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STABILITY OF A N E W ITERATION METHOD 
F O R STRONGLY PSEUDOCONTRACTIVE MAPPINGS 

Abstract . In this note we prove that a recently introduced iteration procedure 
is almost stable with respect to strong pseudocontractions in real uniformly Banach 
spaces. 

1. Introduction and preliminaries 
Suppose X is a real Banach space and T is a selfmap of X. Suppose 

XQ G X and XN+I = f(T,XN) defines an iteration procedure which yields 
a sequence of points (xn) in X. Suppose F(T) = {x G X \ Tx = x} ^ 0, 
and that (xn) converges strongly to p G F(T). Suppose (yn) is a sequence 
of points in X and (en) is a sequence in [0,+oo) given by en = ||yn+i — 
f(T,yn)||. If limn_>oo = 0 implies that lim«-»,*) yn = p, then the iteration 
procedure defined by x n +i = f(T,xn) is said to be T—stable or stable with 
respect to T (see [8]). 

We say that the iteration procedure (xn) is almost T-stable or almost 
stable with respect to T if Yl^Lo £n < oo implies that limn-,.,» yn — P (see 
[17, p.319]). It is clear that an iteration procedure (xn) which is T-stable 
is almost T-stable. In [17] it was presented an example of almost T-stable 
mapping which is not T-stable. 

Stability results for several iteration procedures for certain classes of 
nonlinear mappings have been established in the recent papers by several 
authors see, for example, [7], [8], [14-18] and the references therein. 

An operator T with domain D(T) and range R(T) in X is called strongly 
pseudocontractive if there exists t > 1 such that the inequality 

(1) ||z - y\\ < ||(1 + r)(® - y) - rt{Tx - Ty)\\ 
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holds for every x,y € D(T) and r > 0. If, in the above definition, t = 1, 
then T is said to be pseudocontractive map. 

Let X be a real Banach space. The normalized duality mapping J : X —* 
is defined by 

J(x) = {feX*\(xj) = \\x\\2, ||x|| = ||/||}, 

where X* denotes the dual space of X and (•, •) denotes the generalized 
duality pairing. It is well known that J is bounded, J (ax) = aJ(x) for all 
a € [0, +oo), x E X and that X is uniformly smooth ( or equivalently, X* 
is a uniformly convex Banach space ), if and only if J is single-valued and 
uniformly continuous on bounded subsets of X. 

A map T : D(T) —> R(T) is called strongly accretive if there exists a 
constant kr > 0, such that for each x, y € D(T), there is an j 6 J(x — y) 
satisfying 

(Tx-Ty,j) >kT\\x-y\\2. 

Without loss of generality we may assume that kr € (0,1). 
It is well known that T is strongly pseudocontractive if and only if I — T 

is strongly accretive (see, [2] and [25]). 
In [22] and [23] we introduced a new iteration procedure for investigating 

of approximations of fixed points for nonexpansive mappings. This procedure 
is defined by 

(2) z n + 1 = tWT(t^T(...T(t^Txn + (1 - 4 fc))*n + uM) + ...) 
+(1 - tW)xn + + (1 - t ^ ) x n + t£> xo € X , 

n = 1,2,3..., where ( t ^ ) and (u^) , j = are given sequences satisfying 
some conditions which we explain later. 

The procedure generalizes well known Mann [13], and Ishikawa [9] iter-
ation processes, which have been extensively studied by many authors for 
approximating either fixed points of variable nonlinear maps or solutions of 
nonlinear operator equations in Banach spaces (see, [1-9], [11-25] and [27]). 
In [23] we proved that under some conditions on (««') , j = 1, k the iteration 
procedure (2) converges strongly to a fixed point of nonexpansive mapping. 

In this note we study the stability of iteration procedure (2) for the class 
of strongly pseudocontractive mappings in arbitrary real Banach spaces. We 
were motivated by [17]. 

We need three auxiliary results. The first one represents a simple in-
equality that has been rediscovered in [27] (see, also [1]). The result has 
been known for about thirty years (see Lemma 1 in [19]). 
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LEMMA 1. Let X be a Banach space and J be a duality mapping. Then for 
any given x,y € X, the following inequality holds: 

\\x + y\\2 <\\x\\2 + 2(y,j) for all jeJ(x + y). 
The simplicity of the lemma attracts our attention. For closely related 

results (see, for example, [2],[21] and [26]). 
The following simple lemma can be considered as the second main tool 

([2] and [6]). 
LEMMA 2. Let (on), (bn) and (cn) be three non-negative real sequences sat-
isfying the difference inequality 

o-n+l < (1 - tn)an + bn + cn 

with tn € [0,1], X^Lo^n = oo, bn = o(tn) and °n < oo. Then 
limn_>oo an = 0. 

We can easily prove the following lemma. 
LEMMA 3. Let (an), (bn) and (Cn) be three non-negative real sequences sat-
isfying the difference inequality 

fln+l < (1 - in)on + bn + cn 

with tn e [0,1], Y^?=otn = OO, bn = 0(tn) and Y^LoCn < oo. Then the 
sequence (an) is bounded. 

2. Main result 
We are now in a position to formulate and to prove the main result. 

THEOREM 1. Let X be a uniformly smooth Banach space and T : X —> X 
be a strongly pseudo-contractive mapping with bounded range and with 
F(T) 0. Let i = 1, k, be k sequences in X and ( & ) , i = l ,k, 
be k real sequences in [0,1] satisfying the following conditions: 

( a J E S ^ H ^ I ^ o o ; _ 
(b) lim^oo ||u£l)|| = 0, i = 2, k; 
(c ) limn—oo $ = 0 , i = 1, k\ 

(d) ! = oo. 
Let XQ be an arbitrary point in X. Suppose (xn) is a sequence in X which 
satisfies recurrent formula (2), (yn) is a sequence in X, 

en = ||yn+i - (1 - tU)yn - t^TyW - «^l l , n = 0,1,.. . 
where 
y{i) = t(i+l )T(...T(t^Tyn + (1 - W)yn + ««) + ...) + (1 - 4 i+1))y„ + u ^ 

for ¿ = 1,..., k — 1 and y f f i = yn, n — 0,1, . . . . 
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Then 

(I) limn_oo yn= pe F(T) implies limn_oo en = 0. 
(II) The sequence (xn) is almost T stable. 

P r o o f . (I) Let limn_,ooyn = p 6 F(T), then by some simple calculations 
and by the conditions of the theorem we obtain 

en = ||yn+i - (1 - tW)yn - t^Ty™ ~ u ^ H 

< lllM-i - P l l + (1 - WWlh ~P\\ + WUTyP-pW + | | u « | | 0 
a s n - > o o . Thus the first part of the theorem follows. 

(II) First we show that the sequence (yn) is bounded. We have 

lllM-i - p\\ < llfn+1 - (1 - W)yn - WTyU - t^ll 

+11(1 - t£))(yn-p) + _ Tp) + t£>| | 

< (1 - ̂ JUifc -p|| + t^WTyP - p\\ + Hu^ll + 

< ( l - i i 1 ) ) l | y n - p | | + 4 1 ) M + | k 1 ) | | + en 

where M = supnejsru{o} \ —p||. By Lemma 3 it follows boundedness of 
(yn). Let M\ = sup | | y^ — p||, where we take supremum over i € {1,..., k} 
and n € N u { 0 } . 

By Lemma 2 we obtain 

| |yn + 1 - p | | 2 = | |y n + 1 - (1 - t P ) y n - t ^ T y ^ ~ « P 

+(1 - tW)(yn -p) + ¿»(TyP - Tp) + u ^ H 2 

< ||(1 - tW)(yn -p) + tW(TyU - Tp) + u^\\2 

+2<yn+1 - (1 - tW)yn - ¿»TyP ~ u£\j(yn+i - p)) 

(3) < (1 - #>) 2 | |y n - p||2 + 2(tW(TyW - Tp), 

j(( 1 - t^)(yn -p) + t£\TyP - Tp) + n™) - j(yW - p)) 

+2(t£](TyW -Tp)J(yM -p)) 

+2(u£\j((l - tU)(yn -p) + tW(TyW - Tp) + «£>)) 

+2(y n + 1 - (1 - #>)y n - tWTyU ~ ^ \ j ( y n + 1 - p)). 

We have 

(4) (u£\j((i -tP)(yn -p) + t£HTyP - Tp) + t£>)) < M2 l l ^ l l , 

where 

M2 = sup{ (1 - t$)\\yn - p\\ + t^WTyU - Tp\\ + \\u^\\}, 

and where we take supremum over i 6 {1,..., k} and n g N U {0}. 
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On the other hand 
(5) | |(t/n+1 - (1 - tU)yn - t^TyW ~ ^ \ j ( y n + i ~ p))|| < M,sn. 

Prom (3), (4) and (5) we obtain 

||yn+i - PII2 < (1 - Will* - P\\2 + 2 - Tp)J(( 1 - tW)(yn-p) 
(6) +tW(TyP - Tp) + ««) - j(yW - p)) 

+2tU((TyW - Tp),j(yP - p)) + 2M2 H^H + 2Mlen. 
Since T is strongly pseudocontractive, I — T is strongly accretive, and 

for every x, y € D(T) there exists j € J(x — y) such that 
(7) ((/ - T)x - ( I - T)y),j(x - y)) > kT\\x - y\\2, 
where kx — (t — l ) i - 1 . 

From (7) we obtain 
(8) (Tx - Ty,j(x - y)) < (1 - kT)\\x " v\\2, 
for all x, y € K. In particular 

(9) ((TyW - TP),j(yW-P)) < (1 - kT)\\yW -p\\\ 

for every n € N and for some j 6 J(yn^ — p). 
Combining (6) and (9) we obtain 

lllM-i -p||2 < (1 - tW)2\\yn -p\\2 + 2tP((TyW - Tp), 
(10) j ( ( l - #>)(yn -p) + tW(TyW - Tp) +u^) - j(yW - p)) 

+24^(1 - fczOHyW -p\\2 + 2M2 I I ^ H + 2Ml£n. 
Now we show that the following sequence 

converges to zero as n —• oo. 
Really, by the conditions of the theorem and because yn, Ty«1' and Ty^ 

are bounded sequences in X, 
(1 - #>)(yn - p) + tW(TyW - Tp) + - (y£> -p) = 

= (42) - W)yn + tUTyU - tWTyW + « « " W - 0 
as n —» oo. Because X is a uniformly smooth Banach space, J is uniformly 
continuous on any bounded subset of X. Hence we have 

j ( ( l - t{n])(yn -p) + t£\TyP - Tp) + ui») - j(yW-p)-0 
as n —> oo and consequently —• 0 as n —• oo. From (10) we obtain 
\\yn+i-p\\2 

< ( l - 4 1 ) ) 2 | | j / n - p | | 2 + 2 4 1 ) ( ( l - f c T ) l l y i 1 ) - p | | 2 + 4 1 ) ) + 2 M 2 | | «« | |+2J l f i e » . 
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Similarly 

l l ^ - p l l 2 < ( l- i(2))2||yn-p||2+2i(2)(( l-Mlly^-p||2+42 ))+2M2 ||42)ll, 

where a f f l = ((Tyn ^ - Tp),j(yn^ - p ) —j(yn ^ — p)). As above we can show 
that an ' —> 0 as n —> oo. 

After k — 1 steps we obtain 

l l v » - 1 ) - p \ \ 2 

< (1 - i(fe))2||yn -p||2 + 2 i « ( ( l - kT)\\yW _ p||2 + a W ) + 2M2 

i.e. 

I I ^ - p I I 2 

< (1 - i«)2||yn - p||2 + 2#>((1 - Mll2/n - PLL2 + aW) + 2M2 

because of yn^ = yn, n € N, where 

4 f e ) = ((TyW - T p ) , ; ^ " 1 ) - P ) - J ( y ^ - P ) ) . 

Similarly we can show that a ^ —• 0 as n —• oo. 
Hence 

(11) ||yn+1 - p||2 < ((1 - # > ) ' + 241)((1 - fcr)(l - 42))2 

+ 2 4 2 ) ( ( l - f e T ) - - - 2 4 f c " 1 ) ( ( l - i i f c ) ) 2 

+2t( fc)(l-fcT))---)ll2/n-p||2 + 
2t£\(l-kT)(2tW((l-kT)... + t£-V 

((l-kT)2tW+aW) + --.) + 2M2\\UM\\) 

+aP) + 2M2\\uP\\ + 2M1en. 

Prom (11) and the conditions of the theorem we obtain 

ILIM+I - PLL2 < ( L - \\yn - PLL2 + 2 M 2 I I 4 1 ) ! ! + 2 M l £ n + o(tW) 

for sufficiently large n, for example n > no. 
From this, by condition (a), (d) and since Y^=o£n < oo, by Lemma 2, 

we obtain that yn —»p as n —> oo, from which the result follows. 

The uniqueness of F(T) follows from (9). Indeed, if p, q <E F(T) and 
p ^ q then we have 

H P - 9||2 = (p - 9 , J(p - <z)> < (1 - M I I P - </ll2-
Because kj- € (0,1), we have p = q, arriving at a contradiction. 

RE M A R K 1 . For EN = 0 , N € N U { 0 } , we obtain that the sequence (xn) 
converges strongly to p 6 F(T) and F(T) is a single set. 
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