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CLASSIFICATION DES ANNEAUX DE HEYTING

Introduction

Soit un ensemble X # @ ayant n éléments. Il existe des familles de
sous-ensembles de I’ensemble 2% (2% est ’ensemble des sous-ensembles de
I'ensemble X). Certaines de ces familles sont des anneaux de Heyting sur
I’ensemble X . Certains de ces anneaux de Heyting sont des algebres de Boole.
Nous avons fait une classification de ces anneaux de Heyting et fait une
représentation de la pseudo-algébre de Boole dans la théorie des ensembles.

1. Anneaux de Heyting

1.1. DEFINITION. On appelle anneau de Heyting sur un ensemble non vide X
toute famille H C 2% (oi1 2% est ’ensemble des sous-ensembles de I’ensemble
X) qui satisfait les conditions suivantes :

1. X eH,
Quelques soient les éléments A, B € 2X
2.Si A, B € H alors

a) AUBe H, ANB€H,
b) A= Be€ H,ot A= B =max{y € H: ANy C B} est le relatif
pseudo complément élément de I’ensemble A 4 B.

De plus, si H satisfait la condition 3 suivante :

3. UH € H,
alors H est dit anneau de Heyting avec ’élément nul zero.
1.2. REMARQUES

1. Tout anneau de Heyting contenant 1’élément nul zéro est une pseudo-
algebre de Boole. Les éléments de cette pseudo-algébre sont des ensembles.
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2. Si X est un ensemble fini, alors toute famille H C 2X est finie. Toute
famille finie H C 2X qui satisfait les conditions 1-3 de la définition 1.1 est
un anneau fini de Heyting sur ’ensemble X contenant 1’élément nul zéro.

1.3. Exemples pour un ensemble X ayant n éléments

Nous rappelons que la combinaison de m éléments pris k & k (k < m) qui
est CT* = m!(k!(m — k)!)~! nous permet de déterminer toutes les familles
possibles & partir des éléments de 2X et par conséquent celles qui sont des
anneaux de Heyting.

EXEMPLE 1. Pour n = 2 nous obtenons trois cas de familles de ’ensemble
2X .

Cas 1. Pour les familles ayant deux éléments nous avons :

— deux anneaux de Heyting {{1}, {1,2}};{{2},{1,2}}, ayant chacun
deux éléments mais ne sont pas des algebres de Boole.

— un seul anneau de Heyting {0, {1, 2}} ayant deux éléments et est une
algebre de Boole.

Cas 2. Pour les familles ayant trois éléments nous avons :

— deux anneaux de Heyting {0, {2}, {1, 2}} et {0, {1}, {1,2}} ayant cha-
cun trois éléments sont des chaines mais ne sont pas des algebres de Boole.
CAs 3. Un seul anneau de Heyting contenant quatre éléments et qui est une
algebre de Boole, c’est ’ensemble 2% lui-méme.

EXEMPLE 2. Pour n = 3, on obtient quarante trois anneaux de Heyting
composés de :

1. 7 anneaux de Heyting qui sont chacun une paire,
2. 12 anneaux de Heyting ayant chacun 3 éléments,
3. 12 anneaux de Heyting ayant chacun 4 éléments,
4. 6 anneaux de Heyting ayant chacun 5 éléments,
5. 6 anneaux de Heyting ayant chacun 6 éléments,

il n’existe pas de famille de 7 éléments qui soit un anneau de Heyting.

EXEMPLE 3. Pour n = 4, nous considérons seulement deux cas de familles, a
savoir les familles qui sont des paires et les familles qui contiennent (2% — 1)
éléments :

1. 1l existe (2* — 1) = 15 anneaux de Heyting qui sont de paires.
2. Il n’existe pas de famille de 2X ayant (2¢ — 1) = 15 éléments qui soit
un anneau de Heyting.

1.4. COROLLARIES. a) Pour un ensemble X ayant n éléments il existe
(2™ — 1) anneauz de Heyting qui sont chacun une paire.
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b) Pour un ensemble X ayant n éléments (n > 2) il n’y a pas de famille
de 2% ayant (2" — 1) éléments qui soit un anneau de Heyting.

c) Pour un ensemble X ayant n éléments (n > 2) toute famille de 2%
qui est un anneau de Heyting posséde au plus (2™ — 2) éléments.

d) Tous les anneauz de Heyting de 2X ayant deuz ou trois éléments sont
des chaines.

Dans la suite du travail nous admettons que :

1) X est un ensemble ayant n éléments, avec n > 2;

2) H, est une famille de 2% ayant r éléments et X € H, ol r =
5,6,...,2" —2;

3) K est un sous-ensemble de 2X tel que H,N K7 =0, o0 T = 2" —r.

1.5. THEOREME. Toute famille H, de 2X d’un certain ensemble X ayant
n éléments (n > 2) est un anneau de Heyting qui n'est pas une algébre de
Boole si et seulement si H, est de la forme H, = 2X \ K, et Kt est ou
bien une chaine ou contient la somme de deuz quelconques de ses éléments
disjoints et le produit de deuz gquelconques de ses éléments non disjoints.

Preuve. Soit un ensemble X # @ ayant n éléments (n > 2).

(=) Supposons que H, = 2% \ K soit un anneau de Heyting qui n’est
pas une algébre de Boole, H, est un sous-ensemble de I’ensemble 2X et
contient donc au plus (2" — 2) éléments. Puisque H,. n’est pas une algebre
de Boole, et K1 contient seulement 7" éléments alors Kt renferme en soi la
somme et le produit de ses éléments c’est-a-dire que K est soit une chaine
soit renferme en soi la somme de deux quelconques de ses éléments disjoints
et le produit de deux quelconques de ses élémenst non disjoints.

(«) a) Supposons que Kr soit une chaine. Puisque chaque élément de
lensemble 2% est soit la somme soit le produit d’autres éléments et Kr
renferme en soi la somme et le produit de ses propres éléments alors la
famille restante H, = 2X \ Kr contient la somme et le produit de deux
quelconques de ses propres éléments. Quelques soient les éléments A, B €
H, =2X\Kr,ilexiste C € H, = 2X\KT tel que ANC C B par conséquent
A= B¢€ H, =2%X\ Kr et donc H, =2% \ Kr est un anneau de Heyting.

Si H, = 2% \ Kr est une algebre de Boole alors VA € H, = 2% \ Kr,
JA' € H, =2X\Krtelque AUA' =X =V et ANA = A=0; cela est
possible seulement si K1 n’est pas une chaine. Comme K7 est une chaine
alors H, = 2% \ K1 ne peut pas étre une algébre de Boole.

b) Supposons maintenant que K7 contienne la somme de deux quel-
conques de ses éléments disjoints et le produit de deux quelgonques de
ses éléments non disjoints, alors la famille H, = 2% \ Kt restante ren-
ferme en soi la somme et le produit de deux de ses éléments quelconques,
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et VA, B € H, = 2X \ Kr il existe C € H, =2X\ Kr telque ANC C B,
c’est-a-dire que (A = B) € H, = 2X \ K7 par conséquent H, = 2X \ Kr
est un anneau de Heyting, et d’olu la démonstration du théoreme 1-5.

EXEMPLE. Pour n=3 alors r=5et T=3our=6et T =2.

1. Pour r = 5 alors T = 3 et nous avons 6 anneaux de Heyting ayant
chcun 3 éléments:

(1) Hs = {0, {1}, {2}, {1, 2}, {1, 2,3}}; K3 ={{3},{1,3},{2,3}}
(2) Hs = {0, {1}, {3},{1,3},{1,2,3}}; K3 = {{2},{1,2},{2,3}}
(3) Hs = {0,{1},{1,2},{1,3},{1,2,3}}; Ks={{2},{3},{2,3}}
(4) Hs = {0, {2}, {3}, {2,3},{1,2,3}}; Ks = {{1},{1,2},{1,3}}
(5) Hy = {0a {2}a {la 2}) {2a 3}’ {1’ 2, 3}} i Ks= {{1}7 {3}a {17 3}}
(6) Hs = {0,{3},{1,2},{2,3},{1,2,3}}; Ks={{1}{2},{1,2}}.
On voit aisément que chaque famille Hs est un anneau de Heyting, mais

n’est pas une algébre de Boole et chaque famille K3 satisfait les conditions
du théoréme 1.5.

2. Pour r = 6 alors T = 2 nous avons aussi 6 anneaux de Heyting ayant
chaqun 6 él’éments :

(1) He = {0,{1},{2},{1,2},{1,3}{1,2,3}}; K2 ={{3},{2,3}}
(2) Hg = {(07 {1}7 {3}> {17 2}7 {17 3}7 {1’ 2, 3}} ; Ka= {{2}7 {27 3}}
(3) He = {0,{1},{3},{1,3},{2,3},{1,2,3}}; K»={{2},{1,2}}
(4) He = {0, {1}, {2},{1,2}{2,3},{1,2,3}}; Ko = {{3},{1,3}}
(5) He = {0,{2},{3},{1,3},{2,3},{1,2,3}}; Ko={{1},{1,2}}
(6) He = {0’ {2}, {3} {1,2}, {2’ 3h{L,2, 3}} ; Ko= {{1}7 {1, 3}}

Chaque famille Hg est un anneau de Heyting mais n’est pas une algebre de
Boole’a. Chaque famille K5 est une chaine.

1.6. THEOREME. (Sur la représentation dans la théorie des ensembles de la
pseudo-algébre de Boole).

Pour chaque pseudo-algébre de Boole non dégénérée A, il existe un en-
semble X # 0, tel que A soit isomorphe & un certain anneau de Heyting sur
X contenant l’élément nul.

Preuve. Soit A une pseudo-algtbre de Boole et soit M(.A) la famille de
tous les filtres maximaux A de A. Pour tout élément a € A nous posons
que

v(a) ={Ae M(A):ae€ A}; B(A)={v(a):a€ A}l
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Du théoréme de répresentation de Stone des treillis distributifs [1], on sait
que ’ensemble M(.A) est un treillis d’ensembles isomorphe au treillis A et
'application v : A — B(.A) définie par v(a) = {A € M(A) :a € A} est un
isomorphisme. En effet :

Nveub)={Aec M(A):aUbe A} ={Aec M(A):acAoube
At={Ae M(A):a€ A}U{A e M(A):be A} =v(a)Uv(b), c’est-a-dire
v(aUb) = v(a) Uv(b);

2)v@nd) ={Ae M(A):anbe A} ={AeMA) :acAetbe
Ay={A e M(A):ae AINn{A € M(A):be A} =v(a)Nuv(b), c’est-a-dire
v(anbd) =v(a)Nv(b);

3)v(—a)={Aem(A):—a€A}— MA\{Ae M(A):aec A} =

M(A) \ v(a) = —v(a) c’est-a-dire que v(—a) = —v(a);
4) Nous devons montrer que v(a = b) = v(a) = v(b).

a) Inclusion v(a = b) C v(a) = v(b) :

On sait que si (a = b) € Aalorsa g Aoub € A, donc A € v(a = b)
implique que A € [(M(A)\ v(a)) Uv(d)]. Puisqu’on sait que M(A) \ v(a))U
v(b) = —v(a) Uv(b) et —v(a) Uv(b) C v(a) = v(b) alors A € v(a) = v(b),
c’est-a-dire v(a = b) C v(a) = v(b).

b) Inclusion v(a) = v(b) C v(a = b). Nous montrons que [M(A4)\v(a)]U
v(b) C v(a = b). Supposons que A € [M(A) \ v(a)] Uv(b). Si A € v(b)
alors b € A. Puisque b C a = b, c’est-a-dire que b = (a = b) = V alors
(a = b) € A, donc A € v(a = b). Si A € [M(A)\ v(a)] alors a &€ A, donc
(a = b) € A, c'est-a-dire A € v(a = b). On sait que aU (a = b) € A, et
A est premier, alors ou bien a € A, ou bien (a = b) € A. Puisque a ¢ A,
donc (a = b) € A, et ainsi [M(A) \ v(a)]Uv(b) < v(a = b), c’est-a-dire
v(a) = v(b) C v(a = b).

CONCLUSION. Si v(a = b) C v(a) = v(b) C v(a = b) alors v(a = b) =
v(a) = v(b).

5) U(VM(A)) = {A € M(.A) : VM(A) € A} = M(A)

6) Pour a # Ap(a), v(a) # 0, car ensemble I = {y € A:y < —a}
est un filtre et chaque filtre maximal contenant le filtre I appartient & v(a)
donc v(a) # 0.

7) Supposons que a < b si et seulement si v(a) C v(b) Va,be A.Sia #b
alors ou bien a < b n’est pas réalisé ou bien b < a n’est pas réalisé, et donc
v(a) C v(b) n’est pas réalisé ou bien v(b) C v(a) n’est pas réalisé, c’est-a-dire
que ’application v est injective.

L’application v : 4 — M(A) est injective, elle conserve les opérations
U,N, =, — et aussi v(Var(4)) = M(A), est donc un isomorphisme et d’ot la
démonstration du théoréme 1-6.
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