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SUPER-CONVERGENCE OF THE A POSTERIORI 
ERROR ESTIMATORS FOR FINITE-ELEMENT SOLUTIONS 

Abstract. The analysis of the accuracy of the a posteriori error estimation procedure 
for finite-element solutions is presented. The function Y — y is used as an a posteriori error 
estimator, here y 6 SQ'A is the finite-element solution of the given problem and V € SQ'A 

is the higher order solution of the same problem. The second order accuracy is proved for 
this error estimator in the L2, Hi and Loo norms. Results of numerical experiments are 
presented. 

1. Introduction 
Numerical methods which are used in scientific computations and math-

ematical modeling must be robust and efficient. Both of these properties 
depend essentially on the quality of a posteriori error estimators. Firstly, 
similar to physical experiments, it is not sufficient to find a discrete solution, 
we also need to know the boundaries of the error of the obtained discrete 
solution. The key ingredient of such methodology is a reliable method for 
assessing the quality of computed approximation. An a posteriori error es-
timator must be computed using the data for the given problem and the 
discrete approximation itself. Such method is efficient if the costs of obtain-
ing the estimator are small compared with the computation of the discrete 
solution [3]. Secondly, efficient numerical algorithms use adaptive approxi-
mations. Error estimation and mesh adaptation goes hand-in-hand leading 
to economical discrete schemes. The robustness of such strategy again de-
pends on the quality of a posteriori error estimation procedures. 

A posteriori error estimates were investigated in many papers, see [2, 
3, 5, 11, 12]. Mostly, the estimators are of residual type and are similar to 
estimators of Babuska, Rheinboldt [3, 4]. The solution of only local prob-
lems on each element is used to get the error estimation. A posteriori error 
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estimation is done with respect to the natural energy norm induced by the 
underlying differential operator; for details see the surveys [2, 16]. 

In many applications we also need useful bounds on the error in more 
convenient norms, e.g. L2 and pointwise norms. Such estimates are obtained 
by using duality arguments. This approach is systematically developed in 
[5, 8, 10, 13]. 

We consider the global error estimators, which are based on the higher 
order finite-element solution of the given differential problem. Optimal ac-
curacy estimates are proved for such a posteriori error estimators in the L2, 
LQO and Hi norms. The super-convergence property of quadratic elements 
was also used in [18] for the justification of one derivative recovery technique. 
Similar analysis for the gradient recovery technique is done in [19]. 

The rest of the paper is outlined as follows. First, in section 2 we de-
scribe an elliptic problem and its discretization. In section 3, we construct 
the a posteriori error estimator and present standard interpolation error es-
timates. In section 4, the accuracy of the a posteriori error estimators is 
investigated with respect to the L2 norm. A similar analysis with respect to 
the Hi and L ^ norms is presented in sections 5 and 6, respectively. Finally, 
in section 8, numerical results are presented. 

2. Problem formulation 

Consider the following equation 

(1) Lu = ~ (fc(aO^) + q{x)u = f(x), x 6 (0,1) 

together with the boundary conditions 
«(0) = 0, u(l) = 0. 

We assume that k, q and / are sufficiently smooth for our analysis. We also 
assume that k(x) > ko > 0 and q(x) > 0 and for all x. 

By (•, •) we denote the L2 inner product and by || • || the corresponding 
norm on (0,1). The weak formulation of the problem (1) is to find u e Hq 
such that 
(2) (Lu,v) = ( f , v ) , Vweffo1-

The Sobolev space HQ consists of functions having square integrable first 
derivatives and vanishing at the boundary. 

Let A be a sequence of subdivisions of the segment [0,1] 

A = {0 = XQ < XI < . . . < XN = 1} 

and denote / j = (xj-i, X{), /ij_o.5 — X{ — Xi-i . 
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We approximate HQ by finite-dimensional subspaces SQ'A of continuous 
piecewise p-degree polynomials under the subdivision A 

sg iA = {«6 ^¿(0,1), «|/4 e Pp(/i)}. 

Problem (1) is approximated by the Galerkin method using a sequence of 
finite dimensional subspaces Sq'A C Hq . We find the finite element solution 
y € Sq'A such that 

(3) (Ly,v) = ( f , v ) , Vi> € <So'A. 

Our aim is to study the efficiency of error estimators for piecewise lin-
ear polynomials. It is well known that in this case most super-convergence 
estimates degenerate, since there is no superconvergence effect for piecewise 
linear polynomial approximations (see, e.g. [6, 17]). In order to simplify the 
details of the analysis we assume that the mesh A is uniform and its mesh 
size is h. 

3. A posteriori error estimators 
2 A 

Let us consider the second finite element solution Y G S0' , which is 
defined by the linear system 

-2,A (4) (LY, v) = ( / , v) W e S0' 

We express it explicitly as [11] 
JV-l N 

Y ( x ) = £ ^ ¿ ( z ) + 0.5^-0.5 (z), 
3=1 j=1 

2 A 
where ipj (re), tpj-o.s(x) form a hierarchical basis for S0' and they are defined 
as follows f x — Xj — l 

• j Xj—J X X j j 

f i = 

hj-o.s 
Xj+1 — X 

hj+0.5 
0, otherwise ; 

( x j — x)(x — Xj — l ) 

fpj-0.5 = h i 0.5 
~ ̂  Xj — ̂  X ^̂  Xj) 

0, otherwise . 

We denote the global error of the finite element solution y as 

z(x) — u(x) — y(x), z € Hq. 
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Let us consider the a posteriori error estimator Z = Y — y. It satisfies 
the following problem 

(5) (LZ, v) = ( / , v) - ( L y , t,) Vt> 6 S*'A. 

We note that problem (5) involves the solution of a global elliptic problem. 
The effectivity index 

l - T T H 

is used to investigate the quality of error estimators [3, 11, 12].The a poste-
riori error estimator Z is asymptotically exact, if 

o Ml, 
The order of accuracy of the a posteriori error estimator Z is a, if the 
following equality 

||Z||, = |l*lli(i + < W ) -
is satisfied. 

Theoretical analysis of a posteriori error estimators relies on standard 
apriori error estimates (see [12, 15]) 

( 6 ) \\z\\i<C(u)h?+l l = L2,L oo, 

ll'll* < C(u)h". 

Using these estimates it is easy to prove that the a posteriori error estimator 
Z is asymptotically exact with the first order of accuracy. The following 
inequalities follow from (6): 

(7) ||y-u||<C/i2 , ||y-u||<C7i3 , 

l l y - u l k o o ^ 2 , \\Y-u\\Loo<Ch3, 

\\y-u\\Hl<Ch, \\Y-u\\Hl<Ch2. 

We express Z as 
Z = Y - u + z. 

Then we have from (7) that 

(8) ||Z||i < IMIKi + ^ j ^ 1 ) 

= ||z||,(l + 0(/»)), l = L2,L 00,/Ti, 

\\Z\\i > H i - \\Y - u||! 

= 11*11,(1 - 0(h)). 
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Hence, we have proved that ||Z||j is an asymptotically exact error estimator. 
The main problem is to investigate the order of accuracy of this estimator. 
It follows from (8) that a > 1. 

In the remaining part of the paper we shall prove that a = 2 for the 
error estimators \\Z\\i, I = L2, Loo, H\. 

Note, that our estimates are valid "for most it" for which there exists a 
constant c such that 

||y - «11 > c/12, 112/ - u||oo > c/i2, ||y - ullff! > ch. 

4. The accuracy analysis in the L2 norm 
2 A 

We define the interpolation polynomial P2u € 50 ' , which satisfies the 
equalities 

(P2u)(xj) = u(xj) Vij € A, 
(P2u)(z,--o.5) = u(xj-0 .5) . 

The explicit formula for P2U in Ii+i is given by 

(9) P2u = UiXl+1h X + ui+lX hXl 

We also recall super-convergence properties of the finite element solution Y: 
(10) | Y f a ) - u(xj)\ < Ch4, Vxj G A, 

1^(^-0.5) " 14(^-0.5)1 < Ch4. 
The following lemma will frequently be used in our later proofs: 

LEMMA 4.1. The higher order finite-element solution Y super-converges to 
the interpolation polynomial P2u and the approximation error is estimated 
as 
(11) \\Y-P2u\\Loa<Ch\ 
Proof. Let us denote V{ = Yi — itj. It follows from (9) that 

r r> xi+1 ~ x , X — Xi - P2u - Vi + vi+i—-— 

Then the statement of the lemma can be deduced from the error estimates 
(10). The lemma is proved. 

The function Z can be expressed as 
Z = z + P2u -u + Y - P2u. 
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We assume that Hu^Hl«, < C\ . Using Taylor's theorem, we have 

(12) P2u - u(x) = ^" '(rri+o.sXz - xi)(x - Xj+o.5)(^i+i -x) + 0(h4). 
o 

Integrating Z2(x) over /{+1 and using estimates (7), (11), (12), we obtain 
ij+i 

(13) \ Z2(x) dx = J z2(x)dx 

J Xi+l 
+-tt'" j z(x)(x - xi)(x - xi+0.s)(xi+i -x)dx + 0(h7). 

Next we define the interpolation polynomial P\u 

Flit = Ui (- «¿+1 . 

It follows from the interpolation theory that 

Pxu - u(x) = (xi+Q.s){x - xi)(xi+1 - x) + 0(h3). 

Then the error function z can be expressed as 

z(x) = Zi(pi(x) + zi+i<pi+i(x) - ^u"(xi+Qs)(x - xi)(xj+i - x) + OQi3). 

We need to estimate three integrals in (13). After simple calculations we get 
x.+ l 

j (x - xi)2(x - Zi+O.5)0ri+1 - x)2 dx = 0, 
Xj 

x<+l 
j (x - xi)(x - xi+o.5)(xi+i ~ x)2 dx = ~Y20> 
Xi 

Xi+l h5 

J (x-Xi) (x - Xi+o.5)(®i+i — x)dx = Y2Q-

Substituting these equalities into (13), we get 
x»+l Xj+1 

(14) \ Z2 (x) dx = \ z2{x)dx 
Xi X{ 

We use the following notation of finite-differences [14] 

_ Vi+i ~ Vi _ Vi ~ Vi-1 
Vx~ h ' V'x~ h • 

Then it remains to estimate the order of zx. 
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LEMMA 4 . 2 . The finite differences zx super-converge at grid nodes : 
Zi+l — Zi 

( 1 5 ) <Ch\ i = 0,1, 

Proof . The vector {zj,j = 0, • • •, N} satisfies the following finite difference 
problem (see [14]) 

(16) - ( a * * ) * + diZi = r¡x + ¡j., 

z0 = 0 , zN = 0 , 

where the coefficients a and d satisfy the following conditions 

^ > k0 > 0 , di >0 

and the truncation errors r¡ and /x are estimated by 

toil < Ch2, l/iil < Ch2 Vxi e A. 
Prom (7) we have 

\zi\ < Ch2 Vxi e A. 

Thus it is sufficient to consider a simple problem 

( 1 7 ) ~(azx)x = T)x + V, 
zq = 0, zN = 0 , 

where v < h2. After direct computations we get the following formula for 
the solution of (17) 

1 i _ 1 
Zx = ( c - T7i_0.5 - J 2 Vjh), i = 1 , 2 , . . . , N, 

ai-0.5 

N , i-1 

tri Oi-0.5 pi p[ ai-0.5 

Now the estimate (15) follows trivially. The lemma is proved. 
Summing up integral equalities (14) for i = 0 , 1 , . . . , N — 1, we get 

l l 
\Z2dx = \z2dx + 0(h6). 
0 0 

The global error z satisfies the inequality (7), so we have the estimate 

\\Z\\Î2 = \\z\\î2(l + 0(h2)) 
or 

\\Z\\L2 = \\z\\L2(l + 0(h2)). 

Thus we have proved the following theorem. 
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THEOREM 4.1. If assumption ||u^||loo < C4 w satisfied, then the a posteri-
ori error estimator ||^||L2 has the second order of accuracy. 

5. The accuracy analysis with respect to the Hi norm 
The derivative of the error estimator Z' can be written as 

Z' = z> + [(P2u)' - u'\ + [Y' - (P2u)']. 

LEMMA 5.1. The derivative of the higher order finite-element solution Y' 
super-converges to the derivative of interpolation polynomial (P2u)' and the 
approximation error is estimated by 

(18) |Y' - (P2u)'\ < Ch3. 

P r o o f . Let us denote V{ = Y{ — Uj. It follows from (9) that 

Y' - (P2u)' = Vl+1~Vi + 4 ( t ; i + 1 - 2 v i + 0 . 5 + ( x i + 0 . 5 - x). 

Using the super-convergence estimates (10), we get the statement of the 
lemma. 

Using Taylor's theorem, we can represent the first derivative of the global 
error function z as 

¿(X) = Zi+l~ Zi + u"(xi+o.5)(x - xi+o.s) + 0(h2). 

The interpolation error of the polynomial (P2u)' is given by (see (12)) 

(19) (P2u)' - u'(x) = iu" /(i i+o.5)[(a; - a?<)(iCi+1 - x) 

+2(x - xi+0.5)2] + 0(h3). 

Integrating (Z')2 over the element [xj, Xi+i], using the estimates (7), (18), 
(20), we obtain the equality 

(20) \ ( Z ' ) 2 d x = \ (;z'fdx 
Xi Xi 

^ Si+l 
+ 7«"'(li+0.5) \ Zx[{x-xi+0.5)3 

6 Xi 
+ (x - xi)(x - xi+0.5)(a;i+i - dx + 0(h4). 

We get by direct calculation that 

x-xi+0.5)3dx = 0, 
l^i00 - xi)(x ~ xi+o.5)(^¿+1 -x)dx = 0. 
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Summing up integral equalities (20) for i = 0 , 1 , . . . , N — 1, we get 
l l 
\{Z')2dx = \{z')2dx + 0(h4). 
0 0 

The global error z' satisfies the inequality (7), so we have the estimate 
\\Z\?Hi = \\ztHl{\ + 0{h2)) 

or 
\\Z\\Hl = \\z\\Hl(l + 0(h2)). 

Thus we have proved the following theorem. 

THEOREM 5.1. If assumption llti^llLoo < C4 is satisfied, then the a posteri-
ori error estimator H^Hi/i has the second order of accuracy. 

6. The accuracy analysis with respect to the Loo norm 
We denote by x the point such that 

I M U - = l * ( i ) l 
and assume that Xi < x < x»+i. First, we will prove that 

(21) Z(x) = z(x) + 0 ( / i 4 ) . 

We begin by deriving this estimate in the case when x — x^. The a posteriori 
error estimator Z can be represented as 

Z = Y -u + z. 

Thus we get (21) from super-convergence estimates (10). 
Now we consider the case Xj < x < £¿+1. 

LEMMA 6.1. If the assumptions X{ < x < i j + i and \uxX\ > 0 are satisfied, 
then 
(22) x = x i + 0 . 5 + Ch2. 

Proof . The point x is determined from the equation 
z'(x) = 0. 

The global error function z can be written as 
z = y — P\u + P\u — P2U + P2U — u, 

hence we have the equation 
Z'-Ll — Z' 
—— - 4Uxx(x — Xi+0.5) + (ib^)' — u' = 0. 

n 
It follows from Lemma 4.2 and from the interpolation theory that 
(23) < Ch2, \(P2u)'(x) - u'(x)\ < Ch2, 
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so the equality (22) is valid if |ttxx| > 0. The lemma is proved. 

The function Z can be written as 

(24) Z = z + P2u-u + Y - P2u. 

We have proved in Lemma 4.1 that 

|y(x) - (P2u)(x)| < Ch4. 

The interpolation error of the polynomial P2u is given by (12): 

P2u - u{x) = i«w(xi+o.5)(a; - xi)(x - ®i+o.5)(®t+i - x) + 0{hA). 

Thus the equality (21) is also valid in the case X{ < x < £i+i. 
Now assume that 

IÎ IUoo = |3(*)|, 
where xj < x < Xj+1. We will prove that 

(25) Z{x) = z(x) + 0(h4). 

This fact follows trivially from (24) and Lemma 4.1 for x = xj. It remains 
to consider the case xj < x < xj+i. 

LEMMA 6 .2 . If the assumptions xj < x < xj+1 and ITTIXL > 0 are satisfied, 
then 
(26) x = Xj+o.5 + Ch2. 

Proof . The point x is determined from the equation 

Z'(x) = 0. 

The global error function Z can be written as 

Z = y-P1u + P1u- P2u + P2u - Y, 

hence we have the equation 

Z J + L ~ Z J - 4 U I X ( Z - x i + 0 . 5 ) + ( i W - r = 0 . 

Using the assumptions of the lemma and estimates (23), we get (26), which 
finishes the proof of lemma. 

It follows from equalities (21) and (25) that 

\Z(x)\ < \z{x)\ + Ch4 < \z(x)\ + Ch4, 

\z(x)\ < \Z(x)\ + ChA < \Z(x)\ + Ch4. 

Thus we have proved the equality 

\\Z\\L00 = \\Z\\L00(1 + O(h2)). 
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Then the following theorem is valid. 

THEOREM 6.1. If assumption HM^HLO,, < C4 is satisfied, then the a poste-
riori error estimator H^Hx^ has the second order of accuracy. 

7. Numerical results 
Let us consider the problem (1) with the following coefficients (see [3]): 

k(x) = 1, q(x) = x + 0.01, r = —0.25, a = 0.01. 
The function / and boundary conditions are chosen so that the exact solu-
tion of this problem is the function 

ti(x) = (x + a)r - [ar( 1 - x) + (1 + a)7"a;]. 

We solved the problem on uniform spatial meshes having N = 80, 160, 
320, and 640 elements and on various types of nonuniform meshes, including 
asymptotically optimal meshes (see [3]). Similar results were obtained in all 
cases. 

Table 1 shows the values of effectivity indices ©; corresponding to the 
error estimators in the L% Loo, Hi norms. L ^ h denotes the discrete point-
wise maximum norm at mesh nodes. More results of numerical experiments 
are given in [7]. 

Table 1. Converges rates of the a posteriori error estimators 

N ¿ 2 Loo Loo,h H i 

80 1.096 1.065 0.938 1.209 
160 1.511 1.371 1.585 1.606 
320 1.802 1.650 1.722 1.854 
640 1.941 1.816 1.953 1.957 

It is proved that a posteriori error estimates for elliptic problems converge 
to the true error with the second order of the accuracy. Computational 
results indicate that the asymptotic order of the accuracy is achieved for 
relatively small numbers of elements N. 

References 

[1] M. Ainsworth, The influence and selection of subspaces for a posteriori error esti-
mators, Numer. Math., 73 (1996), 399-418. 

[2] M. Ainsworth and J . T. Oden, A posteriori error estimation in finite element 
analysis, Comput. Methods Appl. Mech. Engrg., 142 (1997), 1-88. 



506 R. Ciegis 

[3] I. B a b u s k a and W. R h e i n b o l d t , Analysis of optimal finite-element meshes in R1, 
Math, of Comp., 33 (1979), 435-463. 

[4] R. E. Bank and A. We i se r , Some a posteriori error estimators for elliptic partial 
differential equations, Math. Comput., 44 (1985), 283-301. 

[5] R. Becker and R. R a n n a c h e r , Weighted a posteriori error control in finite element 
methods: basic analysis and examples, East-West J. Numer. Math., 4 (1996), 237-264. 

[6] G. F. C a r e y and J. T. Oden , Finite elements - A second cource. Vol. II., Prentice 
- Hall, Englewood Cliffs, 1983. 

[7] R. Ciegis , On the accuracy of a posteriori estimates for finite element schemes. In 
Pitman Research Notes in Mathematics, Series 375, Integral methods in science and 
engineering, 1997, 74-78. 

[8] K. E r ik s son , D. E s t e p , P. H a n s b o and C. J o h n s o n , Introduction to adaptive 
methods for differential equations. In Acta Numerica 1995, A.Iserles, ed., Cambridge 
University Press, 1995, 105-158. 

[9] J. Hugger , An asymptotically exact, pointwise, a posteriori error estimator for the 
finite element method with super convergence properties. In Adaptive methods for 
PDE, 1993, 277-305. 

[10] K. E r i k s s o n and C. J o h n s o n , Adaptive finite element methods for parabolic prob-
lems: I. A linear model problem, SIAM J. Numer. Anal., 28 (1991), 43-77. 

[11] P. Moore and J. F l a h e r t y , A local refinement finite element method for one-
dimensional parabolic systems, SIAM J. Numer. Anal., 27 (1990), 1422-1444. 

[12] P. Moore, A posteriori error estimation with finite element semi- and fully discrete 
methods for nonlinear parabolic equations in one space dimension, SIAM J. Numer. 
Anal., 31 (1994), 149-169. 

[13] C. J o h n s o n , R. R a n n a c h e r and M. Boman , Numerics and hydrodynamic stability: 
towards error control in CFD, SIAM J. Numer. Anal., 32 (1995), 1058-1079. 

[14] A. A. S a m a r s k i i , The Theory of Difference Schemes, Nauka, Moscow, 1983 
(in Russian). 

[15] V. Thomee , Galerkin Finite Element Methods for Parabolic Problems, Springer -
Verlag, Berlin, 1984. 

[16] R. V e r f i i r t h , A Review of A Posteriori Error Estimation and Adaptive Mesh-Re-
finement Techniques, John Wileys/Teubner, New York, Stuttgart, 1996. 

[17] L. B. W a h l b i n , Superconvergence in Galerkin Finite Element Methods, Springer, 
1991. 

[18] Z. Zhang, Ultraconvergence of the patch recovery technique, Math. Comp., 65 (1996), 
1431-1437. 

[19] Z. Zhang, Ultraconvergence of the patch recovery technique II, Math. Comp., 69 
(1999), 141-158. 

INSTITUTE OF MATHEMATICS 
VILNIUS GEDIMINAS TECHNICAL UNIVERSITY 
Sauletekio Str. 11 
LT-2040 VILNIUS, LITHUANIA 
Email: rcOfm.vtu.lt 

Received January 3, 2002; revised version November 12, 2002. 


