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COMMON FIXED POINT THEOREMS FOR SET-VALUED
AND SINGLE-VALUED MAPPINGS

Abstract. The concepts of §-compatibility and weakly compatibility between a set-
valued mapping and a single-valued mapping of Jungck and Rhoades [8, 9] are used to
prove some common fixed point theorems on metric spaces. Generalizations of known
results are thereby obtained. In particular, theorems by Fisher [2] and Khan, Kubiaczyk
and Sessa [11] are generalized. An example is given to support our generalization.

1. Introduction

Fixed point theory for single-valued and multi-valued mappings have
been studied extensively and applied to diverse problems during the last
few decades. This theory provides techniques for solving a variety of applied
problems in mathematical science and engineering (e.g., [12], [18]).

Many authors extended, generalized and improved Banach’s fixed point
theorem in different ways. In [6], Jungck introduced the concept of compat-
ible mappings as a generalization of commuting and weakly commuting
mappings concepts. This concept has been used as a tool for investigating
more comprehensive fixed point theorems (e.g., [5-8], [10], [13]).

On the other hand, Jungck and Rhoades [8, 9] defined the concepts
of é-compatibility and weakly compatibility between a set-valued mapping
and a single-valued mapping. These concepts extend the concept of compat-
ibility of single-valued mappings to set-valued mappings. Several authors
established some common fixed point theorems for §-compatible and weakly
compatible mappings (e.g., [8], [9], [14-16]).

In the sequel, (X, d) denotes a metric space and B(X) is the set of all
nonempty, bounded subsets of X. As in (1, 4], we define

0(A, B) = sup{d(a,b) :a € A,b € B},
D(A, B) = inf{d(a,b) : a € A,b € B},
H(A,B) =inf{r >0: A, D B,B, D A},
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for all A, B in B(X), where

A, ={z € X :d(z,a) <r for some a€ A},
B, ={ye X :d(y,b) <r forsome be B}.

If A = {a} for some a € A, we denote é§(a, B), D(a,B) and H(a, B) for
0(A, B), D(A, B) and H(A, B), respectively. Also, if B consists of a single
point b, one can deduce that §(A, B) = D(A, B) = H(A, B) = d(a,b).

It follows immediately from the definition of §(A, B) that

6(4,B) = (B, 4) >0, 6(4,B) < 5(4,C) +4(C, B),
0(A,B)=0 iff A=B={a}, (A, A)=diamA,
for all A, B,C € B(X).

DEFINITION 1.1. ([4]) A sequence {A,} of nonempty subsets of X is said to
be convergent to a subset A of X if:

(i) each point a in A is the limit of a convergent sequence {a,}, where
a, isin A, for n € N (N =: the set of all positive integers);

(ii) for arbitrary € > 0, there exists an integer m such that 4, C A, for
n > m, where A, denotes the set of all points = in X for which there exists
a point a in A, depending on z, such that d(z,a) < e.
A is then said to be the limit of the sequence {A,}.

LEmMMA 1.1. ([4)) If {An} and {B,} are sequences in B(X) converging to
A and B in B(X), respectively, then the sequence {6(An,By)} converges to
4(A, B).

LEMMA 1.2. ([4]) Let {A,} be a sequence in B(X) and y be a point in X
such that §(An,y) — 0. Then the sequence {A,} converges to the set {y} in
B(X).

DEFINITION 1.2. ([4]) A set-valued mapping F of X into B(X) is said to
be continuous at z € X if the sequence {Fz,} in B(X) converges to Fz
whenever {z,} is a sequence in X converging to z in X. F is said to be
continuous on X if it is continuous at every point in X.

LEMMA 1.3. ([4]) Let {An} be a sequence of nonempty subsets of X and z be
a point in X such that lim,_,wan, = z, z being independent of the particular
choice of each a, € A,. If a selfmap I of X is continuous, then {Iz} is the
limit of the sequence {IA,}.

LEMMA 1.4. ([1)) For any A,B,C,D € B(X), we have the following
inequality:

§(A,B) < H(A,C) + §(C, D) + H(D, B).



Common fized point theorems 473

DEeFINITION 1.3. ([4]) The mappings F : X — B(X)and I : X — X are
said to be weakly commuting if /Fz € B(X) and

(1) 0(FIz,IFz) < max{d(Iz, Fz),diamlFz},

for all z in X.

Note that if F' is a single-valued mapping, then the set {IFz} consists
of a single point. Therefore, diamIFz = 0 for all z € X and condition (1)
reduces to the condition given by Sessa [17], that is d(FIz,IFz) < d(Iz, Fz)
for all z in X.

Two commuting mappings F' and I clearly weakly commute but
two weakly commuting F' and I do not necessarily commute as shown
in [4].

In [6], Jungck generalized the concept of weakly commuting for single-
valued mappings in the following way:

DEFINITION 1.4. Two single-valued mappings f and g of X into itself are
compatible if lim,_,00d(fgzn,gfzn) = 0 whenever {z,} is a sequence in
X such that lim,, o fZn, = lim, 09z, =t for some ¢ in X.

It can be seen that two weakly commuting mappings are compat-
ible but the converse is false. Examples supporting this fact can be found
in [6].

On the other hand, Jungck and Rhoades [8] extended the concept of
compatibility for single-valued mappings to set-valued mappings as follows:

DEFINITION 1.5. The mappings I : X —» X and F : X — B(X) are
d-compatible if lim,_,o0(FIzn, [Fz,) = 0 whenever {z,} is a sequence
in X such that IFz, € B(X), Fz, — {t}, Iz, — t for some ¢ in X.

Also, in [9], the authors generalized the concept of §-compatible map-
pings in the following way:

DEFINITION 1.6. The mappings I : X — X and F : X — B(X) are
weakly compatible if they commute at coincidence points, i.e., for each
point u € X such that Fu = {Ju}, we have FIu = IFu ( Note that the
equation Fu = {Iu} implies that Fu is a singleton).

It can be seen that any é-compatible pair {F, I} is weakly compat-
ible. Examples of weakly compatible pairs which are not é-compatible are
given in [9)].

The following proposition due to Jungck and Rhoades [8] is used in the
sequel:

PROPOSITION 1.1. Let (X,d) be a complete metric space and the mappings
I:X > X and F: X — B(X) be d-compatible.

(1) Suppose that the sequences {Iz,} and {Fz,} converge tot € X and
{t}, respectively. If I is continuous, then Flz, — {It}.
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(2) If {It} = Ft for somet € X, then FIt = IFt.
In 1985, Fisher [2] established the following theorem:

THEOREM 1.1. Let F, G be mappings of a complete metric space (X,d)
into B(X) and I, J be mappings of X into itself satisfying the following
inequality

6(Fz,Gy) < ¢ max{d(Iz,Jy),d(Iz, Fz),5(Jy,Gy)},
for all z,y € X, where 0 < c < 1. If F commutes with I, G commutes with
J, UG(X) C I(X), UF(X) € J(X) and I or J is continuous, then F,G,I
and J have a unique common fized point u € X. Further, Fu = Gu = {u}.

On the other hand, Fisher [2] proved the following fixed point theorem
on compact metric spaces:

THEOREM 1.2. Let F, G be continuous mappings of a compact metric space
(X, d) into B(X) and I, J be continuous mappings of X into itself satisfying
the following inequality

(2) 6(F'z,Gy) < max{d(Iz, Jy),s(Iz, Fz),5(Jy,Gy)},

for all z,y € X for which the right hand side of the inequality (2) is positive.
If F commutes with I, G commutes with J, UG(X) C I(X) and UF(X) C
J(X), then there is a unique fized point u € X of the mappings I, J, F, G
such that Fu = Gu = {u}.

In 1987, Khan, Kubiaczyk and Sessa [11] generalized Theorem 1.1 as
follows:

THEOREM 1.3. Let F, G be mappings of a complete metric space (X,d)
into B(X) and I, J be mappings of X into itself satisfying the following
inequality:
(3) 6(Fz,Gy) <

max{cd(Iz, Jy),cd(Iz, Fz),cd(Jy, Gy),aD(Iz,Gy) + bD(Jy, Fz)},
for all z,y € X, where

a b
(4)OSC<1, GZO, bZO, a+b<1, C mﬂ{m,m}<l
If F weakly commutes with I, G weakly commutes with J, UG(X) C I(X),
UF(X) C J(X) and I or J is continuous, then F,G,I and J have a unique

common fized point u € X. Further, Fu = Gu = {u}.

The aim of the present paper is to establish a common fixed point the-
orem on complete metric spaces. Our result generalizes Theorems 1.1 and
1.3. Also, an example is given to support our generalization. At the end,
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a common fixed point theorem on compact metric spaces is proved. This
theorem contains Theorem 1.2 as a special case.

2. Main results

THEOREM 2.1. Let (X,d) be a complete metric space. Furthermore, let I,
J be mappings of X into itself and F, G of X into B(X) satisfying the
inequality (8) such that
(5) UF(X)CJ(X) and UG(X)CI(X).
If either

(I) the pair {F, I} is 6-compatible, I is continuous and {G, J} is weakly
compatible; or

(I) {G, J} is 6-compatible, J is continuous and {F,1} is weakly com-
patible,
then I, J, F and G have a unique common fized point u € X. Moreover,
Fu=Gu = {u}.
Proof. Let zg be an arbitrary point in X. By (5), we choose a point z; in
X such that Jr; € Fxg = Zg and for this point z; there exists a point x5
in X such that Izo € Gx1 = Z1, and so on. Continuing in this manner, we
can define a sequence {z,} as follows:

(6) J:Z:gn+1 € Fzy, = Zy,, I:l:2n+2 € Gl'2n+1 = Zgn+1, neNU {0}

For simplicity, we put V,, = §(Z,, Z,+1) for n € N U {0} . By (3) and (6),
we have that

Von = 6(Z2n, Z2n+1) = J(Fz2n’Gz2n+1)
< max{cd(Izon, JTon41), 0(IZ2n, FTon), c(JTont1, GTont1),
aD(Izon, Gxony1) + bD(Jxont1, Fzon)}

< max{c‘/Qn—la c‘/2m a(‘/2n—1 + V2n)} < max {C, 1

a
}‘/Zn—l,
—-a

for n € N. Similarly, one can show that

b
Voni1 = 8(Zont1, Zan+2) = 8(Goonty, Foony2) < max {C, m} Van,

for n € N. If we put 8 = max{c, t2; }.max{c, 1—55}, then by hypothesis (4),
it can easily seen that 0 < 8 < 1. So we deduce that

(7) ‘/211 S ,3‘/211.—2 S e S ,Bn‘/()a V2n+1 S ﬂV2n—1 S ,Bn‘/la

for n € N. Put M = max{Vy, V1 }. It follows from inequalities (7) that if z,
is an arbitrary point in the set Z,, for n € N, then we obtain that

d(22n, 22n+1) < 6(Zon, Zony1) < ™. M,
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d(z2n+1, 22n+2) < 6(Z2n+1, Zont2) < .M.
This implies that {2,} is a Cauchy sequence in the complete metric space
X. Hence, it converges to a point u € X, which does not depend upon
the particular choice of each z,. In particular, the sequences {Iz2,} and
{Jzont+1} converge to u and the sequences of sets {Fzo,} and {Gzont1}
converge to the set {u}.

We now suppose that I is continuous. We get from Lemma 1.3 that
I?z4, — Iu, IFxs, — {Iu}. But I and F are é-compatible, then it yields
that Flz9, — {Iu} by proposition 1.1(1).

Using inequality (3), we have that

" §(FIzon, Gxont1) < max{cd(I*zon, JT2n+1), c6(I222n, FIz2,),
06(J$2n+1a Gz2n+l), aD(I2z2n, Gz?n-}-l) + bD(Jl'2n+1, FI-T2n)}
< max{cd(I?zon, JTony1), c0(I2xon, Flzoy),
c8(Jzan+1, GT2nt1), a8(I*T2n, GTont1) + b6 (JTont1, FIzon)}.
As n — 00, we obtain from Lemma 1.1 that
d(Iu,u) < max{cd(Iu,u),ad(Iu,u) + bd(Iu,u)} = max{c, a + b}d(Iu,u).
Since max{c,a + b} < 1, then Ju = u.
Further
§(Fu, Grant1) < max{cd(lu, Jzon+1), cd({u, Fu),cd(Jront1, GToant+1),
aD(Iu, Gzont1) + bD(Jzony1, F’U,)}
< max{cd(u, Jron+1), cd(u, Fu), cd(Jxont1, GTant1),
aJ(u, G$2n+1) + b5(J$2n+1, Fu)}
As n — o0, it follows from Lemma 1.1 that
§(Fu,u) < max{cd(Fu,u),bd(Fu,u)} = max{c, b}d(Fu,u),

and hence Fu = {u} since max{c,b} < 1.
Since UF(X) C J(X), there exists a point w € X such that {u} = Fu =
{Jw}. We show that Gw = {Jw}. From (3), we get

§(Jw, Gw) < max{cd(Jw, Gw),ad(Jw, Gw)} = max{c, a}é(Jw, Gw).

Since max{c,a} < 1, then {u} = Gw = {Jw}. Thus Gw is a singleton and
w is a coincidence point for G and J. Since G and J are weakly compatible,
it yields Gu = GJw = JGw = {Ju}. Using (3), we deduce that

d(u, Ju) < §(Fu,Gu) < max{cd(u, Ju), ad(u, Ju) + bd(u, Ju)}
= max{c, a + b}d(u, Ju).

Since max{c,a + b} < 1, then u = Ju. Since {Ju} = Gu, u is a common
fixed point of F, G, I and J.
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The proof, assuming that the condition (II) holds, is similar to the above.
Now, suppose that F' and I have a second common fixed point v € X
such that Fv = {v} = {Iv}. Using the inequality (3), we obtain that

d(v,u) < 6(Fv, Gu) < max{cd(u,v), ad(v,u) + bd(v, u)}
= max{c, a + b}d(v, u).
Since max{c,a + b} < 1, it follows that v = u. So, u is the unique common

fixed point of F' and I such that Fu = {u}. Similarly, it can be shown that
u is the unique common fixed point of G and J such that Gu = {u}.

REMARK 2.1. In Theorem 2.1, if F and G weakly commute with I and J,
respectively, then we obtain Theorem 1.3.

REMARK 2.2. In Theorem 2.1, if a = b = 0, F' commutes with I and G
commutes with J, then we have Theorem 1.1.

REMARK 2.3. In Theorem 2.1, if F' and G are single-valued mappings of
X into itself, then we obtain a generalization of Theorem 4 of Fisher and
Sessa [3].

REMARK 2.4. In [14, Theorem 2.1], the authors proved Theorem 2.1 by
using the inequality

(8) é(Fz,Gy) < #(d(Iz,Jy),6(Iz, Fz),8(Jy, Gy), D(Iz, Gy), D(Jy, Fz)),

for all z,y € X, where ¢ : [0,00) — [0,00) is a function which satisfies the
following conditions

(i) ¢ is upper semi-continuous from the right and non-decreasing in each
coordinate variable,

(ii) for each t > 0
U(t) = max{¢(t, t,t,t,t), d(t,1,t,2t,0), 6(t,¢,¢,0,2t)} < t.

Theorem 2.1 is not deducible from Theorem 2.1 of Rashwan and Ahmed
[14] since the function A : [0,00)% — [0, 00) appearing in the inequality (3)
defined as

h(t1,to, t3,t4,t5) = max{cti, cto, ct3, aty + bts},

for all t1, 2,3, 14,5 in [0, 00), where a, b, ¢ are as in condition (4), does not
generally satisfy condition (ii). Indeed, we have that ¥(t) = tmax{c,a +
b, 2a,2b} for all ¢ > 0 and this does not imply ¥(¢) < t for all ¢ > 0.

It suffices to consider a = % , a4 = % , b= % and then a,bd, ¢ satisfy
condition (4). But ¥(t) = % > ¢ for all t > 0. Therefore, Theorem 2.1 in

[14] and Theorem 2.1 are two different generalizations of Theorem 1.1.
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Now, we give an example showing the greater generality of Theorem 2.1
over Theorems 1.1 and 1.3.

EXAMPLE. Let X = [0, 0c0) be endowed with the Euclidean metric d. Define

z? z? x8 z?
—_ Gt = hadil = 4 2 — 4, T
,4], T [0,4], Iz =2 +42°, Jz 2+:1:+2,
for all z € X. We have UF(X) = J(X) = UG(X) = I(X) = X. Also,
F,G,I and J are continuous mappings.
For any sequence {z,} in X, we have Iz, — 0 as z,, — 0, Fz, — {0}
as z, — 0 and

4 2\4 4\ 4 4\ 2
6(FIxn,IF:cn)=max{(x"——+:—1z—")—,(Z—"> +4(-zf) }——+0 as z, — 0,

IFz, € B(X). Thus F and I are J-compatible and so they are weakly
compatible. Similarly, G and J are 4-compatible and so they are weakly
compatible. For any z,y € X, z#y

4 2 41,2
5(F$,Gy)=max{£— i }:max{lz 1y }

Fr = [0

4’4 2222

1 4 o L(y® | 4 yz)}
< - (L Z
_ma.x{z(z + 4z ),2(2 +y* + 5

1 yS y2 1 1 y8 y2
< el 4 2y _ (2 4 J_ iy 0 2y -2 4 J_
_ma.x{z(:z: + 4z*) <2+y+2>‘,2(z +4z),2(2+y+2>}
— max{ 3d(Tz, Jy), 5302, F2), 5674, Gy)

1 1 1 1 1
< ma‘x{id(II, Jy)a 5(5(]13, FIL‘), 56(‘]1/) Gy)a ED(I:’:’ Gy) + §D(Jy1 F:L')}

We see that the inequality (3) holds with a = b = %, c= % and 0 is the
unique common fixed point of I, J, F and G. Hence the hypotheses of Theo-
rem 2.1 are satisfied. Theorems 1.1 and 1.3 are not applicable because F' and
G are neither commuting nor weakly commuting with I and J| respectively.

In view of the paper of Chang [1], we prove the following theorem on

compact metric spaces:

THEOREM 2.2. Let (X,d) be a compact metric space and I,J be functions
from X into X and F,G : X — B(X) be two set-valued functions with
UF(X) C J(X) and UG(X) C I(X). Suppose that the inequality
(9) o(Fz,Gy) <

max{cd(Iz, Jy), cé(Iz, Fz),cd(Jy, Gy),aD(Iz,Gy) + bD(Jy, Fx)},
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Jor all z,y € X, where

1 a b
< - —_—
5 0_b<2, cmax{l_a,l_b}<1,
holds whenever the right hand side of (9) is positive. If the pairs {F, 1},
{G,J} are weakly compatible and the functions F, I are continuous, then

there is a unique point u € X such that Fu = Gu = {u} = {Iu} = {Ju}.

0<c<l 0<a<

Proof. Let n = inf,ex 6(Iz, Fz). Since X is a compact metric space, there
is a convergent sequence {z,} with limit z¢ in X such that 6(Iz,, Fz,) — ¢
as n — 0o. By Lemma 1.4, we have that

0(Izo, Fzo) < d(Ixg,Iz,) + 6(Izy, Fxy,) + H(Fzy, Fxp).
The continuity of F' and I and lim,_,. zn, = g imply that §(Ize, Fzo) < 7.
Thus 6(Izg, Fzo) = 1.
Since UF(X) C J(X), then there exists a point yo in X with Jyp € Fzo
and d(Izg, Jyo) < .
If n > 0, then
6(Jyo, Gyo) < 6(Fzo, Gyo)
< max{cd(Izg, Jyo), cd(Izq, Fxo), cd(Jyo, Gyo),
aD(Izg,Gyo) + bD(Jyo, Fzo)}
< max{en, cd(Jyo, Gyo), ald(Izo, Jyo) + 6(Jyo, Gyo)]}
< ma-x{cﬂ, C(s(JyO’ GyO)'J a[’l + J(JyO) Gy())]}
If 6(Jyo, Gyo) > n in the last inequality, then we obtain from 0 < ¢ < 1 and
a< % that
d(Jyo, Gyo) < max{c,2a}5(Jyo, Gyo) < 8(Jyo, Gyo)-
This contradiction implies that §(Jyo, Gyo) < 7.
Since UG(X) C I(X), then there is a point zg in X such that Iz € Gy
and d(Izp, Jyo) < n. Hence we have from 0 < ¢ <1 and b < % that
n < 8(Izp, Fz) < 6(F2,Gyo)
< max{cd({zo, Jyo), c6(I29, Fz), cd(Jyo, Gyo),
aD(IZ(), Gyo) + bD(Jyo, FZQ)}
< max{en, cd(Iz, Fzp), bld(Jyo, I20) + 6(I20, Fzp)]}
< max{en, cd(Iz9, F20),b[n + 6(Iz0, Fz)]}
< max{c, 2b}6(I 29, F29) < (120, Fz),
which is a contradiction. Thus n = 0. Hence {Izo} = {Jyo} = {I2} =
Gyo = F.’Eo.
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Since F and I are weakly compatible and Fzg = {Izo}, we obtain that

F? 9= Flzg = IFzo = {12:1:0} If I2:l:o # Izg, then
d(I’zo, Izo) < max{cd(IFzo, Jyo), cd(IFzo, F2zo), c6(Jyo, Gyo),
aD(IFzo, Gyo) + bD(Jyo, F2x0)}
= max{c, a + b}d(I?zg, I o)

and since max{c,a + b} < 1, then we have I?xq = Izo. Hence FIxy
{Izo} = {I%xo}. Similarly, we have GJyo = {Jyo} = {J?y0}. Let u = Iz
Jyo. Then Fu = {u} = {Iu} = {Ju} = Gu.

Suppose that the point z in X is a common fixed point of F,G, I and J
with z # u. If either §(z, Fz) # 0 or §(2,Gz) # 0, then

0(z, Fz) < max{cd(z, z), cd(z, Fz),cd(z,Gz),aD(z,Gz) + bD(z, Fz)}
= ma.x{c, %}5(2,0’2)

and since max{c, 1%;} < 1, it follows that 6(z, Fz) < 6(z,Gz). By the
symmetry, we obtain that 6(z Gz) < 4(z, Fz), which is inadmissible. So,
0(2,Gz) = 6(z,Fz) =0, that is Fz = Gz = {z}.
Now, we get from (9) that
d(z,u) < max{cd(z,u), cd(z, Fz),cd(u, Gu),aD(z,Gu) + bD(u, Fz)}
= max{c,a + b}d(z, u).

Since max{c,a + b} < 1, it follows that u = 2. Whence u is the unique
common fixed point of F,G,I and J.

REMARK 2.4. In Theorem 2.2, if we put a = b = 0, F' commutes with I and
G commutes with J, we obtain Theorem 1.2.
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