

W. M. Mikulski

ON THE CONTACT (k, r) -COELEMENTS

Abstract. For natural numbers n , r and k with $n \geq k$ the bundle functor of contact (k, r) -coelements over n -manifolds is denoted by K_k^{r*} . The rigidity theorem for K_k^{r*} is proved. If $n \geq k(r+1)$ the natural operators $T_{|\mathcal{M}f_n} \rightsquigarrow TK_k^{r*}$ and $T_{|\mathcal{M}f_n}^* \rightsquigarrow T^*K_k^{r*}$ are completely described and the natural affinors on K_k^{r*} are classified. The case $r = k = 1$ is additionally discussed.

0. Introduction

Let n , r and k be natural numbers.

Let $n \geq k$. In [2], C. Ehresmann constructed functorially the fibre bundle $K_k^r M = \text{reg}T_k^r M / L_k^r$ over a n -dimensional manifold M of contact (k, r) -elements and obtained the bundle functor $K_k^r : \mathcal{M}f_n \rightarrow \mathcal{F}\mathcal{M}$ from the category $\mathcal{M}f_n$ of n -dimensional manifolds and their embeddings into the category $\mathcal{F}\mathcal{M}$ of fibered manifolds and their fibered maps. In [5], I. Kolář, P.W. Michor and J. Slovák studied the problem how a vector field X on M induces a vector field $A(X)$ on $K_k^r M$ and proved that every natural operator $A : T_{|\mathcal{M}f_n} \rightsquigarrow TK_k^r$ is a constant multiple of the complete lifting K_k^r . In [6], I. Kolář and the author investigated the naturality problem with bundle mappings $B : K_k^r M \rightarrow K_k^r M$ and deduced the so called rigidity theorem for K_k^r saying that every natural transformation $B : K_k^r \rightarrow K_k^r$ over n -manifolds is the identity one. The authors studied also the naturality problem with affinors (i.e. tensor fields of type $(1, 1)$) $C : TK_k^r M \rightarrow TK_k^r M$ on $K_k^r M$ and derived that for $n \geq k+2$ every natural affinor $C : TK_k^r \rightarrow TK_k^r$ on K_k^r over n -manifolds is a constant multiple of the identity one. Moreover the authors analysed how a 1-form ω on M can induce a 1-form $D(\omega)$ on $K_k^r M$ and showed that every natural operator $D : T_{|\mathcal{M}f_n}^* \rightsquigarrow T^*K_k^r$ is a constant multiple of the vertical lifting.

1991 *Mathematics Subject Classification*: 58A05, 58A20.

Key words and phrases: bundle functor, natural operator, natural transformation.

We inform the reader that some other generalizations of the cited above results from [5] and [6] can be found in [10].

The purpose of the present paper is to "dualize" the cited above results of [5] and [6]. Let $n \geq k$. In 1952, C. Ehresmann introduced the bundle $K_k^r M = \text{reg} T_k^r M / L_k^r$ of contact (k, r) -coelements for mostly abstract reasons. So, we have the bundle functor $K_k^r : \mathcal{M}f_n \rightarrow \mathcal{F}\mathcal{M}$ of contact (k, r) -coelements. We investigate the naturality problem with bundle mappings $B : K_k^r M \rightarrow K_k^r M$ and deduce the so called rigidity theorem for K_k^r saying that every natural transformation $B : K_k^r \rightarrow K_k^r$ over n -manifolds is the identity one. We study the problem how a vector field X on M induces a vector field $A(X)$ on $K_k^r M$ and prove that for $n \geq k(r+1)$ every natural operator $A : T_{|\mathcal{M}f_n} \rightsquigarrow T K_k^r$ is a constant multiple of the complete lifting K_k^r . We study also the naturality problem with affinors $C : T K_k^r M \rightarrow T K_k^r M$ on $K_k^r M$ and derive that for $n \geq k(r+1)$ every natural affinor $C : T K_k^r \rightarrow T K_k^r$ on K_k^r over n -manifolds is a constant multiple of the identity one. Moreover we analyse how a 1-form ω on M can induce a 1-form $D(\omega)$ on $K_k^r M$ and show that for $n \geq k(r+1)$ every natural operator $D : T_{|\mathcal{M}f_n}^* \rightsquigarrow T^* K_k^r$ is a constant multiple of the vertical lifting.

In the case $r = k = 1$ we have $K_1^1 M \equiv \mathbf{P}(T^* M)$, the projectivization of the cotangent bundle $T^* M$. So, as a corollaries we get some results for $\mathbf{P}(T^*)$ corresponding to the ones for K_1^1 .

Natural operators lifting vector fields and 1-forms to some natural bundles were used practically in all papers in which problem of prolongations of geometric structures was studied, see [16], [17], e.t.c. That is why such natural operators are studied, see. e.g. [3], [5], [11], [13]-[15], [18], e.t.c.

Natural affinors are used to study torsions of connections, [7], [1], e.t.c. That is why they are studied, see [4], [5], [6], [9], [10], e.t.c.

From now on x^1, \dots, x^n denote the usual coordinates on \mathbf{R}^n and $\partial_i = \frac{\partial}{\partial x^i}$ are the vector fields on \mathbf{R}^n .

All manifolds are assumed to be without boundary, finite dimensional, Hausdorff and smooth, i.e. of class \mathcal{C}^∞ . All maps between manifolds are assumed to be smooth. All natural operators, natural transformations and natural affinors are in the sense of [5].

1. On the bundle functor K_k^r of contact (k, r) -elements

For a comfort we cite below some results about the bundle functor $K_k^r : \mathcal{M}f_n \rightarrow \mathcal{F}\mathcal{M}$ of contact (k, r) -elements.

For every n -manifold M we have the bundle $T_k^r M = J_0^r(\mathbf{R}^k, M)$ over M of (k, r) -velocities. Every embedding $\varphi : M \rightarrow N$ of two n -manifolds induces a bundle map $T_k^r \varphi : T_k^r M \rightarrow T_k^r N$, $T_k^r \varphi(j_0^r \gamma) = j_0^r(\varphi \circ \gamma)$, $\gamma : \mathbf{R}^k \rightarrow M$.

The correspondence $T_k^r : \mathcal{M}f_n \rightarrow \mathcal{F}\mathcal{M}$ is a bundle functor.

Every $\xi = j_0^r \psi \in L_k^r = \text{inv}J_0^r(\mathbf{R}^k, \mathbf{R}^k)_0$, the Lie group of invertible r -jets $\mathbf{R}^k \rightarrow \mathbf{R}^k$ with source and target $0 \in \mathbf{R}^k$, induces a natural automorphism $\tilde{\xi} : T_k^r \rightarrow T_k^r$, $\tilde{\xi} : T_k^r M \rightarrow T_k^r M$, $\tilde{\xi}(j_0^r \gamma) = j_0^r(\gamma \circ \psi^{-1})$, $\gamma : \mathbf{R}^k \rightarrow M$. This defines a group homomorphism $L_k^r \rightarrow \text{Aut}(T_k^r)$.

The well-known result is that if $n \geq k$ then the above homomorphism is an isomorphism, i.e. $\text{Aut}(T_k^r) \cong L_k^r$.

Assume $n \geq k$. For every n -manifold M let $\text{reg}T_k^r M = \{j_0^r \gamma \mid \gamma : \mathbf{R}^k \rightarrow M, \text{rank}(d_0 \gamma) = k\}$ be the open subbundle in $T_k^r M$ of so called regular (k, r) -velocities. Clearly, $\text{reg}T_k^r M$ is invariant with respect to the action $L_k^r = \text{Aut}(T_k^r)$ on $T_k^r M$. So, we have the quotient bundle $K_k^r M = \text{reg}T_k^r M / L_k^r$ over M of contact (k, r) -elements. This bundle was introduced by C. Ehresmann, [2]. We have the quotient projection $\kappa : \text{reg}T_k^r M \rightarrow K_k^r M$. For every embedding $\varphi : M \rightarrow N$ of two n -manifolds $T_k^r \varphi$ commutes with the action of L_k^r and $T_k^r \varphi(\text{reg}T_k^r M) \subset \text{reg}T_k^r N$. So, we have the quotient map $K_k^r \varphi : K_k^r M \rightarrow K_k^r N$. The correspondence $K_k^r : \mathcal{M}f_n \rightarrow \mathcal{F}\mathcal{M}$ is a bundle functor. Moreover, $\kappa : \text{reg}T_k^r \rightarrow K_k^r M$ is (canonically) a principal fibre bundle with structure group L_k^r . The right principal bundle action of L_k^r on $\text{reg}T_k^r M$ is given by $v \cdot \xi = \tilde{\xi}^{-1}(v)$, $\xi \in L_k^r$, $v \in \text{reg}T_k^r M$.

In [6], the authors proved the following rigidity theorem.

THEOREM 1. (Rigidity Theorem for K_k^r). *Let $n \geq k$. Every natural transformation $B : K_k^r \rightarrow K_k^r$ over n -manifolds is the identity one.*

In [5], the authors obtained the following classification of natural operators lifting a vector field from a n -manifold M to a vector field on $K_k^r M$.

THEOREM 2. *Let $n \geq k$. Every natural operator $A : T_{|\mathcal{M}f_n} \rightsquigarrow T K_k^r$ is a constant multiple of the complete lifting K_k^r .*

In [6], the authors deduced the following classification of canonical affinors $C : T K_k^r M \rightarrow T K_k^r M$ on $K_k^r M$.

THEOREM 3. *Let $n \geq k + 2$. Every natural affinor $C : T K_k^r \rightarrow T K_k^r$ on K_k^r over n -manifolds is a constant multiple of the identity affinor.*

In general, if $q : Y \rightarrow M$ is a fibre bundle and $\omega : TM \rightarrow \mathbf{R}$ is a 1-form on M then we have a 1-form $\omega^V = q^* \omega = \omega \circ Tq : TY \rightarrow \mathbf{R}$ on Y . It is called the vertical lift of ω to Y .

In [6], the authors showed the following classification of natural operators lifting a 1-form from a n -manifold M to a 1-form on $K_k^r M$.

THEOREM 4. *Let $n \geq k + 1$. Every natural operator $D : T_{|\mathcal{M}f_n}^* \rightsquigarrow T^* K_k^r$ is a constant multiple of the vertical lifting.*

2. On the bundle functor T_k^{r*} of (k, r) -covelocities

For every n -manifold M we have the vector bundle $T_k^{r*}M = J^r(M, \mathbf{R}^k)_0$ over M of (k, r) -covelocities. Every embedding $\varphi : M \rightarrow N$ of two n -manifolds induces a vector bundle map $T_k^{r*}\varphi : T_k^{r*}M \rightarrow T_k^{r*}N$, $T_k^{r*}\varphi(j_x^r\gamma) = j_{\varphi(x)}^r(\gamma \circ \varphi^{-1})$, $\gamma : M \rightarrow \mathbf{R}^k$, $x \in M$, $\gamma(x) = 0$.

It is well-known that the correspondence $T_k^{r*} : \mathcal{M}f_n \rightarrow \mathcal{VB} \subset \mathcal{FM}$ is a vector bundle functor, [5].

Every $\xi = j_0^r\psi \in J_0^r(\mathbf{R}^k, \mathbf{R}^k)_0$, the Lie semigroup of r -jets $\mathbf{R}^k \rightarrow \mathbf{R}^k$ with source and target $0 \in \mathbf{R}^k$, induces a natural endomorphism $\tilde{\xi} : T_k^{r*} \rightarrow T_k^{r*}$, $\tilde{\xi} : T_k^{r*}M \rightarrow T_k^{r*}M$, $\tilde{\xi}(j_x^r\gamma) = j_x^r(\psi \circ \gamma)$, $\gamma : M \rightarrow \mathbf{R}^k$, $x \in M$, $\gamma(x) = 0$, $M \in obj(\mathcal{M}f_n)$. This defines a semigroup homomorphism $J_0^r(\mathbf{R}^k, \mathbf{R}^k)_0 \rightarrow End(T_k^{r*})$. So, $\tilde{\xi} \in Aut(T_k^{r*})$ iff $\xi \in L_k^r$.

PROPOSITION 1. *If $n \geq k$ then the above homomorphism $J_0^r(\mathbf{R}^k, \mathbf{R}^k)_0 \rightarrow End(T_k^{r*})$ of semigroups is an isomorphism, i.e. $End(T_k^{r*}) \cong J_0^r(\mathbf{R}^k, \mathbf{R}^k)_0$. In particular, $Aut(T_k^{r*}) \cong L_k^r$.*

Proof. Let $E : T_k^{r*} \rightarrow T_k^{r*}$ be a natural transformation ($E \in End(T_k^{r*})$) over n -manifolds, $n \geq k$. It is sufficient to show that there is $\xi \in J_0^r(\mathbf{R}^k, \mathbf{R}^k)_0$ with $E = \tilde{\xi}$.

Let $\eta_o = j_0^r(x^1, \dots, x^k) \in (T_k^{r*})_0 \mathbf{R}^n$ = the fibre of $T_k^{r*} \mathbf{R}^n$ over $0 \in \mathbf{R}^n$. Let $E(\eta_o) = j_0^r\gamma$ for some $\gamma : \mathbf{R}^n \rightarrow \mathbf{R}^k$, $\gamma(0) = 0$. Using the invariance of E with respect to the homotheties $(x^1, \dots, x^k, \frac{1}{\tau}x^{k+1}, \dots, \frac{1}{\tau}x^n) : \mathbf{R}^n \rightarrow \mathbf{R}^n$ for $\tau \neq 0$ and then putting $\tau \rightarrow 0$ we obtain $E(\eta_o) = \xi(\eta_o)$, where $\xi = j_0^r\psi \in J_0^r(\mathbf{R}^k, \mathbf{R}^k)_0$, $\psi : \mathbf{R}^k \rightarrow \mathbf{R}^k$, $\psi(t_1, \dots, t_k) := \gamma(t_1, \dots, t_k, 0, \dots, 0)$, $(t_1, \dots, t_k) \in \mathbf{R}^k$. Then $E = \tilde{\xi}$ because η_o has dense orbit in $T_k^{r*} \mathbf{R}^n$ with respect to $Diff(\mathbf{R}^n, \mathbf{R}^n)$. ■

REMARK 1. In [8], J. Kurek obtained the classification of $End(T_k^{r*})$ in some another form.

3. The bundle functor K_k^{r*} of contact (k, r) -coelements

The bundle of contact (k, r) -coelements was introduced by C. Ehresmann. For a comfort we present this construction, and simultaneously we introduce notations we will use in the rest of the paper.

Assume that n , r and k are natural numbers with $n \geq k$.

For every n -manifold M let $regT_k^{r*}M = \{j_x^r\gamma \mid \gamma : M \rightarrow \mathbf{R}^k, x \in M, \gamma(x) = 0, rank(d_x\gamma) = k\}$ be the open subbundle in $T_k^{r*}M$ of so called regular (k, r) -covelocities. Clearly, $regT_k^{r*}M$ is invariant with respect to the action $L_k^r = Aut(T_k^{r*})$ on $T_k^{r*}M$. So, we have the quotient topological bundle $K_k^{r*}M = regT_k^{r*}M/L_k^r$ over M of contact (k, r) -coelements. In $K_k^{r*}M$, we have the quotient topology. Let $\pi : K_k^{r*}M \rightarrow M$ denotes the obvious topological bundle projection. We have the quotient projection

$\kappa : \text{reg}T_k^{r*}M \rightarrow K_k^{r*}M$. Every element of $K_k^{r*}M$ is of the form $[v] = [v]_k^r = \kappa(v)$ for $v \in \text{reg}T_k^{r*}M$. For every embedding $\varphi : M \rightarrow N$ of two n -manifolds $T_k^{r*}\varphi$ commutes with the action of L_k^r and $T_k^{r*}\varphi(\text{reg}T_k^{r*}M) \subset \text{reg}T_k^{r*}N$. So, we have the quotient map $K_k^{r*}\varphi : K_k^{r*}M \rightarrow K_k^{r*}N$.

It is easy to see that the correspondence $K_k^{r*} : \mathcal{M}f_n \rightarrow \mathcal{F}\mathcal{M}_{Top}$ is a "topological" bundle functor. We prove below that $K_k^{r*} : \mathcal{M}f_n \rightarrow \mathcal{F}\mathcal{M}$ is a (smooth) bundle functor.

LEMMA 1. *There is a C^∞ -manifold structure on $K_k^{r*}M$ for any $M \in \text{obj}(\mathcal{M}f_n)$ such that $K_k^{r*} : \mathcal{M}f_n \rightarrow \mathcal{F}\mathcal{M}$ is a (smooth) bundle functor and the family $\kappa : \text{reg}T_k^{r*} \rightarrow K_k^{r*}$ is a natural transformation consisting of surjective submersions.*

Proof. The proof consists of two steps.

Step 1. The manifold structure on $K = \pi^{-1}(0)$.

To introduce a C^∞ -manifold structure on the fibre $K = \pi^{-1}(0)$, $0 \in \mathbf{R}^n$, we will use the following method, which is similar to the one as for Grassmann manifolds.

Let i_1, \dots, i_k be natural numbers such that $1 \leq i_1 < i_2 < \dots < i_k \leq n$.

We define $U_{i_1, \dots, i_k} = \{[j_0^r(\gamma)] \in K \mid \text{rank}(d_0(\gamma \circ \varphi_{i_1, \dots, i_k})) = k\}$, where $\varphi_{i_1, \dots, i_k} : \mathbf{R}^n \rightarrow \mathbf{R}^n$, $\varphi_{i_1, \dots, i_k}(y_1, \dots, y_n) = (0, \dots, 0, y_{i_1}, 0, \dots, 0, y_{i_2}, 0, \dots, 0, y_{i_k}, 0, \dots, 0)$, $(y_1, \dots, y_n) \in \mathbf{R}^n$. In the right hand side of the formula defining $\varphi_{i_1, \dots, i_k}$, y_{i_1} is in i_1 -position, y_{i_2} is in i_2 -position, e.t.c. Clearly, U_{i_1, \dots, i_k} is open in K .

Let $\sigma = [j_0^r \gamma] \in U_{i_1, \dots, i_k}$ be arbitrary. By the rank theorem there is an embedding $\psi : \mathbf{R}^k \rightarrow \mathbf{R}^k$, $\psi(0) = 0$, such that $\psi \circ \gamma \circ (0, \dots, 0, x^{i_1}, 0, \dots, 0, x^{i_2}, 0, \dots, 0, x^{i_k}, 0, \dots, 0) = (x^{i_1}, x^{i_2}, \dots, x^{i_k})$ near $0 \in \mathbf{R}^n$. Clearly, $j_0^r \psi$ is uniquely determined. Replacing γ by $\psi \circ \gamma$ we can assume $\gamma \circ (0, \dots, 0, x^{i_1}, 0, \dots, 0, x^{i_2}, 0, \dots, 0, x^{i_k}, 0, \dots, 0) = (x^{i_1}, x^{i_2}, \dots, x^{i_k})$ near $0 \in \mathbf{R}^n$. In the left hand side of the last equality x^{i_1} is in i_1 -position, x^{i_2} is in i_2 -position, e.t.c. Then $\sigma = [j_0^r((x^{i_s} + \sum_\alpha a_{\alpha, i_s} x^\alpha)_{s=1}^k)]$ for some uniquely determined $a_{\alpha, i_s} = a_{\alpha, i_s}(\sigma) \in \mathbf{R}$. Here the sum is over the set $P_{r, n, k, i_1, \dots, i_k}$ of all $\alpha = (\alpha_1, \dots, \alpha_n) \in (\mathbf{N} \cup \{0\})^n$ such that $|\alpha| \leq r$ and $\sum_{i \in \{1, 2, \dots, n\} \setminus \{i_1, \dots, i_k\}} \alpha_i \geq 1$. Of course, $N_{r, n, k} = \text{card}(P_{r, n, k, i_1, \dots, i_k})$ does not depend on i_1, \dots, i_k . We define $\Phi_{i_1, \dots, i_k} : U_{i_1, \dots, i_k} \rightarrow \mathbf{R}^{kN_{r, n, k}}$, $\Phi_{i_1, \dots, i_k}(\sigma) = (a_{\alpha, i_s}(\sigma))$, $\alpha \in P_{r, n, k, i_1, \dots, i_k}$, $s = 1, \dots, k$. Clearly, Φ_{i_1, \dots, i_k} is a homeomorphism.

Obviously, the family $\{U_{i_1, \dots, i_k}\}$ is an open covering of K . We introduce the C^∞ -manifold structure on K such that all Φ_{i_1, \dots, i_k} are charts. Then K is a smooth, finite dimensional, Hausdorff manifold without boundary. We note that $\dim(K) = kN_{r, n, k}$.

Step 2. A manifold structure on $K_k^{r*}M$.

To introduce a smooth manifold structure on $K_k^{r*}M$ for $M \in obj(\mathcal{M}f_n)$ we will use the following locally determined associated space method, [12].

Let β be the induced by K_k^{r*} topological action of L_n^r on $K = \pi^{-1}(0)$, $\beta(\xi, \sigma) = K_k^{r*}\varphi(\sigma)$, $\xi = j_0^r\varphi \in L_n^r$, $\sigma \in K$. It is easy to see that β is smooth. Let $\tilde{K}_k^{r*} : \mathcal{M}f_n \rightarrow \mathcal{F}\mathcal{M}$ be the induced by β bundle functor. We remark that $\tilde{K}_k^{r*}M = P^r(M) \times_{L_n^r} K$ for any $M \in obj(\mathcal{M}f_n)$ and $\tilde{K}_k^{r*}\varphi = P^r(\varphi) \times_{L_n^r} id_K : \tilde{K}_k^{r*}M \rightarrow \tilde{K}_k^{r*}N$ for any embedding $\varphi : M \rightarrow N$ of n -manifolds.

Similarly as in the smooth case, we have a canonical homeomorphism $I_M : \tilde{K}_k^{r*}M \rightarrow K_k^{r*}M$, $I_M(< \rho, \sigma >) = K_k^{r*}\varphi(\sigma)$, $\rho = j_0^r\varphi \in P^r(M)$, $\varphi : \mathbf{R}^n \rightarrow M$ is an embedding, $\sigma \in K$, $M \in obj(\mathcal{M}f_n)$, [12].

For every n -manifold M we introduce a \mathcal{C}^∞ -manifold structure on $K_k^{r*}M$ assuming that I_M is a diffeomorphism. Then $\kappa : regT_k^{r*}M \rightarrow K_k^{r*}M$ is a submersion and $K_k^{r*} : \mathcal{M}f_n \rightarrow \mathcal{F}\mathcal{M}$ is a bundle functor. ■

We have the following easy to verify fact.

PROPOSITION 2. *Let $n \geq k$. For every n -manifold M $\kappa : regT_k^{r*}M \rightarrow K_k^{r*}M$ is (canonically) a principal fibre bundle with structure group L_k^r . The right principal bundle action of L_k^r on $regT_k^{r*}M$ is given by $v.\xi = \tilde{\xi}^{-1}(v)$, $\xi \in L_k^r$, $v \in regT_k^{r*}M$.*

Let $n \geq k$ and $r \geq 2$. The jet projection $\pi_{r-1}^r : T_k^rM \rightarrow T_k^{r-1*}M$ for any $M \in obj(\mathcal{M}f_n)$ commutes with the actions of L_k^r on T_k^rM and of L_k^{r-1} on $T_k^{r-1*}M$ and sends $regT_k^{r*}M$ into $regT_k^{r-1*}M$. So, we have the quotient map $\Pi_{r-1}^r : K_k^{r*}M \rightarrow K_k^{r-1*}M$.

We have the following easy to verify result.

PROPOSITION 3. *Let $n \geq k$ and $r \geq 2$. The family $\Pi_{r-1}^r : K_k^{r*} \rightarrow K_k^{r-1*}$ is a natural transformation consisting of surjective submersions. For every n -manifold M the restriction $\pi_{r-1}^r : regT_k^{r*}M \rightarrow regT_k^{r-1*}M$ is a principal bundle epimorphism covering $\Pi_{r-1}^r : K_k^{r*}M \rightarrow K_k^{r-1*}M$ and having $\pi_{r-1}^r : L_k^r \rightarrow L_k^{r-1}$ as the induced group epimorphism.*

Let us explain the case $r = k = 1$.

For every n -manifold M we have the projectivization $\mathbf{P}(T^*M)$ of the cotangent bundle T^*M , $\mathbf{P}(T^*M) = \bigcup_{x \in M} \mathbf{P}(T_x^*M)$, $\mathbf{P}(T_x^*M)$ = the projective space of T_x^*M . For every embedding $\varphi : M \rightarrow N$ of two n -manifolds we have the induced mapping $\mathbf{P}(T^*\varphi) = \bigcup_{x \in M} \mathbf{P}(T_x^*\varphi) : \mathbf{P}(T^*M) \rightarrow \mathbf{P}(T^*N)$. The correspondence $\mathbf{P}(T^*) : \mathcal{M}f_n \rightarrow \mathcal{F}\mathcal{M}$ is a bundle functor.

For $k = r = 1$ we have $L_1^1 \cong \mathbf{R} \setminus \{0\}$ and $T_1^{1*}M \cong T^*M$, $j_x^1\gamma \cong d_x\gamma$, $\gamma : M \rightarrow \mathbf{R}$, $x \in M$, $\gamma(x) = 0$. Then $K_1^{1*}M \cong \mathbf{P}(T^*M)$ by the quotient map. So, the bundle functor $\mathbf{P}(T^*) : \mathcal{M}f_n \rightarrow \mathcal{F}\mathcal{M}$ is equivalent to $K_1^{1*} : \mathcal{M}f_n \rightarrow \mathcal{F}\mathcal{M}$.

4. The rigidity theorem for K_k^{r*}

THEOREM 5. (Rigidity Theorem for K_k^{r*}). *Every natural transformation $B : K_k^{r*} \rightarrow K_k^{r*}$ over n -manifolds for $n \geq k$ is the identity one.*

Proof. Consider a natural transformation $B : K_k^{r*} \rightarrow K_k^{r*}$ over n -manifolds, $n \geq k$.

Since (by the rank theorem) $K_k^{r*} \mathbf{R}^n$ is the orbit of $\sigma_o = [j_0^r(x^1, \dots, x^k)] \in K$ with respect to $\text{Diff}(\mathbf{R}^n, \mathbf{R}^n)$, it is sufficient to verify that $B(\sigma_o) = \sigma_o$.

We can write $B(\sigma_o) = [j_0^r \gamma]$ for some $\gamma : \mathbf{R}^n \rightarrow \mathbf{R}^k$ of rank k at 0, $\gamma(0) = 0$.

There is a diffeomorphism $\varphi : \mathbf{R}^n \rightarrow \mathbf{R}^n$, $\varphi(0) = 0$, such that $(x^1, \dots, x^k) \circ \varphi^{-1} = \psi \circ (x^1, \dots, x^k)$ near 0 $\in \mathbf{R}^n$ for some diffeomorphism $\psi : \mathbf{R}^k \rightarrow \mathbf{R}^k$, $\psi(0) = 0$, and $\gamma \circ \varphi^{-1} \circ (x^1, \dots, x^k, 0, \dots, 0)$ is of rank k at 0 $\in \mathbf{R}^n$. Since φ preserve σ_o , replacing γ by $\gamma \circ \varphi^{-1}$ we can assume that $\gamma \circ (x^1, \dots, x^k, 0, \dots, 0)$ is of rank k at 0 $\in \mathbf{R}^n$, i.e. $[j_0^r \gamma] \in U_{1,2,\dots,k} \subset K$. Then we can write $B(\sigma_o) = [j_0^r((x^s + \sum_{\alpha} a_{\alpha,s} x^{\alpha})_{s=1}^k)]$, where $a_{\alpha,s} \in \mathbf{R}$ are the coordinates of $B(\sigma_o)$ in the chart $\Phi_{1,\dots,k}$. Here the sum is over all $\alpha \in P_{r,n,k,1,2,\dots,k}$. (See the proof of Lemma 1 for the definitions of $U_{1,\dots,k}$, $\Phi_{1,\dots,k}$ and $P_{r,n,k,1,2,\dots,k}$.)

The homotheties $(x^1, \dots, x^k, \frac{1}{\tau}x^{k+1}, \dots, \frac{1}{\tau}x^n) : \mathbf{R}^n \rightarrow \mathbf{R}^n$ for $\tau \neq 0$ preserve σ_o . Then they preserve $B(\sigma_o)$, too. It means that $B(\sigma_o) = [j_0^r((x^s + \sum_{\alpha} a_{\alpha,s} \tau^{\alpha_{k+1}+\dots+\alpha_n} x^{\alpha})_{s=1}^k)]$ for $\tau \neq 0$. Putting $\tau \rightarrow 0$ we get $B(\sigma_o) = \sigma_o$. ■

COROLLARY 1. *If $n \geq k$ then every absolute natural operator $A : T_{|\mathcal{M}f_n} \rightsquigarrow TK_k^{r*}$ is 0.*

Proof. Every such A is a canonical vector field on $K_k^{r*}M$ for any $M \in \text{obj}(\mathcal{M}f_n)$. $K_k^{r*}M$ is the orbit of $\sigma_o \in F_0 \mathbf{R}^n$. Then the flow of A is formed by authomorphism of K_k^r . So, $A = 0$ by Theorem 5. ■

For $r = k = 1$ we have the following corollary of Theorem 5.

COROLLARY 2. (Rigidity of $\mathbf{P}(T^*)$). *Every natural transformation $B : \mathbf{P}(T^*) \rightarrow \mathbf{P}(T^*)$ over n -manifolds is the identity one.*

5. The natural operators $T_{|\mathcal{M}f_n} \rightsquigarrow TK_k^{r*}$

In general, if $F : \mathcal{M}f_n \rightarrow \mathcal{F}\mathcal{M}$ is a bundle functor then given a vector field X on $M \in \text{obj}(\mathcal{M}f_n)$ we have the vector field $\mathcal{F}X$ on FM via prolongation of flows. It is called the complete lifting of X to FM . If $\{\varphi_t\}$ is the flow of X then $\{F\varphi_t\}$ is the flow of $\mathcal{F}X$, see [5].

In the case $F = K_k^{r*}$ we have the following theorem.

THEOREM 6. *If $n \geq k(r+1)$ then every natural operator $A : T_{|\mathcal{M}f_n} \rightsquigarrow TK_k^{r*}$ is a constant multiple of the complete lifting K_k^{r*} .*

The proof of Theorem 6 will occupy the rest of this section and Section 6.

NOTATIONS. We renumerice the coordinate system on \mathbf{R}^n by $x^u, x^{p,l}, x^w$, where $u \in \{1, \dots, k\}$, $(p, l) \in \{1, \dots, k\} \times \{0, 1, \dots, r-1\} = \{k+1, k+2, \dots, k+rk\}$ and $w \in \{k+rk+1, k+rk+2, \dots, n\}$. (It is possible if $n \geq k(r+1)$.) Given $b = (b^{p,l}) \in \mathbf{R}^{rk}$, $p = 1, \dots, k$, $l = 0, \dots, r-1$, let $\eta_b := (x^s + \sum_{q=0}^{r-1} b^{s,q} x^{s,q} (x^1)^q)_{s=1}^k : \mathbf{R}^n \rightarrow \mathbf{R}^k$. Clearly, η_b is of rank k at $0 \in \mathbf{R}^n$. We put

$$\sigma_b = [j_0^r(\eta_b)] \in K = \pi^{-1}(0).$$

Obviously $\sigma_b \in U_{1,2,\dots,k}$, see the proof of Lemma 1 for the definition of U_{i_1,\dots,i_k} .

We have the following reducibility lemma.

LEMMA 2. (First Reducibility Lemma). *Let $A : T_{|\mathcal{M}f_n} \rightsquigarrow TK_k^{r*}$ be a natural operator, $n \geq k(r+1)$. If $A(\partial_1)_{\sigma_{(1)}} = 0$, $(1) = (1, 1, \dots, 1) \in \mathbf{R}^{rk}$, then $A = 0$. If $A(\partial_1)_{\sigma_{(1)}}$ is vertical then A is of vertical type.*

Proof. It is sufficient to show that $A(\partial_1)_\sigma$ is equal to 0 (vertical) for any $\sigma \in K$.

By the density argument we can assume that $\sigma \in U_{1,\dots,k} \subset K$. Then we can write

$$\sigma = [j_0^r((x^s + \sum_{(q,q_2,\dots,q_k) \in Q} \gamma_{q,q_2,\dots,q_k,s} (x^{p,l}, x^w) (x^2)^{q_2} \dots (x^k)^{q_k} (x^1)^q)_{s=1}^k)]$$

for some smooth maps $\gamma_{q,q_2,\dots,q_k,s} : \mathbf{R}^{n-k} \rightarrow \mathbf{R}$ with $\gamma_{q,q_2,\dots,q_k,s}(0) = 0$, where Q is the set of all $(q, q_2, \dots, q_k) \in (\mathbf{N} \cup \{0\})^k$ with $q + q_2 + \dots + q_k \leq r-1$.

By the density argument we can assume that $(\gamma_{q,0,\dots,0,s}(x^{p,l}, 0)) : \mathbf{R}^n \rightarrow \mathbf{R}^{kr}$, $q = 0, \dots, r-1$, $s = 1, \dots, k$, is of rank kr at $0 \in \mathbf{R}^n$. Then there exists an embedding $\varphi : \mathbf{R}^n \rightarrow \mathbf{R}^n$ preserving 0 , ∂_1 and x^1, \dots, x^k near 0 and sending $\sum_{(q,q_2,\dots,q_k) \in Q} \gamma_{q,q_2,\dots,q_k,s} (x^{p,l}, x^w) (x^2)^{q_2} \dots (x^k)^{q_k}$ into $x^{s,q}$ for $(s, q) \in \{1, \dots, k\} \times \{0, \dots, r-1\}$. Now using the invariance of A with respect to φ we can assume that $\sigma = \sigma_{(1)}$. ■

Now, we prove the following decomposition lemma.

LEMMA 3. (Decomposition Lemma) *Let $A : T_{|\mathcal{M}f_n} \rightsquigarrow TK_k^{r*}$ be a natural operator, $n \geq k(r+1)$. Then there exists $\alpha \in \mathbf{R}$ such that $A - \alpha K_k^{r*}$ is a vertical operator.*

Proof. We can write $T\pi(A(\partial_1)_{\sigma_{(1)}}) = \sum_{i=1}^n \alpha_i \partial_i|_0$, $\alpha_i \in \mathbf{R}$. Using the naturality of A with respect to the homotheties $(x^1, \frac{1}{\tau}x^2, \dots, \frac{1}{\tau}x^n) : \mathbf{R}^n \rightarrow \mathbf{R}^n$ for $\tau \neq 0$ and next putting $\tau \rightarrow 0$ we deduce that $\alpha_2 = \dots = \alpha_n = 0$.

Then $A - \alpha_1 \mathcal{K}_k^{r*}$ is of vertical type because of the first reducibility lemma (Lemma 2). ■

6. The natural operators $T_{|\mathcal{M}_{f_n}} \rightsquigarrow TK_k^{r*}$ of vertical type

Thanks to the decomposition lemma (Lemma 3), Theorem 6 will be proved after proving the following proposition.

PROPOSITION 4. *If $n \geq k(r+1)$ then every natural operator $A : T_{|\mathcal{M}_{f_n}} \rightsquigarrow TK_k^{r*}$ of vertical type is 0.*

Proof. From now on $A : T_{|\mathcal{M}_{f_n}} \rightsquigarrow TK_k^{r*}$ is a natural operator of vertical type, where $n \geq k(r+1)$.

We will use the notations of Section 5.

Since A is vertical, $A(X)|K$ is a vector field on $K = \pi^{-1}(0)$ for every $X \in \mathcal{X}(\mathbf{R}^n)$. Let $\{F_t^{A(X)}\}$ denotes the flow of $A(X)|K$, $X \in \mathcal{X}(\mathbf{R}^n)$. For $r \geq 2$ K is not compact. (For example, we can not choose a convergent subsequence from the sequence $a_m = [j_0^r((x^s + m(x^{s,0})^2)_{s=1}^k)] \in K$, $m = 1, 2, \dots$) Hence the flow $F_t^{A(X)}$ can not be global.

Let $a \in \mathbf{R}$, $b = (b^{p,l}) \in \mathbf{R}^{kr}$ ($p = 1, \dots, k$, $l = 0, \dots, r-1$) and $t \in \mathbf{R}$ be arbitrary. Then we have $\sigma_b \in K$, see Section 5.

Step 1. On the domain of $F_t^{A(a\partial_1)}(\sigma)$.

Choose $\epsilon > 0$ and an open neighbourhood $W_{(0)}$ of $\sigma_{(0)}$ in K such that $F_t^{A(a\partial_1)}(\sigma)$ is defined for all $(t, a, \sigma) \in (-\epsilon, \epsilon)^2 \times W_{(0)}$. If $b \in \mathbf{R}^{kr}$ then there is $\tau = \tau(b) \neq 0$ such that $\sigma_{\tau b} \in W_{(0)}$. Define $\varphi_\tau = (x^u, \tau x^{p,l}, x^w) : \mathbf{R}^n \rightarrow \mathbf{R}^n$ and $W_b = K_k^{r*} \varphi_\tau(W_{(0)})$. Then W_b is an open neighbourhood of $\sigma_b = K_k^{r*} \varphi_\tau(\sigma_{\tau b}) \in K$. Since φ_τ preserves $a\partial_1$, then so is $A(a\partial_1)$. So, $K_k^{r*} \varphi_\tau$ commutes with the flow $F_t^{A(a\partial_1)}$. Hence $F_t^{A(a\partial_1)}(\sigma)$ is defined for all $(t, a, \sigma) \in (-\epsilon, \epsilon)^2 \times W_b$.

Similarly, replacing $\epsilon > 0$ be a smaller one we see that for all $d = (d^{p,l}) \in \mathbf{R}^{rk}$ with $d^{1,0} = 1$ there is V_d an open neighbourhood of $\rho_d := [j_0^r((x^{1,0} + \sum_{l=1}^{r-1} d^{1,l} x^{1,l}(x^1)^l, x^2 + \sum_{l=0}^{r-1} d^{2,l} x^{2,l}(x^1)^l, \dots, x^k + \sum_{l=0}^{r-1} d^{k,l} x^{k,l}(x^1)^l))]$ in K such that $F_t^{A(a\partial_1)}(\sigma)$ is defined for all $(t, a, \sigma) \in (-\epsilon, \epsilon)^2 \times V_d$.

Let W be the sum of all W_b and V_d as above. Then W is an open subset in K such that $\sigma_b \in W$ and $\rho_d \in W$ for all b and d as above and $F_t^{A(a\partial_1)}(\sigma)$ is defined for all $(t, a, \sigma) \in (-\epsilon, \epsilon)^2 \times W$.

Step 2. On the points $F_t^{A(a\partial_1)}(\sigma_b)$.

Clearly, $F_0^{A(0)}(\sigma_{(0)}) = \sigma_{(0)} \in U_{1,2,\dots,k} \subset K$. So, replacing $\epsilon > 0$ by a smaller one we can write

$$(*) \quad F_t^{A(a\partial_1)}(\sigma_b) = [j_0^r((x^s + \sum_{\alpha \in P_{r,n,k,1,2,\dots,k}} B_{\alpha,s}(t, a, b) x^\alpha)_{s=1}^k)]$$

for all $(t, a, b) \in (-\epsilon, \epsilon) \times (-\epsilon, \epsilon) \times (-\epsilon, \epsilon)^{rk}$, where $B_{\alpha, s} : (-\epsilon, \epsilon) \times (-\epsilon, \epsilon) \times (-\epsilon, \epsilon)^{kr} \rightarrow \mathbf{R}$ are the smooth maps. (See the proof of Lemma 1 for the definitions of $U_{1, \dots, k}$ and $P_{r, n, k, 1, \dots, k}$.)

Step 3. On the maps $B_{\alpha, s}(t, a, b)$.

We use the invariance of $A(a\partial_1)$ with respect to $(x^u, \frac{1}{t^{p,l}}x^{p,l}, \frac{1}{t^w}x^w) : \mathbf{R}^n \rightarrow \mathbf{R}^n$ for $t^{p,l} \neq 0$ and $t^w \neq 0$ with $|t^{p,l}| < 1$. We obtain the homogeneity condition

$$B_{\alpha, s}(t, a, (t^{p,l}b^{p,l})) = \prod_{(p,l)} (t^{p,l})^{\alpha_{p,l}} \prod_w (t^w)^{\alpha_w} B_{\alpha, s}(t, a, b)$$

for $s = 1, \dots, k$ and $\alpha = (\alpha_u, \alpha_{p,l}, \alpha_w) \in P_{r, n, k, 1, \dots, k}$, where $(t, a, b) \in (-\epsilon, \epsilon) \times (-\epsilon, \epsilon) \times (-\epsilon, \epsilon)^{rk}$. Now, we apply the (obviously adapted) homogeneous function theorem, [5]. We deduce that $B_{\alpha, s} = 0$ for $s = 1, \dots, k$ and $\alpha = (\alpha_u, \alpha_{p,l}, \alpha_w) \in P_{r, n, k, 1, \dots, k}$ with $(\alpha_w) \neq 0$, and

$$B_{\alpha, s}(t, a, b) = B_{\alpha, s}(t, a) \prod_{(p,l)} (b^{p,l})^{\alpha_{p,l}}$$

for $s = 1, \dots, k$ and $\alpha = (\alpha_u, \alpha_{p,l}, \alpha_w) \in P_{r, n, k, 1, \dots, k}$ with $(\alpha_w) = 0$, where $B_{\alpha, s} : (-\epsilon, \epsilon)^2 \rightarrow \mathbf{R}$ are the smooth maps.

Step 4. Extensions of the maps $B_{\alpha, s}(t, a, b)$.

In obvious way we extend $B_{\alpha, s}$ to $B_{\alpha, s} : (-\epsilon, \epsilon) \times (-\epsilon, \epsilon) \times \mathbf{R}^{kr} \rightarrow \mathbf{R}$ in such a way that the last sentence of Step 3 holds, i.e. $B_{\alpha, s} = 0$ for $s = 1, \dots, k$ and $\alpha = (\alpha_u, \alpha_{p,l}, \alpha_w) \in P_{r, n, k, 1, \dots, k}$ with $(\alpha_w) \neq 0$, and

$$B_{\alpha, s}(t, a, b) = B_{\alpha, s}(t, a) \prod_{(p,l)} (b^{p,l})^{\alpha_{p,l}}$$

for $s = 1, \dots, k$ and $\alpha = (\alpha_u, \alpha_{p,l}, \alpha_w) \in P_{r, n, k, 1, \dots, k}$ with $(\alpha_w) = 0$, where $B_{\alpha, s} : (-\epsilon, \epsilon)^2 \rightarrow \mathbf{R}$ are the smooth maps.

By the invariance of $A(a\partial_1)$ with respect to the diffeomorphisms φ_τ as in Step 1 we can easily show that the formula (*) holds for all $(t, a, b) \in (-\epsilon, \epsilon) \times (-\epsilon, \epsilon) \times \mathbf{R}^{rk}$, where $B_{\alpha, s} : (-\epsilon, \epsilon) \times (-\epsilon, \epsilon) \times \mathbf{R}^{kr} \rightarrow \mathbf{R}$ are the smooth maps.

Step 5. On the maps $B_{\alpha, s}(t, a, b)$ anew.

Using the invariance of $A(a\partial_1)$ with respect to $(x^1, \tau x^2, \dots, \tau x^k, x^{p,l}, x^w) : \mathbf{R}^n \rightarrow \mathbf{R}^n$ for $\tau \neq 0$, we obtain the homogeneity conditions

$$B_{\alpha, s}(t, a, b) \frac{1}{\tau^{\alpha_2 + \dots + \alpha_k - 1}} = B_{\alpha, s}(t, a, b_\tau), \quad s = 2, \dots, k, \quad \alpha \in P_{r, n, k, 1, \dots, k},$$

where $b_\tau = (b_\tau^{p,l}) \in \mathbf{R}^{kr}$, $b_\tau^{1,l} = b^{1,l}$ for $l = 0, \dots, r-1$ and $b_\tau^{p,l} = \tau b^{p,l}$ for $l = 0, \dots, r-1$ and $p = 2, \dots, k$, and

$$B_{\alpha, 1}(t, a, b) \frac{1}{\tau^{\alpha_2 + \dots + \alpha_k}} = B_{\alpha, 1}(t, a, b_\tau), \quad \alpha \in P_{r, n, k, 1, \dots, k}.$$

Hence by the homogeneous function theorem $B_{\alpha,s}(t, a, b) = 0$ if $\alpha_2 + \dots + \alpha_k \geq 2$ and $s = 2, \dots, k$, and $B_{\alpha,1}(t, a, b) = 0$ if $\alpha_2 + \dots + \alpha_k \geq 1$. Moreover, $B_{\alpha,1}(t, a, b)$ does not depend on $b^{p,l}$ for $p = 2, \dots, k$ and $l = 0, \dots, r-1$ if $\alpha_2 + \dots + \alpha_k = 0$, $B_{\alpha,s}(t, a, b)$ does not depend on $b^{p,l}$ for $p = 2, \dots, k$ and $l = 0, \dots, r-1$ if $\alpha_2 + \dots + \alpha_k = 1$ and $s = 2, \dots, k$, and $B_{\alpha,s}(t, a, b)$ depends linearly on the $b^{p,l}$ for $p = 2, \dots, k$ and $l = 0, \dots, r-1$ if $\alpha_2 + \dots + \alpha_k = 0$ and $s = 2, \dots, k$.

Step 6. On the points $F_t^{A(a\partial_1)}(\sigma_b)$ anew.

Summing up, for $(t, a, b) \in (-\epsilon, \epsilon) \times (-\epsilon, \epsilon) \times \mathbf{R}^{rk}$ we can write $F_t^{A(a\partial_1)}(\sigma_b) = [j_0^*((\gamma_{t,a,b,s})_{s=1}^k)]$, where

$$\gamma_{t,a,b,1} = x^1 + \sum_{(q, \beta_0, \dots, \beta_{r-1}) \in G} C_{q, \beta_0, \dots, \beta_{r-1}}(t, a) \prod_{l=0}^{r-1} (b^{1,l})^{\beta_l} (x^1)^q \prod_{l=0}^{r-1} (x^{1,l})^{\beta_l}$$

for some smooth maps $C_{q, \beta_0, \dots, \beta_{r-1}} : (-\epsilon, \epsilon)^2 \rightarrow \mathbf{R}$ and where for $s = 2, \dots, k$

$$\begin{aligned} \gamma_{t,a,b,s} &= x^s + \\ &+ \sum_{u=2}^k \sum_{(q, \gamma_0, \dots, \gamma_{r-1}) \in H} D_{q, \gamma_0, \dots, \gamma_{r-1}}^{s,u}(t, a) \prod_{l=0}^{r-1} (b^{1,l})^{\gamma_l} (x^1)^q x^u \prod_{l=0}^{r-1} (x^{1,l})^{\gamma_l} \\ &+ \sum_{j=0}^{r-1} \sum_{p=2}^k \sum_{(q, \delta_0, \dots, \delta_{r-1}) \in J} E_{q, \delta_0, \dots, \delta_{r-1}}^{j,p,s}(t, a) \prod_{l=0}^{r-1} (b^{1,l})^{\delta_l} b^{p,j} x^{p,j} (x^1)^q \prod_{l=0}^{r-1} (x^{1,l})^{\delta_l} \end{aligned}$$

for some smooth $D_{q, \gamma_0, \dots, \gamma_{r-1}}^{s,u} : (-\epsilon, \epsilon)^2 \rightarrow \mathbf{R}$ and $E_{q, \delta_0, \dots, \delta_{r-1}}^{j,p,s} : (-\epsilon, \epsilon)^2 \rightarrow \mathbf{R}$. In the above formulas G is the set of all $(q, \beta_0, \dots, \beta_{r-1}) \in (\mathbf{N} \cup \{0\})^{r+1}$ such that $q + \beta_0 + \dots + \beta_{r-1} \leq r$ and $\beta_0 + \dots + \beta_{r-1} \geq 1$, H is the set of all $(q, \gamma_0, \dots, \gamma_{r-1}) \in (\mathbf{N} \cup \{0\})^{r+1}$ such that $q + \gamma_0 + \dots + \gamma_{r-1} \leq r-1$ and $\gamma_0 + \dots + \gamma_{r-1} \geq 1$, and J is the set of all $(q, \delta_0, \dots, \delta_{r-1}) \in (\mathbf{N} \cup \{0\})^{r+1}$ such that $q + \delta_0 + \dots + \delta_{r-1} \leq r-1$.

Step 7. On the maps $C_{0, \beta_0, 0, \dots, 0}$ and $D_{0, \gamma_0, 0, \dots, 0}^{s,u}$ from Step 6.

Using the invariance of A with respect to $(\tau x^1, x^2, \dots, x^n) : \mathbf{R}^n \rightarrow \mathbf{R}^n$ for $\tau \neq 0$ with $|\tau| < 1$ (which sends $a\partial_1$ into $\tau a\partial_1$) we get the homogeneity conditions $C_{0, \beta_0, 0, \dots, 0}(t, a)\tau = C_{0, \beta_0, 0, \dots, 0}(t, \tau a)\tau^{\beta_0}$ for $(t, a) \in (-\epsilon, \epsilon)^2$ and $\beta_0 = 1, \dots, r$, and $D_{0, \gamma_0, 0, \dots, 0}^{s,u}(t, a) = D_{0, \gamma_0, 0, \dots, 0}^{s,u}(t, \tau a)\tau^{\gamma_0}$ for $(t, a) \in (-\epsilon, \epsilon)^2$, $\gamma_0 = 1, \dots, r-1$ and $s, u = 2, \dots, k$.

So, $C_{0, \beta_0, 0, \dots, 0} = 0$ for $\beta_0 = 2, \dots, r$, and $D_{0, \gamma_0, 0, \dots, 0}^{s,u} = 0$ for $\gamma_0 = 1, \dots, r-1$ and $s, u = 2, \dots, k$.

Since $F_0^{A(a\partial_1)} = id$, $C_{0,1,0,\dots,0}(0, a) = 1$. Then replacing $\epsilon > 0$ by a smaller one we can assume that $C_{0,1,0,\dots,0}(t, a) \neq 0$ for all $(t, a) \in (-\epsilon, \epsilon)^2$.

Step 8. On the maps $C_{q, \beta_0, \dots, \beta_{r-1}}, D_{q, \gamma_0, \dots, \gamma_{r-1}}^{s,u}, E_{q, \delta_0, \dots, \delta_{r-1}}^{j,p,s}$ from Step 6.

Consider arbitrary $(t, a) \in (-\epsilon, \epsilon)^2$ and $b = (b^{p,l}) \in \mathbf{R}^{rk}$ with $b^{1,0} \neq 0$.

For every $\tau \neq 0$ let $\psi_\tau = (x^u, \tau^{\delta^1_p} x^{p,l}, x^w) : \mathbf{R}^n \rightarrow \mathbf{R}^n$ be the diffeomorphisms, where δ is the Cronecker delta. They preserve $a\partial_1$. Moreover, let $b_\tau = (b_\tau^{p,l}) \in \mathbf{R}^{kr}$ be such that $b_\tau^{1,l} = \frac{1}{\tau} b^{1,l}$ for $l = 0, \dots, r-1$ and $b_\tau^{s,l} = b^{s,l}$ for $s = 2, \dots, k$ and $l = 0, \dots, r-1$. Then $K_k^{*\psi_\tau}(\sigma_b) = \sigma_{b_\tau}$.

Applying the results of Step 7 and using the invariance of A with respect to the ψ_τ for $\tau \neq 0$ we have $F_t^{A(a\partial_1)}(\sigma_{b_\tau}) = [j_0^r((\bar{\gamma}_{t,a,\tau,b,s})_{s=1}^k)]$, where

$$\begin{aligned} \bar{\gamma}_{t,a,\tau,b,1} = & x^{1,0} + \frac{\tau x^1}{b^{1,0} C_{0,1,0,\dots,0}(t, a)} + \\ & + \sum_{(q, \beta_0, \dots, \beta_{r-1}) \in G \setminus \{(0, \bar{l}, 0, \dots, 0)\}_{\bar{l}=1}^{r-1}} \frac{1}{\tau^{\beta_0 + \dots + \beta_{r-1} - 1}} \frac{C_{q, \beta_0, \dots, \beta_{r-1}}(t, a)}{b^{1,0} C_{0,1,0,\dots,0}(t, a)} \times \\ & \times \prod_{l=0}^{r-1} (b^{1,l})^{\beta_l} (x^1)^q \prod_{l=0}^{r-1} (x^{1,l})^{\beta_l} \end{aligned}$$

and where for $s = 2, \dots, k$

$$\begin{aligned} \bar{\gamma}_{t,a,\tau,b,s} = & x^s + \\ & + \sum_{u=2}^k \sum_{(q, \gamma_0, \dots, \gamma_{r-1}) \in H \setminus \{(0, \bar{l}, 0, \dots, 0)\}_{\bar{l}=1}^{r-1}} \frac{1}{\tau^{\gamma_0 + \dots + \gamma_{r-1}}} D_{q, \gamma_0, \dots, \gamma_{r-1}}^{s,u}(t, a) \times \\ & \times \prod_{l=0}^{r-1} (b^{1,l})^{\gamma_l} (x^1)^q x^u \prod_{l=0}^{r-1} (x^{1,l})^{\gamma_l} + \\ & + \sum_{j=0}^{r-1} \sum_{p=2}^k \sum_{(q, \delta_0, \dots, \delta_{r-1}) \in J} \frac{1}{\tau^{\delta_0 + \dots + \delta_{r-1}}} E_{q, \delta_0, \dots, \delta_{r-1}}^{j,p,s}(t, a) \times \\ & \times \prod_{l=0}^{r-1} (b^{1,l})^{\delta_l} b^{p,j} x^{p,j} (x^1)^q \prod_{l=0}^{r-1} (x^{1,l})^{\delta_l}. \end{aligned}$$

If $b^{1,0} \neq 0$, $\sigma_{b_\tau} \rightarrow \rho_d$ as $\tau \rightarrow 0$, where $d = (d^{p,l}) \in \mathbf{R}^{kr}$, $d^{1,l} = \frac{b^{1,l}}{b^{1,0}}$ for $l = 0, \dots, r-1$ and $d^{p,l} = b^{p,l}$ for $p = 2, \dots, k$ and $l = 0, \dots, r-1$. (See Step 1 for the definition of ρ_d .) Then $F_t^{A(a\partial_1)}(\sigma_{b_\tau}) \rightarrow F_t^{A(a\partial_1)}(\rho_d)$ because of $F_t^{A(a\partial_1)}$ is defined on W , see Step 1.

We see that $F_0^{A(a\partial_1)}(\rho_{(1,0,\dots,0)}) = \rho_{(1,0,\dots,0)} \in U_{2,\dots,k,j_o}$, where $j_o \in \{k+1, \dots, n\}$ is such that $x^{1,0} = x^{j_o}$ and the U_{i_1, \dots, i_k} are defined in the proof of Lemma 1. Replacing $\epsilon > 0$ by a smaller one, we have $F_t^{A(a\partial_1)}(\rho_d) \in U_{2,\dots,k,j_o} \subset K$ for $(t, a) \in (-\epsilon, \epsilon)^2$ and $d \in \{1\} \times (-\epsilon, \epsilon)^{rk-1} \subset \mathbf{R}^{rk}$. Using the

invariance of $A(a\partial_1)$ with respect to the homotheties $(x^u, \tau^{1-\delta_{(1,0)}^{(p,l)}} x^{p,l}, x^w) : \mathbf{R}^n \rightarrow \mathbf{R}^n$ for $\tau \neq 0$ we can easily show that $F_t^{A(a\partial_1)}(\rho_d) \in U_{2,\dots,k,j_0} \subset K$ for $(t, a) \in (-\epsilon, \epsilon)^2$ and $d \in \{1\} \times \mathbf{R}^{rk-1}$.

Consequently we obtain that $C_{q,\beta_0,\dots,\beta_{r-1}}(t, a) = 0$ for $(q, \beta_0, \dots, \beta_{r-1}) \in G \setminus \{(0, \tilde{l}, 0, \dots, 0)\}_{\tilde{l}=1}^r$ with $\beta_0 + \dots + \beta_{r-1} \geq 2$, $D_{q,\gamma_0,\dots,\gamma_{r-1}}^{s,u}(t, a) = 0$ for $(q, \gamma_0, \dots, \gamma_{r-1}) \in H \setminus \{(0, \tilde{l}, 0, \dots, 0)\}_{\tilde{l}=1}^{r-1}$ and $s, u = 2, \dots, k$, and $E_{q,\delta_0,\dots,\delta_{r-1}}^{j,p,s}(t, a) = 0$ for $(q, \delta_0, \dots, \delta_{r-1}) \in J$ with $\delta_0 + \dots + \delta_{r-1} \geq 1$, $p, s = 2, \dots, k$ and $j = 0, 1, \dots, r-1$. (For, assume the contrary. The form of $[j_0^r((\bar{\gamma}_{t,a,\tau,b,s})_{s=1}^k)]$ presented above is "adapted" to the chart $(U_{2,\dots,k,j_0}, \Phi_{2,\dots,k,j_0})$. Then it is easy to see that some coordinates of $[j_0^r((\bar{\gamma}_{t,a,\tau,b,s})_{s=1}^k)]$ with respect to this chart tend to infinity. Then the limit of $[j_0^r((\bar{\gamma}_{t,a,\tau,b,s})_{s=1}^k)]$ as $\tau \rightarrow 0$ do not belong to U_{2,\dots,k,j_0} .)

Step 9. On the points $F_t^{A(a\partial_1)}(\sigma_b)$ anew.

Summing up, for $(t, a, b) \in (-\epsilon, \epsilon) \times (-\epsilon, \epsilon) \times \mathbf{R}^{rk}$ we can write $F_t^{A(a\partial_1)}(\sigma_b) = [j_0^r((\gamma_{t,a,b,s})_{s=1}^k)]$, where

$$\gamma_{t,a,b,1} = x^1 + \sum_{l,q=0}^{r-1} C_{q,l}(t, a) b^{1,l} (x^1)^q x^{1,l}$$

for some smooth maps $C_{q,l} : (-\epsilon, \epsilon)^2 \rightarrow \mathbf{R}$ and where for $s = 2, \dots, k$

$$\gamma_{t,a,b,s} = x^s + \sum_{p=2}^k \sum_{l,q=0}^{r-1} E_{q,l,p}^s(t, a) b^{p,l} (x^1)^q x^{p,l}$$

for some smooth $E_{q,l,p}^s : (-\epsilon, \epsilon)^2 \rightarrow \mathbf{R}$.

Step 10. On the maps $C_{q,l}$ and $E_{q,l,p}^s$ from Step 9.

Using the invariance of A with respect to $(\tau x^1, x^2, \dots, x^n) : \mathbf{R}^n \rightarrow \mathbf{R}^n$ for $\tau \neq 0$ with $|\tau| < 1$ we get the homogeneity conditions $C_{q,l}(t, a) \frac{1}{\tau^{q-1}} = C_{q,l}(t, \tau a) \frac{1}{\tau^{l-1}}$ for $l, q = 0, \dots, r-1$, and $E_{q,l,p}^s(t, a) \frac{1}{\tau^q} = E_{q,l,p}^s(t, \tau a) \frac{1}{\tau^l}$ for $q, l = 0, \dots, r-1$ and $p, s = 2, \dots, k$. So, $C_{q,l} = 0$ for $q, l = 0, \dots, r-1$ with $q > l$, $C_{q,q}(t, a) = C_{q,q}(t, 0)$ for $q = 0, \dots, r-1$ and $(t, a) \in (-\epsilon, \epsilon)^2$, $E_{q,l,p}^s = 0$ for $p = 2, \dots, k$ and $q, l = 0, \dots, r-1$ with $q > l$, and $E_{q,q,p}^s(t, a) = E_{q,q,p}^s(t, 0)$ for $p = 2, \dots, k$, $q = 0, \dots, r-1$ and $(t, a) \in (-\epsilon, \epsilon)^2$.

The locally defined embedding $(x^u, x^{p,l} + (x^{p,l})^{r-l+1}, x^w)^{-1} : \mathbf{R}^n \rightarrow \mathbf{R}^n$ preserves σ_b for any $b \in \mathbf{R}^{rk}$. By the invariance of $A(a\partial_1)$ with respect to this diffeomorphism we obtain $j_0^r(\sum_{l,q=0}^{r-1} C_{q,l}(t, a) b^{1,l} (x^1)^q (x^{1,l})^{r-l+1}) = 0$ and $j_0^r(\sum_{p=2}^k \sum_{l,q=0}^{r-1} E_{q,l,p}^s(t, a) b^{p,l} (x^1)^q (x^{p,l})^{r-l+1}) = 0$ for $(t, a, b) \in (-\epsilon, \epsilon)^2 \times \mathbf{R}^{rk}$. Then (additionally) $C_{q,l} = 0$ for $q, l = 0, \dots, r-1$ with $q \leq l-1$ and $E_{q,l,p}^s = 0$ for $p = 2, \dots, k$ and $q, l = 0, \dots, r-1$ with $q \leq l-1$.

Step 11. The end of the proof of Proposition 4.

By Step 10 we see that $F_t^{A(a\partial_1)}(\sigma_b) = F_t^{A(0)}(\sigma_b)$ for any $(t, a, b) \in (-\epsilon, \epsilon)^2 \times \mathbf{R}^{rk}$. Hence $A(a\partial_1)_{\sigma_b} = A(0)_{\sigma_b}$ for $(a, b) \in (-\epsilon, \epsilon)^2 \times \mathbf{R}^{rk}$.

But $A(0)$ corresponds to an absolute operator. So, $A(0) = 0$ because of Corollary 1. Hence $A(a_o\partial_1)_{\sigma_b} = 0$ for some $a_o > 0$ and all $b \in \mathbf{R}^{rk}$. Using the invariance of A with respect to the homothety $\frac{1}{a_o}id_{\mathbf{R}^n}$ we get that $A(\partial_1)_{\sigma_b} = 0$ for any $b \in \mathbf{R}^{rk}$. In particular, $A(\partial_1)_{\sigma_{(1)}} = 0$. Then $A = 0$ because of the reducibility lemma (Lemma 2).

This end the proof of Proposition 4. ■

The proof of Theorem 6 is complete. ■

For $r = k = 1$ we obtain the following corollary of Theorem 6.

COROLLARY 3. *If $n \geq 2$ then every natural operator $A : T|_{\mathcal{M}f_n} \rightsquigarrow T(\mathbf{P}(T^*))$ is a constant multiple of the complete lifting.*

7. The natural affinors on K_k^{r*}

In this section we study the natural affinors on K_k^{r*} . We prove the following theorem.

THEOREM 7. *Let $n \geq k(r + 1)$. Every natural affinor C on K_k^{r*} over n -manifolds is a constant multiple of the identity one.*

At first we prove the following reducibility lemma.

LEMMA 4. (Second Reducibility Lemma). *Let $C : TK_k^{r*} \rightarrow TK_k^{r*}$ be a natural affinor on $K_k^{r*} : \mathcal{M}f_n \rightarrow \mathcal{F}\mathcal{M}$, $n \geq k(r + 1)$. Assume that $C(K_k^{r*}(\partial_1)_{\sigma_{(1)}}) = 0$. Then $C = 0$.*

P r o o f. Since $K_k^{r*}\mathbf{R}^n$ is the orbit of $\sigma_o = [j_0^r(x^1, \dots, x^k)]$ with respect to $Diff(\mathbf{R}^n, \mathbf{R}^n)$, it is sufficient to show that $C(v) = 0$ for any $v \in T_{\sigma_o}K_k^{r*}\mathbf{R}^n$.

Because of the fibre linearity of C we can assume $v = K_k^{r*}(\partial_i)_{\sigma_o}$ for $i = 1, \dots, k$ or $v = \frac{d}{dt}t=0[j_0^r(x^1, \dots, x^k) + tj_0^r\gamma]$, where $\gamma : \mathbf{R}^n \rightarrow \mathbf{R}^k$, $\gamma(0) = 0$.

Since $(x^1, \dots, x^{i-1}, x^i + x^1, x^{i+1}, \dots, x^n) : \mathbf{R}^n \rightarrow \mathbf{R}^n$ preserves σ_o and sends ∂_1 into $\partial_1 + \partial_i$ and C is natural and fibre linear we can assume $v = K_k^{r*}(\partial_1)_{\sigma_o}$ instead of $v = K_k^{r*}(\partial_i)_{\sigma_o}$.

By the density argument one can assume that $(x^1, \dots, x^k, \gamma) : \mathbf{R}^n \rightarrow \mathbf{R}^{2k}$ is of rank $2k$ at $0 \in \mathbf{R}^n$. Then using a diffeomorphism $\mathbf{R}^n \rightarrow \mathbf{R}^n$ preserving x^1, \dots, x^k and sending γ into (x^{k+1}, \dots, x^{2k}) near $0 \in \mathbf{R}^n$ we can assume that $\gamma = (x^{k+1}, \dots, x^{2k})$.

Using the flow method it is easy to verify that $K_k^{r*}(\sum_{j=1}^k x^{k+j}\partial_j)_{\sigma_o} = \frac{d}{dt}t=0[j_0^r(x^1, \dots, x^k) + tj_0^r(x^{k+1}, \dots, x^{2k})]$.

So, it is sufficient to assume that $v = \mathcal{K}_k^{r*}(\partial_1 + \sum_{j=1}^k x^{k+j} \partial_j)_{\sigma_0}$ or $v = \mathcal{K}_k^{r*}(\partial_1)_{\sigma_0}$.

Since $\partial_1 + \sum_{j=1}^k x^{k+j} \partial_j = \varphi_* \partial_1$ near $0 \in \mathbf{R}^n$ for some diffeomorphism $\varphi : \mathbf{R}^n \rightarrow \mathbf{R}^n$ preserving 0 , it is sufficient to assume that $v = \mathcal{K}_k^{r*}(\partial_1)_{[j_0^r \gamma]}$, where $\gamma : \mathbf{R}^n \rightarrow \mathbf{R}^k$, $\gamma(0) = 0$, $\text{rank}(d_0 \gamma) = k$.

Then using similar procedure as in the proof of the first reducibility lemma (Lemma 2) we can assume that $[j_0^r \gamma] = \sigma_{(1)}$, i.e. $v = \mathcal{K}_k^{r*}(\partial_1)_{\sigma_{(1)}}$. ■

Proof of Theorem 7. Using C we have the natural operator $C \circ \mathcal{K}_k^{r*} : T_{|\mathcal{M}_{f_n}} \rightarrow T K_k^{r*}$. By Theorem 6, $C \circ \mathcal{K}_k^{r*} = \alpha \mathcal{K}_k^{r*}$ for some $\alpha \in \mathbf{R}$. Then $C(\mathcal{K}_k^{r*}(\partial_1)_{\sigma_{(1)}}) = \alpha \mathcal{K}_k^{r*}(\partial_1)_{\sigma_{(1)}}$. Hence $C = \alpha \text{id}$ because of the second reducibility lemma (Lemma 4). ■

For $r = k = 1$ we obtain the following corollary of Theorem 7.

COROLLARY 4. *Let $n \geq 2$. Every natural affinor C on $\mathbf{P}(T^*)$ over n -manifolds is a constant multiple of the identity one.*

8. The natural operators $T_{|\mathcal{M}_{f_n}}^* \rightsquigarrow T^* K_k^{r*}$

At the end of this paper we prove the following theorem.

THEOREM 8. *If $n \geq k(r+1)$ then every natural operator $D : T_{|\mathcal{M}_{f_n}}^* \rightsquigarrow T^* K_k^{r*}$ is a constant multiple of the vertical lifting D^V .*

We start with the following third reducibility lemma.

LEMMA 5. (Third Reducibility Lemma). *Let $D : T_{|\mathcal{M}_{f_n}}^* \rightsquigarrow T^* K_k^{r*}$ be a natural operator, $n \geq k(r+1)$. Assume that $D(\mathcal{K}_k^{r*}(\partial_1)_{\sigma_{(1)}}) = 0$. Then $D = 0$.*

Proof. The proof is similar to the proof of the second reducibility lemma (Lemma 4). ■

Proof of Theorem 8. Because of the third reducibility lemma (Lemma 5) D is uniquely determined by the function $\Phi_D : \Omega^1(\mathbf{R}^n) \times \mathbf{R}^{rk} \rightarrow \mathbf{R}$, $\Phi_D(\omega, b) = D(\omega)(\mathcal{K}_k^{r*}(\partial_1)_{\sigma_b})$, $\omega = \sum_{i=1}^n \omega_i dx^i \in \Omega^1(\mathbf{R}^n)$, $b = (b^{p,l}) \in \mathbf{R}^{rk}$. So, we will study Φ_D .

Using the invariance of D with respect to $(x^u, \frac{1}{\tau} x^{p,l}, \frac{1}{\tau} x^w) : \mathbf{R}^n \rightarrow \mathbf{R}^n$ for $\tau \neq 0$ and next putting $\tau \rightarrow 0$ we get $\Phi_D(\omega, b) = \Phi_D(\sum_{u=1}^k \omega_u(x^1, \dots, x^k, 0, \dots, 0) dx^u, 0)$ for every $\omega \in \Omega^1(\mathbf{R}^n)$ and $b \in \mathbf{R}^{rk}$.

Consider an arbitrary $\omega \in \Omega^1(\mathbf{R}^n)$ and $b \in \mathbf{R}^{rk}$. By the above consideration we can assume that $b = 0$. Then by the nonlinear Petree theorem, [5], we can assume that $\omega = \sum_{u=1}^k \sum_{\alpha \in P} \omega_{\alpha,u} (x^1)^{\alpha_1} \dots (x^k)^{\alpha_k} dx^u$, where P is the set of all $\alpha = (\alpha_1, \dots, \alpha_k) \in (\mathbf{N} \cup \{0\})^k$ with $|\alpha| \leq R$.

Define $\Psi_D : (\mathbf{R}^P)^k \rightarrow \mathbf{R}$, $\Psi_D(\eta_{\alpha,u}) = \Phi_D(\sum_{u=1}^k \sum_{\alpha \in P} \eta_{\alpha,u} (x^1)^{\alpha_1} \dots (x^k)^{\alpha_k} dx^u, 0)$.

Using the invariance of D with respect to $\frac{1}{\tau}id_{\mathbf{R}^n} : \mathbf{R}^n \rightarrow \mathbf{R}^n$ for $\tau \neq 0$ we get $\tau\Psi_D(\eta_{\alpha,u}) = \Psi_D(\tau^{|\alpha|+1}\eta_{\alpha,u})$. Then by the homogeneous function theorem we deduce that $\Psi_D(\eta_{\alpha,u}) = \sum_{u=1}^k a_u \eta_{(0),u}$ for some $a_u = a_u(D) \in \mathbf{R}$. Then using the invariance of D with respect to $(x^1, \frac{1}{\tau}x^2, \dots, \frac{1}{\tau}x^n)$ we get $a_u = 0$ for $u = 2, \dots, k$.

Then $\Phi_D(\omega, b) = a_1\omega_1(0) = \Phi_{a_1D^V}(\omega, b)$, i.e. $D = a_1D^V$. ■

For $r = k = 1$ we obtain the following corollary of Theorem 8.

COROLLARY 5. *If $n \geq 2$ then every natural operator $D : T^*_{|\mathcal{M}f_n} \rightsquigarrow T^*(\mathbf{P}(T^*))$ is a constant multiple of the vertical lifting.*

References

- [1] M. Doušová, J. Kurek, *Torsions of connections of higher order cotangent bundles*, Czech. Math. J., to appear.
- [2] C. Ehresmann, *Introduction à la structures infinitésimales et des pseudogroupes de Lie*, Colloque du C.N.R.S., Strasbourg, 1953, pp. 97–110.
- [3] J. Gancarzewicz, *Liftings of Functions and Vector Fields to Natural Bundles*, Dissert. Math. CCXII, Warszawa, 1983.
- [4] J. Gancarzewicz, I. Kolář, *Natural affinors on the extended r -th order tangent bundles*, Suppl. Rend. Circolo Mat. Palermo 30 (II) (1993), 95–100.
- [5] I. Kolář, P. W. Michor, J. Slovák, *Natural Operations in Differential Geometry*, Springer Verlag 1993.
- [6] I. Kolář, W. M. Mikulski, *Contact elements on fibered manifolds*, Czech. Math. J., to appear.
- [7] I. Kolář, M. Modugno, *Torsions of connections on some natural bundles*, Diff. Geom. and Appl. 2(1992), 1–16.
- [8] J. Kurek, *Natural transformations of higher order cotangent bundle functors*, Ann. Polon. Math. 58 (1993), 29–35.
- [9] J. Kurek, *Natural affinors on higher order cotangent bundle functor*, Arch. Math. Brno (28)(1992), 175–180.
- [10] M. Kureš, W. M. Mikulski, *Natural lifting of vector fields to bundles of Weil contact elements*, Czech. Math. J., to appear.
- [11] W. M. Mikulski, *The jet prolongations of fibered fibered manifolds and the flow operator*, Publ. Math. Debrecen 59 (3–4) (2001), 441–458.
- [12] W. M. Mikulski, *Locally determined associated spaces*, J. London Math. Soc. (2), 32 (1985), 357–364.
- [13] W. M. Mikulski, *Some natural constructions on vector fields and higher order cotangent bundles*, Mh. Math. 117 (1994), 107–119.
- [14] W. M. Mikulski, *The natural operators lifting 1-forms to the bundles of A-velocities*, Mh. Math. 119 (1995), 63–77.
- [15] W. M. Mikulski, *The natural operators lifting vector fields to $(J^r T^*)^*$* , Arch. Math. Brno 36 (2000), 255–260.
- [16] A. Morimoto, *Prolongations of connections to bundles of infinitely near points*, J. Diff. Geom. 11 (1976), 476–498.

- [17] K. Yano, S. Ishihara, *Tangent and Cotangent Bundles*, Marcel Dekker. INC., New York, 1973.
- [18] J. Tomáš, *Natural operators on vector fields on the cotangent bundles of (k, r) -velocities*, Rend. Circ. Mat. Palermo 54(II)(1998), 113–124, 239–249.

INSTITUTE OF MATHEMATICS
JAGIELLONIAN UNIVERSITY
Reymonta 4
30-059 KRAKÓW, POLAND
e-mail mikulski@im.uj.edu.pl

Received April 22nd, 2002.

