

Naseer Shahzad[†]

COINCIDENCE POINTS AND R -SUBWEAKLY COMMUTING MULTIVALUED MAPS

Abstract. The notion of R -subweakly commuting multivalued mappings is defined. Some coincidence point theorems for such mappings are proved. Thus several related results in the literature are extended to a new class of noncommuting mappings.

1. Introduction and preliminaries

Let $X = (X, d)$ be a metric space and S a nonempty subset of X . We denote by $CB(S)$ the family of nonempty closed bounded subsets of S and by $K(S)$ the family of nonempty compact subsets of S . Let H be the Hausdorff metric on $CB(S)$ induced by the metric d and $T : S \rightarrow CB(S)$ a multivalued map. Then T is said to be a contraction if there exists $0 \leq \lambda < 1$ such that $H(Tx, Ty) \leq \lambda d(x, y)$ for all $x, y \in S$. If $\lambda = 1$, then T is called nonexpansive.

Let $f : S \rightarrow S$ be a continuous map. Then T is called an f -contraction if there exists $0 \leq \lambda < 1$ such that $H(Tx, Ty) \leq \lambda d(fx, fy)$ for all $x, y \in S$. If $\lambda = 1$, then T is called an f -nonexpansive map. A point $x^* \in S$ is a fixed point of T (resp. f) if $x^* \in Tx^*$ (resp. $x^* = fx^*$). The set of fixed points of T (resp. f) is denoted by $F(T)$ (resp. $F(f)$). A point $x^* \in S$ is a coincidence point of f and T if $fx^* \in Tx^*$. The set of coincidence points of f and T is represented by $C(f, T)$. The pair $\{f, T\}$ is called (1) commuting if $Tfx = fTx$ for all $x \in S$; (2) R -weakly commuting [16] if for all $x \in S$, $fTx \in CB(S)$ and there exists $R > 0$ such that $H(fTx, Tfx) \leq Rd(fx, Tx)$.

Let S be a nonempty subset of a Banach space X . Then the set S is called p -starshaped with $p \in S$ if $\lambda x + (1 - \lambda)p \in S$ for all $x \in S$ and all real λ with $0 \leq \lambda \leq 1$. A multivalued map $T : S \rightarrow CB(X)$ is said to be

Key words and phrases: Coincidence point, R -subweakly commuting map, f -nonexpansive map, Banach space.

1991 *Mathematics Subject Classification:* 47H10, 54H25.

[†]Junior Associate of the Abdus Salam ICTP.

demiclosed at $y_0 \in X$ if whenever $\{x_n\} \subset S$ and $\{y_n\} \subset X$ with $y_n \in Tx_n$ are sequences such that $\{x_n\}$ converges weakly to x_0 and $\{y_n\}$ converges to y_0 in X , then $y_0 \in Tx_0$. A Banach space X is said to satisfy Opial's condition [13] if for each $x_0 \in X$ and each sequence $\{x_n\} \subset X$ converging weakly to x_0 , the inequality

$$\liminf_{n \rightarrow \infty} \|x_n - x_0\| < \liminf_{n \rightarrow \infty} \|x_n - x\|$$

holds for all $x \neq x_0$.

Now we define the notion of R -subweakly commuting multivalued maps as follows. Let $T : S \rightarrow CB(S)$ and $f : S \rightarrow S$. Suppose S is p -starshaped with $p \in F(f)$. Then the pair $\{f, T\}$ is said to be R -subweakly commuting if for all $x \in S$, $fTx \in CB(S)$ and there exists $R > 0$ such that $H(Tfx, fTx) \leq Rd(fx, A_\lambda x)$ for every $\lambda \in [0, 1]$, where $A_\lambda x = \lambda Tx + (1 - \lambda)p$ and $d(fx, A_\lambda x) = \inf\{\|fx - y_\lambda\| : y_\lambda \in A_\lambda x\}$. For single-valued mappings, the notion was defined in [15]. Obviously, commuting maps are R -subweakly commuting. However, the converse is not true in general. To see this, let $S = [1, \infty)$. Define $T : S \rightarrow CB(S)$ and $f : S \rightarrow S$ by $Tx = [1, 4x - 3]$ and $fx = 2x^2 - 1$ for all $x \in S$. Then the pair $\{f, T\}$ is R -subweakly commuting but not commuting.

The systematic study of fixed points of multivalued mappings was initiated by Kakutani [7], in 1941. He generalized the Brouwer fixed point theorem to multivalued mappings. Subsequently, Bohnenblust and Karlin [2] obtained the multivalued version of the Schauder fixed point theorem. On the other hand, the developments of geometric fixed point theory of multivalued mappings were initiated by Nadler [12], in 1969. He extended the well-known Banach contraction principle to multivalued contractions. Since then this discipline has been developed further, in which many profound concepts and results were established with considerable generality; see, for example, the work of Beg and Azam [1], Itoh and Takahashi [5], Kaneko [8], Lami Dozo [9], Mizoguchi and Takahashi [11], etc. Recently, using a coincidence point theorem of Kaneko [8], Latif and Tweddle [10] proved some coincidence and common fixed point theorems for a pair of commuting single-valued and multivalued mappings defined on a weakly compact starshaped subset of a Banach space. In this paper, the validity of Latif and Tweddle's results is established for a new class of noncommuting mappings -called R -subweakly commuting mappings (defined above). Thus, the results of Dotson [4], Jungck and Sessa [6], Lami Dozo [9], and Latif and Tweddle [10] are either extended or improved. It is worth mentioning that the notion of R -subweak commutativity works nicely in establishing the existence of coincidence points of f -nonexpansive mappings as compared to other noncommutative notions of mappings.

We shall make use of the following useful results.

LEMMA 1.1. [10] *Let S be a weakly compact subset of a Banach space X satisfying Opial's condition. Let $f : S \rightarrow S$ be a weakly continuous mapping and $T : S \rightarrow K(S)$ an f -nonexpansive multivalued mapping. Then $(f - T)$ is demiclosed.*

THEOREM 1.2. [16] *Let X be a complete metric space, $f : X \rightarrow X$ a continuous mapping and $T : X \rightarrow CB(X)$ a multivalued mapping such that $T(X) \subset f(X)$. If the pair $\{f, T\}$ is R -weakly commuting and T is an f -contraction, then $C(f, T) \neq \emptyset$.*

1. Main Results

THEOREM 2.1. *Let S be a nonempty closed subset of a Banach space X . Let $f : S \rightarrow S$ be a continuous affine mapping and $T : S \rightarrow CB(S)$ an f -nonexpansive mapping such that $T(S)$ is bounded and $T(S) \subset f(S)$. If S is p -starshaped with $p \in F(f)$, the pair $\{f, T\}$ is R -subweakly commuting, and $(f - T)(S)$ is closed, then $C(f, T) \neq \emptyset$. If, in addition, $y \in C(f, T)$ implies the existence of $\lim_{n \rightarrow \infty} f^n y$, then $F(f) \cap F(T) \neq \emptyset$.*

Proof. Choose a sequence $\{\lambda_n\} \subset (0, 1)$ such that $\lambda_n \rightarrow 1$ as $n \rightarrow \infty$. For each n , define $T_n : S \rightarrow CB(S)$ by $T_n(x) = \lambda_n T x + (1 - \lambda_n)p$ for each $x \in S$. Then for each n , $T_n(S) \subset f(S)$ and

$$H(T_n x, T_n y) = \lambda_n H(T x, T y) \leq \lambda_n \|fx - fy\|$$

for all $x, y \in S$, that is, each T_n is an f -contraction. It follows from the R -subweak commutativity of the pair $\{f, T\}$ that $fT_n x \in CB(S)$ and

$$H(T_n f x, f T_n x) = \lambda_n H(T f x, f T x) \leq R \lambda_n d(f x, T_n x)$$

for all $x \in S$. This shows that the pair $\{f, T_n\}$ is $R\lambda_n$ -weakly commuting for each n . By Theorem 1.2, $C(f, T_n) \neq \emptyset$, that is, $fx_n \in T_n x_n$ for some $x_n \in S$. This implies that there is a $y_n \in T x_n$ such that $fx_n - y_n = (1 - \lambda_n)(p - y_n)$. Since $T(S)$ is bounded, it follows that $fx_n - y_n \rightarrow 0$ as $n \rightarrow \infty$. The closedness of $(f - T)(S)$ further implies that $0 \in (f - T)(S)$. Hence $C(f, T) \neq \emptyset$. Since $\{f, T\}$ commutes on $C(f, T)$ (this is a consequence of the R -subweakly commuting property), it follows that $f^n y = f^{n-1} f y \in f^{n-1} T y = T f^{n-1} y$ for some $y \in C(f, T)$. Let $x_0 = \lim_{n \rightarrow \infty} f^n y$. Then taking $n \rightarrow \infty$, we get $x_0 \in F(T)$. Also $x_0 \in F(f)$. Thus, $F(T) \cap F(f) \neq \emptyset$.

THEOREM 2.2. *Let S be a nonempty weakly compact subset of a Banach space X . Let $f : S \rightarrow S$ be a continuous affine map and $T : S \rightarrow K(S)$ an f -nonexpansive mapping such that $T(S) \subset f(S)$. If S is p -starshaped*

with $p \in F(f)$, the pair $\{f, T\}$ is R -subweakly commuting, and $(f - T)$ is demiclosed at 0, then $C(f, T) \neq \emptyset$. If, in addition, $y \in C(f, T)$ implies the existence of $\lim_{n \rightarrow \infty} f^n y$, then $F(f) \cap F(T) \neq \emptyset$.

Proof. As in the proof of Theorem 2.1, $fx_n - y_n \rightarrow 0$ as $n \rightarrow \infty$. By the weak compactness of S , there exists a subsequence $\{x_m\}$ of $\{x_n\}$ such that $x_m \rightarrow y \in S$ weakly. Since $(f - T)$ is demiclosed at 0, we have $0 \in (f - T)y$. Hence $C(f, T) \neq \emptyset$. Again, as in the proof of Theorem 2.1, $F(f) \cap F(T) \neq \emptyset$.

COROLLARY 2.3. *Let S be a nonempty weakly compact subset of a Banach space X satisfying Opial's condition. Let $f : S \rightarrow S$ be a continuous affine map and $T : S \rightarrow K(S)$ an f -nonexpansive mapping such that $T(S) \subset f(S)$. If S is p -starshaped with $p \in F(f)$, and the pair $\{f, T\}$ is R -subweakly commuting, then $C(f, T) \neq \emptyset$. If, in addition, $y \in C(f, T)$ implies the existence of $\lim_{n \rightarrow \infty} f^n y$, then $F(f) \cap F(T) \neq \emptyset$.*

Proof. By Lemma 1.1, $(f - T)$ is demiclosed. Hence the results follows from Theorem 2.2.

REMARK 2.5.

1. Theorems 2.1 and 2.2 are still true if X is a Frechet space (a complete metrizable locally convex space). We do not consider this case, as it is a routine exercise.
2. Our results extend and improve Theorems 2.1, 2.2, 2.4 and 2.5 of Latif and Tweddle [10]. Unlike Latif and Tweddle [10], we do not require " $f(S) = S$ " and " f is weakly continuous". However, we make an assumption " $T(S) \subset f(S)$ ". Note that " $f(S) = S$ " and " $T(S) \subset S$ " together imply " $T(S) \subset f(S)$ ". Also, if f is continuous and affine, then it is weakly continuous [4, p.409].
3. Theorem 2 of Dotson [4], Theorem 6 of Jungck and Sessa [6] and Theorem 3.2 of Lami Dozo [9] can be considered as special cases of Theorem 2.2.

We now present an example to illustrate the generality of our results.

EXAMPLE 2.4. Let $X = \mathbb{R}$ with the Euclidean norm and $S = [0, 1]$. Define $fx = \frac{x}{2}$, $Tx = [0, \frac{x^2}{4}]$. Then the pair $\{f, T\}$ is R -subweakly commuting, but it is not commuting. It is easily seen that f and T satisfy all conditions of Theorem 2.2 (and Corollary 2.3) and have a coincidence point $x = 0$. For details, we refer to Rhoades and Saliga [14], where the single-valued case is discussed. Also note that f and T do not satisfy the conditions of Dotson [4, Theorem 2], Jungck and Sessa [6, Theorem 6], Lami Dozo [9, Theorem 3.2], and Latif and Tweddle [10, Theorem 2.2 and Theorem 2.4].

Acknowledgement. The author is grateful to Prof. B. E. Rhoades for providing a preprint of [14] and to the referee for helpful suggestions.

References

- [1] I. Beg and A. Azam, *Fixed points of asymptotically regular multivalued mappings*, J. Austral. Math. Soc. (Series A), 53 (1992), 313-326.
- [2] H. F. Bohnenblust and S. Karlin, *On a theorem of Ville Contributions to the theory of games*, (Edited by Kuhn and Tucker, University Press, Princeton), I (1950), 155-160.
- [3] P. Z. Daffer and H. Kaneko, *Multivalued f -contractive mappings*, Boll. Un. Mat. Ital., 7 (1994), 233-241.
- [4] W. G. Dotson, Jr., *Fixed point theorems for nonexpansive mappings on starshaped subsets of Banach spaces*, J. London Math. Soc., 4 (1972), 408-410.
- [5] S. Itoh and W. Takahashi, *Single-valued mappings, multivalued mappings and fixed point theorems*, J. Math. Anal. Appl., 59 (1977), 514-521.
- [6] G. Jungck and S. Sessa, *Fixed point theorems in best approximation theory*, Math. Japonica, 42 (1995), 249-252.
- [7] S. Kakutani, *A generalization of Brouwer fixed point theorem*, Duke Math. J., 8 (1941), 457-459.
- [8] H. Kaneko, *Single-valued and multivalued f -contractions*, Boll. Un. Mat. Ital., 6 (1985), 29-33.
- [9] E. Lami Dozo, *Multivalued nonexpansive mappings and Opial's condition*, Proc. Amer. Math. Soc., 38 (1973), 286-292.
- [10] A. Latif and I. Tweddle, *On multivalued f -nonexpansive maps*, Demonstratio Math., 32 (1999), 565-574.
- [11] N. Mizoguchi and W. Takahashi, *Fixed point theorem for multivalued mappings on complete metric spaces*, J. Math. Anal. Appl., 141 (1989), 177-188.
- [12] S. B. Nadler, Jr., *Multivalued contraction mappings*, Pacific J. Math., 30 (1969), 475-488.
- [13] Z. Opial, *Weak convergence of the sequence of successive approximations for nonexpansive mappings*, Bull. Amer. Math. Soc., 73 (1967), 591-597.
- [14] B. E. Rhoades and L. Saliga, *Common fixed points and best approximations*, (preprint).
- [15] N. Shahzad, *Invariant approximations and R -subweakly commuting maps*, J. Math. Anal. Appl., 257 (2001), 39-45.
- [16] N. Shahzad and T. Kamran, *Coincidence points and R -weakly commuting maps*, Arch. Math. (Brno), 37 (2001), 179-183.

DEPARTMENT OF MATHEMATICS
 KING ABDUL AZIZ UNIVERSITY
 P.O. BOX. 80203
 JEDDAH 21589, SAUDI ARABIA

Received July 2nd, 2002; revised version October 2nd, 2002.

