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ON SOME M-HYPERIDENTITIES OF VARIETIES

1. Introduction

Let 7 : F — N be a fixed type of algebras, where F' is a set of fun-
damental operation symbols and N is the set of non-negative integers.
For a term ¢ of type 7 let Var(yp) denote the set of all variables oc-
curring in ¢. We denote by F(p) the set of all fundamental operation
symbols in . Writing ¢(z;,,...,Z;,,_,) instead of ¢ we shall mean that
Var(y) C {zig,- -, Ti,,_, }- Let ®7, denote the set of all terms of type 7 on
variables zg, ..., Zg,... (k <w).

DEerINITION 1 (7], [4]). A mapping 7 : ®7 — @] is called a hypersubsti-

tution of type 7 (or briefly: a hypersubstitution) if  satisfies the following

conditions:

[H1] to every term f(zo,...,Tr(s)-1) Where f € F we assign a term
@1n(Zo, ..., Tr(p)-1) of type 7 i.e.

n(f(zo, - .- Zr(5)-1)) = Psn(T0, - -, Tr(p)-1),
[H2] n(zx) = z for every variable xj where 0 < k < w,
[H3]if f € F and ¢y, .. ., or(5)-1 € B[, then
n(f(©0,- -, Pr(£)-1)) = @fa(n(0), - -, 1(Pr(£)-1))-

We denote the set of all hypersubstitutions of type 7 by Hyp(T).
Let V be a variety of type 7. We denote by Id(V) the set of all identities
of type 7 satisfies in V.

DEFINITION 2 ([4], [10}). An identity ¢; = 2 of type 7 is a hyperidentity of
a variety V if for every hypersubstitution 7 of type 7 the identity n(y;) =
7(p2) belongs to Id(V).

In [7] and [2] it was observed that Hyp(7) = (Hyp(T), 0, n:4) is a monoid
where 74 is the identity map and o denotes the superposition. Let M Hyp(7)
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= (M Hyp(r),0,m:4) be a submonoid of the monoid Hyp(7). Elements of
M Hyp(t) are called M-hypersubstitutions.

DEFINITION 3 ([7], [2]). An identity ¢; = @2 of type 7 is called an M-
hyperidentity of V if for every n € M Hyp(r) the identity n(v1) = n(p2)
belongs to Id(V).

We denote the set of all M-hyperidentities of a variety V' by Hp (V).
Obviously, Definition 3 is a generalization of the definition of a hyperidentity.
Namely if M Hyp(7) = Hyp(7) then we get the definition of a hyperidentity.
So the set Hpyp(r)(V) is the set of all hyperidentities of a variety V and in
the literature it is denoted by H(V).

Let E be a set of identities of type 7. By Mod(E) we denote the variety
defined by the set E. Let T(7) be an equational theory of identities of type
7 and let Vp(;) = Mod(T(r) N Id(V)). Since T(r) N Id(V) C Id(V), so the
variety Vp(;) is called an extension of V.

An identity @1 = 2 of type 7 is called normal (see (3], [5]) if it is of the
form z =z or F(p1) # 0 # F(p2).

It is known that the set N(7) of all normal identities of type 7 is an
equational theory.

An identity ¢; = @2 of type 7 is called regular (see [6]) if Var(p;) =
Var(yp2).
In 7] and [9] some M-hyperidentities of Viy(,) and Vg(,) were considered.

In this paper we study the extension VF{? of a variety V (see [11]) and we
characterize some M-hyperidentities of this extension.

2. RN(Fi, F;)-hypersubstitution

Let 7 : F — N be a fixed type of algebras. We consider the following
condition:

(1) FLUF,=F, FNF,=0 and T—I(O)CFQ.

DEFINITION 4. Let Fy, F» satisfy the condition (1). A hypersubstitution 7 of
type 7 will be called an RN (F}, F»)-hypersubstitution if the following two
conditions are satisfied:

cl for every f € Fi we have F(n(f(zo,...,Z(5)-1))) € F1 and
Var(n(f(zo, .., Tr()-1))) = {20, - - -, Zr(s)-1}
or for every f € F} we have
F(n(f(zo,...,z(5)-1))) N F2 # 0,
c2 for every f € Fy we have F(n(f(zo,...,Zr(5)-1))) NF2 #0.
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We denote the set of all RN(Fy, Fy)-hypersubstitutions of type 7 by
RN(Fy, F»)Hyp(T).

The concept of RN (F}, F5)-hypersubstitution is a generalization of the
concept of a pre-hypersubstitution (see [1]). In fact, RN(Q, F)Hyp(r) =
PreHyp(r). If 0 ¢ 7(F) then a RN(F,0)-hypersubstitution is a reg-hyper-
substitution (see [7]) and RN (F,0)Hyp(r) = RegHyp(T).

Let Fy C F. In [11] we define an Fyp-regular identity and Fy-symmetrical
identity. Namely:

DEFINITION 5. An identity ¢; = ¢ of type 7 is called Fy-regular if F(p;) C
Fo, and F(p2) C Fp and Var(y1) = Var(es).

DEFINITION 6. An identity @1 = o of type 7 is called Fp-symmetrical if
F(p1)NFy # 0 and F(p2) N Fy # 0.

Let Fi, F, satisfy the condition (1). We denote by Rp, the set of all
Fy-regular identities of type 7 and by Spg, the set of all Fp-symmetrical
identities of type 7. Then we have

(2) (see [11])  the set Rp, USFE, is an equational theory.
LEMMA 1. Let n € RN (F1, F2)Hyp(7) and ¢ be a term of type 7. Then

L1 if for every f € F(p) we have F(n(f(zo,...,Z5)-1))) € F1 then
F(n(v)) € Fi and Var(p) = Var(n(p)),

L2 if there exists g € F(p) such that F(n(g(zo, ..., Zr(g)-1))) N F2 # 0 then
F(n(e)) N F2 # 0.

Proof. (L1) is a consequence of (3i) from [7] and Lemma 4.1 from (8].
A proof of (L2) is by induction of the complexity of ¢. If ¢ is the form
9(Tios - - -+ Tiy(yy_,) then

F(g(fl?io, .. 'ami,-(f)_],)) = {g}

and
F(n(g(wioa oo 71'1}(;)_1))) = F(n(g(mOa KR mr(f)—l)))
then F(n(y)) N F2 # 0.
Let ¢ = f(wo,---,9r(s)-1) and assume that the statement holds for

P05+« Pr(f)-1
If F(n(f(zo,---,Z-(p)-1))) N F2 # 0 then F(n(p)) N F» # O since

F(n(f(zo,---,Tr(5)-1))) € F(n(p)) by (H3). If F(n(f(zo,-..,z-(5)-1))) €
F; then by the assumption of (L2) there exists ¢ € {0,...,7(f) — 1} such

that g € F(y;) and F(n(g(zo,...,Z-(g)-1))) N F2 # 0. By the inductive as-
sumption F(n(y;)) N Fy # 0. Since f € Fy and n € RN(Fy, F3)Hyp(r) so
F(n(p:)) € F(n(y)). Hence F(n(p)) N F2 # 0.
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By Lemma 1 we get

COROLLARY 1. If n € RN(Fy, F2)Hyp(T) and [p1 = ¢2] € (Rp, USE,) then
[1(1) = n(p2)] € (R, U SR,).

In [8] the notion of a proper hypersubstitution was defined.

DEFINITION 7. A hypersubstitution 7 of type 7 is called a proper hypersub-
stitution of a variety V of type 7 if for every identity ¢; = 2 belonging to
Id(V) the identity n(p1) = n(p2) belongs to Id(V).

Let P(V) denote the set of all proper hypersubstitutions of V. Obviously,
P(V) = (P(V),0,n,4) is a submonoid of Hyp(7) (see [7]).

THEOREM 1. If F; and F, satisfy (1) then
P(Mod(Rp, U SF,)) = RN(F1, F3)Hyp(T).

Proof. By Definition 7 and Corollary 1 we get RN(Fy, F3)Hyp(t) C

P(Mod(RFp, U Sg,)). To prove the converse inclusion assume that n €

P(Mod(Rp, U SR,)) and n € RN (Fy, F2)Hyp(7). Then we have three pos-

sibilities:

pl there exist f, fo € Fy with F(n(fi(zo,...,2r(f,)-1))) N F2 # 0 and
F(U(f2($0, RE) J:‘r(fg)—l))) C Fy;

P2 there exists f € Fy with F(n(f(zo,.-.,Z(5)-1))) € F1 and
Var(n(f(zo,---,Zr(5)-1))) # {Z0s- -, ZTr(5)-1}
p3 there exists f € Fy with F(n(f(zo,...,%(5)-1))) C F1.
If (p1) holds then [fi(z,...,z) = f2(z,...,z)] € Rp,. But
n(fi(z, ..., 2)) = n(fa(z, ..., z))] € RF, U Spy,
so n &€ P(Mod(RFp, U SE,)).
Let f satisfy (p2) and for some ¢ € {0,...,7(f) — 1} let
T; ¢ V‘"’(U(f(xo, s 7IT(f)—1)))'
Hence 7(f) > 2.
If i = 0 then f(y,z,...,z) = f(z,y,...,y) € Rp, and
Var(n(f(y,=,...,x))) ={z}, Var(n(f(z,y,...,9))) = {y}.
If i = 7(f) — 1 then f(z,...,z,¥) = f(y,...,¥,2) € Rp, and
Var(n(f(z,...,z,9))) = {z}, Var(n(f(y,-..,y,2))) = {y}.

If0 <i< 7(f)—1then f(z,...,z,y,2,...,2) = f{¥,-. ., % T, ¥Y,...,Y) €
Rp, and
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V‘"‘(’?(f(m, ey Ty Y Ty ey 13))) = {(E},
Var(’r](f(y, MR | y’ x’ y7 b "y))) = {y}.
Son¢ P(MOd(RF1 USE)).
If f satisfies (p3) then [f(z,...,z) = f(y,...,¥)] € SF, and

Var(n(f(z,...,z))) = {z},
Var(n(f(y,...,v))) = {v}.

We have also F(n(f(z,...,z))) € Fi, and F(n(f(y,-..,¥))) € F1.
n(f(z,...,z)) =n(f(y,.. ,y))] ¢ Rr,USF,. Hence 1 ¢ P(Mod(RFlUSFz))

It was proved in [9] that

REsSULT 1. If V is a variety of type T then

(1M) HM(VT(.,)) CT(r)NHp (V) and
(2M) if MHyp(t) C P(Mod(T(7))) then Hy (V) = T(1) N Hy (V).

By Theorem 1 and Result 1 we get

COROLLARY 2. If V' is a variety of type T then HRN(Fl,Fz)(VpI:?) = (Rp U
Sry) N Hen(r, Ry (V)

One says — that two hypersubstitutions n; and 72 are V-equivalent (see
[8]) if for every f € F we have [n1(f(xo, .. ., Zr(5)-1)) =m2(f(Z0, - . -, $r(f)—1))]
€ Id(V). '

It was proved in [9] that

RESULT 2. Let V' be a variety of type 7. If for every n € Hyp(7) there exists
n* € MHyp(7) such that n and n* are V-equivalent then Hy (V) = H(V).

We say that a term ¢(zo, ..., Zm—1) different from a variable is idempo-
tentin V if [p(z,...,z) = z] € Id(V).

THEOREM 2. Let V' be a variety of type 7. If there exists an idempotent term
@ in V such that F(p) N Fy # 0 then Hpn(py, m) (V) = H(V).

Proof. By Result 2 it is enough to show that for every n € Hyp(r) there
exists n* € RN(F1, F») Hyp(t) such that the hypersubstitutions n and n* are
V-equivalent. If n € RN (F1, Fo) Hyp(7) then it is enough to take n = n*. Let
n &€ RN(F1, Fa)Hyp(t). Then for some i € {0,...,7(f) — 1} the variable z;

belongs to Var(n(f(zo, ..., Zr(f)-1))) and F(n(f(zo, ..., ZTr(f)-1)))NF2 = 0.
Put
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" (f(Zo,- -, Zr(p)=1)) =
( psn(e(zo,...,z0),21,..., a:,-(f)_l) ifi=0-

and F(n(f(zo,.. .,.’L’,.(f)_l))) NF=10
(,Of,n(.'L‘o, o9 Li—1, Lp(:L‘,-, cee ,:L‘,'),:L‘i_,_l, ey x‘r(f)-l)
{ if0<i< ’T'(f) —1and F(‘I](f(:l,‘(), .. 'az‘r(f)—l))) NF = )
Pin(Z0y - - s Tr(f)=2, P(Tr(f) =15+ + » Tr(f)=1))

if i =7(f) — 1 and F(n(f(zo, ... ,xr(f)—l))) NFy=10
( n(f(zo, .-, Zr(p)-1)) i F(n(f(Zo,-..,%7(5)—1))) N F2 # 0.
Thus 7 and 7* are V-equivalent and n* € RN (Fy, F2)Hyp(T).

By Corollary 2 and Theorem 2 we get

COROLLARY 3. If V is a variety of type 7 and if there exists an idempotent
term in V and F(p) N Fy # O then Hpn(r, py)(VE2) = (Rp, USR)NH(V).
EXAMPLE 1. Let F = {+,-/,0,1} where 7(+) = 7(-) =2, 7() = 1, 7(0) =
7(1) =0 and Fy = {+,-}, F2 = {/,0,1}. Then for the variety B of Boolean
algebras of type 7 we have HRN(Fl,Fg)(Bgf) = (Rp, USR,) N H(B).
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