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COMMON FIXED POINT THEOREMS FOR SET-VALUED 
A N D SINGLE-VALUED MAPPINGS 

Abstract. The concepts of ¿-compatibility and weakly compatibility between a set-
valued mapping and a single-valued mapping of Jungck and Rhoades [8, 9] are used to 
prove some common fixed point theorems on metric spaces. Generalizations of known 
results are thereby obtained. In particular, theorems by Fisher [2] and Khan, Kubiaczyk 
and Sessa [11] are generalized. An example is given to support our generalization. 

1. Introduction 
Fixed point theory for single-valued and multi-valued mappings have 

been studied extensively and applied to diverse problems during the last 
few decades. This theory provides techniques for solving a variety of applied 
problems in mathematical science and engineering (e.g., [12], [18]). 

Many authors extended, generalized and improved Banach's fixed point 
theorem in different ways. In [6], Jungck introduced the concept of compat-
ible mappings as a generalization of commuting and weakly commuting 
mappings concepts. This concept has been used as a tool for investigating 
more comprehensive fixed point theorems (e.g., [5-8], [10], [13]). 

On the other hand, Jungck and Rhoades [8, 9] defined the concepts 
of ¿-compatibility and weakly compatibility between a set-valued mapping 
and a single-valued mapping. These concepts extend the concept of compat-
ibility of single-valued mappings to set-valued mappings. Several authors 
established some common fixed point theorems for ¿-compatible and weakly 
compatible mappings (e.g., [8], [9], [14-16]). 

In the sequel, (X, d) denotes a metric space and B(X) is the set of all 
nonempty, bounded subsets of X. As in [1, 4], we define 

5(A, B) = sup{d(a, b) : a € A, b € B}, 
D(A, B) = inf{d(a, b) : a € A,b € B}, 
H(A, B) = inf{r > 0 : Ar D B, Br D A}, 
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for all A, B in B(X), where 

Ar = {x 6 X : d(x, a) < r for some a € A}, 
Br = {y E X : d(y, b) <r for some b € B). 

If A = {a} for some a € A, we denote S(a, B), D(a, B) and H(a, B) for 
6(A,B), D(A,B) and H(A,B), respectively. Also, if B consists of a single 
point b, one can deduce that 6(A,B) = D(A,B) = H(A,B) = d(a,b). 

It follows immediately from the definition of S(A, B) that 

S(A,B) = S(B, A) > 0, S(A,B) < 5{A, C) + 5(C,B), 
5(A, B) = 0 iff A = B = {a}, 6(A, A) = diamA, 

for all A,B,CeB(X). 

DEFINITION 1.1. ([4]) A sequence {An} of nonempty subsets of X is said to 
be convergent to a subset A of X if: 

(i) each point a in A is the limit of a convergent sequence {a„}, where 
a n is in An for n € N (N =: the set of all positive integers); 

(ii) for arbitrary e > 0, there exists an integer m such that An C Ae for 
n > m, where Ae denotes the set of all points x in X for which there exists 
a point a in A, depending on x, such that d(x, a) < e. 
A is then said to be the limit of the sequence {An}. 

LEMMA 1.1. ([4]) If {An} and {Bn} are sequences in B(X) converging to 
A and B in B(X), respectively, then the sequence {6(An,Bn)} converges to 
6(A,B). 

LEMMA 1.2. ([4]) Let {An} be a sequence in B(X) and y be a point in X 
such that S(An,y) —> 0. Then the sequence {An} converges to the set {y} in 
B(X). 

DEFINITION 1.2. ([4]) A set-valued mapping F of X into B(X) is said to 
be continuous at x 6 X if the sequence { F i n } in B(X) converges to Fx 
whenever {x„} is a sequence in X converging to x in X. F is said to be 
continuous on X if it is continuous at every point in X. 

LEMMA 1.3. ([4]) Let {.An} be a sequence of nonempty subsets of X and z be 
a point in X such that limn-^ooOn = z, z being independent of the particular 
choice of each an 6 An. If a selfmap I of X is continuous, then {Iz} is the 
limit of the sequence {IAn}. 

LEMMA 1.4. ([1]) For any A,B,C,D e B(X), we have the following 
inequality: 

6(A, B) < H(A, C) + 6(C, D) + H(D, B). 
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DEFINITION 1 . 3 . ([4]) The mappings F : X -» B(X) and I : X -» X are 
said to be weakly commuting if I Fx € B(X) and 
(1) S(FIx, IFx) < max{5(/x, Fx), d i a m I F x } , 

for all x in X. 
Note that if F is a single-valued mapping, then the set {IFx} consists 

of a single point. Therefore, diam IFx = 0 for all x & X and condition (1) 
reduces to the condition given by Sessa [17], that is d(FIx, IFx) < d(Ix, Fx) 
for all x in X. 

Two commuting mappings F and I clearly weakly commute but 
two weakly commuting F and I do not necessarily commute as shown 
in [4]. 

In [6], Jungck generalized the concept of weakly commuting for single-
valued mappings in the following way: 
DEFINITION 1 . 4 . Two single-valued mappings / and g of X into itself are 
compatible if limn-^00d(f gxn, g f x n ) = 0 whenever {xn} is a sequence in 
X such that limn_»00/a;n = limn^oogxn = t for some t in X. 

It can be seen that two weakly commuting mappings are compat-
ible but the converse is false. Examples supporting this fact can be found 
in [6]. 

On the other hand, Jungck and Rhoades [8] extended the concept of 
compatibility for single-valued mappings to set-valued mappings as follows: 
DEFINITION 1 . 5 . The mappings I : X -> X and F : X B(X) are 
(5-compatible if l i m ^ o o S ( F I x n , I F x n ) = 0 whenever {xn} is a sequence 
in X such that IFxn 6 B(X), Fxn —> {£}, Ixn —> t for some t in X. 

Also, in [9], the authors generalized the concept of ¿-compatible map-
pings in the following way: 
DEFINITION 1 . 6 . The mappings I : X X and F : X -> B{X) are 
weakly compatible if they commute at coincidence points, i.e., for each 
point u 6 X such that Fu = {Iu}, we have Flu = IFu ( Note that the 
equation Fu = {Iu} implies that Fu is a singleton). 

It can be seen that any ¿-compatible pair {F, 1} is weakly compat-
ible. Examples of weakly compatible pairs which are not ¿-compatible are 
given in [9]. 

The following proposition due to Jungck and Rhoades [8] is used in the 
sequel: 
PROPOSITION 1 . 1 . Let (X,d) be a complete metric space and the mappings 
I: X —* X and F : X —» B(X) be S-compatible. 

(1) Suppose that the sequences {Ixn} and {Fxn} converge to t E X and 
{£}, respectively. If I is continuous, then FIxn —> { I t } . 
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(2) If {It} = Ft for some t G X, then Fit = I Ft. 

In 1985, Fisher [2] established the following theorem: 

THEOREM 1 . 1 . Let F, G be mappings of a complete metric space ( X , d) 
into B(X) and I, J be mappings of X into itself satisfying the following 
inequality 

5(Fx,Gy)<c m a x { d ( I x , J y ) , 6 ( I x , F x ) , 6 ( J y , G y ) } , 
for all x,y G X, where 0 < c < 1. If F commutes with I, G commutes with 
J, U G ( X ) C I(X), U F ( X ) C J(X) and I or J is continuous, then F,G,I 
and J have a unique common fixed point u G X. Further, Fu = Gu = {it}. 

On the other hand, Fisher [2] proved the following fixed point theorem 
on compact metric spaces: 

THEOREM 1.2. Let F, G be continuous mappings of a compact metric space 
(X,d) into B(X) and I, J be continuous mappings of X into itself satisfying 
the following inequality 
(2) S(Fx, Gy) < max{d( Ix , Jy), 6(Ix, Fx), 6(Jy, Gy)}, 
for all x,y 6 X for which the right hand side of the inequality (2) is positive. 
If F commutes with / , G commutes with J, U G ( X ) C I(X) and UF(X) C 
J(X), then there is a unique fixed point u G X of the mappings / , J, F, G 
such that Fu = Gu = {it}. 

In 1987, Khan, Kubiaczyk and Sessa [11] generalized Theorem 1.1 as 
follows: 

THEOREM 1.3. Let F, G be mappings of a complete metric space (X,d) 
into B(X) and / , J be mappings of X into itself satisfying the following 
inequality: 
(3) S(Fx,Gy)< 

max{cd(Ix , Jy), c5(Ix, Fx),cS(Jy, Gy),aD(Ix, Gy) + bD(Jy, Fx)}, 

for all x, y G X, where 

(4) 0 < c < 1, a > 0, fe > 0, a + 6 < 1, c max < 1. 

If F weakly commutes with I, G weakly commutes with J, U G ( X ) C I(X), 
U F ( X ) C J(X) and I or J is continuous, then F, G, I and J have a unique 
common fixed point u G X. Further, Fu = Gu = {u}. 

The aim of the present paper is to establish a common fixed point the-
orem on complete metric spaces. Our result generalizes Theorems 1.1 and 
1.3. Also, an example is given to support our generalization. At the end, 
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a common fixed point theorem on compact metric spaces is proved. This 
theorem contains Theorem 1.2 as a special case. 

2. Main results 

THEOREM 2.1. Let (X,d) be a complete metric space. Furthermore, let I, 
J be mappings of X into itself and F, G of X into B(X) satisfying the 
inequality (3) such that 
(5) UF(X)CJ(X) and U G(X) C I(X). 
If either 

(I) the pair {F,I} is 6-compatible, I is continuous and {G, J} is weakly 
compatible; or 

(II) {G, J } is 6-compatible, J is continuous and {F, / } is weakly com-
patible, 
then J, J, F and G have a unique common fixed point u G X. Moreover, 
Fu = Gu = {u}. 
Proo f . Let xo be an arbitrary point in X. By (5), we choose a point x\ in 
X such that Jx\ € Fxo = ZQ and for this point x\ there exists a point x2 
in X such that 1x2 G Gxi = Z\, and so on. Continuing in this manner, we 
can define a sequence {xn} as follows: 
(6) Jx2n+l G Fx2n = n, I^2n+2 G Gx2n+\ = Z2n+1, 1 G N U {0}. 
For simplicity, we put Vn = 6(Zn, Zn+1) for n G N U {0} . By (3) and (6), 
we have that 

= S(Z2n, Z2n+l) = ¿(Fl2n, Gx^n+l) 
< max{cd(lx2n, JI2n+1), c8(Ix2n, Fx2n), cS(JX2n+1, Gx2n+l), 

aD(Ix2„, Gx2n+l) + bD(Jx2n+1, Fx2n)} 

< max{cV2n-i, cV2n, a(V2n-1 + F2n)} < max jc , j ^ j 

for n G N. Similarly, one can show that 

V2n+1 = $(Z2n+l, Z2n+2) = S(Gx2n+\, Fx2n+2) < max jc , Vin, 

for n G N. If we put ¡3 = max{c, j-^}.max{c, yrj}, then by hypothesis (4), 
it can easily seen that 0 < ¡3 < 1. So we deduce that 

(7) V2n < (3V2n-2 < • • • < PnV0, V2n+1 < f3V2n-i < PnVu 

for n G N. Put M = max{Vo, Vi}. It follows from inequalities (7) that if zn 
is an arbitrary point in the set Zn for n G N, then we obtain that 

d(z2n,Z2n+l) < 5{Z2n, Z2n+1) < /3".M, 
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d(z2n+l, Z2n+2) < 5(Z2n+l, Z2„+2) < (P.M. 
This implies that { z n } is a Cauchy sequence in the complete metric space 
X. Hence, it converges to a point u € X, which does not depend upon 
the particular choice of each zn. In particular, the sequences {Ix2 n } and 
{Jx2n+i} converge to u and the sequences of sets {Fx2n} and {Gx2n+i} 
converge to the set {u}. 

We now suppose that I is continuous. We get from Lemma 1.3 that 
I2X2n —> Iu, IFx2n {Iu}- But I and F are 5-compatible, then it yields 
that FIx2n { Iu} by proposition 1.1(1). 

Using inequality (3), we have that 

6(FIX2n,Gx2n+l) < max{cd(l2x2n, Jx2n+l), c6(I2X2n, FIX2n), 
c6(Jx2n+l, Gx2n+l), aD(I2X2n, Gx2„+i) + bD(Jx2n+l, Fix2n)} 

< max{cd(/2x2n, Jx2n+l), c6(I2X2n, FIx2n), 
cS(Jx2n+1, Gx2„+l), a8(I2X2n, Gl2n+1) + b6(Jx2n+l, Flx^n)}-

As n —> oo, we obtain from Lemma 1.1 that 
d(Iu, u) < max{cd(/u,«), ad(Iu, u) + bd(Iu, u)} = max{c, a + b}d(Iu, u). 

Since max{c, a + b} < 1, then Iu = u. 
Further 

6(Fu, Gx2n+i) < max{cd(7'u, Jx2n+i), cS(Iu, Fu), c5( Jx2r i+i, Gx2n+i), 
aD(Iu, Gx2n+i) + bD(Jx2n+i, Fu)} 

< max{cd(u, Jx2n+i), c6(u, Fu),c5(Jx2„+i, Gx2n+i), 
aS(u, Gx2n+1) + b5(Jx2n+1, Fu)}. 

As n —• oo, it follows from Lemma 1.1 that 

6(Fu, u) < max{ci(Fu, u), b5(Fu, u)} = max{c, b}6(Fu, u), 

and hence Fu = {u} since max{c, b} < 1. 
Since U F ( X ) C J(X), there exists a point w e X such that {u} = Fu = 

{Jw}. We show that Gw = {Jw}. From (3), we get 

S(Jw,Gw) < m a x { c 5 ( J w , G w ) , a 5 ( J w , G w ) } = max{c, a}5(Jw, Gw). 

Since max{c, a} < 1, then {u} = Gw = {Jw}. Thus Gw is a singleton and 
u> is a coincidence point for G and J. Since G and J are weakly compatible, 
it yields Gu = GJw = JGw = {Ju}. Using (3), we deduce that 

d(u, Ju) < 5(Fu, Gu) < max{cd(ii, Ju), ad(u, Ju) + bd(u, Ju)} 
— max{c, a + b}d(u, Ju). 

Since max{c, a + b} < 1, then u = Ju. Since { J u } = Gu, u is a common 
fixed point of F, G, I and J. 
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The proof, assuming that the condition (II) holds, is similar to the above. 
Now, suppose that F and I have a second common fixed point v G X 

such that Fv = {u} = {Iv}. Using the inequality (3), we obtain that 

d(v, u) < 5(Fv, Gu) < max{cd(u, v), ad(v, u) + bd(v, it)} 
= max{c, a + b}d(v, u). 

Since max{c, a + h} < 1, it follows that v = u. So, u is the unique common 
fixed point of F and I such that Fu = {u}. Similarly, it can be shown that 
u is the unique common fixed point of G and J such that Gu = {u}. 

REMARK 2.1. In Theorem 2.1, if F and G weakly commute with I and J, 
respectively, then we obtain Theorem 1.3. 

REMARK 2.2. In Theorem 2.1, if a = b = 0, F commutes with I and G 
commutes with J, then we have Theorem 1.1. 

REMARK 2 . 3 . In Theorem 2 .1, if F and G are single-valued mappings of 
X into itself, then we obtain a generalization of Theorem 4 of Fisher and 
Sessa [3]. 

REMARK 2 . 4 . In [14, Theorem 2.1], the authors proved Theorem 2 .1 by 
using the inequality 

(8) 8{Fx, Gy) < <t>{d{Ix, Jy), 6(Ix, Fx),6(Jy, Gy), D(Ix, Gy), D(Jy, Fx)), 

for all x, y € X, where <f> : [0, oo) —> [0, oo) is a function which satisfies the 
following conditions 

(i) <j) is upper semi-continuous from the right and non-decreasing in each 
coordinate variable, 

(ii) for each t > 0 

= max{<^>(i, t, t, t, t),<t){t, t, t, 21,0), <f>(t, t, t, 0, It)} < t. 

Theorem 2.1 is not deducible from Theorem 2.1 of Rashwan and Ahmed 
[14] since the function h : [0, oo)5 —• [0, oo) appearing in the inequality (3) 
defined as 

h(t\, ¿2, ¿3, ¿4, ¿5) = max{cii, ct2, ctz, at4 + bt$}, 

for all ¿i, ¿2»¿3> ¿4, ¿5 in [0,00), where a, b, c are as in condition (4), does not 
generally satisfy condition (ii). Indeed, we have that \&(t) = tmax{c, a + 
b, 2a, 26} for all t > 0 and this does not imply <1>(i) < t for all t > 0. 

It suffices to consider a = j , a = | , 6 = g and then a,b,c satisfy 
condition (4). But = f > t for all t > 0. Therefore, Theorem 2.1 in 
[14] and Theorem 2.1 are two different generalizations of Theorem 1.1. 
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Now, we give an example showing the greater generality of Theorem 2.1 
over Theorems 1.1 and 1.3. 

EXAMPLE. Let X = [0, oo) be endowed with the Euclidean metric d. Define 
„8 „ 2 

Fx = 
X 

° > T 
Gx = n Ix = x4 + 4x2, Jx = + x4 + 

z z 
for all x 6 X. We have UF(X) = J(X) = UG(A") = / (X) = X. Also, 
F, G, I and J are continuous mappings. 

For any sequence {xn} in X, we have Ixn —• 0 as xn —» 0, Fx n —> {0} 
as xn —» 0 and 

S(FIxn,IFxn) = + as x n 0, 

IFxn € B(X). Thus F and I are ¿-compatible and so they are weakly 
compatible. Similarly, G and J are 5-compatible and so they are weakly 
compatible. For any x, y G X, x / y 

^ x f x 4 y 2 l f i x 4 l y 2 l 
S(Fx, Gy) = m a x | T , = m a x | — , — j 

< max{I | (x 4
 + 4x2) - ( £ + y4

 + £ ) |, I (x 4
 + 4x2), I ( £ + y4

 + £ ) } 

< m a x | i d ( / x , Jy), ^(1®, Fx), ^ ( J y , Gy), ^D(Ix, Gy) + ^D(Jy, Fx) j . 

We see that the inequality (3) holds with a = 6 = 3, c ~ \ and 0 is the 
unique common fixed point of I, J, F and G. Hence the hypotheses of Theo-
rem 2.1 are satisfied. Theorems 1.1 and 1.3 are not applicable because F and 
G are neither commuting nor weakly commuting with I and J, respectively. 

In view of the paper of Chang [1], we prove the following theorem on 
compact metric spaces: 

THEOREM 2.2. Let (X,d) be a compact metric space and I, J be functions 
from X into X and F, G : X —> B(X) be two set-valued functions with 
UF(X) C J(X) and U G ( X ) C I(X). Suppose that the inequality 

(9) 6(Fx,Gy)< 
max{cd(Ix, Jy), cS(Ix, Fx), c5(Jy, Gy), aD(Ix, Gy) + bD(Jy, Fx)}, 
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for all x, y € X, where 

1 1 f a b 1 
0 < c < 1, 0 < a < 0 <b<~, cmax < , r > < 1, 

2 2 1 , 1 - a 1 - o J 
holds whenever the right hand side of (9) is positive. If the pairs {F,I}, 
{G, J} are weakly compatible and the functions F, I are continuous, then 
there is a unique point u 6 X such that Fu = Gu = {u} = {Iu} = {Ju}. 

Proo f . Let rj = in f x e x S(Ix, Fx). Since X is a compact metric space, there 
is a convergent sequence {xn} with limit xo in X such that 6(Ixn, Fxn) —> r] 
as n —> oo. By Lemma 1.4, we have that 

6(Ixo, F x 0 ) < d(Ixo, Ixn) + S(Ixn, Fxn) + H(Fxn, Fx0). 

The continuity of F and I and limn^oo xn = xo imply that 6(Ixq, Fxo) < rf. 
Thus 6(Ixo, Fxo) = rj. 

Since UF(X) C J(X), then there exists a point yo in X with Jyo € Fxo 
a n d d(IxQ, Jyo) < r). 

If r) > 0, then 

6(Jy0,Gy0) < S(Fx0,Gy0) 

< max{cd(Ixo, Jyo), cS(Ix0, Fx0), c5(Jyo, Gyo), 

aD(Ix0, Gy0) + bD(Jy0, Fx0)} 

< max{c?7, cS(Jy0, Gyo), a[d(Ix0, Jyo) + S(Jy0, Gy0)]} 

< max{c77, cS(Jy0, Gyo), a[r/ + S(Jy0, Gy0)]}-

If ¿(Jyo, Gyo) > r] in the last inequality, then we obtain from 0 < c < 1 and 
a < 5 that 

S(Jy0,Gy0) < max{c,2a}S(Jy0,Gy0) < S(Jy0,Gy0). 

This contradiction implies that S(Jyo, Gyo) < r). 
Since UG(X) C I(X), then there is a point ZQ in X such that IZQ 6 Gyo 

and d(Izo, Jyo) < r). Hence we have from 0 < c < 1 and b < \ that 

f]<S(Izo,Fzo)<5(Fzo,Gyo) 

< max{cd(/20, Jyo), c5(Iz0, Fz0), c5(Jy0, Gyo), 

aD(Iz0, Gy0) + bD(Jy0, Fz0)} 

< max{c77, c5(Iz0,Fz0), b[d(Jy0, Iz0) + 5(1 zQ, 

< max{ci7, c6(Iz0, Fz0), b[rj + 6(Iz0, Fzo)]} 
< max{c, 2b}6(Izo, FZQ) < 5(Iz0,Fzo), 

which is a contradiction. Thus rj = 0. Hence {/xo} = {Jyo} = {Izo} = 
Gyo = FXQ. 
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Since F and I are weakly compatible and FxO = {/XQ}, we obtain that 
F2xo = FIXQ = IFXo = {I2x0}. If I2xo / /so, then 

d(I2x0, IXQ) < m a x { c d ( I F x 0 , Jyo), c6(IFx0, F2rc0), cS(Jy0, Gy0), 

and since max{c, a + b} < 1, then we have I2XQ = 7xo- Hence Fixo = 
{/xo} = {I2xo}. Similarly, we have GJyo = {Jyo} = {J2yo}- Let u = 7a;o = 

Jyo- Then F u = {u} = {Iu} = {Ju} = Gu. 
Suppose that the point z in X is a common fixed point of F, G, I and J 

with z ± u. If either S(z, Fz) ± 0 or 6{z, Gz) ± 0, then 
6(z, Fz) < m a x { c d ( z , z), c5(z, Fz), c6(z, Gz), aD(z, Gz) + bD(z, Fz)} 

and since max{c, < 1, it follows that 6(z,Fz) < S(z,Gz). By the 
symmetry, we obtain that S(z,Gz) < 6(z,Fz), which is inadmissible. So, 
6(z, Gz) = S(z, Fz) = 0, that is Fz = Gz = {z}. 

Now, we get from (9) that 

d(z, u) < max{cd(z, u), cS(z, Fz), cS(u, Gu), aD(z, Gu) + bD(u, Fz)} 
= max{c, a + b}d(z, u). 

Since max{c, a + 6} < 1, it follows that u — z. Whence u is the unique 
common fixed point of F, G, I and J. 

REMARK 2 . 4 . In Theorem 2 .2 , if we put a = b = 0, F commutes with I and 
G commutes with J, we obtain Theorem 1.2. 
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