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ON THE CONTACT (k,r)-COELEMENTS

Abstract. For natural numbers n, r and k with n > k the bundle functor of contact
(k,r)-coelements over n-manifolds is denoted by Ki*. The rigidity theorem for Ki* is
proved. If n > k(r + 1) the natural operators Tj s, ~> TK;" and TI"}an ~ T*K[* are

completely described and the natural affinors on K}.* are classified. The caser =k =1 is
additionally discussed.

0. Introduction

Let n, r and k be natural numbers.

Let n > k. In [2], C. Ehresmann constructed functorially the fibre bundle
KiM = regIT{M/L} over a n-dimensional manifold M of contact (k,r)-
elements and obtained the bundle functor K; : Mf, — FM from the
category M f, of n-dimensional manifolds and their embeddings into the
category F M of fibered manifolds and their fibered maps. In [5], I. Kolaf,
P.W. Michor and J. Slovék studied the problem how a vector field X on M
induces a vector field A(X) on K7 M and proved that every natural operator
A : Tipmy, ~ TKE is a constant multiple of the complete lifting K. In [6],
I. Koldf and the author investigated the naturality problem with bundle
mappings B : KfM — K; M and deduced the so called rigidity theorem for
K[ saying that every natural transformation B : K] — K| over n-manifolds
is the identity one. The authors studied also the naturality problem with
affinors (i.e. tensor fields of type (1,1)) C: TK;M — TK; M on KM and
derived that for n > k + 2 every natural affinor C : TK] — TKj}, on K[
over n-manifolds is a constant multiple of the identity one. Moreover the
authors analysied how a 1-form w on M can induce a 1-form D(w) on KM
and showed that every natural operator D : Ty, ~ T*K} is a constant
multiple of the vertical lifting.
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We inform the reader that some other generalizations of the cited above
results from [5} and [6] can be found in [10].

The purpose of the present paper is to ”dualize” the cited above re-
sults of [5] and [6]. Let n > k. In 1952, C. Ehresmann introduced the bun-
dle Ki*M = regT{*M/L}, of contact (k,r)-coelements for mostly abstract
reasons. So, we have the bundle functor K[* : Mf, — FM of contact
(k,r)-coelements. We investigate the naturality problem with bundle map-
pings B : K*M — K;*M and deduce the so called rigidity theorem for
Ki* saying that every natural transformation B : K[* — K;* over n-
manifolds is the identity one. We study the problem how a vector field X
on M induces a vector field A(X) on K{*M and prove that for n > k(r +1)
every natural operator A : Tirq5, ~» TK[* is a constant multiple of the
complete lifting K*. We study also the naturality problem with affinors
C:TK*M — TK[*M on K;;*M and derive that for n > k(r + 1) every
natural affinor C : TK;* — TK[* on K[* over n-manifolds is a constant
multiple of the identity one. Moreover we analyse how a 1-form w on M
can induce a 1-form D(w) on K7*M and show that for n > k(r + 1) every
natural operator D : T, ~» T*K* is a constant multiple of the vertical
lifting.

In the case r = k = 1 we have K}*M=P(T*M), the projectivization
of the cotangent bundle T* M. So, as a corollaries we get some results for
P(T*) corresponding to the ones for K}*.

Natural operators lifting vector fields and 1-forms to some natural bun-
dles were used practically in all papers in which problem of prolongations
of geometric structures was studied, see [16], [17], e.t.c. That is why such
natural operators are studied, see. e.g. [3], [5], [11], [13]-[15], [18], e.t.c.

Natural affinors are used to study torsions of connections, (7], [1], e.t.c.
That is why they are studied, see [4], [5], [6], [9], [10], e.t.c.

From now on z!, ..., z" denote the usual coordinates on R and 8; = %;
are the vector fields on R™.

All manifolds are assumed to be without boundary, finite dimensional,
Hausdorff and smooth, i.e. of class C*°. All maps between manifolds are
assumed to be smooth. All natural operators, natural transformations and
natural affinors are in the sense of [5].

1. On the bundle functor K} of contact (k,r)-elements

For a comfort we cite below some results about the bundle functor K :
M fn — FM of contact (k,r)-elements.

For every n-manifold M we have the bundle Ty M = J§(R*, M) over M
of (k,r)-velocities. Every embedding ¢ : M — N of two n-manifolds induces
a bundle map Tf ¢ : TfM — TfN , TLo(557) = 35(po7), v : RF - M.
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The correspondence T}, : Mf, — FM is a bundle functor.

Every ¢ = jio € L} = invJ§(RF, R¥)o, the Lie group of invertible r-jets
I}" — RF with source and target 0 € R*, induces a natural automorphism
£:T) = T[, € : T{M — TiM, £(57) = je(yo ™), 7 : R — M. This
defines a group homomorphism L}, — Aut(TY}).

The well-known result is that if n > k then the above homomorphism is
an isomorphism, i.e. Aut(T})=Lj.

Assume n > k. For every n-manifold M let regTf M ={j5v | v: R*> M,
rank(dyy) = k} be the open subbundle in Tf M of so called regular (k,r)-
velocities. Clearly, regTy M is invariant with respect to the action L} =
Aut(TY) on Ty M. So, we have the quotient bundle KjM = regT{ M/L],
over M of contact (k,r)-elements. This bundle was introduced by C. Ehres-
mann, [2]. We have the quotient projection « : regTy M — K[ M. For every
embedding ¢ : M — N of two n-manifolds T commutes with the ac-
tion of Ly and T[p(regTf M) C regT{N. So, we have the quotient map
Kip : KIM — KN. The correspondence K} : Mf, — FM is a bun-
dle functor. Moreover, & : regTy, — K] M is (canonically) a principal fibre
bundle with structure group L}. The right principal bundle action of L} on
regTy M is given by v.6 = £1(v), £ € L}, v € regTy M.

In [6], the authors proved the following rigidity theorem.

THEOREM 1. (Rigidity Theorem for K}). Let n > k. Every natural trans-
formation B : K|, — K| over n-manifolds is the identity one.

In [5], the authors obtained the following classification of natural oper-
ators lifting a vector field from a n-manifold M to a vector field on Ky M.

THEOREM 2. Let n > k. Every natural operator A : Tipy, ~» TKJ is a
constant multiple of the complete lifting K.

In [6], the authors deduced the following classification of canonical affi-
nors C : TK{M — TK;M on K[ M.

THEOREM 3. Let n > k + 2. Every natural affinor C : TK — TK[ on K,
over n-manifolds is a constant multiple of the identity affinor.

In general, if g: Y — M is a fibre bundle and w : TM — R is a 1-form
on M then we have a 1-form w"¥ = ¢*w =woTq:TY - RonY.Itis
called the vertical lift of w to Y’

In [6], the authors showed the following classification of natural operators
lifting a 1-form from a n-manifold M to a 1-form on K; M.

THEOREM 4. Let n > k + 1. Every natural operator D : TI‘J‘fon ~ T*K} is
a constant multiple of the vertical lifting.
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2. On the bundle functor T* of (k,r)-covelocities

For every n-manifold M we have the vector bundle T{*M = J"(M,R¥),
over M of (k,r)-covelocities. Every embedding ¢ : M — N of two n-
manifolds induces a vector bundle map T} *¢ : T[*M — T[*N , T *o(5iv) =
Jom@oe™),7: M - R¥, € M, y(z) =0.

t is well-known that the correspondence T7* : Mf, - VB C FM is a
vector bundle functor, [5].

Every € = j5y € JJ(R*, R¥)o, the Lie semigroup of r-jets R¥ — R* with
source and target 0 € R*, induces a natural endomorphism ¢ : T[* — T7*,
§: TUM — TP M, €(577) = jz(¥ o), v : M — R*, 2 € M, ~(z) = 0,
M € obj(Mf,). This defines a semigroup homomorphism J§(R*, R¥)q —
End(T[*). So, £ € Aut(T7*) iff € € L},

PROPOSITION 1. If n > k then the above homomorphism J§(R*, R¥)y —
End(T}*) of semigroups is an isomorphism, i.e. End(T{*)=J5(RF, R¥),.
In particular, Aut(T[*)=L},.

Proof. Let E : T[* — T[* be a natural transformation (E € End(T(*))
over n-manifolds, n > k. It is sufficient to show that thereis £ € J§(R*,R¥)q
with E = ¢.

Let n, = j3(z!,...,z*) € (Tf*)oR™ =the fibre of T[*R™ over 0 € R™.
Let E(n,) = 757 for some v : R® — R*, 4(0) = 0. Using the invariance of
E with respect to the homotheties (z!,. ..,z %xk“, e %x") :R* - R™
for 7 # 0 and then putting 7 — 0 we obtain E(n,) = £(1,), where £ =
J6¢ € JS(Rka Rk)Oa '4) : R* - Rkv ¢(t1, . ',tk) = W(tl) ey 0,00y O)a
(t1,...,tx) € R¥. Then E = ¢ because 7, has dense orbit in T7*R™ with
respect to Dif f(R*,R"). =

REMARK 1. In [8], J. Kurek obtained the classification of End(T}*) in some
another form.

3. The bundle functor Ki* of contact (k,7)-coelements

The bundle of contact (k,r)-coelements was introduced by C. Ehres-
mann. For a comfort we present this construction, and simultanously we
introduce notations we will use in the rest of the paper.

Assume that n, r and k are natural numbers with n > k.

For every n-manifold M let regTp*M = {jiv | v: M — RF, z € M,
v(z) = 0, rank(dzy) = k} be the open subbundle in T{*M of so called
regular (k,r)-covelocities. Clearly, regT,*M is invariant with respect to
the action L] = Aut(T[*) on T[*M. So, we have the quotient topolog-
ical bundle K{*M = regT[*M/L} over M of contact (k,r)-coelements.
In K[*M, we have the quotient topology. Let 7 : K;*M — M denotes
the obvious topological bundle projection. We have the quotient projection
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k:regTi*M — K[*M. Every element of K[*M is of the form [v] = [v]; =
k(v) for v € regT(* M. For every embedding ¢ : M — N of two n-manifolds
& *¢ commutes with the action of L} and T *p(regT(*M) C regT;*N. So,
we have the quotient map K;*¢ : K;*M — K[*N.
It is easy to see that the correspondence K{* : Mf, — FMr,p is a
"topological” bundle functor. We prove below that K;* : Mf, - FMisa
(smooth) bundle functor.

LEMMA 1. There is a C*®-manifold structure on K[*M for any M €
obj(Mf,) such that K* : Mf, — FM is a (smooth) bundle functor and

the family K : regT{* — K[* is a natural transformation consisting of sur-
jective submersions.

Proof. The proof consists of two steps.

Step 1. The manifold structure on K = n~1(0).

To introduce a C*®-manifold structure on the fibre K = 7#~1(0), 0 €
R", we will use the following method, which is similar to the one as for
Grassmann manifolds.

Let 4;,...,%; be natural numbers such that 1 <i; <iy3 < ... <ip < n.

We define U;,, s, = {[J§(7)] € K | rank(do(7y © ¢i,,...,in)) = k}, where
Piryenin + R™ — R", ‘p‘il,...,ik(yh cee ,yn) = (0? o0, yinoa oy 0, yiz)Oa R
0,%,, 0,...,0), (y1,...,¥2) € R™. In the right hand side of the formula
defining ;,,...i., ¥i, s in 4;-position, y;, is in ép-position, e.t.c. Clearly,
Ui,,...i, isopenin K.

Let 0 = [j§7] € Ui,,...i, be arbitrary. By the rank theorem there is an em-
bedding ¥ : R*¥ — R¥, (0) = 0, such that ¥ oo (0,...,0,2%,0,...,0,z,
0,..., 0,z%*,0,...,0) = (z,2%,...,2%) near 0 € R". Clearly, j3% is
uniquely determined. Replacing v by 1 o v we can assume v o (0,...,0, z*,
0,...,0,z%,0,...,0,2%,0,...,0) = (z%,z%,...,2*) near 0 € R™. In the
left hand side of the last equality z*! is in 4;-position, z*2 is in 4s-position,
e.t.c. Then o = [§5((z" + 3, a,i,z*)%_,)] for some uniquely determined
G,i, = Ga,,(0) € R. Here the sum is over the set P., k,,.. i, of all o =
(a1,...,0n) € (NU{0})" such that |a|<r and } ;c10  np\fir,.in} % 21
Of course, Ny ,, k = card(Py 5 k,i,,...i ) does not depend on 4y, ..., ix. We de-
fine ®;,, i : Ui, i = RENrnk @, 0 (0) = (Gayi, (0)), @€ Prn ksiy,...rins
s=1,...,k. Clearly, ®;, . ;. is a homeomorphism.

Obviously, the family {U;,, .., } is an open covering of K. We introduce
the C*°-manifold structure on K such that all ®; . ;, are harts. Then K
is a smooth, finite dimensional, Hausdorff manifold without boundary. We
note that dim(K) = kN, ., k.

Step 2. A manifold structure on K;*M.
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To introduce a smooth manifold structure on K;*M for M € obj(M fr)
we will use the following locally determined associated space method, [12].

Let B be the induced by K* topological action of L7, on K = n~1(0),
B(&,0) =K *p(0), £ =350 € LT, 0 € K. It is easy to see that 3 is smooth.
Let K i Mfn — FM be the induced by 8 bundle functor. We remark that
K{*M = P(M) xrr K for any M € obj(Mf,) and K*o = P(p) Xpridg :
K*M — K[*N for any embedding ¢ : M — N of n-manifolds.

Similarly as in the smooth case, we have a canonical homeomorphism
In + Ki'™M — KM, In(< p,0 >) = Ki*p(0), p = je € P"(M),
¢ :R™ = M is an embedding, o € K, M € obj(Mf,), [12].

For every n-manifold M we introduce a C*°-manifold structure on K*M
assuming that Ips is a diffeomorphism. Then « : regTy*M — K;*M is a
submersion and Ki* : Mf, — FM is a bundle functor. m

We have the following easy to verify fact.

PROPOSITION 2. Letn > k. For every n-manifold M & : regT,*M — K*M
is (canonically) a principal fibre bundle with structure group L. The right
principal bundle action of L}, on regT[*M is given by v.§ = é‘l(v), Ee Ly,
v Eregly*M.

Let n > k and 7 > 2. The jet projection n7_; : T{*M — T{~'*M for
any M € obj(M f,) commutes with the actions of L} on T*M and of LZ"I
on Ty ~'*M and sends regT{*M into regTy~* M. So, we have the quotient
map IT7_, : K[*M — K, *M.

We have the following easy to verify result.

PROPOSITION 3. Let n > k and r > 2. The family II]_, : K[* — K,:—l*
is a natural transformation consisting of surjective submersions. For every
n-manifold M the restriction w]_; : regT*M — regT ~I*M is a principal
bundle epimiorphism covering II'_, : K[*M — K[ '"*M and having n7_, :
Ly — L7~ as the induced group epimorphism.

Let us explain the case r = k = 1.

For every n-manifold M we have the projectivization P(T*M) of the
cotangent bundle T*M, P(T*M) = {J, ¢ P(T; M), P(T; M) = the projec-
tive space of Ty M. For every embedding ¢ : M — N of two n-manifolds we
have the induced mapping P(T*¢) = U,cp P(T5 ) : P(T*M) — P(T*N).
The correspondence P(T*) : Mf, — FM is a bundle functor.

For k = r = 1 we have L1=R \ {0} and TI*M=T*M, jly=d.y, v :
M - R,z € M, y(z) = 0. Then K}* M=P(T*M) by the quotient map.
So, the bundle functor P(T*) : Mf, — FM is equivalent to Ki* : Mf, —
FM.
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4. The rigidity theorem for K_*

THEOREM 5. (Rigidity Theorem for K[*). Every natural transformation
B : K* — K[* over n-manifolds for n > k is the identity one.

Proof. Consider a natural transformation B : K;* — K[* over n-mani-
folds, n > k.

Since (by the rank theorem) K[*R™" is the orbit of o, = [j5(z?,...,z*))]
€ K with respect to Dif f(R™, R™), it is sufficient to verify that B(o,) = 0,.

We can write B(0,) = [i57] for some v : R® — R* of rank k at 0,
7(0) = 0.

There is a diffeomorphism ¢ : R® — R™, ¢(0) = 0, such that (z!, ..., z¥)
op~! = 1o (zl,...,zF) near 0 € R™ for some diffeomorphism ¢ : R¥ —
R*, 4(0) = 0, and yo ¢~ ' o (z},...,2*,0,...,0) is of rank k at 0 €
R". Since ¢ preserve o,, replacing v by vy o ¢~! we can assume that v o
(z!,...,2%,0,...,0) is of rank k at 0 € R", ie. [§§7] € Uiz,.+ C K.
Then we can write B(oo) = [i5((z® + ¥, @a,sz%)%_;)], Where ass € R
are the coordinates of B(c,) in the chart ®; . x. Here the sum is over all
a € P nki,2,. k- (See the proof of Lemma 1 for the definitions of U;,.__,
@, xand Prpk12,.. k) :

The homotheties (!,...,z*, LzF+1 . [ 1zm) : R* — R™ for 7 # 0
preserve o,. Then they preserve B(o,), too. It means that B(ao) = [§((z°+
3, Ga TR Ttanga)k 3] for 7 £ 0. Putting 7 — 0 we get B(0,) = 0.

n

COROLLARY 1. If n > k then every absolute natural operator A : Tipqg, ~
TK;* is 0.
Proof. Every such A is a canonical vector field on K;*M for any M €

obj(Mfp). Ki*M is the orbit of o, € FoR™. Then the flow of A is formed
by authomorphism of K. So, A =0 by Theorem 5. =

For » = k = 1 we have the following corollary of Theorem 5.

CoroLLARY 2. (Rigidity of P(T*)). Every natural transformation
B : P(T*) — P(T*) over n-manifolds is the identity one.

5. The natural operators T, ~» TK”

In general, if F' : Mf, — FM is a bundle functor then given a vector
field X on M € obj(M f,) we have the vector field FX on FM via prolon-
gation of flows. It is called the complete lifting of X to FM. If {¢:} is the
flow of X then {F¢,;} is the flow of FX, see [5].

In the case F' = K* we have the following theorem.

THEOREM 6. If n > k(r+1) then every natural operator A : T\ pqy, ~» TKE*
is a constant multiple of the complete lifting K7*.
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The proof of Theorem 6 will occupy the rest of this section and Section 6.

NoTaTIONS. We renumerice the coordinate system on R™ by z*, zP 2%,
where v € {1,...,k}, (p,!) € {1,...,k} x{0,1,...,7r =1} = {k+ 1,k +
2,...,k+rk} and w € {(k+rk+ Lk+rk+2,...,n}. (It is possible if
n>k(r+1)) Givenb= ®) e R* p=1,...,k, 1 =0,...,r — 1, let
= (z° + Z;;(l) b>9z%9(z1)9)k_, : R — RE. Clearly. 7, is of rank k at
0 € R™. We put
oy = [j§(m)] € K =77(0) .

Obviously o, € Uj 2, . «, see the proof of Lemma 1 for the definition of
Ui

1 ,...,‘ik .
We have the following reducibility lemma.

LEMMA 2. (First Reducibility Lemma). Let A : Ty, ~» TKL* be a
natural operator, n > k(r +1). If A(01)s,, =0, (1) = (1,1,...,1) € R™,
then A =0. If A(01)s,,, is vertical then A is of vertical type.

Proof. It is sufficient to show that A(J;), is equal to 0 (vertical) for any
ceK.

By the density argument we can assume that o € U;,_x C K. Then we
can write

a=[5(=+ D Yaamas@ )@ (@) (@))E)]
(4,92,..,9x)EQ

for some smooth maps vg,4,.....q6,s : R*™F — R with 744,...4:,s(0) = 0,
where Q is the set of all (g, g2, -..,qx) € (NU{0})* with g+ ga+...+qx <
r—1.

By the density argument we can assume that (fyq,o,,.,,o,s(m”’l, 0)):R" —
R, q=0,...,r—1,s =1,...,k, is of rank kr at 0 € R". Then there
exists an embedding ¢ : R® — R™ preserving 0, 8; and z!,...,z* near
0 and sending Yo, 0 o Yo mans (2P, 2¥) (%)% .. (2F)% into 29
for (s,q) € {1,...,k} x {0,...,r — 1}. Now using the invariance of A with
respect to ¢ we can assume that o = O(1). =

Now, we prove the following decomposition lemma.

LEMMA 3. (Decomposition Lemma) Let A : Tjpqy, ~» TKE* be a natural
operator, n > k(r + 1). Then there exists « € R such that A — aK}* is a
vertical operator.

Proof. We can write Tm(A(d1)o,,) = Doig @00, ;i € R. Using the

naturality of A with respect to the homotheties (z!,1z2,...,1z7) : R™ —

R" for 7 # 0 and next putting 7 — 0 we deduce that s = ... = a, = 0.
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Then A — oy K}* is of vertical type because of the first reducibility lemma
(Lemma 2). =

6. The natural operators Tjxs, ~ TK;* of vertical type
Thanks to the decomposition lemma (Lemma 3), Theorem 6 will be
proved after proving the following proposition.

PROPOSITION 4. If n > k(r + 1) then every natural operator A : Tirqy, ~
TK{* of vertical type is 0.

Proof. From now on A : Tipy, ~ TK[* is a natural operator of vertical
type, where n > k(r + 1).

We will use the notations of Section 5.

Since A is vertical, A(X)|K is a vector field on K = 7~1(0) for every
X € X(R"). Let {FtA(x)} denotes the flow of A(X)|K, X € X(R"). For
r > 2 K is not compact. (For example, we can not choose a convergent
subsequence from the sequence a,, = [j§((z* + m(z*®)?)%_,)] € K, m =
1,2,....) Hence the flow FtA(X) can not be global.

LetacR,b=(»)e R (p=1,...,k,1=0,...,r—1)and t € R be
arbitrary. Then we have o3, € K, see Section 5.

Step 1. On the domain of FtA(aal)(a).

Choose € > 0 and an open neighbourhood W(g) of o(g) in K such that
F®®)(5) is defined for all (t,a,0) € (—¢,€)2 x Wig). If b € R*" then
there is 7 = 7(b) # 0 such that o, € W(g). Define o, = (z*, 2P}, z%) :
R" — R" and Wy = K[*¢-(W(g)). Then W} is an open neighbourhood
of op = K[*¢,(0s) € K. Since ¢, preserves ad;, then so is A(ad;). So,

=¥ - commutes with the flow FtA(“a‘). Hence F/* (“a‘)(a) is defined for all
(t,a,0) € (—€,€)2 x Wp.

Similarly, replacing € > 0 be a smaller one we see that for all d = (dP'!) €
R with d10 = 1 there is V; an open neighbourhood of pq := [j§((z° +
Elr;ll dl,lzl,l(xl)l, z2 + E;‘;ol dz’lzz'l(:cl)l, o Th 4 E;:ol dk,lxk,l(xl)l))] in
K such that F/**®) () is defined for all (t,a,0) € (—¢, €)% x V.

Let W be the sum of all W, and V; as above. Then W is an open subset
in K such that o, € W and pq € W for all b and d as above and FtA(aa‘)(a)
is defined for all (t,a,0) € (—¢,€)? x W.

Step 2. On the points F{(*%)(g}).

Clearly, F(;q(o)(a(o)) = 0(0) € U12,..k C K. So, replacing ¢ > 0 by a
smaller one we can write

() FCe) =[5+ Y. Bas(tabz®)k)]

a€Py n k,1,2,...,k
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for all (t,a,b) € (—¢,€) x (—€,€) X (—¢,€)™*, where By 4 : (—¢,€) X (—¢,€) x
(—€,€)*" — R are the smooth maps. (See the proof of Lemma 1 for the
definitions of Uy, x and Prnk1,... k)

Step 3. On the maps B, ,(t, a,b).

We use the invariance of A(ad;) with respect to (z*, rzP!, Lav) :
R™ — R" for tP! # 0 and t¥ # 0 with [tP!| < 1. We obtain the homogeneity
condition

Ba,s(t,a, (P'0Ph) = T () H(t"’)'*wBa +(t,a,b)
()
for s = 1,...,k and o = (o, 0p1,0y) € Prnka,. k where (t,a,b) €
(—€,€) X (—¢,€) X (—¢,€)™. Now, we apply the (obviously adapted) ho-
mogeneous function theorem, [5]. We deduce that B, s, =0for s=1,...,k
and o = (au, 0p 1, Qy) € Prp i1,k With () # 0, and

Ba,s(t,a,b) = Ba,s(t, ) [] (271)
(»:h)

for s = I,.. .,k and a = (auyap,laaw) € Pr,n,k,l,...,k with (aw) = 07 where
Ba,s i (—€,€)2 = R are the smooth maps.

Step 4. Extensions of the maps B s(t, a,b).

In obvious way we extend By, t0 Bas : (—€,€) X (—€,€) x R*™ = R
in such a way that the last sentence of Step 3 holds, i.e. B, = 0 for
s=1,...,kand a = (au,ap,l)aw) € Pr,n,k,l,...,k with (aw) 7é 0, and

Ba,s(t,a,b) = Ba,s(t,a) [ ] (672
(1)
for s =1,...,k and o = (o, 0p1, ) € Prak,1,.. .k With (ay) = 0, where
Bas : (—¢,€)2 = R are the smooth maps.

By the invariance of A(ad;) with respect to the diffeomorphisms ¢, as
in Step 1 we can easily show that the formula (*) holds for all (¢,a,b) €
(—€,€) x (—¢,€) x R™, where By s : (—¢,€) x (—¢,¢) x R¥™ — R are the
mooth maps.

Step 5. On the maps By s(t,a,b) anew.

Using the invariance of A(a8;) with respect to (z!,7z
R"—R" for 7 # 0, we obtain the homogeneity conditions

1

where b, = (b&}) € R*", bL} = b1l for I = 0,...,7 — 1 and b2! = 7bP! for
[=0,...,r—1land p=2,...,k, and

1
Ba»l(t7 a, b) ozt Ao = Ba,l(tv a, bT) y o€ Pr,n,k,l,...,k .

2 ..., Tzk, zPt, zv):

Ba,s(t’aab) =Ba,s(t7a7b7)7 S=2,...,k, aeP’rnk,l, ko
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Hence by the homogeneous function theorem B, 4(t,a,b) =0if ag + ...+
o >2ands=2,...,k,and B, 1(t,a,b) =0if ag+...+ax > 1. Moreover,
B, 1(t,a,b) does not depend on b?! for p=2,...,kand 1 =0,...,r — 1 if
s+ ...+ ar =0, By 4(t,a,b) does not depend on b*! for p=2,...,k and
l=0,...,r—1lifag+...4+ar =1land s =2,...,k, and B, ,(t, a,b) depends
linearly on the b»! forp=2,...,kand 1 =0,...,r—1ifas+...+ar =0
and s=2,...,k.

Step 6. On the points F;**®)(g,) anew.

Summing up, for (t, a,b) € (—¢, €) x(—¢, €) x R™* we can write FtA(aa‘) (ob)
= Ua(('Yt,a,b,s)?:l)]? where

Tapt =2+ D, Caporpeoa(t,) H (P! (= H(x“)ﬁ ‘

(qyﬁOrN,ﬂr—l)GG =0

for some smooth maps Cy g,,... g,_, : (—€,€)2 > Rand wherefors =2,...,k

VYt,a,b,s = z*+

k r—1 re1
+ Z Z D; :0, WYr—1 (t, a) H(blrl)'n (zl)qzu H(Il,l)'yl
1=0 =0

u=2(q,70,..-,Yr—-1)EH

r—1 k r—1 r—1
53D S ) ) (L) (o
j=0p=2 (%60, O — I)GJ =0 1=0
for some smooth D% :(—¢,€)> —» Rand EZ e s, (m69? >R

In the above formulas G is the set of all (g, fo, . - ,ﬂ,._l) € (Nu {op™+!
such that ¢+ Go+...+ Br—1 <rand Bo+...+ Br-1 > 1, H is the set of all
(@,70y - -y Yr—1) € (NU {0})"+! such that ¢+ o+ ... + -1 <7 —1 and
Yo+ ... +7—_1 > 1, and J is the set of all (g,0,...,5—1) € (NU{0})™+!
suchthat g+ 6 +...+ 6,1 <r—1.

Step 7. On the maps Co gy0,,....0 and Dy’ o o from Step 6.

Using the invariance of A with respect to (Tz z2,...,z") : R® - R"
for 7 # 0 with || < 1 (which sends a8, into mal) we get the homogene-
ity conditions Cp g0, 0(t,a)T = Copo0,..0(t,7a)T? for (t,a) € (—¢,€)?
and fo = 1,...,r, and Dghoo...0 (8,a) = Doy o, o, Ta)T for (¢,a) €
(—€,€)?, v = 1,...,r—1 and s, u=2 .k

So, Co,8,,0,...0 = 0 for g = 2,...,r, and DO,Y00 o = 0for v =
l,...,r—1land s,u=2,...,k.

Since F(;q(aa‘) = id, Co1,0,...,0(0,a) = 1. Then replacing ¢ > 0 by a
smaller one we can assume that Co 1,0 o(t,a) # 0 for all (¢, a) € (—¢,¢€)2.

Step 8. On the maps Cqp,,....8,_15 Ds Yo Eiifs’é,f...,a,_l from Step 6.
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Consider arbitrary (¢, a) € (—e¢, e) and b = (b!) € R™* with 10 # 0.
For every 7 # 0 let ¢, = (z*,7 5o il z¥) : R® — R"™ be the diffeomor-
phlsms where ¢ is the Cronecker delta They preserve ad;. Moreover, let
= (b2!) € R*" be such that b1t = 1! for [ =0,...,r — 1 and b2 = b*!
for s=2,...,kand !l =0,...,7r— 1. Then K,z*z/)f(ab) =0y,.
Applying the results of Step 7 and using the invariance of A with respect
to the ¢, for 7 # 0 we have F/***)(0} ) = [j5((F;,0,r,5,s)5=1)], Where

Tl

_ 1,0
=z + +
Yt,a,7b,1 bl'OCo,Lo,...,O (t,a)

1 Cq,ﬂo,...,ﬁr-l(t’ a)
+ Z ) TBo+...+Br-1-1 b19Ch 1,0,....0(t, @)
(2:0,Be1)EGM(O10,... 00}~
r—1 r-1
% H(bl,l)ﬂz (xl)q H(xl,l)ﬂt
1=0 =0

and where for s =2,...,k

= S
Yt,a,7,0,s — T +

k
1
+ Z z T‘yo+t..+’y,-_1 D;::Or-"v'h‘—l (t’ a) x

¥=2(¢,%0,--,¥r—1)EH\{(0,],0,...,0};_}

r—1 r—1
x H(b”)’" (z!)9z* H(xl,l)'7:+
=0 =0
r-1 k

1 .
+220 X s s (ba)x

j=0p=2 (q,60)"'16r—1)€-]
r—1 r—1
X H(bl,l)ész,jzp,j (z1) H(ml,l)&
=0 =0

If 610 #£ 0, 0}, — pg as 7 = 0, where d = (dPh) € R¥, dt = by for
1=0,...,r—1andd? =t forp=2,...,kand | = 0,. r—l (See
Step 1 for the definition of p4.) Then Fy (“81)(0 ) — FtA(aal)(pd) because
of FtA (@21) i defined on W, see Step 1.

We see that Fc;‘(aal)(P(LO,...,O)) = pa,0,..0) € Uz, . kj,, where j, € {k+
1,...,n} is such that 10 = ¥ and the Uj,, ;. are defined in the proof

of Lemma 1. Replacing ¢ > 0 by a smaller one, we have F; A1) (50) €
Us,...kj, C K for (t,a) € (—¢,€)? and d € {1} x(—¢, €)™ "1 c R"*. Using the
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invariance of A(ad;) with respect to the homotheties (z*, ' ¥ Pl z¥)
R™ — R™ for 7 # 0 we can easily show that Ff(aal)(pd) el kj, CK
for (t,a) € (—¢,€)® and d € {1} x R™*-1,

Consequently we obtain that C, g, ... 8._, (¢, a) = 0for (¢, Bo,--.,0r—1) €

G\ {(0,7,0,...,0)}r_, with G +ot o 2 2 D,y (Ba) =
for (¢,%,---,7%-1) € H\ {(0,1,0,...,0) ;-1 and s,u = 2,...,k, and
EMBe 5. (t,a) = 0 for (¢,60,...,6._1) € J with 50+...+6_1 > 1,

p,s = 2 ..,k and j=0,1,...,r — 1. (For, assume the contrary. The form
of 55 ((Wt,a,_,,b,,)’;zl)] presented above is ”adapted” to the chart (Us,.. k ;,,
®,,... k,j.)- Then it is easy to see that some coordinates of [j5((V; o 75 s)5=1)]
with respect to this chart tend to infinity. Then the limit of [j3((F.4.7.5,s)5=1)]
as 7 — 0 do not belong to Us, . x j,-)

Step 9. On the points FtA(aal)(ab) anew.

Summing up, for (¢, a,b) € (—¢, €) x (—¢, €) x R™* we can write FtA(aa‘)(ab)
= [5((Ye.a5,5)5=1)], Where

r—1

Veapl = 1.1 + Z C ,l(t, a)bl’l(zl)q:l:l’l
l,q=0

for some smooth maps C,; : (—¢,€)? — R and where for s =2, ...,k
k r—1

Yiabs = T° +Z Z alp(t ,a)bPl(z1)9zP!

p=21,g=0

for some smooth E?,  : (—¢,€)? — R.

Step 10. On the maps Cq; and E; , | from Step 9.

Using the invariance of A with respect to (7z!,22,...,2") : R® —» R"

for 7 # 0 with |7| < 1 we get the homogeneity condltlons Cyu(t,a) = =T =
Cqu(t,Ta) =ty for I,g=10,...,7r— 1, and E;, (ta o)X = aLp(ts Ta)% for

q,l =0,. r—landp,s—2 k. So, Cyy =0for gl =0,...,7r—1

with ¢ > l C’qq(t a) Cqq(t,0) for g=0,...,r—1and (t,a) € (—e, €)?,
qlp—Oforp 2,...,kand ¢, =0,...,7— 1withq>l,andEg,q7p(t,a)=
E} . 0(t,0) for p=2,. k,q=0,...,r—1and(t,a)€(—e,e)z.

The locally defined embedding (z¥, 2Pt + (zPHr—HH1 z¥)~1  R™ —» R®
preserves oy, for any b € R™, By the invariance of A(ad;) with respect to this
diffeomorphism we obtain j§(3; . =0 Cygu(t, a)bb(z1)9 (b ™—1+1) = 0 and
JO(Ep=2 Zt,;io Es (ta a)bp l( l)q(zp, )T—.H-l) = 0 for (t7aab) € (_€a€)2 X
R"*. Then (addltlonally) Cqi=0forgql=0,...,r—1withg<!—-1and

s, p=0forp=2,...,kand ¢l=0,...,r—1withg<l-1.
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Step 11. The end of the proof of Proposition 4.

By Step 10 we see that FtA(aa‘)(ab) = FtA(o) (0b) for any (¢, a,b) € (—¢, €)?
xR"*. Hence A(ad;)s, = A(0),, for (a,b) € (—¢,€)? x R™*.

But A(0) corresponds to an absolute operator. So, A(0) = 0 because
of Corollary 1. Hence A(a,0;)s, = O for some a, > 0 and all b € R"%.
Using the invariance of A with respect to the homothety a—luian we get
that A(8,),, = 0 for any b € R™. In particular, A(8;)s,,, =0. Then A =0
because of the reducibility lemma (Lemma 2).

This end the proof of Proposition 4. =

The proof of Theorem 6 is complete. =
For r = k = 1 we obtain the following corollary of Theorem 6.

COROLLARY 3. Ifn > 2 then every natural operator A : T pq5, ~ T(P(T™))
is a constant multiple of the complete lifting.

7. The natural affinors on K*
In this section we study the natural affinors on K *. We prove the fol-
lowing theorem.

THEOREM 7. Let n > k(r + 1). Every natural affinor C on K[* over n-
manifolds is a constant multiple of the identity one.

At first we prove the following reducibility lemma.

LEMMA 4. (Second Reducibility Lemma). Let C : TK{* — TK* be
a natural affinor on K* : Mf, — FM, n > k(r + 1). Assume that
C(KE*(01)oy,y) = 0. Then C = 0.

Proof. Since K[*R™ is the orbit of 0, = [j§(z?,...,z*)] with respect to
Dif f(R™ R"), it is sufficient to show that C(v) = 0 for any v € T, K[*R™.

Because of the fibre linearity of C' we can assume v = K}*(8;),, for
i=1,...,korv =4 _ [i5(z'...,2%) + tj5y], where v : R* — RF,
v(0) = 0.

Since (z!,...,z*"1 2* + 21,2+, ..., 2") : R® — R" preserves o, and
sends 0y into 8; + 0; and C is natural and fibre linear we can assume v =
Ki*(01)o, instead of v = KL*(8;)o, -

By the density argument one can assume that (z!,...,z* v) : R* — R2?*
is of rank 2k at 0 € R™. Then using a diffeomorphism R™ — R™ preserving
z!,...,z* and sending v into (z**!,...,2?*) near 0 € R™ we can assume
that v = (zk+1, ..., 2%F).

Using the flow method it is easy to verify that ICZ*(E;;I *+39;),, =
%t=ob6(mla vey 'Tk) + tj6($k+1, ceey x2k)]'
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So, it is sufficient to assume that v = KI*(8; + ZJ _, 2*98;),, or v =

‘(al)aa

Since 9; + E _,zF+39; = ¢,0, near 0 € R™ for some dlffeomorphlsm
¢ : R® — R"™ preserving 0 it is sufficient to assume that v = K7*(81)[jz4),
where v : R® — R¥, v(0) = 0, rank(doy) =

Then using similar procedure as in the proof of the first reducibility
lemma (Lemma 2) we can assume that [j§y] = 0(1), i.e. v = K[*(01)oq,- ®
Proof of Theorem 7. Using C we have the natural operator C o K7* :
Tipmy, — TKE*. By Theorem 6, C o K[* = oK[* for some o € R. Then
C(K;*(al)a(l)) = aK}*(01)s,,- Hence C = aid because of the second re-
ducibility lemma (Lemma 4). =

For r = k = 1 we obtain the following corollary of Theorem 7.

COROLLARY 4. Let n > 2. Every natural affinor C on P(T*) over n-
manifolds is a constant multiple of the identity one.

8. The natural operators T'l M, T*Kg*
At the end of this paper we prove the followmg theorem.

THEOREM 8. Ifn > k(r+1) then every natural operator D : T}y, ~ T*Ki*
is a constant multiple of the vertical lifting DV .

We start with the following third reducibility lemma.

LEMMA 5. (Third Reducibility Lemma). Let D : Thag, ~ TTK™ be
a natural operator, n > k(r + 1). Assume that D(K{*(01)o,,) = 0. Then
D=0.

Proof. The proof is similar to the proof of the second reducibility lemma
(Lemma 4). =

Proof of Theorem 8. Because of the third reducibility lemma
(Lemma 5) D is uniquely determined by the function ®p : Q!(R")xR™* > R,
®p(w,b) = D(W)(KE*(01)a,), w = Ty widz € QHR™), b= (b7!) € R™*.
So, we will study ®p.

Using the invariance of D with respect to (z*, 227!, Lz¥) : R® — R™ for
7 # 0 and next putting 7 — 0 we get ®p(w,b) = ‘I)D(Zu=1 wy(zl, ..., z¥,
0,...,0)dz*,0) for every w € Q!(R") and b € R,

Consider an arbitrary w € Q!(R") and b € R™*. By the above consider-
ation we can assume that b = 0. Then by the nonlinear Petree theorem, [5],
we can assume that w = Yk _, ¥ pwau(al)® ... (%) dz®, where P is
the set of all @ = (v, ...,) € (NU{0})* with |a] < R.

Define ¥p : (RP)* — R, ¥p(au) = Ep(Xe_) Caep Maulzh) ...
(z*)oxdz¥, 0).
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Using the invariance of D with respect to %_"l:an :R™ - R™ for 7 # 0 we
get TV (Na.n) = ¥p(r!®l+1n,.,). Then by the homogeneous function theo-
rem we deduce that ¥p(nq,.) = 2ﬁ=1 au7(0),« for some a, = a,(D) € R.
Then using the invariance of D with respect to (z?!, %a:z, ceny %a:") we get
a,=0foru=2,...,k.

Then ®p(w,b) = ajw1(0) = &, pv(w,b), i.e. D=a;DV. =

For r = k = 1 we obtain the following corollary of Theorem 8.

COROLLARY 5. Ifn > 2 then every natural operator D : Tjy . ~T*(P(T*))
is a constant multiple of the vertical lifting.
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