X est un ensemble fini, alors toute famille H Ç2X est finie. Toute 
famille finie H C 2X qui satisfait les conditions 1-3 de la définition 1.1 est 
un anneau fini de Heyting sur l'ensemble X contenant l'élément nul zéro. 

1.3. Exemples pour un ensemble X ayant n éléments 
Nous rappelons que la combinaison de m éléments pris k kk (k < m) qui 

est C™ = m\(k\(m — k)\)-1 nous permet de déterminer toutes les familles 
possibles à partir des éléments de 2X et par conséquent celles qui sont des 
anneaux de Heyting. 

EXEMPLE 1. Pour n = 2 nous obtenons trois cas de familles de l'ensemble 
2X : 

CAS 1. Pour les familles ayant deux éléments nous avons : 

— deux anneaux de Heyting {{1}, {1,2}} ; {{2}, {1,2}}, ayant chacun 
deux éléments mais ne sont pas des algèbres de Boole. 

— un seul anneau de Heyting {0, {1,2}} ayant deux éléments et est une 
algèbre de Boole. 
CAS 2. Pour les familles ayant trois éléments nous avons : 

— deux anneaux de Heyting {0, {2}, {1,2}} et {0, {1}, {1,2}} ayant cha-
cun trois éléments sont des chaînes mais ne sont pas des algèbres de Boole. 
CAS 3. Un seul anneau de Heyting contenant quatre éléments et qui est une 
algèbre de Boole, c'est l'ensemble 2X lui-même. 

EXEMPLE 2. Pour n = 3 , on obtient quarante trois anneaux de Heyting 
composés de : 

1. 7 anneaux de Heyting qui sont chacun une paire, 
2. 12 anneaux de Heyting ayant chacun 3 éléments, 
3. 12 anneaux de Heyting ayant chacun 4 éléments, 
4. 6 anneaux de Heyting ayant chacun 5 éléments, 
5. 6 anneaux de Heyting ayant chacun 6 éléments, 

il n'existe pas de famille de 7 éléments qui soit un anneau de Heyting. 

EXEMPLE 3. Pour n = 4, nous considérons seulement deux cas de familles, à 
savoir les familles qui sont des paires et les familles qui contiennent (24 — 1) 
éléments : 

1. Il existe (24 — 1) = 15 anneaux de Heyting qui sont de paires. 
2. Il n'existe pas de famille de 2X ayant (24 — 1) = 15 éléments qui soit 

un anneau de Heyting. 

1.4. COROLLARIES. a) Pour un ensemble X ayant n éléments il existe 
(2n — 1) anneaux de Heyting qui sont chacun une paire. 
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b) Pour un ensemble X ayant n éléments (n > 2) il n'y a pas de famille 
de 2X ayant (2n — 1) éléments qui soit un anneau de Heyting. 

c) Pour un ensemble X ayant n éléments (n > 2) toute famille de 2X 

qui est un anneau de Heyting possède au plus (2n — 2) éléments. 
d) Tous les anneaux de Heyting de 2X ayant deux ou trois éléments sont 

des chaînes. 

Dans la suite du travail nous admettons que : 

1) X est un ensemble ayant n éléments, avec n > 2 ; 
2) Hr est une famille de 2X ayant r éléments et X G Hr où r = 

5 ,6 , . . . , 2n — 2 ; 
3) Kt est un sous-ensemble de 2X tel que Hr fl Kt = 0, où T = 2n - r. 

1.5. THÉORÈME. Toute famille Hr de 2X d'un certain ensemble X ayant 
n éléments (n > 2) est un anneau de Heyting qui n'est pas une algèbre de 
Boole si et seulement si Hr est de la forme Hr = 2X \ Kt, et Kt est ou 
bien une chaîne ou contient la somme de deux quelconques de ses éléments 
disjoints et le produit de deux quelconques de ses éléments non disjoints. 

P r e u v e . Soit un ensemble X ^ 0 ayant n éléments (n > 2). 
(=>) Supposons que Hr = 2X \ Kt soit un anneau de Heyting qui n'est 

pas une algèbre de Boole, Hr est un sous-ensemble de l'ensemble 2X et 
contient donc au plus (2n — 2) éléments. Puisque Hr n'est pas une algèbre 
de Boole, et Kt contient seulement T éléments alors Kt renferme en soi la 
somme et le produit de ses éléments c'est-à-dire que Kt est soit une chaîne 
soit renferme en soi la somme de deux quelconques de ses éléments disjoints 
et le produit de deux quelconques de ses élémenst non disjoints. 

(<i=) a) Supposons que Kt soit une chaîne. Puisque chaque élément de 
l'ensemble 2X est soit la somme soit le produit d'autres éléments et Kt 
renferme en soi la somme et le produit de ses propres éléments alors la 
famille restante Hr = 2X \ Kt contient la somme et le produit de deux 
quelconques de ses propres éléments. Quelques soient les éléments A,Be 
Hr = 2x\Kt, il existe C € Hr = 2X \KT tel que AiïC Ç B par conséquent 
A B G Hr = 2X \ Kt et donc Hr — 2X \ Kt est un anneau de Heyting. 

Si Hr = 2X \ Kt est une algèbre de Boole alors VA 6 Hr = 2X \ KT, 
3A' € Hr = 2X \ Kt tel que A U A' = X = V et A n A' = A = 0 ; cela est 
possible seulement si Kt n'est pas une chaîne. Comme Kt est une chaîne 
alors Hr = 2X \ Kt ne peut pas être une algèbre de Boole. 

b) Supposons maintenant que Kt contienne la somme de deux quel-
conques de ses éléments disjoints et le produit de deux quelqonques de 
ses éléments non disjoints, alors la famille Hr = 2X \ Kt restante ren-
ferme en soi la somme et le produit de deux de ses éléments quelconques, 
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et VA, B € Hr = 2X \ KT il ex is te C e Hr = 2X \ KT tel que A n C Ç B, 
c'est-à-dire que (A =>• B) 6 Hr = 2X \ KT par conséquent Hr = 2X \ KT 
est un anneau d e Heyt ing , e t d 'où la démonstra t ion du théorème 1 - 5 . 

EXEMPLE. Pour n = 3 alors r = 5 e t T = 3 o u r = 6 e t T = 2. 
1. Pour r = 5 alors T = 3 et nous avons 6 anneaux de Heyt ing ayant 

chcun 3 é léments: 

(1) H s = {0, { 1 } , {2} , { 1 , 2 } , { 1 , 2 , 3 } } ; 

(2) i?5 = {0, { 1 } , { 3 } , { 1 , 3 } , { 1 , 2 , 3 } } ; 

(3) = {0, { 1 } , { 1 , 2 } , { 1 , 3 } , { 1 , 2 , 3 } } ; 

(4) i?5 = {0, { 2 } , { 3 } , { 2 , 3 } , { 1 , 2 , 3 } } ; 

(5) = {0, { 2 } , { 1 , 2 } , { 2 , 3 } , { 1 , 2 , 3 } } ; 

(6) # 5 = {0, { 3 } , { 1 , 2 } , { 2 , 3 } , { 1 , 2 , 3 } } ; 

On voit a isément que chaque famil le H5 est un anneau de Heyt ing , ma i s 
n'est pas une algèbre de B o o l e et chaque famil le K3 sat isfait les condi t ions 
du théorème 1.5. 

2. Pour r = 6 alors T = 2 nous avons aussi 6 a n n e a u x de Heyt ing ayant 
chaqun 6 é l 'éments : 

K3 = { 3 } , { 1 , 3 } , { 2 , 3 } } 

K3 = { 2 } , { 1 , 2 } , { 2 , 3 } } 

K3 = { 2 } , { 3 } , { 2 , 3 } } 

K3 = { 1 } , { 1 , 2 } , { 1 , 3 } } 

K3 = { 1 } , { 3 } , { 1 , 3 } } 

K3 = { 1 } , { 2 } , { 1 , 2 } } . 

(1) He = {0 , { 1 } , { 2 } , { 1 , 2 } , { 1 , 3 } { 1 , 2 , 3 } } ; 

(2) H6 = {0 , { 1 } , { 3 } , { 1 , 2 } , { 1 , 3 } , { 1 , 2 , 3 } } ; 

(3) H6 = {0 , { 1 } , { 3 } , { 1 , 3 } , { 2 , 3 } , { 1 , 2 , 3 } } ; 

(4) He = {0, { 1 } , { 2 } , { 1 , 2 } { 2 , 3 } , { 1 , 2 , 3 } } ; 

(5) H6 = {0 , { 2 } , { 3 } , { 1 , 3 } , { 2 , 3 } , { 1 , 2 , 3 } } ; 

(6) H6 = {0 , { 2 } , { 3 } , { 1 , 2 } , { 2 , 3 } , { 1 , 2 , 3 } } ; 

K2 = {{ 3 } , { 2 , 3 } } 

tf2 = { { 2 } , { 2 , 3 } } 

j r a = { { 2 } , { l , 2 } } 

K2 = {{3}, { 1 , 3 } } 

K2 = {{ 1 } , { 1 , 2 } } 

K2 = {{1},{1,3}} 

Chaque famil le He est u n anneau de Heyt ing mai s n'est pas une algèbre de 
Boole 'a . Chaque famil le K2 es t une chaîne. 

1 . 6 . THÉORÈME. (Sur la représentation dans la théorie des ensembles de la 
pseudo-algèbre de Boole). 

Pour chaque pseudo-algèbre de Boole non dégénérée A, il existe un en-
semble X ^ 0, tel que A soit isomorphe à un certain anneau de Heyting sur 
X contenant l'élément nul. 

P r e u v e . Soit A u n e pseudo-algèbre de B o o l e et soit M (A) la famil le de 
tous les filtres m a x i m a u x A de A. Pour tou t é lément a € A nous posons 
que 

v(a) = {Ae M (A) : a G A} ; B(A) = {«(a) : a G A}. 
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Du théorème de représentation de Stone des treillis distributifs [1], on sait 
que l'ensemble M (A) est un treillis d'ensembles isomorphe au treillis A et 
l'application v : A —* B(A) définie par v(a) = {A G M(A) : a G A} est un 
isomorphisme. En effet : 

1) v(a U b) = {A G M (A) : a U b G A} = {A G M (A) : a G A ou b G 
A} = {A G M (A) : a G A}l){A G M (A) : b G A} = v(a)Uv(b), c'est-à-dire 
v(a U b) = v(a) U v(b) ; 

2 ) v(a n b) = {A G M (A) : af)b e A} = {A e M(A) : a G A et b G 
A} = {A G M (A) : a G A}f]{A G M (A) :be A} = v(a)Dv(b), c'est-à-dire 
v(a n b) - v(a) n v(b) ; 

3 ) v(-a) = {A G : - a G = M (A) \ {A G M ( . 4 ) : a G = 
M(A) \ u(a) = —v(a) c'est-à-dire que v(—a) = —v(a) ; 

4) Nous devons montrer que v(a => b) = v(a) => v(b). 

a) Inclusion v(a b) C f (a) => u(ò) : 
On sait que si (a b) £ A alors a g A ou b G A, donc A G v(a 6) 

implique que A G [(M(.4) \ i;(a)) U Puisqu'on sait que M (A) \ v(a)) U 
v(b) = —v(a) U v(b) et — v(a) U v(b) Ç v(a) => v(b) alors A G u(a) =>• v(b), 
c'est-à-dire v(a =>• b) Ç v(a) v(6). 

b) Inclusion v(a) => v(b) C v(a => b). Nous montrons que [M(.4)\t>(a)]U 
v(b) Ç v(a => b). Supposons que A G [M{A) \ v(a)] U v(b). Si A G v(b) 
alors b E A. Puisque b Ç a b, c'est-à-dire que b (a b) = V alors 
(a b) G A, donc A G v(a =>• b). Si A G [M(A) \ v(a)] alors a £ A, donc 
(a 6) G A, c'est-à-dire A G v(a => b). On sait que a U (a b) G A, et 
A est premier, alors ou bien a G A, ou bien (a => b) G A. Puisque a # A, 
donc (a b) G A, et ainsi [M(A) \ v(a)] U v(b) < v(a b), c'est-à-dire 
v(a) v(b) Ç v{a b). 

Conclusion . Si v(a => 6) ç i/(a) =» t;(ò) ç v(a 6) alors v(a =$> b) = 
v(a) => v(b). 

5) v(VM(A)) = {A G M M ) : G A} = M(^) . 
6) Pour a ^ v(a) ®> c a r l'ensemble I = {y G .4 : y < —a} 

est un filtre et chaque filtre maximal contenant le filtre I appartient à v(a) 
donc v(a) ^ 0. 

7) Supposons que a < b si et seulement si v(a) C v(b) Va, b G A Si a ^ b 
alors ou bien a < 6 n'est pas réalisé ou bien 6 < a n'est pas réalisé, et donc 
v(a) C v(b) n'est pas réalisé ou bien v(b) C v(a) n'est pas réalisé, c'est-à-dire 
que l'application v est injective. 

L'application v : A M(A) est injective, elle conserve les opérations 
U, fl, — et aussi V(VM{A)) = M (A), est donc un isomorphisme et d'où la 
démonstration du théorème 1-6. 
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