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SUPER-CONVERGENCE OF THE A POSTERIORI
ERROR ESTIMATORS FOR FINITE-ELEMENT SOLUTIONS

Abstract. The analysis of the accuracy of the a posteriori error estimation procedure
for finite-element solutions is presented. The function Y —y is used as an a posteriori error
. 1,A . . . . 2,

estimator, here y € §3' is the finite-element solution of the given problem and Y € S

is the higher order solution of the same problem. The second order accuracy is proved for
this error estimator in the Ly, H; and Lo norms. Results of numerical experiments are
presented.

1. Introduction

Numerical methods which are used in scientific computations and math-
ematical modeling must be robust and efficient. Both of these properties
depend essentially on the quality of a posteriori error estimators. Firstly,
similar to physical experiments, it is not sufficient to find a discrete solution,
we also need to know the boundaries of the error of the obtained discrete
solution. The key ingredient of such methodology is a reliable method for
assessing the quality of computed approximation. An a posteriori error es-
timator must be computed using the data for the given problem and the
discrete approximation itself. Such method is efficient if the costs of obtain-
ing the estimator are small compared with the computation of the discrete
solution [3]. Secondly, efficient numerical algorithms use adaptive approxi-
mations. Error estimation and mesh adaptation goes hand-in-hand leading
to economical discrete schemes. The robustness of such strategy again de-
pends on the quality of a posteriori error estimation procedures.

A posteriori error estimates were investigated in many papers, see [2,
3, 5, 11, 12]. Mostly, the estimators are of residual type and are similar to
estimators of Babuska, Rheinboldt [3, 4]. The solution of only local prob-
lems on each element is used to get the error estimation. A posteriori error
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estimation is done with respect to the natural energy norm induced by the
underlying differential operator; for details see the surveys [2, 16].

In many applications we also need useful bounds on the error in more
convenient norms, e.g. Lo and pointwise norms. Such estimates are obtained
by using duality arguments. This approach is systematically developed in
[5, 8, 10, 13].

We consider the global error estimators, which are based on the higher
order finite-element solution of the given differential problem. Optimal ac-
curacy estimates are proved for such a posteriori error estimators in the Ly,
Lo and Hj norms. The super-convergence property of quadratic elements
was also used in [18] for the justification of one derivative recovery technique.
Similar analysis for the gradient recovery technique is done in [19].

The rest of the paper is outlined as follows. First, in section 2 we de-
scribe an elliptic problem and its discretization. In section 3, we construct
the a posteriori error estimator and present standard interpolation error es-
timates. In section 4, the accuracy of the a posteriori error estimators is
investigated with respect to the Lo norm. A similar analysis with respect to
the H; and Ly, norms is presented in sections 5 and 6, respectively. Finally,
in section 8, numerical results are presented.

2. Problem formulation
Consider the following equation

d du
(1) Lu= -2 (b@)F ) +a@lu=f@), c€O1)
together with the boundary conditions
u(0) =0, wu(l)=0.

We assume that k,q and f are sufficiently smooth for our analysis. We also
assume that k(z) > ko > 0 and ¢(z) > 0 and for all .

By (-, ) we denote the Lo inner product and by || - || the corresponding
norm on (0, 1). The weak formulation of the problem (1) is to find u € H}
such that

(2) (Lu,v) = (f,v), Vve Hp.

The Sobolev space H} consists of functions having square integrable first
derivatives and vanishing at the boundary.
Let A be a sequence of subdivisions of the segment [0,1]

A={0=zo<z1<...<2Ny =1}

and denote I; = (:1:1‘_1, :B,'), hios=x; —Ti_1 -
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We approximate H} by finite-dimensional subspaces SS’A of continuous
piecewise p-degree polynomials under the subdivision A

SS’A = {’U € H&(07 1)) UIIi € PP(I’)}

Problem (1) is approximated by the Galerkin method using a sequence of
finite dimensional subspaces Sg’A C H§. We find the finite element solution
1L,A
y € Sy~ such that

(3) (Ly,v) = (f,v), Vve Sy2.

Our aim is to study the efficiency of error estimators for piecewise lin-
ear polynomials. It is well known that in this case most super-convergence
estimates degenerate, since there is no superconvergence effect for piecewise
linear polynomial approximations (see, e.g. [6, 17]). In order to simplify the
details of the analysis we assume that the mesh A is uniform and its mesh
size is h.

3. A posteriori error estimators

Let us consider the second finite element solution ¥ € Sg’A, which is
defined by the linear system

(4) (LY,v) = (f,v) Vve S¥2.
We express it explicitly as [11]
N-1 N
Y(z)= ) Ypi(z)+ ) Ci_ostj-0s(z),
Jj=1 j=1

where ¢;(z),%;—0.5(x) form a hierarchical basis for Sg 2 and they are defined
as follows

T—Tj—1

hoo o Tl <z < g,
j—0.5

Tit1— T

. = j+1
¥ “ho % Lz < Tjy,

340.5

0, otherwise ;

(zj —z)(z — x;-1)
Yi—05 = h? o5
0, otherwise .

) fL‘j—leBSzj,

We denote the global error of the finite element solution y as

#(z) = u(z) - y(z), =€ H}.
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Let us consider the a posteriori error estimator Z = Y — y. It satisfies
the following problem

(5) (LZ,v) = (f,v) — (Ly,v) Vve 2.

We note that problem (5) involves the solution of a global elliptic problem.
The effectivity index

o=Vl 1
l|z||:

is used to investigate the quality of error estimators {3, 11, 12|.The a poste-
riori error estimator Z is asymptotically exact, if
N2l _

lim

=1.
h—0 ||2|s

The order of accuracy of the a posteriori error estimator Z is a, if the
following equality

1Z1l: = |z[l:(1 + O(R*)).
is satisfied.

Theoretical analysis of a posteriori error estimators relies on standard
apriori error estimates (see [12, 15])

(6) 2]l € C(w)hP*! 1= Ly, Loo,
lzlla, < C(u)h?.
Using these estimates it is easy to prove that the a posteriori error estimator

Z is asymptotically exact with the first order of accuracy. The following
inequalities follow from (6):
(7) ly —ull < Ch% |IY —ul| < CRS,

ly — ullLe < CR?,  |Y — ullL,, < CH®,

“y - u”Hl < Ch’ ”Y - U”Hl < Ch2

We express Z as

Z=Y ~u+z.
Then we have from (7) that
Y —u;
® 121 < flells(1 + L2y
1l

= ||lz[li(1 + O(h)), 1= L, Lo, Hy,
121l = lzll = 1Y — wll
= ||z[l(1 — O(R)).
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Hence, we have proved that || Z||; is an asymptotically exact error estimator.
The main problem is to investigate the order of accuracy of this estimator.
It follows from (8) that o > 1.

In the remaining part of the paper we shall prove that a = 2 for the
error estimators ||Z||;, { = L9, Loo, Hj.

Note, that our estimates are valid ”for most u” for which there exists a
constant c¢ such that

ly = ull 2 ch?, |ly —ulloo 2 ch?, |ly — ullm, > ch.

4. The accuracy analysis in the Ly norm

We define the interpolation polynomial Pou € Sg’A, which satisfies the
equalities

(Pau)(zj) = u(z;) Vzj € A,
(Pau)(zj—05) = u(zj-05).

The explicit formula for Pou in I;4; is given by

I el r — I
9) Pyu = ui—H'—lh— + Ui+1—h—i
Uil — 2Ui405 + Ui
-2 i+l h;+0 5 : (:L‘H.l - .’L‘) (:l: - :E,').
We also recall super-convergence properties of the finite element solution Y
(10) Y (z;) - u(z;)| £ ChY, Vz; € A,

Y (2j-05) — u(zj-05)| < Ch%.
The following lemma will frequently be used in our later proofs:

LEMMA 4.1. The higher order finite-element solution Y super-converges to
the interpolation polynomial Pou and the approzimation error is estimated

as
(1) Y — Pou||z,, < Ch*.

Proof. Let us denote v; = Y; — u;. It follows from (9) that

T; - I —x;
Y - P2’U. = ‘Ui% + ’Ui+1T1’

—2(vit1 — 2vip0.5 + ;) ($i+1h— :z:) (:z: ;xi) .

Then the statement of the lemma can be deduced from the error estimates
(10). The lemma is proved.
The function Z can be expressed as

Z=z+Pu—-u+Y - Pu.
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We assume that ||ul®||L., < Cy . Using Taylor’s theorem, we have

(12) Pru —u(z) = %u"'($i+o.5)($ — 2;)(z — Zit05)(2i+1 — 2) + O(h?),

Integrating Z2(x) over I;4+; and using estimates (7), (11), (12), we obtain

Tit1 Titl

(13) S Z¥(z)dz = S 2%(z) dx
+%u’” ‘S 2(z)(z — 2;)(z — Tivos)(Tis1 — ) dx + O(RT).

x;

Next we define the interpolation polynomial Pyu

Tig1 — X T —;
s 5 + Uil 5

It follows from the interpolation theory that

Piu=u;

Piu—=u(z) = —%u"(:ci+o,5) (z — z;)(zi41 — x) + O(R3).

Then the error function z can be expressed as

z(z) = zipi(z) + zit1pi1(z) — %U"($i+o.5)(a: — z;)(zi41 — 2) + O(h3).

We need to estimate three integrals in (13). After simple calculations we get
Tit+l
S (x — z:)%(x — Tiyos)(Tiz1 — )2 dx =0,

Ti

Ti41 9 h5
zs,- (z — z:)(z — Tivos)(Tit1 — x)°dz = ~120°
Titl 5
.-ES,. (z - z,-)2(:c = Zi405)(Ti41 — z)dz = 155"
Substituting these equalities into (13), we get
Ti41 ZTitl
(14) | Z2(z)dz= | 2*(z)da
T; x5

5 .
+l‘_u"'(zi+0.5)z'_+1___zi +O(R7).

360 h
We use the following notation of finite-differences [14]
Yo = yi+1h— yi, Yz = Yi "'hyi—l )

Then it remains to estimate the order of z.
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LEMMA 4.2. The finite differences z, super-converge at grid nodes :
Zi4l — 24

(15) ;

Proof. The vector {z;,j =0, -, N} satisfies the following finite difference
problem (see [14])

(16) —(azz)z + dizi =1z + p,
20 = 0, ZN = 0,

<Ch?, i=0,1,---,N—1.

where the coefficients a and d satisfy the following conditions

a; >ko>0, d;>0
and the truncation errors 7 and u are estimated by

|l < Ch?, |ui| < Ch? Vz; € A.

From (7) we have

lz:) < Ch? Vz; € A.
Thus it is sufficient to consider a simple problem
(17) —(az2)e =1 + 1,

2g=0, z2y=0,

where v < h2. After direct computations we get the following formula for
the solution of (17)

-1

(C - 77;—05—2#1’1), 1=12,...,N,
J—l

C= Z —-(m-os + th)/ Z

Now the estimate (15) follows tr1v1ally. The lemma is proved.

2z =
a;-0.5

az— 5

Summing up integral equalities (14) for i = 0,1,...,N — 1, we get
1 1
{ 2% dz = {22 dz + O(K®).
0 0

The global error z satisfies the inequality (7), so we have the estimate
1Z11Z, = ll=lIZ,(1 + O(h?))

or
1211, = l2ll o (1 + O(h?)).

Thus we have proved the following theorem.
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THEOREM 4.1. If assumption ||[u®||L.. < Cy is satisfied, then the a posteri-
ori error estimator ||Z||L, has the second order of accuracy.

5. The accuracy analysis with respect to the H; norm
The derivative of the error estimator Z’ can be written as

Z' =2 +[(Pw) =]+ [Y - (Pu)].

LEMMA 5.1. The derivative of the higher order finite-element solution Y’
super-converges to the derivative of interpolation polynomial (Pou)' and the
approzimation error is estimated by
(18) |Y’ — (Pyu)’| < ChE.
Proof. Let us denote v; = Y; — u;. It follows from (9) that
s Vi

Y — (Pu) = % +4 ('Ui+1 — 20405 + 7:5) (Tivos — ).
Using the super-convergence estimates (10), we get the statement of the
lemma.

Using Taylor’s theorem, we can represent the first derivative of the global
error function z as

Z'(x) = ﬁﬁ:ﬁ +u"(iyo5) (T — Titos) + O(R?).

The interpolation error of the polynomial (Pou)’ is given by (see (12))

(19) (Pru)’ —!(z) = 0" @is09)|(= — 21) (@is1 — )

+2(z — .’L‘i+0.5)2] + O(hs).

Integrating (Z')? over the element [r;, z;i1+1], using the estimates (7), (18),
(20), we obtain the equality

Titl Tit+l

20) | (2Vde= | (N
+ %u’”(mﬁo.s) ’S z|(z — zitos)’

+ (.’l: - :l:,')(.’l: - :v,'+0_5)($,'+1 - .’E)] dz + 0(h4)
We get by direct calculation that

(241 (2 — z4405)3 dz = 0,

z;
S;:“ (z — z;)(z — Tito5)(Tit1 — x)dz = 0.
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Summing up integral equalities (20) for i =0,1,...,N — 1, we get

i(z’)2 dz = i(z')2 dz + O(hY).
0 0

The global error 2’ satisfies the inequality (7), so we have the estimate
1Z13, = =13, (1 + O(r?)
or
1Zllz, = lzllm, (1 + O(R?)).
Thus we have proved the following theorem.

THEOREM 5.1. If assumption ||u?||r, < Cy is satisfied, then the a posters-
ori error estimator ||Z||i, has the second order of accuracy.

6. The accuracy analysis with respect to the L, norm
We denote by z the point such that
l2llLe = 12(2)]
and assume that z; < T < z;4;. First, we will prove that

(21) Z(z) = z(%) + O(h%).

We begin by deriving this estimate in the case when Z = z;. The a posteriori
error estimator Z can be represented as

Z=Y—u+-z.

Thus we get (21) from super-convergence estimates (10).
Now we consider the case z; < T < zi+1.

LEMMA 6.1. If the assumptions z; < T < ;41 and |uzz| > 0 are satisfied,
then

(22) T==zit05+ Ch2.
Proof. The point Z is determined from the equation
2'(z) =0.

The global error function z can be written as
z=y—~Piu+ Piu— Pou+ Pou—u,
hence we have the equation
Zitl — 2
h
It follows from Lemma 4.2 and from the interpolation theory that

(23) lzl‘l < Ch21 |(P2u)l(z) - ul(z)l < Ch2,

— duze(z — Titos) + (Pou) —u' = 0.
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so the equality (22) is valid if |uzz| > 0. The lemma is proved.
The function Z can be written as
(24) Z=z+Pu—u+Y — Pu.
We have proved in Lemma 4.1 that
[¥(2) - (Pr)(2)| < Ch*.
The interpolation error of the polynomial Pyu is given by (12):

Pyu — u(z) = %u”’(zi.,.o_s)(x — 2:)(z — Ti405)(zir1 — ) + O(RY).

Thus the equality (21) is also valid in the case z; < & < z;i41.
Now assume that

IZ)lL. =12(2)|,
where z; < £ < z;11. We will prove that

(25) Z(2) = z(&) + O(hY).

This fact follows trivially from (24) and Lemma 4.1 for & = «;. It remains
to consider the case z; < £ < zj4;.

LEMMA 6.2. If the assumptions ; < < ;41 and |uzz| > 0 are satisfied,
then

(26) £ = zip05 + Ch2.
Proof. The point £ is determined from the equation
Z'(z) =0.

The global error function Z can be written as
Z=y—Piu+ Piu— Pau+ Pau-Y,
hence we have the equation
Zj+1 = Zj
h

Using the assumptions of the lemma and estimates (23), we get (26), which
finishes the proof of lemma.

It follows from equalities (21) and (25) that
1Z(#)] < |2(&)| + Ch* < |2(2)] + Ch4,

— 4uz,(z — Titos) + (Pou) —Y' =0.

|2(8)] < 12(2)| + Ch* < |2(2)] + Ch*.
Thus we have proved the equality
1Z]|2e = 2l 2o (1 + O(A?)).
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Then the following theorem is valid.

THEOREM 6.1. If assumption ||u®||r., < Cy is satisfied, then the a poste-
riori error estimator || Z||L., has the second order of accuracy.

7. Numerical results
Let us consider the problem (1) with the following coefficients (see [3]):

k(z)=1, g¢q(z)=z2+0.01, r=-025 o=001

The function f and boundary conditions are chosen so that the exact solu-
tion of this problem is the function

w)=(z+a) —[a"(1-2z)+(1+a)z]

We solved the problem on uniform spatial meshes having N = 80, 160,
320, and 640 elements and on various types of nonuniform meshes, including
asymptotically optimal meshes (see [3]). Similar results were obtained in all
cases.

Table 1 shows the values of effectivity indices ©; corresponding to the
error estimators in the L, Lo, Hy norms. Lo, denotes the discrete point-
wise maximum norm at mesh nodes. More results of numerical experiments
are given in [7].

Table 1. Converges rates of the a posteriori error estimators

N Ly Lo Ler H

80 1.096 1.065 0.938 1.209
160 1.511 1.371 1.585 1.606
320 1.802 1.650 1.722 1.854
640 1.941 1.816 1.953 1.957

It is proved that a posteriori error estimates for elliptic problems converge
to the true error with the second order of the accuracy. Computational
results indicate that the asymptotic order of the accuracy is achieved for
relatively small numbers of elements N.
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