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SOME GREGUS TYPE COMMON FIXED POINT THEOREMS
WITH APPLICATIONS

Abstract. In this paper a Gregus type common fixed point theorem for coincidently
commuting mappings is proved and utilized to obtain the iterative solution of certain
variational inequalities.

1. Introduction

Throughout this paper, unless stated otherwise, X will denote a normed
linear space (X, ||.||) while N and R will denote the set of natural numbers
and reals, respectively. For self mappings S,T and I of X, we first recall
the following;:

DEFINITION 1.1 ([14 ]). S and I are called weakly commuting if
|SIz — ISz|| < ||Sz — Iz||

for all z € X. Clearly, any two commuting mappings are weakly commuting
while the converse need not be true in general (see [14]).

DEFINITION 1.2. ([9]). S and I are called compatible if
lim |SIz, — ISz,|| =0

whenever {z,}is a sequence in X such that lim, Sz, = lim, Iz, = t for
somet e X.

DEFINITION 1.3 ([13]). T and I are called compatible mappings of type (T')
if
li1rln |TIz, — ITz,| + lim [ ITz, — Iz,|| = lim |TIz, — Tz,||

whenever {z,} is a sequence in X with lim, Tz, = lim, Iz,, = t for some

te X.
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The above inequality is the result of the inequality that appears in the
original definition (see[13]) combined with the following:

\TIz - Tz|| < ||TIz — ITz|| + | [Tz — Iz| + ||Tx — Iz| for all z € X.

DEFINITION 1.4 {11]). S and I are called coincidently commuting (or weakly
compatible) if they commute at their coincidence points.

For further details, we refer the reader to [9] and [11-14].

Any pair of compatible mappings {S, I} is compatible of type (S) but
the converse is not true in general (see [13, Example 2.1]). Similarly, any
two compatible mappings S and I on X are coincidently commuting (see
[9], Proposition 2.2). But the Example 2.2 in [13] shows that the converse
need not be true.

The following examples clearly illustrate that the notion of coincidently
commuting mappings is independent of the concept of compatibility of
type (T).

EXAMPLE 1.1. Let X = [0, 00) with the Euclidean norm |.||. Define I,T :
X — X by

T
z, z€0,3) 172 z €[0,3)
Ir={1, zel1), Te=q 1, ze(}1)
2, z€[l,00) 3, z€[l,00).

It is clear that for any sequence {z,} C [3,1) with z, = a,3 <a < 1,
we have lim,, [z, = 1 = lim,, Tz,,. Moreover, we have

lim Tz, — ITz,| = |3 -2|=1,
li1£n \TIzp — Tz,|| =3 -1 =2,
lirrln||IT:rn —Iz,||=12-1]=1.

Hence

lim \TIz, — Tz,||=2= lim | TIzn — ITz,| + lim Tz, — Iz,||

and I and T are compatible of type (T).

However, it is clear that the set of coincidence points of I and T is
[%, 1) and TIz # ITz for any = € [%, 1) since TIz = T1 = 3 and ITz =
I1 = 2. Cosequently, I and T are not coincidently commuting,.

Notice that if z,, — 0 then I and T are compatible of type (T') these as
well. Also, I and T are coincidently commuting at O in this case.
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EXAMPLE 1.2. Again, let X = [0, 00) with its Euclidean norm and define,
S, T: X - X by

0, zel01 0, zelo,i
Sz={ r+1 [ 2] , Tz = T 0, 2] .
* 1 =, ze(ho)
’ .’L‘G(E,OO) :l:+1’ T 2,00

Then for all z € [0,1] we have STz = S0 = 0 = T0 = T'Sz and hence S
and T are coincidently commuting.

However for z, = n, we have lim,, Tz, = 1 = lim,, Sz,,. But

. . |In+1 2n+1 3
11111n||Tan—ST:rn||—hTIln 1l hrll =2
. ) n+1 n 1
lin | TS — Tanl| = lim | 22— - n+1' =
lim | ST — Sz, = lim |22t L — "“. =1

n n n n

Consequently,
lim TSz, — Tzn| = % # i | TSz, — STzo| + lim STz, - Sza| = g

Hence T and S are not compatible of type (T').
The following result is proved in [4].

THEOREM A. Let T and I be two weakly commuting mappings of a closed
convez subset C of a Banach space X into itself and satisfy the following
relation

(1.1) Tz - TylP < a|llz — Iy|” + (1 - a) max {||Tz — Iz|”, | Ty - Iy|"}
for allz,y € C, where 0 < a < 1/2P"! and p > 1.

If I is linear and nonexpansive in C and is such that I(C) D TC then T
and I have a unique common fixed point at which T is continuous.

On the other hand Pathak and George [12] proved the following result
by relaxing certain conditions on the mapping I and replacing weak com-
mutativity by compatibility in Theorem A.

THEOREM B. Let T and I be compatible mappings on a closed conver bound-
ed subset C of a normed linear space X that satisfy the following relation
(12)  ITz—TylP <allz - Iyl

+(1 - a)max {||Tz - Iz|", |Ty - Iy|},

(1.3) I(C) 2 (1 - K)I(C) + kT(C)
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forallz,y€ C, where 0 <a< 1, p>0and0< k< 1. If for some o € C
the sequence {z,} defined by

(1.4) Izpy1 = (1-k)Iz, + kTz,,n € NU{0}

converges to a point z € C and I is continuous at z then T and I have a
unique common fized point in C. Further, if I is continuous at Tz, then T
and I have a unique common fized point at which T is continuous.

REMARK 1. In Theorem B, if the compatibility of T and I is replaced by

compatibility of type (T'), the conclusion of Theorem B still holds (see [13,
Theorem 3.1]).

In this paper we prove a Gregus type common fixed point thorem along
with some other results. Qur results extend, generalize and improve a mul-
titude of fixed point theorems obtained, among others, by Fisher [6], Fisher
and Sessa [7], Gregus [8], Jungck [9] and Pathak and George [12]. An applica-
tion to iterative solution of certain variational inequalities is also discussed.

2. Results
We now present our main theorem.
THEOREM 2.1. Let {S, I} and {T, J} be two pairs of coincidently commuting
mappings of a normed linear space X into itself such that there ezists a closed
convez subset C of X that is invariant under I,J,S and T where I and J
are one-one and the following conditions hold:
21) ISz =Tyl < allz— Jy|P
+(1 - a)max {||Sz — I=||, | Ty — Jy|’}

forallz,y € C, where 0 <a< 1,p>0 and
(2.2) I(C) 2 (1 - k)(C)+EkS(C), J(C)2 (1 —kx)J(C)+ Ek*T(C)
for all k,kx € (0,1). If for some zo € C the sequence {z,} in X defined
inductively by
(23) Iz2n+1 = (1 - a2n)Im2n + a2nS$2n,

Jront2 = (1 — agnt1)JZon+1 + aon1TTon41,n € NU{0}

with ap = 1,< 0 < a, for all n > 0 and liminfa, > 0, converges to a
point z € C, then S,T,I and J have a unique common fized point Tz in C.
Further, if I and J are continuous at Tz then S,T,I and J have a unique
common fized point at which S and T are continuous.

Proof. First, notice that the sequence {z,} given by (2.3) is well defined
as I and J are one-one. Now we prove that Tz = Sz = Iz = Jz. Indeed, it
follows from (2.3) that
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(2.4) a2n(S$2n - I:l:zn) = I:L‘2n+1 - I.’l:gn.

Define @ = liminf a,. Then there exists a positive integer N such that
n > N implies that a, > /2. Thus, from (2.4), for n > N,

1Sz2n — Izon|l < (2/@) | Iz2n+1 — Iz20] -

Since z, — z and I is continuous at z, the above ineqality implies that
lim,, ||Szo, — Izo,|| = O, or, since lim, Izo, = Iz, that lim, Szo, = Iz.
Similarly, we have lim,, Jzop+1 = lim, Tz2,4+1 = J2z. From (2.1) we have

(2.5)  ||Szon — Tz|?
< a|lIzon - J2|P + (1 — a) max{||Szan — Iz2n|]?, ||T2 — Jz||P}.

Letting n — oo, we obtain

(2.6) Iz = T2||P <alllz— Jz|P + (1 —a) ||[T2 - J2|".
Similarly
(2.7) |Jz =~ Sz|P <al|Jz—Iz|P+(1—a)|Sz—Iz||P.

Again, by (2.1) we have
(28) ISz2n — Tzon41|® < alllzon — Jzons1 P

+ (1 - o) max{||Szon — Izon|”, | TZ2n+1 = JT2n 41"}
Letting n — oo in (2.8), we see that ||Iz — Jz||? < a||lz — Jz|P and so
Iz = Jz as a < 1. Thus, it follows from (2.6) and (2.7) that
(2.9) Sz=Tz2=1z=J=z.

On the other hand, putting y = z and z = Sz in (2.1) and using (2.9)
we obtain

|SSz —Tz||P < a|ISz — Jz|P + (1 — a) max{||SSz — ISz||P,||Tz — J=||P}.

As the pair {S, I} is coincidently commuting, by (2.9) we obtain SIz = ISz.
Moreover, Sz = Iz implies SSz = SIz and ISz = IIz and hence ISz =
SSz. Therefore, the above inequality in conjunction with (2.9) reduces to

|SSz — Tz||” < a||SSz — Tz|?

and since a < 1, we obtain SSz = T'z. Therefore by (2.9), Tz is a fixed point
of S. Hence ITz = ISz = SIz = STz = Tz and Tz is a fixed point of [
as well. By interchanging the role of the pairs {S, I} and {T, J} and using
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(2.1) again, we obtain TT'z = JTz = Tz proving that Tz is a common fixed
point of T and J.

Now, let {y,}be an arbitrary sequence in C with lim,y, = Tz = w.
Then by (2.1) we have

5y — Twl” <al|lIyn — Juwl|l? + (1 - a)max {||Syn — Iyn|lP, [Tw — Jw|}
<a|llyn — Jw|? + (1 - a) | Syn — Tyn P

Since w is a common fixed point of S and T and that I and J are continuous
at w, we have

1Syn — Sw|” = ||Syn — Tw|” < (1 - a) ||Syn — Tw|” + ¢

for arbitrary € > 0 and sufficiently large n. Hence we obtain lim,, Sy, = Sw,
implying that S is continuous at w. Similarly we have

|1 Tyn — Twll? = | Tyn — Sw|lP < (1 -a) |Tyn — Juwlf” +¢

for arbitrary € > 0 and sufficiently large n proving that lim, Ty, = Tw
and T is continuous at w. The uniqueness of the common fixed point follows
easily from (2.1). =

The following example illustrates the validity of Theorem 2.1.

EXAMPLE 2.1. Let X = [0, 00) with its Euclidean norm ||.|| . Define the self
mapping I, J,S and T of X by

(T me[o E]
\/5) ’5
52 -3 12 — 152 (3 4]
z+ , T€ |-,

V2 5v2 5’5

Ixzﬁ_§x+l}- ze<é 1) )
2 5’ 5’

1, z=1
2z, z€(1,00)

( 3
z, T€ [O, 3]
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( 3
.’L‘2, T e [0, g]

+ 1 c (3 4)
sz={""% *E\®3),

4
1, z¢ [3,1]
[1+2z, z€(l,00)
x 3
?, T e [O, g:I
5vV2-3  12-10v2 xe(a 4)

T+ ,
2v/2 10v2 55

Te=§ 1 7 4
——z+ -, ze[g,1>

1, z=1
[1+2%, z€(l,0)

Then {I,S} and {J,T} are two pairs of coincidently commuting map-
pings
I1S0=0=SI10,JT0=0=TJ0,
4 4 4 4
IS (E) =1=SI (—) , JTS (E) =1= TJ(E)’

5
IS1=1=SI1.
However, the two pairs are not respectively compatible of type (S) and
compatible of type (T) on [0,00). Indeed, for any sequence {z,} in X

converging to 3 from the left we have lim, Iz, = 1 = lim, Sz, and

lim ||SIzn — ISz, = lim
Tn % In<%

3 1 11 3
145t 5~ 5| = 15

Similarly, lim,, Jz, = 1 = lim,, Tz, and
lim |TJzn — JTz,||

zn<'5‘
3 5v2 -3 12 - 10v2
= lim, |7 (20, - £ ) = J +
) T ( 22 " 10V2 )H
, 1 3\ 7 1
=y -5 (m-3)+5-1 =1

4
Also, for any sequence {y,} in X converging to 3 from the right we get
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lim, Iy, = 1 = lim,, Sy,,lim, Jy, = limn Ty, and

hm |SIyn — ISyn| = hm
¥n

1
—1) —1(1)” = lim [1—1] =0,
Un>é
hm ||TJyn — JTy,|| = hm

( L+ )H-hm”l—l”-O
y'l 2 ﬂ>5

Hence lim, ||ISz, — SIan and limy, ||JTz, — TJz,| do not exist and the
two pairs are not compatible in the sense of Definition 1.3.

Furthermore, it is also clear that if C = [0, %], then

10 = 03], 10 =10.55!

s©)=o3], T© =03

and C is invariant under I, J,S and T. Also, for any k, k* € (0,1), we have

(1 -k)I(C)+kS(C) C [0, = I(C),

1

2v2'
(1= kx)J(C) + k+T(C) C [0, %] — J(C).

Notice that I,J,S and T are continuous at z = 0 and I and J are one-one

on C =0, 5]. Moreover, for any z,y € C we have

z? T T
1Tz =Sl = '_2 e (lr‘l”y') |75+
|z| )
+ Iz -J
= (5 +1vl) W= 4.
Hence
|z| )
Tz —-Sy||l < su (—+ Iz—J
ITz-sul < s (T5+1ol) Uz = gyl

= (1+2v2)/(2v2) |1z - Jy||

with (1 + 2v/2)/(2v/2) < 1. Therefore the condition (2.1) is satisfied on C.
Then for any z¢ € C, the sequence {z,} described by (2.3) is well defined
and converges to 0. Clearly,0 = T0 is a common fixed point of I, J, S and T
and all the conclusions of Theorem 2.1 are valid.

The following example shows that in Theorem 2.1 with S =T and I = J,
the condition that the mappings I and T are coincidently commuting cannot
be dispensed with.
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EXAMPLE 2.2. Take X = [0, 00) with the Euclidean norm and let C = [0, 1].
Define I,T : X — X by

1
2.’12, T E I:O,E:I
Iz = 0, :1:6(%,1] , Tx=1forall z € X.

z+1, z€(1,00)

Then ||Tz — Ty||” = 0 for all z,y € C and p > 0. For k € (0,1) we have

(1- K)I(C) +kT(C) = [k, 1] € [0,1] = I(C).
Further, I and T are not coincidently commuting. Indeed, by definition of
I'and T, Iz =Tz if and only if z = % But then

IT (%) =I1)=0#TI (%) =T(1)=1.
Obviously, I and T have no common fixed point.
For S =T and I = J in Theorem 2.1 we have the following;:

COROLLARY 2.2. Let T and I be two coincidently commuting mappings of a
normed linear space into itself such that there ezists a closed convex subset
C of X that is invariant under I and T, where I is one-one on Cand the
following conditions hold:

(210) Tz -Tyl? <alllz - Iyl
+(1 - a)max{|Tz - I=|”, || Ty — Iy||"}
forallz,ye C, where0<a<1,p>0and

(2.11) (1-k)I(C)+ kT(C) C I(C) for all k € (0,1).
If for some g € C the sequence {zp,} C X defined by
(2.12) Izpyy = (1—an)lzn + anTz,, n€NU{0}

converges to a point z € C and I is continuous at 2, then T and I have a
unique common fized point in C. Further, if I is continuous at Tz then T
and I have a common fized point at which T is continuous.

By setting I = Ix, the identity mapping on X in Corollary 2.2, we have
the following;:

COROLLARY 2.3. Let T be a self mapping of a closed convez subset C of a

normed linear space X such that T(C) C C and the following conditions
hold:

(213)  ||ITz - TylP < allz —yl® + (1 - a) max{||Tz — |, | Ty — 9|1}
forallz,y € C, where0<a<1,p>0.
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If for some zg € C the sequence {z,} C X, defined by
(2.14) Tnt1 = (1 — ap)lzn + anTz,, n€ NU{0}

converges to a point z € C and I is continuous at z, then T has a unique
fized point at which T is continuous.

REMARK 2. Notice that

(i) For p = 1 in Corollary 2.2, we obtain the result of Fisher and Sessa
[7] with appreciably weaker conditions on the space X.

(ii) Corollary 2.3 with p = 1 was proved by Fisher [6].

(iii) For a closed convex subset C of a normed linear space X, consider
the following condition :

1
ISz —Tyl<all Iz - Jy || +5(1 — a)max{l} Sz — Iz ||, || Ty - Jy [}

for all z,y € C, where 0 < a < 1. Then the above condition implies that the
condition (2.1) holds with p = 1 and, so if the condition (2.1) in Theorem
2.1 with p = 1 is replaced by the above condition, then Theorem 2.1 will
still remain true.

3. Applications

In this section we apply Theorem 2.1 to obtain the solution of certain
variational inequalities as given in the recent work of Belbas and Mayergoyz
[1]. Variational inequalities arise in optimal stochastic control (cf. [2]) as well
as in other problems in mathematical physics, for example, deformation of
elastic bodies over solid obstacles and elastoplastic torsion etc (cf. [5]). The
iterative methods for solutions of discrete variational inequalities are very
suitable for implementation on parallel computers with single instruction
multiple-data architecture, particularly on massive parallel processors.

The variational inequality problem is to find a function u such that
max{Lu — f,u— ¢} =0 onQ}

3.1
(3.1) u =0 on o0

where 2 is a bounded open convex subset of BN , 0N denotes the boundary
of  and L is an elliptic operator defined on 2, the closure of €2, by
L = —q;i(z) i + bi(z) 0
- 0z;0z; 7 oz
where summation with repeated indices is implied, ¢(z) > 0, [a;j(z)] is a
strictly positive definite matrix uniformly in « for z € , f and ¢ are
smooth functions defined on 2 and p(z) >0 forallz € Q. Iyisan N x N
identity matrix.

+ c(z)In,
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A problem related to (3.1) is the two-obstacle variational inequality.
Given two functions ¢ and g defined on 2 such that ¢ < g on Q and
¢ <0 < uon 80. The corresponding variational inequality is the following

(3.2) max{min(Lu — f,u— ¢),u— p)} =0on O
' u =0 on 99.

The problem (3.2) arises in stochastic game theory.

Let A = [A;;] be an N x N matrix corresponding to the finite difference
discretizations of the operator L. We shall make the following assumptions
about the matrix A.

(3.3) A; = 1, ZA,'J' > —1 and A,;j < 0for 1 7é 3.
i
These assumptions are related to the definition of "M-Matrices”; ma-
trices arising from the finite difference discretizations of continuous elliptic

operators, having the property (3.3) under appropriate conditions. Q will
denote the set of all discretized vectors (see [3], [15]).

Let B = Iy — A, where Iy is the N x N identity matrix. Then the
corresponding property for the matrix B =[B;;] will be

(3.4) B;; = 0, ZBij < 1, Bij >0 fori 75 ]
J#
Let ¢ =max}; B;j and A* be N x N matrices such that
?
Aij=1-q, Ajj=q fori#j

and B* =1y — A*.

Now consider the following simultaneous discrete variational inequalities
(3.5) max[min{A(z — A*||[Iz — Sz||) — f, £ — A* || Iz — Sz| — ¢},

z— A* Iz — Sal - u}) = 0,

(3.6) max[min{A(z — A*||Jz - Tz|) — f, z — A*||Jz — Tz|| — v},
2 — A" |Jz — Ta|| - p}] =,
where {I, S} and {J, T} are two pairs of coincidently commuting operators
from R¥ into itself with S and T implicitly defined by
(3.7) Sz = min[max{Blz + A(1 - B*|Iz — Sz|| + f,
(1 - B")|lIz - Sz|| + f,(1 — B*) |1z — Sz|| + ¢},
(1= B*) Iz = Sz|| + 4],



424 H. K. Pathak, S. N. Mishra, A. K. Kalinde

(3.8) Tz = minjmax{BJz + A(1 — B*||Jz - Tz| + f,
(1 - B*) Iz - Sz|| + f,(1 - B*) [Tz — Tzl + ¢},
(1= B*) |z = Tal| + 4]

for all z € Q. Then (3.5) and (3.6) are equivalent to the common fixed point
problem:

(3.9) z=Sr=Tzr=Iz=Jz.
Assume that Q is invariant under I, J, S and T and
(310) IQ2(1-kIQ+kS@), JQ22(1-kx)J@+k*xT(Q)

where 0 < k, kx < 1 and I and J are one-one mappings.

Suppose that there exists z° € Q such that the sequence {z(™} in RV
defined by

3.11) Iz®D) = (1 — ag,) Iz + a9, 5212
Jz2D = (1 - ag41)Jz®HD 4 a9, 1 T2+ 5 e NU {0},

where ap = 1,0 < a, < 1 for all n > 0 and liminfa, > 0, converges to a
point z € Q and that I and J are continuous at z.

THEOREM 3.1. Under the assumptions (3.3), (3.4), (3.10) and (3.11), a
solution for (3.9) exists.

Proof. Let (Ty); = (1 — B} |Jy; — Ty;ll + p: for any y € Q and any
i, j =1,2,...,N.Now for any = € Qsince (Sz); < (1-B};) |[Iz; — Sz;||+p,
we have '

(Sz)i = (Ty); < (1 = Bi{lllz; — Sz;l| - || Jy; — Ty;li}
(3.12) (Sz)i — (Ty); < (1 — Bjj) max{|[Iz; — Sz, |Ty; — Ty;ll}-

If (Ty); = max{B;; Jy; +(1-B};) | Jy; — Ty;ll+ fi, (1= B};) | Jy; — Tyl
+ ;}, then we introduce the one sided operators as follows:

Ttz = max{BJz + A(1 — B*) ||Jz — Tz|| + f,(1 — B*) ||Jz — Tz| + ¢},
Stz = max{BIz + A(1 — B*) |Iz — Sz|| + f,(1 — B*) ||Iz — Sz| + ¢}.
Therefore we have (T'y); = (T'y);. Further, since (Sz); < (S*z);, we have

(3.13) (Sz), — (Ty); < (S+m)i - (T"’y)i.
Now, if (Sz); = ByIz; + Aij(1— B;) |\Iz; — Sz;| + fi, then by
(Ty)i 2 BijJy; + Aij(1 = Bjj) |1Jy; = Ty;|l + fi,
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and using (3.3) we obtain
(3.14) (S*z)i— (T*y)

< Bjj 1zi — Jyill + (1 — Bjj) max{||Iz; — Sz|, || Jy; — Ty;l}-
If (Tz)i = (1 - B;) |{Izj — Sz;|| + i, then by

(Ty): 2 (1 - Bjj) 17y — Ty5ll + ¢i,

we obtain
(3-15) (Sz)i — (Ty): < (1 — Bj) max{|{Iz; — Sz;||, || Jy; — Ty;li}-
Hence by (3.12)-(3.15) we get
(3.16) (Sz)i — (Ty): < ||z — Jy| + (1 — @) max{||Iz — Sz|, || Jy — Tyl|}.

Since z and y are arbitrarily chosen, then interchanging the role of S and T
we have

(3.17) (Ty)i — (Sz)i < gz — Jy|| + (1 — g) max{||Iz — S|}, | Ty — Ty||}-
Therefore from (3.16) and (3.17) it follows that
ISz — Tyl| < g [Tz — Jy|| + (1 - q) max{||[[z — Sz|, | Jy — Ty||}.

Hence we see that condition (2.1) is satisfied for p = 1. Therefore, Theorem
2.1 ensures the existence of a solution of (3.9). m
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