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SOME GREGUS TYPE COMMON FIXED POINT THEOREMS 
WITH APPLICATIONS 

Abstract . In this paper a Gregus type common fixed point theorem for coincidently 
commuting mappings is proved and utilized to obtain the iterative solution of certain 
variational inequalities. 

1. Introduction 
Throughout this paper, unless stated otherwise, X will denote a normed 

linear space (X, ||.||) while N and R will denote the set of natural numbers 
and reals, respectively. For self mappings S,T and I of X, we first recall 
the following: 

DEFINITION 1.1 ([14 ]). S and I are called weakly commuting if 

||Six - /5a;11 < ||S* - Ix\\ 

for all x 6 X. Clearly, any two commuting mappings are weakly commuting 
while the converse need not be true in general (see [14]). 

DEFINITION 1.2. ([9]). S and I are called compatible if 

lim \\SIxn — J£a;n|| = 0 n 

whenever {xn}is a sequence in X such that lim„ Sxn = limnJa:n = t for 
some t 6 X. 

DEFINITION 1.3 ([13]). T and I are called compatible mappings of type (T) 
if 

lim \\TIxn - ITxn\\ + lim \\ITxn - Ixn\\ - lim | |77in - Txn|| 

whenever {xn} is a sequence in X with l in \ n Tx n = lim„ Ixn = t for some 
t e X . 

1991 Mathematics Subject Classification: 47H10, 54H25. 



414 H. K. Pathak , S. N. Mishra, A. K. Kal inde 

The above inequality is the result of the inequality that appears in the 
original definition (see[13]) combined with the following: 

||Tlx - Tx|| < ||Tlx - ITx|| + ||ITx - Ix\\ + \\Tx - Ix\\ for all x € X. 

DEFINITION 1.4 [11]). S and I are called coincidently commuting (or weakly 
compatible) if they commute at their coincidence points. 

For further details, we refer the reader to [9] and [11-14]. 

Any pair of compatible mappings {S, 1} is compatible of type (S) but 
the converse is not true in general (see [13, Example 2.1]). Similarly, any 
two compatible mappings S and I on X are coincidently commuting (see 
[9], Proposition 2.2). But the Example 2.2 in [13] shows that the converse 
need not be true. 

The following examples clearly illustrate that the notion of coincidently 
commuting mappings is independent of the concept of compatibility of 
type (T). 

EXAMPLE 1.1. Let X = [0, oo) with the Euclidean norm 
X - > X by 

. Define I, T : 

Ix = 

x, 

1, 
2, 

* e [ 0 , i ) 
x e [ i , l ) 

x 6 [1, oo) 

Tx = 

x 

1 + * ' 
1, * e [ i , l ) 

3, x € [l,oo). 

It is clear that for any sequence {a:n} C [5,1) with xn —• a, ^ < a < 1, 
we have lim„ Ixn = 1 = limn Txn. Moreover, we have 

l i m \\TIxn — ITxn\ 
n 

l i m \\TIxn — Txn\ 
n 

l i m 11 ITxn - Ixji | 

= | 3 - 2 | = 1, 

= | 3 - 1 | = 2, 

= | 2 - 1 | = 1. 

Hence 

l i m I I T I x n - Txn\\ = 2 = l i m \ \ T I x n - ITxn\\ + l i m \\ITxn - Ixn\\ 
n n 71 

and I and T are compatible of type (T). 
However, it is clear that the set of coincidence points of I and T is 

[i, 1) and Tlx ± ITx for any x € [5,1) since Tlx = Tl = 3 and ITx = 
II = 2. Cosequently, I and T are not coincidently commuting. 

Notice that if xn —• 0 then I and T are compatible of type (T) these as 
well. Also, I and T are coincidently commuting at 0 in this case. 
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EXAMPLE 1.2. Again, let X = [0, oo) with its Euclidean norm and define, 
S, T : X X by 

0, i € [ 0 , ] 
+ l f l s,Tx = 

x € (j.oo) 

0, i 6 [ 0 , | ] 

x e (5,00) 
x — - u + l ' 

Then for all x G [0, we have STx = SO = 0 = TO = TSx and hence S 

and T are coincidently commuting. 
However for xn = n, we have limn Txn = 1 = limn Sxn. But 

= lim 
n 

= lim 
n 

= lim 
n 

71 + 1 2n + 1 3 
2n + 1 71+ 1 2 
n + 1 n 1 
2n + 1 71+ 1 ~ 2' 
2n + 1 n + 1 

= 1. 
n n 

lim \\TSxn - STx„ 
n 

lim ||TS:rn - Txn 
IX 

lim \\STxn - Sxn n 

Consequently, 

lim \\TSxn - Txn\\ = J ^ lim ||T5xn - STxn\\ + lim \\STxn - 5x„|| = 
n 2 n n Jt 

Hence T and S are not compatible of type (T) . 
The following result is proved in [4]. 

THEOREM A. Let T and I be two weakly commuting mappings of a closed 

convex subset C of a Banach space X into itself and satisfy the following 

relation 

(1.1) || Tx - Ty\\p < a \\Ix - Iy\\p + (1 - a) max {\\Tx - Ix\\p , || Ty - I y f } 

for all x,y 6 C, where 0 < a < 1/2P_1 and p > 1. 

If I is linear and nonexpansive in C and is such that 1(C) D TC then T 

and I have a unique common fixed point at which T is continuous. 
On the other hand Pathak and George [12] proved the following result 

by relaxing certain conditions on the mapping I and replacing weak com-
mutativity by compatibility in Theorem A. 

THEOREM B. Let T and I be compatible mappings on a closed convex bound-

ed subset C of a normed linear space X that satisfy the following relation 

(1.2) || Tx - Ty\\p < a \\Ix - Iyf 

+ (1 - a) max {||Tx - Ix\\p, \\Ty - Iy\\p}, 

(1.3) 1(C) D (1 - k)I(C) + kT(C) 
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for all x,y € C, where 0 < o < l , p > 0 and 0 < k < 1. If for some XQ € C 
the sequence {in} defined by 
(1.4) Ixn+1 = (1 - k)Ixn + kTxn, n <E NU{0} 
converges to a point z 6 C and I is continuous at z then T and I have a 
unique common fixed point in C. Further, if I is continuous at Tz, then T 
and I have a unique common fixed point at which T is continuous. 

REMARK 1. In Theorem B , if the compatibility of T and I is replaced by 
compatibility of type (T), the conclusion of Theorem B still holds (see [13, 
Theorem 3.1]). 

In this paper we prove a Gregus type common fixed point thorem along 
with some other results. Our results extend, generalize and improve a mul-
titude of fixed point theorems obtained, among others, by Fisher [6], Fisher 
and Sessa [7], Gregus [8], Jungck [9] and Pathak and George [12]. An applica-
tion to iterative solution of certain variational inequalities is also discussed. 

2. R e s u l t s 
We now present our main theorem. 

THEOREM 2.1. Let {S, I} and {T, J} be two pairs of coincidently commuting 
mappings of a normed linear space X into itself such that there exists a closed 
convex subset C of X that is invariant under I, J, S and T where I and J 
are one-one and the following conditions hold: 
(2.1) \\Sx-Ty\\p<a\\Ix-Jy\\p 

+(1 - a) max {\\Sx - Ix\\p, ||Ty - Jy\\p} 
for all x,y € C, where 0 < a < l,p > 0 and 
(2.2) 1(C) D (1 - k)I(C) + kS(C), J(C) D (1 - k*)J(C) + k* T(C) 
for all k,k* £ (0,1). If for some xo € C the sequence {i„} in X defined 
inductively by 
(2.3) Ix2n+1 = (1 - 0-2n)IX2n + a*2nSx2n, 

Jx2n+2 = (1 - 02n+l)^2n+l + a2n+lT%2n+l,n £ NU{0} 
with ao = 1, < 0 < an for all n > 0 and l iminfan > 0, converges to a 
point z E C, then S, T, I and J have a unique common fixed point Tz in C. 
Further, if I and J are continuous at Tz then S, T, I and J have a unique 
common fixed point at which S and T are continuous. 

P r o o f . First, notice that the sequence {xn} given by (2.3) is well defined 
as I and J are one-one. Now we prove that Tz = Sz = Iz = Jz. Indeed, it 
follows from (2.3) that 
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(2.4) a>2n{Sx2n ~ Ix2n) = ^2n+l ~ Ix2n-

Define a = liminfan. Then there exists a positive integer N such that 
n> N implies that on > a/2. Thus, from (2.4), for n> N, 

||Sx2„ - Ix2 n|| ^ (2/as) ||/l2n+l ~~ • 

Since xn —> z and I is continuous at z, the above ineqality implies that 
limn ||Sx2n - Ix2n\\ = 0, or, since limn /x2„ = Iz, that limn 5x2„ = Iz. 
Similarly, we have limn Jx2n+\ = limn Tx-^n+i = Jz. Prom (2.1) we have 

(2.5) \\Sx2n-Tz\\p 

< a \\Ix2n - Jzf + (1 - a) max{||Sx2n - /x 2 n | | p , \\Tz - J z f } . 

Letting n —> oo, we obtain 

(2.6) || Iz - Tz\\p < a || Iz - Jzf + (1 - a) \\Tz - J z f . 

Similarly 

(2.7) || Jz - Sz\\p < a || Jz - Izf + (1 - a) \\Sz - I z f . 

Again, by (2.1) we have 

(2.8) ||Sx2n - Tx2n+1 ||P < o ||Ix2n ~ Jx2n+1 f 
+ (1 - a) max{||Sx2n - Ix2n\\p, | |Tx2n+i - Jx2n+i||p}-

Letting n —* oo in (2.8), we see that ||Iz — Jzf < a\\Iz — Jzf and so 
Iz = Jz as a < 1. Thus, it follows from (2.6) and (2.7) that 

(2.9) Sz = Tz = Iz = Jz. 

On the other hand, putting y = z and x = Sz in (2.1) and using (2.9) 
we obtain 

|| SSz - Tzf < a || ISz - Jzf + (1 - a) max{||SSz - ISzf, || Tz - J z f } . 

As the pair {S, 1} is coincidently commuting, by (2.9) we obtain SIz = ISz. 
Moreover, Sz = Iz implies SSz = SIz and ISz = IIz and hence ISz = 
SSz. Therefore, the above inequality in conjunction with (2.9) reduces to 

\\SSz - Tzf < a\\SSz - Tzf 

and since a < 1, we obtain SSz = Tz. Therefore by (2.9), Tz is a fixed point 
of S. Hence ITz = ISz = SIz = STz = Tz and Tz is a fixed point of I 
as well. By interchanging the role of the pairs {S", 1} and {T, J} and using 
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(2.1) again, we obtain TTz = JTz = Tz proving that Tz is a common fixed 
point of T and J. 

Now, let {yn}be an arbitrary sequence in C with limn yn = Tz = w. 
Then by (2.1) we have 

\\Syn ~ Twf<a\\Iyn - Jw\\p + (1 - a)max{\\Syn - I y n f , \\Tw - Jw\\p} 
<a\\Iyn - Jw\\p + (1 - a) ||5yn - I y n f . 

Since w is a common fixed point of S and T and that I and J are continuous 
at w, we have 

for arbitrary e > 0 and sufficiently large n. Hence we obtain limn Syn = Sw, 
implying that S is continuous at w. Similarly we have 

for arbitrary e > 0 and sufficiently large n proving that l im n Ty n = Tw 
and T is continuous at w. The uniqueness of the common fixed point follows 
easily from (2.1). • 

The following example illustrates the validity of Theorem 2.1. 

EXAMPLE 2.1. Let X — [0, oo) with its Euclidean norm ||.||. Define the self 
mapping 7, J, S and T of X by 

||5yn - Sw\\p = ||Syn - Tw\\p < (1 - a) ||Syn - Iw\\p + e 

||Tyn - Tw\\p = ||Tyn - < (1 - a) \\Tyn - Jw\\p + £ 

Ix 

1, x = l 
2x, x € (1, oo) 

x, x€ 0, -
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Sx = 

X" x e 

1 / 3 4 \ 
X + 5 ' X ^ \ 5 ' 5 / , 

l, x e 

l + x, i e ( i , oo) 

Tx — 

X 
y X G 

5 ^ 2 - 3 12 - 1 0 ^ 2 
2y/2 X + 10V2 ' 
1 7 

~ 2 X + V X e 

x e (I'D 
IW 

1, x = 1 

1 + z 2 , x € (l ,oo) 

Then {1,5} and {J, T} are two pairs of coincidently commuting map-
pings 

ISO = 0 = 5 /0 , JTO = 0 = TJO, 

1 s i = 1 = 5 /1 . 
However, the two pairs are not respectively compatible of type (5) and 

compatible of type (T) on [0,00). Indeed, for any sequence {xn} in X 
4 

converging to - from the left we have limn Ixn = 1 = limn Sxn and 
5 

l i m \\SIxn — ISxn\\ = l i m 
*n<t 

, In 1 1 

1 + 2 ( ! B - + 5 ) - T 

_3_ 
10 ' 

Similarly, limn Jxn = 1 = limn Txn and 

l i m \\TJxn — JTxn\\ 
x „ < | 

= lim 
I n < 5 

= lim 
I n < 4 

t ( 2x j ( 5 V * - 3 x I 12 
i l 2 X B J { 2V2 n + 10V2 J 

1 fn 3 \ 7 
" 2 C2"" - s j + 5 - 1 

J_ 
10' 

Also, for any sequence {yn} in X converging to - from the right we get 
5 
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lim„ Iyn = 1 = limn Syn, limn Jyn = limn Tyn and 

lim ||5/j/n - ISyn\\ = lim 
Vn>t 

= lim | | 1 - 1 | | = 0 , 
Vn>| 

= lim | | 1 - 1 | | = 0. 
Vn>i 

lim \\TJyn - JTyn\\ = lim 
Vn>f Vn>| 

Hence limn \\ISxn - SIxn\\ and limn \\JTxn - TJxn\\ do not exist and the 
two pairs are not compatible in the sense of Definition 1.3. 

Furthermore, it is also clear that if C = [0, then 

J(C) = 

5(C) = M1 T(C) = [0,5] 

and C is invariant under I, J, S and T. Also, for any k, k* 6 (0,1), we have 

(1 - fc)J(C) + kS(C) C [0, = 1(C), 

(1 - k*)J{C) + k * T(C) C [0, i = J{C). 
Z 

Notice that / , J, S and T are continuous at x = 0 and I and J are one-one 
on C = [0, - ] . Moreover, for any x,y e C we have 

z 

IITx - ¿Jj/H = Y~y 

X 

V5 

= + Ivl) \\IX - Jy\\ • 

Hence 

\\Tx - 5y|| < sup ( M + \ y \ \ \ \ I x _ jy\\ 
i,ye[0,l/2] Vv2 / 

= (1 + 2y/2)/(2V2) IIIx - Jy\\ 

with (1 + 2n/2)/(2\/2) < 1. Therefore the condition (2.1) is satisfied on C. 
Then for any xq 6 C, the sequence {xn} described by (2.3) is well defined 
and converges to 0. Clearly,0 = TO is a common fixed point of I, J, S and T 
and all the conclusions of Theorem 2.1 are valid. 

The following example shows that in Theorem 2.1 with S = T and I = J, 
the condition that the mappings I and T are coincidently commuting cannot 
be dispensed with. 
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EXAMPLE 2.2. Take X = [0, oo) with the Euclidean norm and let C = [0,1]. 
Define I,T:X->X by 

i + l , x e (l, oo) 

Then \\Tx - Tyf = 0 for all x, y 6 C and p > 0. For k e (0,1) we have 
(1 - k)I(C) + kT(C) = [k, 1] C [0,1] = 1(C). 

Further, I and T are not coincidently commuting. Indeed, by definition of 
I and T, Ix = Tx if and only if x = -. But then 

Obviously, I and T have no common fixed point. 
For S = T and I = J in Theorem 2.1 we have the following: 

COROLLARY 2.2. Let T and I be two coincidently commuting mappings of a 
norrned linear space into itself such that there exists a closed convex subset 
C of X that is invariant under I and T, where I is one-one on Cand the 
following conditions hold: 

converges to a point z € C and I is continuous at z, then T and I have a 
unique common fixed point in C. Further, if I is continuous at Tz then T 
and I have a common fixed point at which T is continuous. 

By setting I = Ix , the identity mapping on X in Corollary 2.2, we have 
the following: 
COROLLARY 2.3. Let T be a self mapping of a closed convex subset C of a 
norrned linear space X such that T(C) C C and the following conditions 
hold: 
(2.13) II Tx - Tyf < a \\x - y\\p + (1 - a) max{||Tx - x| |p , \\Ty - y\\p} 

Tx = l for all x € X. 

(2.10) IITx - Ty\\p < a \\Ix - Iy\\p 

+(1 - a) max{||Tx - Ix\\p, ||Ty - Iy\\p} 
for all x, y G C, where 0 < a < l , p > 0 and 
(2.11) (1 - k)I{C) + kT(C) C 1(C) for all k 6 (0,1). 
If for some xo € C the sequence {XN} C X defined by 
(2.12) Ixn+1 = (1 - an)Ixn + anTxn, n € N U {0} 

for all x,y € C, where 0 < a < l , p > 0. 
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If for some XQ 6 C the sequence {xn} C X, defined by 
(2.14) xn+i = (1 - an)Ixn + anTxn, n G N U {0} 
converges to a point z € C and I is continuous at z, then T has a unique 
fixed point at which T is continuous. 

REMARK 2. Notice that 
(i) For p — 1 in Corollary 2.2, we obtain the result of Fisher and Sessa 

[7] with appreciably weaker conditions on the space X. 
(ii) Corollary 2.3 with p = 1 was proved by Fisher [6]. 
(iii) For a closed convex subset C of a normed linear space X, consider 

the following condition 

|| Sx — Ty \\< a || Ix - Jy || + ¿ ( 1 - a) max{|| Sz - Ix ||, || Ty - Jy ||} 

for all x, y G C, where 0 < a < 1. Then the above condition implies that the 
condition (2.1) holds with p = 1 and, so if the condition (2.1) in Theorem 
2.1 with p = 1 is replaced by the above condition, then Theorem 2.1 will 
still remain true. 

3. Applications 
In this section we apply Theorem 2.1 to obtain the solution of certain 

variational inequalities as given in the recent work of Belbas and Mayergoyz 
[1]. Variational inequalities arise in optimal stochastic control (cf. [2]) as well 
as in other problems in mathematical physics, for example, deformation of 
elastic bodies over solid obstacles and elastoplastic torsion etc (cf. [5]). The 
iterative methods for solutions of discrete variational inequalities are very 
suitable for implementation on parallel computers with single instruction 
multiple-data architecture, particularly on massive parallel processors. 

The variational inequality problem is to find a function u such that 

^ max{Lu — / , u — tp} — 0 on fi 1 
u = 0 on dCl J 

where ii is a bounded open convex subset of RN, dil denotes the boundary 
of i) and L is an elliptic operator defined on ii, the closure of Q, by 

where summation with repeated indices is implied, c(x) > 0, [a^ (a:)] is a 
strictly positive definite matrix uniformly in x for x G ii, / and ip are 
smooth functions defined on ii and <p(x) > 0 for all x G ii. IN is an N x N 
identity matrix. 
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A problem related to (3.1) is the two-obstacle variational inequality. 
Given two functions <p and /x defined on fI such that (p < /z on ii and 

< 0 < n on dU. The corresponding variational inequality is the following 

^ ^ f max{min(Lu — / , u — ip), u — fj,)} = 0 on fi 
[ u — 0 on dQ. 

The problem (3.2) arises in stochastic game theory. 
Let A = [Aij] be an N x N matrix corresponding to the finite difference 

discretizations of the operator L. We shall make the following assumptions 
about the matrix A. 

(3.3) An = 1, M j > - 1 and Atj < 0 for i ± j . 
i^j 

These assumptions are related to the definition of "M-Matrices"; ma-
trices arising from the finite difference discretizations of continuous elliptic 
operators, having the property (3.3) under appropriate conditions. Q will 
denote the set of all discretized vectors (see [3], [15]). 

Let B = IN — A, where IN is the N x N identity matrix. Then the 
corresponding property for the matrix B =[Bij] will be 

(3.4) Bn = 0, J2 Bij <1, B i j > 0 for i ^ j. 

Let q = max • B^ and A* be N x N matrices such that 
i J 

= 1 - 9, K j = Q for i ^ j 

and B* = IN - A*. 

Now consider the following simultaneous discrete variational inequalities 

(3.5) max[min{j4(:r - A* \\Ix - 5x||) - / , x - A* \\Ix - Sz|| - <p}, 
x-A* ||Ix - Sa:|| - fi}} = 0, 

(3.6) max[min{A(x - A* \\Jx - Tx\\) - / , x-A* \\Jx - Tx\\ -
x — A* \\Jx — Tx\\ — //}] = 0, 

where {/, S1} and {J, T} are two pairs of coincidently commuting operators 
from Rn into itself with S and T implicitly defined by 

(3.7) Sx = min[max{ß/a: + >1(1 - B* ||Ix - Sx|| + / , 
(1 - B*) \\Ix - 5x|| + / , (1 - B*) IIIx - SxII + <p}, 
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(3.8) Tx = min[max{£Ja; + A( 1 - B* \\Jx - Tx\\ + / , 
(1 - B*) ||Ix - 5x|| + / , (1 - B*) || Jx - Tx|| + ¥>}, 

(l-B*)\\Jx-Tx\\ + (4 

for all x € Q. Then (3.5) and (3.6) axe equivalent to the common fixed point 
problem: 

(3.9) x = Sx = Tx = Ix = Jx. 

Assume that Q is invariant under I, J, S and T and 

(3.10) /(Q) D (1 - fc)J(Q) + fcS(Q), J(Q) D (1 - k*)J(Q) + k * T(Q) 

where 0 < k, k* < 1 and I and J are one-one mappings. 
Suppose that there exists x° 6 Q such that the sequence { x ^ } in RN 

defined by 

(3.11) /x( 2 n + 1 ) = (1 - a 2 n ) I x ^ + a 2 n S x W 
jx(2n+2) = ( 1 _ a2n+1)jx( 2N+I) + a2n+1Tx<-2n+1\ N £ N U { 0 } , 

where ao = 1,0 < an < 1 for all n > 0 and liminfan > 0, converges to a 
point z e Q and that I and J are continuous at z. 

THEOREM 3.1. Under the assumptions (3.3), (34), (3.10) and (3.11), a 
solution for (3.9) exists. 

Proof . Let {Ty)l = (1 - B*j) \\Jy3 - TVj\\ + m for any y € Q and any 
i, j = 1,2,..., N. Now for any x €Q since (Sx)i < (1—Bfj) \\Ixj — Sxj\\+fii, 
we have 

(Sx)i - (Ty)i < (1 - B^iWIxj - Sxj|| - \\Jyj - TVj||} 

or 
(3.12) (Sx)i - CTy). < (1 - £*•) max{| |IX j - SXj\\, \\JVj - TVj||}. 

If (Ty)i = max{BjjJyj + (1 —B*j) \\Jy3 - Tyj\\ + fu ( 1 - 5 * ) \\JVj - TVj\\ 
+ ipi}, then we introduce the one sided operators as follows: 

T+x = m a x { B J x + A{1 - B*) || Jx - Tx\\ + / , (1 - B*) || Jx - Tx|| + ip), 
S+x = m a x { B I x + A( 1 - B*) ||Ix - 5®|| + / , (1 - B*) \\Ix - + <p}. 

Therefore we have (Ty) i = (T+y)i. Further, since (Sx)i < (S+x)i, we have 

(3.13) (Sx\ - (Ty), < (S+x). - (T+y) . . 

Now, if (Sx), = Bijlxj + Aij{ 1 - B*j) | |Ixj - Sar l̂ + fh then by 

(Ty)i > BijJyj + A{j( 1 - B* ) \\Jy3 - TVj|| + fu 
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and using (3.3) we obtain 

(3.14) (S+x)i-(T+y)i 

< BI:I || IXT - JYI\\ + (1 - B*J) m a x { | | / x j - 5 x . l l , \\JVJ - TYJ\\}. 

If (Tx)i = (1 - B*3) \\IXJ - SzjH + then by 
(Ty)i > (1 — Blj) \\Jyj — Tyj\\ + <pi, 

we obtain 
(3.15) (Sx)i - (Ty)i < (1 - B*j) max{|| J*,- - SXj\\, || Jyj - Tyj\\}. 

Hence by (3.12)-(3.15) we get 
(3.16) (5x)i - ( T y ) i < q \\Ix - Jy\\ + (1 - q) max{||/x - Sx\\, \\Jy - Ty\\}. 

Since x and y are arbitrarily chosen, then interchanging the role of S and T 
we have 
(3.17) ( T y ) i - (Sx)i < q ||Ix - Jy\\ + (1 - q) max{||7x - Sx||, \\Jy - Ty\\}. 

Therefore from (3.16) and (3.17) it follows that 

||S® - Ty\\ < q || Ix - Jy\\ + (1 - q) max{||/x - Sx ||, \\Jy - Ty||}. 
Hence we see that condition (2.1) is satisfied for p = 1. Therefore, Theorem 
2.1 ensures the existence of a solution of (3.9). • 

Acknowledgement. The authors would like to thank the referee for his 
valuable comments in improving the paper. 
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