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ON THE CONTACT (fc, r)-COELEMENTS 

Abstract. For natural numbers n, r and k with n > fc the bundle functor of contact 
(fc, r)-coelements over n-manifolds is denoted by Kk*. The rigidity theorem for Kk* is 
proved. If n > k(r + 1) the natural operators T\Mfn TKr

k* and T*Mfn T*K{* are 
completely described and the natural affinors on Kk* are classified. The case r = fc = 1 is 
additionally discussed. 

0. Introduction 
Let n, r and fc be natural numbers. 
Let n > fc. In [2], C. Ehresmann constructed functorially the fibre bundle 

KkM = regTkM / Lk over a n-dimensional manifold M of contact (fc, r)-
elements and obtained the bundle functor Kk : M f n —> TM. from the 
category M f n of n-dimensional manifolds and their embeddings into the 
category TM. of fibered manifolds and their fibered maps. In [5], I. Kolar, 
P.W. Michor and J. Slovak studied the problem how a vector field X on M 
induces a vector field A(X) on K£M and proved that every natural operator 
A : T l M f n —» TK£ is a constant multiple of the complete lifting K,rk. In [6], 
1. Kolar and the author investigated the naturality problem with bundle 
mappings B : K£M —> K£M and deduced the so called rigidity theorem for 
KJ. saying that every natural transformation B : Kjl over n-manifolds 
is the identity one. The authors studied also the naturality problem with 
affinors (i.e. tensor fields of type (1,1)) C : TKr

kM TKr
kM on Kr

kM and 
derived that for n > fc + 2 every natural affinor C : TKk —> TKk on Kk 
over n-manifolds is a constant multiple of the identity one. Moreover the 
authors analysied how a 1-form u; on M can induce a 1-form D(u) on KkM 
and showed that every natural operator D : T j ^ y T*Kk is a constant 
multiple of the vertical lifting. 
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We inform the reader that some other generalizations of the cited above 
results from [5] and [6] can be found in [10]. 

The purpose of the present paper is to "dualize" the cited above re-
sults of [5] and [6]. Let n > k. In 1952, C. Ehresmann introduced the bun-
dle Kk*M = regTk* M/Lk of contact (k, r)-coelements for mostly abstract 
reasons. So, we have the bundle functor Kk* : M f n —> TM. of contact 
(k, r)-coelements. We investigate the naturality problem with bundle map-
pings B : Kk*M —» Kk*M and deduce the so called rigidity theorem for 
Kk* saying that every natural transformation B : Kk* —> Kk* over n-
manifolds is the identity one. We study the problem how a vector field X 
on M induces a vector field A(X) on Kr

k*M and prove that for n > k(r +1) 
every natural operator A : T\Mfn —+ TKk* is a constant multiple of the 
complete lifting JCk*. We study also the naturality problem with affinors 
C : TKr

k*M TKk*M on Kr
k*M and derive that for n > k(r + 1) every 

natural afiinor C : TKk* —> TKk* on Kk* over n-manifolds is a constant 
multiple of the identity one. Moreover we analyse how a 1-form w on M 
can induce a 1-form D(u) on Kk*M and show that for n > k(r + 1) every 
natural operator D : T*MJ T*Kk* is a constant multiple of the vertical 
lifting. 

In the case r = k = 1 we have Kl*M=P(T*M), the projectivization 
of the cotangent bundle T*M. So, as a corollaries we get some results for 
P(T*) corresponding to the ones for K\*. 

Natural operators lifting vector fields and 1-forms to some natural bun-
dles were used practically in all papers in which problem of prolongations 
of geometric structures was studied, see [16], [17], e.t.c. That is why such 
natural operators are studied, see. e.g. [3], [5], [11], [13]-[15], [18], e.t.c. 

Natural affinors are used to study torsions of connections, [7], [1], e.t.c. 
That is why they are studied, see [4], [5], [6], [9], [10], e.t.c. 

Prom now on x1,..., xn denote the usual coordinates on R n and di = 
are the vector fields on R n . 

All manifolds are assumed to be without boundary, finite dimensional, 
Hausdorff and smooth, i.e. of class C°°. All maps between manifolds are 
assumed to be smooth. All natural operators, natural transformations and 
natural affinors are in the sense of [5]. 

1. On the bundle functor Kk of contact (fc, r)-elements 
For a comfort we cite below some results about the bundle functor Kk : 

M f n TM. of contact (fc, r)-elements. 
For every n-manifold M we have the bundle TkM = JQ (Rfc, M) over M 

of (k, r)-velocities. Every embedding yj: M —> TV of two n-manifolds induces 
a bundle map Tfc> : Tr

kM ^ Tr
kN , T£<p(fo7) = f0(ip o 7 ) , 7 : Rfc - M. 
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The correspondence Tk : M f n —> TM is a bundle functor. 
Every £ = 6 Lk = inv Jq (Rfc, Rfe)o, the Lie group of invertible r-jets 

Rfc —> Rfc with source and target 0 € Rfc, induces a natural automorphism 
I : n - i : TIM - TkM, fafr) = ^ ( 7 o V"1), 7 : Rfc —• M. This 
defines a group homomorphism Lk —> Aut(Tk). 

The well-known result is that if n > k then the above homomorphism is 
an isomorphism, i.e. Aut(Tk)=Lk. 

Assume n> k. For every n-manifold M let regTkM = {jQj | 7 : Rfc —> M, 
rank(do'y) = k} be the open subbundle in TkM of so called regular (k, r)-
velocities. Clearly, regTkM is invariant with respect to the action Lk = 
Aut{Tk) on T^M. So, we have the quotient bundle Kr

kM = regT£M/Lr
k 

over M of contact (k, r)-elements. This bundle was introduced by C. Ehres-
mann, [2]. We have the quotient projection k : regTkM —> KkM. For every 
embedding (p : M —> N of two n-manifolds Tk<p commutes with the ac-
tion of Lk and Tk<p(regTkM) C regTkN. So, we have the quotient map 
Kr

ky : KIM Kr
kN. The correspondence Kr

k : M f n -> TM is a bun-
dle functor. Moreover, n : regTk —> KkM is (canonically) a principal fibre 
bundle with structure group Lk. The right principal bundle action of Lk on 
regTkM is given by = £ G Lk, v G regT£M. 

In [6], the authors proved the following rigidity theorem. 

T H E O R E M 1. (Rigidity Theorem for Kk). Let n > k. Every natural trans-
formation B : Kk —> Kk over n-manifolds is the identity one. 

In [5], the authors obtained the following classification of natural oper-
ators lifting a vector field from a n-manifold M to a vector field on KkM. 

T H E O R E M 2 . Let n > k. Every natural operator A : TKk is a 
constant multiple of the complete lifting Kk. 

In [6], the authors deduced the following classification of canonical affi-
nors C : TKkM TKkM on Kr

kM. 

T H E O R E M 3 . Let n > k + 2 . Every natural affinor C : TKk TKI on Kk 
over n-manifolds is a constant multiple of the identity affinor. 

In general, if q : Y —> M is a fibre bundle and cj : TM —> R is a 1-form 
on M then we have a 1-form ujv = q*u = u o Tq : TY —> R on Y. It is 
called the vertical lift of u> to Y 

In [6], the authors showed the following classification of natural operators 
lifting a 1-form from a n-manifold M to a 1-form on KkM. 

T H E O R E M 4. Let n > k + 1. Every natural operator D : T*Mfn T*Kk is 
a constant multiple of the vertical lifting. 
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2. On the bundle functor Tk* of (k, r)-covelocities 
For every n-manifold M we have the vector bundle T[*M = JT(M, Rfc)o 

over M of (k, r)-covelocities. Every embedding <p : M —• N of two n-
manifolds induces a vector bundle map : T£*M Tfc

r* JV , T£*ip(j'~f) = 
• W 7 ° 7 : M - Rfc, x G M, 7(x) = 0. 

It is well-known that the correspondence Tk* : M f n —• C .F.M is a 
vector bundle functor, [5]. 

Every £ = ^ip G JQ (Rfc, Rfc)o, the Lie semigroup of r-jets Rfc —• Rfe with 
source and target 0 G Rfc, induces a natural endomorphism f : T£* —* Tk*, 
| : T?M -> Tk*M, 7) = JM ° 7), 7 : M - Rfc, x G M, 7(x) = 0, 
M G obj(Mfn)- This defines a semigroup homomorphism Jo(Rfc,Rfc)o —• 
End(TD. So, e G Aut(Tj;*) iff £ G 
PROPOSITION 1 . If n > k then the above homomorphism JO(Rfc,Rfc)o —• 
End(Tk*) of semigroups is an isomorphism, i.e. End(Tk*)=J,Q(Rfc,Rfc)o. 
In particular, Aut(Tk*)=Lk. 
Proof . Let E : Tfc

r* be a natural transformation (£ G End(T£*)) 
over n-manifolds, n > k. It is sufficient to show that there is £ G JQ (Rfc, Rfc)o 
with E = f . 

Let 1to = ..., xk) G (Tfc
r*)0Rn =the fibre of Tfc

r*Rn over 0 G R n . 
Let E(RJ0) = j 'q7 for some 7 : R" —> Rfc, 7(0) = 0. Using the invariance of 
E with respect to the homotheties (x 1 , . . . , xk, . . . , ^xn) : R n —> R" 
for r ^ 0 and then putting T -T Owe obtain E(T]0) = £(T]0), where £ = 

G J£(Rk,Rk)o, v : Rfc Rfc, ip(ti,... ,tk) := 7^,..., tk, 0 , . . . , 0), 
( i i , . . . , tk) G Rfc. Then E = £ because r]0 has dense orbit in T£*Rn with 
respect to Diff(Rn, R n ) . • 
REMARK 1. In [8], J . Kurek obtained the classification of End(Tk*) in some 
another form. 

3. The bundle functor Kk* of contact (k, r)-coelements 
The bundle of contact (k, r)-coelements was introduced by C. Ehres-

mann. For a comfort we present this construction, and simultanously we 
introduce notations we will use in the rest of the paper. 

Assume that n, r and k are natural numbers with n> k. 
For every n-manifold M let regT[*M = 7 | 7 : M —• Rfc, x G M, 

j(x) = 0, rank(dx7) = k} be the open subbundle in T[*M of so called 
regular (k, r)-covelocities. Clearly, regTk*M is invariant with respect to 
the action Lr

k = Aut(T£*) on T[*M. So, we have the quotient topolog-
ical bundle KJ^M = regTk*M/Lr

k over M of contact (k,r)-coelements. 
In Kk*M, we have the quotient topology. Let n : Kk*M —> M denotes 
the obvious topological bundle projection. We have the quotient projection 
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k : regTJ*M KJ*M. Every element of KJ*M is of the form [v] = [v]r
k = 

K(V) for v 6 regT£*M. For every embedding <p : M —> N of two n-manifolds 
T£*<p commutes with the action of Lr

k and T£* <p(regT£* M) C regT£*N. So, 
we have the quotient map KJ*<p : KJ*M —> KJ*N. 

It is easy to see that the correspondence KJ* : M f n —• FMrop is a 
"topological" bundle functor. We prove below that KJ* : M f n —* TM. is a 
(smooth) bundle functor. 

L E M M A 1 . There is a C°°-manifold structure on KJ*M for any M € 
obj(JAfn) such that KJ* : M f n —• TM. is a (smooth) bundle functor and 
the family k : regTJ* —> KJ* is a natural transformation consisting of sur-
jective submersions. 

P r o o f . The proof consists of two steps. 
Step 1. The manifold structure on K = 7r-1(0). 
To introduce a C°°-manifold structure on the fibre K = 7r-1(0), 0 € 

R n , we will use the following method, which is similar to the one as for 
Grassmann manifolds. 

Let ¿ i , . . . , ifc be natural numbers such that 1 < i\ < ¿2 < ... < ik < n. 
We define Uiu...ik = {[70(7)] € K | ronfc(d0(7 0 Vii,...,»*)) = k}, where 

H>i i k
: R n R n > <Pii,...,ik(yu---,yn) = ( o , . . . , o , y i l , o , . . . , o , ? / i 2 , o , . . . , 

0, yik, 0 , . . . , 0), (2/1,..., yn) 6 R n . In the right hand side of the formula 
defining ipil!...tik, yi1 is in ¿i-position, yi2 is in ^-position, e.t.c. Clearly, 
Uii, ~,ik is open in K. 

Let o = [707] £ be arbitrary. By the rank theorem there is an em-
bedding i/j : R f c - » R f c , ip(0) = 0, such that ip o 7 o (0 , . . . , 0, x i j , 0 , . . . , 0, x*2, 
0 , . . . , 0, x i f c ,0 , . . . ,0) = (x* 1 , ! * 2 , - - - , ^ ) near 0 6 R n . Clearly, j^ip is 
uniquely determined. Replacing 7 by ^ o 7 we can assume 7 o (0 , . . . , 0, x n , 
0 , . . . ,0,x®2, 0 , . . . ,0 ,x i f c ,0 , . . . ,0) = (x*1,x*2,.. •,x*k) near 0 € R n . In the 
left hand side of the last equality x n is in ¿i-position, x*2 is in ^-position, 
e.t.c. Then a = [jo((xl° + E a

a o ,« s
j ; a ) s= i ) ] for some uniquely determined 

= &a,iB{?) € R . Here the sum is over the set Pr,n,k,ii,...,»* °f all a = 
( a l r . . , a n ) e ( N U {0})n such that |a | < r and Eie{i,2>...In}\{i1>...,iJk} ^ L 

Of course, Nr^n,k — card{Pr^kii1,...,ik) does not depend on ¿1,. ..,ifc. We de-
fine ik : Uh i„ -» IikNr'n'k, $iu...,ik(a) = (aQ, ia(a)), aePr,n,k,il ifc, 
s = 1 , . . . , k. Clearly, is a homeomorphism. 

Obviously, the family {C/»li...>ifc} is an open covering of K. We introduce 
the C°°-manifold structure on K such that all jk are harts. Then K 
is a smooth, finite dimensional, Hausdorff manifold without boundary. We 
note that dim(K) = kNr>nik. 

Step 2. A manifold structure on KJ*M. 
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To introduce a smooth manifold structure on Kk*M for M G obj(Mfn) 
we will use the following locally determined associated space method, [12]. 

Let ¡3 be the induced by Kk* topological action of LT
n on K = 7r-1(0), 

<*) — Kk*P(a)' £ — Jof ^ -^n) 0" € i f . It is easy to see that /? is smooth. 
Let Kk* : M f n —> TM be the induced by (3 bundle functor. We remark that 
Kr

k*M = PR(M)xL,K for any M € obj(Mfn) and Kr
k*<p = Pr(<p)idK : 

KT
k*M —• Kk*N for any embedding ip : M —> TV of n-manifolds. 
Similarly as in the smooth case, we have a canonical homeomorphism 

1M : Kl*M -» Kr
k*M, IM{< />,*>) = P = Jof € Pr(M), 

: R n —> M is an embedding, a € K, M e obj(Mfn), [12]. 
For every n-manifold M we introduce a C°°-manifold structure on Kk*M 

assuming that I m is a diffeomorphism. Then k : regTk*M —> Kk*M is a 
submersion and Kk* : M fn TM is a bundle functor. • 

We have the following easy to verify fact. 

PROPOSITION 2. Letn > k. For every n-manifold M k : regT£*M —> Kk*M 
is (canonically) a principal fibre bundle with structure group LT

k. The right 
principal bundle action of Lk on regTk*M is given by v.Ç = £-1(t>), £ G Lk, 
v € regTk*M. 

Let n > k and r > 2. The jet projection : T£*M T[~UM for 
any M G obj(Mfn) commutes with the actions of Lr

k on Tk*M and of 
on Tk~uM and sends regT£*M into regT^~u M. So, we have the quotient 
map : Kr

k*M -» Kr
k~uM. 

We have the following easy to verify result. 

PROPOSITION 3. Let n > k and r > 2. The family : Kr
k* KT

k~u 

is a natural transformation consisting of surjective submersions. For every 
n-manifold M the restriction 7r£_i : regTk*M regTT

k~l*M is a principal 
bundle epimiorphism covering : Kk*M —> Kk~1*M and having : 
Lk —> L^T1 as the induced group epimorphism. 

Let us explain the case r = k = 1. 
For every n-manifold M we have the projectivization P (T*M) of the 

cotangent bundle T*M, P ( T * M ) = [jxeM P(TX*M), P ( T * M ) = the projec-
tive space of T*M. For every embedding <p : M —> N of two n-manifolds we 
have the induced mapping P(T*<p) = UxeMP(r» : P(T*M) P(T*N). 
The correspondence P(T*) : M f n —• TM is a bundle functor. 

For k = r = 1 we have L\=R \ {0} and T^*M=T*M, ^ 7 = ^ , 7 , 7 : 
M -» R, X e M, 7(1) = 0. Then Kl*M=P(T*M) by the quotient map. 
So, the bundle functor P(T*) : M f n ->• TM is equivalent to K}* : M f „ 
TM. 
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4. The rigidity theorem for Kk* 
THEOREM 5. (Rigidity Theorem for KTk*). Every natural transformation 
B : Kk* —• Kk* over n-manifolds for n> k is the identity one. 

Proof . Consider a natural transformation B : Kk* —• Kk* over n-mani-
folds, n> k. 

Since (by the rank theorem) Kk*Rn is the orbit of a0 = [j'q ( x 1 , . . . , xfc)] 
€ K with respect to Diff(Hn, R n ) , it is sufficient to verify that B(a0) = a0. 

We can write B(o0) = [j^7] for some 7 : R n —• Rfc of rank k at 0, 
7(0) = 0. 

There is a diffeomorphism <p : R n —> R n , <p(0) = 0, such that ( x 1 , . . . , xk) 
0 <p-1 = ip o ( x 1 , . . . , xk) near 0 € R n for some diffeomorphism -tp : Rfc —> 
Rfc, ip(0) = 0, and 7 o tpo ( x 1 , . . . , x f c ,0 , . . . ,0) is of rank k at 0 € 
R n . Since ip preserve aQ, replacing 7 by 7 o <p~l we can assume that 7 o 
( x 1 , . . . , xfc, 0 , . . . , 0) is of rank k at 0 € R n , i.e. \jl7] e Uh2,...,k C K. 
Then we can write B(a0) — \jo((xs + ^ Q o a i i i a ) J = 1 ) ] , where aQ>s G R 
are the coordinates of B(cr0) in the chart Here the sum is over all 
01 € Pr,n,k,i,2,...,k- (See the proof of Lemma 1 for the definitions of i/i,...,*;, 

and Pr,„,fc,i,2,...,fc.) 
The homotheties ( x 1 , . . . ,xk, ±xk+1,..., ±xn) : R n R n for r ± 0 

preserve aQ. Then they preserve B(cr0), too. It means that B(a0) = [ji'q((x3 + 

E „ o a / a ' + 1 + - + a " a : a ) 5 = i ) ] for r ^ 0. Putting r 0 we get B{a0) = a0. 
• 

COROLLARY 1. If n > k then every absolute natural operator A : 
TKrk* is 0. 

Proof . Every such A is a canonical vector field on Kk*M for any M € 
obj(Mfn)- Krk*M is the orbit of aQ e F 0 R n . Then the flow of A is formed 
by authomorphism of Kk. So, A = 0 by Theorem 5. • 

For r = k = 1 we have the following corollary of Theorem 5. 
COROLLARY 2. (Rigidity of P(T*)). Every natural transformation 
B : P ( T * ) P ( T * ) over n-manifolds is the identity one. 

5. T h e natura l o p e r a t o r s T\Mfn TKk* 
In general, if F : Mfn —> TM. is a bundle functor then given a vector 

field X on M € obj(Mfn) we have the vector field TX on FM via prolon-
gation of flows. It is called the complete lifting of X to FM. If {pt} is the 
flow of X then {F<pt} is the flow of TX, see [5]. 

In the case F = Kk* we have the following theorem. 
THEOREM 6. I f n > fc(r-f 1) then every natural operator A : T\Mfn TKk* 
is a constant multiple of the complete lifting JCk*. 
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The proof of Theorem 6 will occupy the rest of this section and Section 6. 

NOTATIONS. W e r e n u m e r i c e t h e c o o r d i n a t e s y s t e m o n R n b y x u , x p ' l , x w , 
where u € { l , . . . , * : } , (p,l) G { l , . . . , f c } x { 0 , 1 , . . . ,r - 1} = {k + l,k + 
2 , . . . , k + rk} and w € {k + rk + 1, k + rk + 2 , . . . , n} . (It is possible if 
n > k(r + 1) . ) G i v e n b = (V> 1) € R r k , p = l , . . . , k , I = 0 , . . . , r - 1, let 
rjb := ( x s + T , r q Z 1 o b s ' q x a ' q ( x 1 ) ' ' ) k a = 1 : R n R f c . Clearly. r j b is of rank k at 
0 6 R n . We put 

°b = \jo(Vb)] € K = 7 r - 1 ( 0 ) . 

Obviously crft 6 J/i,2,...,fc, see the proof of Lemma 1 for the definition of 

We have the following reducibility lemma. 

LEMMA 2 . ( F i r s t R e d u c i b i l i t y L e m m a ) . Let A : T \ M f n T K { * be a 
natural operator, n > k(r + 1). If A ( & i ) „ w = 0, (1) = ( 1 , 1 , . . . , 1) e R r f c , 
then >1 = 0 . If A(di)<r(1) is vertical then A is of vertical type. 

P r o o f . It is sufficient to show that A{di)CT is equal to 0 (vertical) for any 
a e K . 

By the density argument we can assume that a € £/i,...,fc C K . Then we 
can write 

" = bor((*S + £ 7 M , « . • O ^ ' . • • • i ® * ) " ^ 1 ) ^ ^ ! ) ] 
(9.92,--.9fc)6Q 

for some smooth maps 7 9 l 9 2 , . . . , 9 i b ) S : R n - f c R with 79)92)...,9 j t,s(0) = 0, 
where Q is the set of all ( q , q 2 , . . . , qk) € (N U {0}) f c with q + 92 + • • • + qk < 
r - 1. 

By the density argument we can assume that (jqlo,...,o,s(x p' 1,0)) : R n —• 
R f c r , q = 0 , . . . , r — 1, s = 1 , . . . , k, is of rank kr at 0 € R™. Then there 
exists an embedding <p : R n —> R " preserving 0, d\ and x 1 , . . . , x k near 
0 and sending E ( 9 , 9 2 , . . . , 9 f c ) e Q 7 g , 9 2 , . . . , , f c , s ( ^ , ^ ) ( ^ 2 ) 9 2 • • • ( ^ ) 9 f c into 
for (s, q) 6 { 1 , . . . , k) x { 0 , . . . , r — 1}. Now using the invariance of A with 
respect to <p we can assume that a = a ^ y m 

Now, we prove the following decomposition lemma. 

LEMMA 3 . (Decomposition Lemma) Let A : T\j^fn T K £ * be a natural 
operator, n > k(r + 1). Then there exists a € R such that A — a/C£* is a 
vertical operator. 

P r o o f . We can write T i r ( A ( & i ) < r w ) —  ai € R . Using the 
naturality of A with respect to the homotheties (x 1 , ^ x 2 , . . . , ^ x n ) : R " —> 
R " for t yi 0 and next putting T —> 0 we deduce that = . . . = an = 0. 
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Then A — &ilCr
k* is of vertical type because of the first reducibility lemma 

(Lemma 2). • 

6. The natural operators T\j^fn TKJ* of vertical type 
Thanks to the decomposition lemma (Lemma 3), Theorem 6 will be 

proved after proving the following proposition. 
PROPOSITION 4 . If n > k(r + 1) then every natural operator A : T\Mfn 
TK£* of vertical type is 0. 

P r o o f . From now on A : Tjjvi/n TK£* is a natural operator of vertical 
type, where n > k(r + 1). 

We will use the notations of Section 5. 
Since A is vertical, A(X)\K is a vector field on K = 7r-1(0) for every 

X G * ( R n ) . Let {FA(X)} denotes the flow of A(X)\K, X G * ( R n ) . For 
r > 2 K is not compact. (For example, we can not choose a convergent 
subsequence from the sequence am = [jo((x3 + m ^ s , 0 ) 2 ) J = 1 ) ] e K, m = 
1,2, ) Hence the flow F A ^ can not be global. 

Let a G R, b = (V>1) 6 Rkr (p = 1 , . . . , fc, I = 0 , . . . , r - 1) and t G R be 
arbitrary. Then we have CT& G K, see Section 5. 

Step 1. On the domain of FA^adl\a). 
Choose e > 0 and an open neighbourhood W(0) of ct(o) in K such that 

FA{adl)(a) is defined for all (t,a,<j) G (-e,e)2 x W(0). If 6 € R fc r then 
there is r = r(6) / 0 such that ATb G Define ipT = (xu, TXp'1 , xw) : 
R " —> R n and Wb = K£*(pT(W(0)). Then Wb is an open neighbourhood 
of <7b = K[*<pT(aTb) G K. Since <pT preserves adi, then so is A(ad{). So, 
K%*<pT commutes with the flow FA^adl\ Hence FA^adl\a) is defined for all 
(t, a, a) G (—e, e)2 x Wb. 

Similarly, replacing e > 0 be a smaller one we see that for all d = (dp, t) G 
R r fc with d1'0 = 1 there is Vd an open neighbourhood of pd '•= [^((z1 '0 + 
YXZi ^ . ' ( s 1 ) ' , X 2 + Z Z o < W ( x 7 , • • •, *fc + E m d ^ x ^ ) 1 ) ) } in 
K such that Ft

A{adl)(a) is defined for all (t,a,a) G (-e,e)2 x Vd. 
Let W be the sum of all Wj, and Vj as above. Then W is an open subset 

in K such that &b G W and pd G W for all b and d as above and FA(,adl\a) 
is defined for all (t, a, a) G (—6, e)2 x W. 

Step 2. On the points FA(adl) (ab). 
Clearly, itf (0 )(<t (0 )) = o-(0) € Ui,2,...,k c K. So, replacing e > 0 by a 

smaller one we can write 

(*) F A ^ \ < r b ) = bo((xs + £ a ' 6 ) * a ) - i ) ] 
a e P r , n , f c , 1,2 k 
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for all (t ,a,b) € (~e,e) x (~e,e) x (-e,e)rk, where BayS : ( -e ,e) x ( -e ,e) x 
(—e, e)kr —* R are the smooth maps. (See the proof of Lemma 1 for the 
definitions of f7i,...,fc and Pr,n,k,i,...,k-) 

Step 3. On the maps Ba>s(t,a,b). 
We use the invariance of A(ad\) with respect to (xu, -^jxp'1, -¡^xw) : 

R n R n for f ± 0 and tw ± 0 with |ip-'| < 1. We obtain the homogeneity 
condition 

BatS(t,a,(t*>'lV>'1)) = n(iP,T,",II(iW)a"'Ba,.(t>aJ6) 
(p,0 w 

for s = 1 , . . . , f c and a = (a u , a P t i , a w ) 6 Pr,n,k,i,...,k, where (t ,a,b) e 
(—e, e) x (—e, e) x (—e, e)rk. Now, we apply the (obviously adapted) ho-
mogeneous function theorem, [5]. We deduce that Ba s = 0 for s = 1 , . . . , k 
and a = (au,aPtl,aw) £ Pr,n,k,i,-,k w^*1 (aw) and 

Bai3(t,a,b)=Ba,s(t,a) J]^)0"'1 

(p.O 
for s = 1 , . . . , k and a = (a u , aP i i , aw) € Pr<n<k,i fc with (aw) = 0, where 
Ba,s ' ( — e ) 2 —• R are the smooth maps. 

Step 4• Extensions of the maps BaiS(t,a,b). 
In obvious way we extend 5Q ) S to Ba<s : (—e, e) x (—e,e) x R f c r —> R 

in such a way that the last sentence of Step 3 holds, i.e. B a t S = 0 for 
s = l,...,k and a = (au, ap,i,aw) e Pr,n,k,i,...,k with (a^) ± 0, and 

Ba,s{t, a, b) = Bata(t, a) Ĵ J (6p'')Qp'1 

(p.O 
for s = 1 , . . . , k and a = (a u , aPti,aw) 6 Pr,n,k,i,...,k with (aw ) = 0, where 
Ba s : (—e, e)2 —> R are the smooth maps. 

By the invariance of A(adi) with respect to the difFeomorphisms <pT as 
in Step 1 we can easily show that the formula (*) holds for all (i, a, b) 6 
(-e, e) x (~e,e) x R r f c , where Ba<a : (—e,e) x ( -e , e) x R f c r —• R are the 
mooth maps. 

Step 5. On the maps BatS(t,a,b) anew. 
Using the invariance of A(adi) with respect to ( x ^ r i 2 , . . ,,Txk,xp'l,xw): 

Rn—>Rn for T ^ 0, we obtain the homogeneity conditions 

Ba,,(t,atb) +
 1

+ a f c_ 1 =-Ba , ,(t>a>& r) , s = 2 , . . . , f c , a € Pr,n,k,i fc, 

where bT = ( • ' ) € R f c r , b1/ = b1'1 for I = 0 , . . . , r - 1 and = for 
/ = 0 , . . . , r — 1 and p = 2,...,k, and 

Ba,i(t, a, b) ^_Q2+
1

 +Qfc = Ba^(t, a, bT) , a € Pr,»,*,!,...,* • 
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Hence by the homogeneous function theorem ¿?Q)S(t, a, b) = 0 if a2 + . . . + 
a t > 2 and s = 2,... ,k, and Bati(t,a,b) = 0 if «2 + . . . + c*fc > 1. Moreover, 
B a , f l ) b) does not depend on for p = 2,..., k and I = 0 , . . . , r — 1 if 
c*2 + • • • + = 0, 5Q ) S(i , a, b) does not depend on bp,t for p = 2 , . . . , k and 
I = 0 , . . . , r — 1 if «2 + - • = 1 and s = 2,... ,k, and BatS(t, a, b) depends 
linearly on the i^'' for p = 2 , . . . , k and I = 0 , . . . , r — 1 if c*2 + . . . + a t = 0 
a n d s = 2,..., k. 

Step 6. On the points F^adl\crb) anew. 

Summing up, for (t, a, b) G (—e, c)x(—e, e)xR r f c we can write F^adl\<Tb) 

= bo((7t.«,6,.)i=i)]i where 

7 t , a , M = x 1 + ^ ^ „ . „ ^ ( i . a ) nV'yv)* n V ' Y -
( 9 I ( 0 O , . . . A - I ) € G 1=0 1=0 

for some smooth maps C9>^0i...tpr_i : (—e, e)2 —* R and where for s = 2 , . . . , k 
7t,a,b,s = Xs+ 

+ e z nV'r i W u=2(9,7o,--,7r-i)€ff i=0 1=0 

+ e E E A~i n ^ ^ 1 ^ v r n W 
j=0 p=2 (g,So,...,S,— i)G J 1=0 (=0 

for some smooth _ , : ( -e , e)2 -> R and E3'p/ s : ( -e , e)2 -» R. 9.70 7i—1 v ' ' 9.«0i-->Oi—1 v ' ' 
In the above formulas G is the set of all (q, fa,..., Pr-i) € (N U {0}) r+1 

such that q + /30 + • •. + /3r-1 < r an<l Po + . •• + A—l > 1, H is the set of all 
(q, 70, . . . , 7r_i) 6 (N U {0}) r+1 such that q + 7 o + . . . + 7r- i < r - 1 and 
7o + • • • + 7i—i > 1, and J is the set of all (q, 60,..., i r _ i ) G (N U {0}) r+1 

such that 5 + ¿o + • • • + < r — 1. 
Step 7. On the maps Co,p0to„...,o and £)Q'"o 0 0 from, Step 6. 
Using the invariance of A with respect to (rx1, x2,..., xn) : R n —> R n 

for r ^ 0 with |r | < 1 (which sends adi into radi) we get the homogene-
ity conditions C0il3ot0t„_fi(t,a)T = Co,/3o,o,-.-,o(i>TO)TA) for ( M ) € (~ € , e ) 2 

and fa = l , . . . , r , and o,0 0 M = O(*,™)TT° for (t,a) G 
(—e, e)2, 70 = 1 , . . . , r — 1 and s, u = 2 , . . . , k. 

So, Co,/3o,o,...,o = 0 for fa = 2, . . . , r , and I»o;"0,o,...,o = 0 for 7o = 
1 , . . . , r — 1 and s, u = 2 , . . . , k. 

Since = Co)i)o,...,o(0, a) = 1. Then replacing e > 0 by a 
smaller one we can assume that Co,i,o,...,o(£, a) ^ 0 for all (t, a) G (—e, e)2. Step 8. On the maps ...ilr_1, ...,ir_i f r o m Step 6. 
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C o n s i d e r a r b i t r a r y ( t , o ) € ( - e , e ) 2 a n d b = (V'1) € R r f e w i t h 6 1 ' 0 ^ 0 . 

F o r every r ^ 0 let ipT = (xu,tspxp'1,xw) : R n R n b e t h e dif feomor-
phisms , w h e r e <J is t h e C r o n e c k e r de l ta . T h e y preserve adi. Moreover , let 
bT = (6Ç.') e R f c r b e s u c h t h a t = 1&1-1 for / = 0 , . . . , r - 1 a n d 6»-' = bs<1 

for s = 2 , . . . , k a n d I = 0 , . . . , i— 1. T h e n K^iprfob) = c&T • 

A p p l y i n g t h e resul t s o f S t e p 7 a n d using t h e invar iance o f A w i t h respec t 

t o t h e V r for r + 0 we h a v e F A ( a d l ) (abT) = b o r ( ( 7 f , a , T , M ) t i ) ] . w h e r e 

4 

^ . M - ® 1 , ° + b i 1 o C b f l i 0 i m i 0 ( t i a ) + 

2 ^ r / î o + - + / 3 r - i - i fci.oCo 1 0 o(t,a) 

r—1 r—1 

TX 

1=0 1=0 

a n d where for s = 2 , . . . , k 

7 t,o,r,6,s = x S + 
k 

+ È E ^ ^ - ^ . . . . . ^ M ) * 
u = 2 (9,7o,..,7r-l)GH\{(0,r,0 0 ) } : ^ 1 

r—1 r—1 
x J J ( 6 1 > , ) ' « ( x 1 ) i x , i I J ( ® 1 ' i ) ' « + 

¿=0 /=0 
r—1 k 

+EE E 
j = o p=2 ( , ,5 0 , . . . , a r _ 1 ) e J 

i—1 r—1 

i = 0 1=0 

I f 6 1 ' 0 ^ 0 , <76t as r - » 0, w h e r e d = € R f c r , d 1 - ' = for 

I = 0 , . . . , r - 1 a n d dp>1 = fcP-' for p = 2 , . . . , fc a n d I = 0 , . . . , r - 1. ( S e e 

S t e p 1 for t h e def in i t ion o f pd.) T h e n F A { a d l \ a b r ) -> F A { a d l \ p d ) b e c a u s e 

of F A ( a d l ) 
is def ined o n W , see S t e p 1. 

W e see t h a t FA{adi){p(i,o,...,p)) = P(i ,o, . . ,o) € U2,...,kj0, w h e r e j a e{k + 

1 , . . . , n } is s u c h t h a t x 1 , 0 = a n d t h e i ^ , . a r e defined in t h e p r o o f 

o f L e m m a 1. R e p l a c i n g e > 0 b y a s m a l l e r one , we have F A { a d i \ p d ) € 

U2,...,k,j0 C K for (t, a) e ( - e , e ) 2 a n d d € { 1 } x ( - e , e)rk-x C R r f c . U s i n g t h e 
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invariance of A(ad{) with respect to the homotheties (xu, r (1<°):rp' , xw) : 
R n -> R n for r 0 we can easily show that F^adl)(pd) G U2,...,k,j0 C K 
for (t, a) G ( -e , e)2 and d G {1} x R r f c _ 1 . 

Consequently we obtain that Cq,p0t..,tpr_1 (i, a) = 0 for (g, /3o> • • • > A—l) G 
G \ {(0,7,0, . . . ,0)}[= 1 with fa +' . . . ' + > 2, 7 r_j (i, o) = o 
for (<7,7o, • • • >7r-i) € H \ {(0,1,0, •••,0)}[J1

1 and s,u = 2,...,k, and 
(*' = 0 for (?> • • • ' ̂ - l ) € J with ¿0 + . • • + i r - l > 1, 

p, s = 2 , . . . , k and j = 0 ,1 , . . . , r — 1. (For, assume the contrary. The form 
o f bo((7t,a,r,fc,s)Li)] presented above is "adapted" to the chart (U2,...,k,j0, 
$2,...,k,j0)- Then it is easy to see that some coordinates of bo((7t,o,r,6,s)s=i)] 
with respect to this chart tend to infinity. Then the limit of [?o ((7t,a,r,b,s)s=i)] 
as r —» 0 do not belong to U21...lk,j„-) 

Step 9. On the points F^aSl\ab) anew. 

Summing up, for (t, a, b) G (—e, e) x (—e, e) xR r f c we can write F^a9l\<Tb) 

= [?o((7t,«,M)i=i)]> w h e r e 

r—1 
7t,a,M = ^ + E Cqtl{t,a)bl>l{xxYxl>1 

l,q=0 

for some smooth maps Cq i : (—e, e)2 —> R and where for s = 2 , . . . , k 

7t,a,b,s = * ' + £ £ Elhp{t, a)V'l(x1)qxp'1 

p=2 l,q=0 
for some smooth Eq t : (—e, e)2 —• R. 

Step 10. On the maps Cqj and Eq l from Step 9. 
Using the invariance of A with respect to (rx1, x2,..., xn) : R " —> R " 

for T / 0 with | t | < 1 we get the homogeneity conditions C9ij(i, a ) ^ r r = 
C,,i(t, r a ) ^ for Z, q = 0 , . . . , r - 1, and Es

qlp(t, a ) £ = E'q^p(t, r a ) £ for 
g, I = 0 , . . . , r — 1 and p, s = 2 , . . .,k. So, Cqj = 0 for q, I = 0 , . . . , r — 1 
with q > I, Cq<q(t, a) = Cq,q(t, 0) for q = 0 , . . . , r — 1 and (t, a) € (—e, e)2, 
Eq,i,p = 0 for p = 2 , . . . , fc and q, I = 0 , . . . , r — 1 with q > I, and Eqqp(t, a) = 
E°^p(t, 0) for p = 2 , . . . , k, q = 0 , . . . , r - 1 and (t, a) G (-e , e)2. " 

The locally defined embedding ( x u , x p + (xp'l)r~l+1,xw)-1 : R n -» R n 

preserves ab for any b G R r fc . By the invariance of A(ad\) with respect to this 
diffeomorphism we obtain j o ( Y , i ^ o c q A t > a ) b l , l ( x l ) q ( x l ' l ) r ~ l + 1 ) = 0 a n d 

= 0 for (t, a, b) G (-e ,e) 2 x 
R r fc . Then (additionally) C9)i = 0 for q, I = 0 , . . . , r - 1 with q < I - 1 and 
Es

q l p = 0 for p — 2 , . . . , k and q, I = 0 , . . . , r — 1 with q <1 — 1. 
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Step 11. The end of the proof of Proposition 4-
By Step 10 we see that Ft

A{adl)(ob) = Ft
M°\(7b) for any (t, a, b) <E ( -e , e)2 

XRRFC. Hence A(adi)CT„ = ¿(O)^ for (a, b) € ( -e ,e) 2 x RRFC. 
But ^4(0) corresponds to an absolute operator. So, >1(0) = 0 because 

of Corollary 1. Hence A(a0d1)a-b = 0 for some aQ > 0 and all b € R r f c . 
Using the invariance of A with respect to the homothety ^-id-^n we get 
that A{di)ab = 0 for any b € RRFC. In particular, ,4(di)CT(1) = 0°. Then A = 0 
because of the reducibility lemma (Lemma 2). 

This end the proof of Proposition 4. • 

The proof of Theorem 6 is complete. • 

For r = k = 1 we obtain the following corollary of Theorem 6. 

COROLLARY 3. I f n > 2 then every natural operator A : T\Mfn T(P(T*)) 
is a constant multiple of the complete lifting. 

7. The natural affinors on 
In this section we study the natural affinors on We prove the fol-

lowing theorem. 

THEOREM 7. Let n > k(r + 1). Every natural affinor C on K£* over n-
manifolds is a constant multiple of the identity one. 

At first we prove the following reducibility lemma. 

LEMMA 4. (Second Reducibility Lemma). Let C : TKr
k* TKr

k* be 
a natural affinor on Kk* : M.fn —* FM, n > k(r + 1). Assume that 
C{Krk(di)°w) = 0. Then C = 0. 

P r o o f . Since K k * R n is the orbit of aQ — [jo(re1,...,xk)} with respect to 
Diff(R", R") , it is sufficient to show that C(v) = 0 for any v € T„oKr

k*RN. 
Because of the fibre linearity of C we can assume v = lCk{di)(To for 

i = l , . . . , f c or v = ftt=0\jZ(x1,...,xk) + ij"57], where 7 : R N RFC, 
7 ( 0 ) = 0. 

Since ( x 1 , . . . , xl x% + x1, xz+1,..., xn) : R N —» R N preserves a0 and 
sends d\ into d\ + d{ and C is natural and fibre linear we can assume v = 
fcrk(di)<T0 instead of v = K,Tk*{di)tIo. 

By the density argument one can assume that ( x 1 , . . . , xk, 7) : RN —> R2FC 

is of rank 2k at 0 € R N . Then using a diffeomorphism R N —> RN preserving 
x1,.. .,xk and sending 7 into (x f c + 1 , . . . , x2k) near 0 € RN we can assume 
that 7 = (xk+1,... ,x2k). 

Using the flow method it is easy to verify that x k + ^j )<r 0
 = 

it=z0\jr
Q(x\...,xk)+tr0(xk+\...,x'>k)}. 
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So, it is sufficient to assume that v = K.k*{d\ + xk+:*dj)ao or v = 

WW)*.-
Since di + xk+:*dj = <p*di near 0 6 R" for some diffeomorphism 

<p : R n —> R n preserving 0, it is sufficient to assume that v = /C£*(<9i)[j¿7], 
where 7 : Rn Rk, 7(0) = 0, rank(d07) = k. 

Then using similar procedure as in the proof of the first reducibility 
lemma (Lemma 2) we can assume that [707] = cr(i), i.e. v — /C£*(di)<T(1). • 
P r o o f of T h e o r e m 7. Using C we have the natural operator CoICk* : 
7}Mfn -> TK¡*. By Theorem 6, C o Kr

k* = aJCr
k* for some a € R. Then 

C{Kr
k*{d{)<Tw) = aKr

k{di)CT(1). Hence C = aid because of the second re-
ducibility lemma (Lemma 4). • 

For r = k = 1 we obtain the following corollary of Theorem 7. 
COROLLARY 4. Let n > 2. Every natural affinor C on P(T*) over n-
manifolds is a constant multiple of the identity one. 
8. The natural operators T[Mfn T*Kr

k* 
At the end of this paper we prove the following theorem. 

THEOREM 8. Ifn > k(r+1) then every natural operator D : T*Mfn T*Kk* 
is a constant multiple of the vertical lifting Dv. 

We start with the following third reducibility lemma. 
LEMMA 5. (Third Reducibility Lemma). Let D : T{*Mfn T*Kr

k* be 
a natural operator, n > k(r + 1). Assume that D(ICk*(di)<7(1)) = 0. Then 
D = 0. 

P r o o f . The proof is similar to the proof of the second reducibility lemma 
(Lemma 4). • 

P r o o f of T h e o r e m 8. Because of the third reducibility lemma 
(Lemma 5) D is uniquely determined by the function : fi1(Rn) xRrfc—>R, 

= D{y>){Kl*{di)ab), w = ELx Uidx* € Q1^), b = (V'1) € Rrk. 
So, we will study 

Using the invariance of D with respect to (xu, \xv>1, ^xw) : R n —• R n for 
r ^ 0 and next putting r —> 0 we get b) = wu( x l ) • • • > ®fc> 
0 , . . . , 0)dxu, 0) for every ú e ííx(Rn) and 6 G Rrfc. 

Consider an arbitrary u e i)1(Rn) and b € Rrfc. By the above consider-
ation we can assume that 6 = 0. Then by the nonlinear Petree theorem, [5], 
we can assume that u> = u ( x l ) a i • • • (xk)akdxu, where P is 
the set of all a = (c*i,..., ak) € (N U {0})fc with |a| < R. 

Define : (Rp)fc - R, *D(r)a,u) = S D ( E Í = i E a e P ^ . u ^ 1 ) 0 1 • • • 
(xk)a"dxu, 0). 
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Using the invariance of D with respect to -id^n : R n —> R n for r ^ 0 we 
get r^DiVa^) = ,i,£)('7"'Q:'+1f7a,u)- Then by the homogeneous function theo-
rem we deduce that ^d(Vc*,u) = X)u=i auV(o),u for some au = au(D) 6 R. 
Then using the invariance of D with respect to (x1, ^x2,..., we get 
au = 0 for u = 2 , . . . , k. 

Then $£>(u>,b) = aia;i(0) = $ai£>v(uj,b), i.e. D = aiDv. m 

For r = k = 1 we obtain the following corollary of Theorem 8. 

COROLLARY 5. Ifn > 2 then every natural operator D : T*Mfn ~ ^ T * ( P ( T * ) ) 
is a constant multiple of the vertical lifting. 
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