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STABILITY OF A NEW ITERATION METHOD
FOR STRONGLY PSEUDOCONTRACTIVE MAPPINGS

Abstract. In this note we prove that a recently introduced iteration procedure
is almost stable with respect to strong pseudocontractions in real uniformly Banach
spaces.

1. Introduction and preliminaries

Suppose X is a real Banach space and T is a selfmap of X. Suppose
zo € X and zn41 = f(T,z,) defines an iteration procedure which yields
a sequence of points (z,) in X. Suppose F(T) = {z € X | Tz = z} # 0,
and that (z,) converges strongly to p € F(T'). Suppose (y,) is a sequence
of points in X and (e,) is a sequence in [0,+00) given by €, = ||ynt1 —
F(T,yn)|l|- If limy 00 €n, = 0 implies that lim, o y, = p, then the iteration
procedure defined by z,41 = f(T,z,) is said to be T—stable or stable with
respect to T (see [8]).

We say that the iteration procedure (z,) is almost T-stable or almost
stable with respect to T if Y o0 gen, < 0o implies that im, oo yn = p (see
[17, p.319]). It is clear that an iteration procedure (z,) which is T-stable
is almost T-stable. In [17] it was presented an example of almost T-stable
mapping which is not T-stable.

Stability results for several iteration procedures for certain classes of
nonlinear mappings have been established in the recent papers by several
authors see, for example, [7], [8], [14-18] and the references therein.

An operator T with domain D(T') and range R(T') in X is called strongly
pseudocontractive if there exists t > 1 such that the inequality

(1) llz = yll < |1+ 7)(z —y) —rt(Tz - Ty)||
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holds for every z,y € D(T) and r > 0. If, in the above definition, ¢t = 1,
then T is said to be pseudocontractive map.

Let X be a real Banach space. The normalized duality mapping J : X —
2X" is defined by

J(z) = {f € X*|{z, f) = llII?, llzll = |I1I},

where X* denotes the dual space of X and (.,-) denotes the generalized
duality pairing. It is well known that J is bounded, J(az) = aJ(z) for all
a € [0,+00), z € X and that X is uniformly smooth ( or equivalently, X*
is a uniformly convex Banach space ), if and only if J is single-valued and
uniformly continuous on bounded subsets of X.

A map T : D(T) — R(T) is called strongly accretive if there exists a
constant kr > 0, such that for each z,y € D(T), there is an j € J(z — y)
satisfying

(Tz — Ty, ) > krllz —y||>

Without loss of generality we may assume that kr € (0, 1).

It is well known that T is strongly pseudocontractive if and only if I — T
is strongly accretive (see, [2] and [25]).

In [22] and [23] we introduced a new iteration procedure for investigating
of approximations of fixed points for nonexpansive mappings. This procedure
is defined by

(2)  zpp1 = tOTEIT.TEE T, + (1 -t z, + ) + )
+(1 =tz + @)+ 1 -tz + ) 20 € X,

n=1,2,3..., where (tff )) and (qu )), j =1,k are given sequences satisfying
some conditions which we explain later.

The procedure generalizes well known Mann [13], and Ishikawa [9] iter-
ation processes, which have been extensively studied by many authors for
approximating either fixed points of variable nonlinear maps or solutions of
nonlinear operator equations in Banach spaces (see, [1-9], [11-25] and [27]).
In [23] we proved that under some conditions on (usf )), 4 = 1,k the iteration
procedure (2) converges strongly to a fixed point of nonexpansive mapping.

In this note we study the stability of iteration procedure (2) for the class
of strongly pseudocontractive mappings in arbitrary real Banach spaces. We
were motivated by [17].

We need three auxiliary results. The first one represents a simple in-
equality that has been rediscovered in [27] (see, also [1]). The result has
been known for about thirty years (see Lemma 1 in [19]).
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LEMMA 1. Let X be a Banach space and J be a duality mapping. Then for
any given z,y € X, the following inequality holds:
llz +yl1 < llz|* + 2(y, 5) forall je J(z+y).

The simplicity of the lemma attracts our attention. For closely related
results (see, for example, [2],[21] and [26]).

The following simple lemma can be considered as the second main tool
([2] and [6]).
LEMMA 2. Let (a,), (bn) and (c,) be three non-negative real sequences sat-
isfying the difference inequality

ant1 < (1 - tn)an + bn +cp

with t, € [0,1], 3720tn = 00, by = o(tn) and Y7 gcn < 0o. Then
lim,, —oc an = 0.

We can easily prove the following lemma.

LEMMA 3. Let (a,), (bn) and (cn) be three non-negative real sequences sat-
isfying the difference inequality
any1 < (1 - tn)an +b,+cn

with t, € [0,1], Y32 gtn = 00, by = O(ty,) and Y.72gcn < 00. Then the
sequence (a,) is bounded.

2. Main result
We are now in a position to formulate and to prove the main result.

THEOREM 1. Let X be a uniformly smooth Banach space and T : X — X
be a strongly pseudo-contractive mapping with bounded range and with

F(T) # 0. Let (u(l)),i = 1,k, be k sequences in X and ( (z)) = 1,k,
be k real sequences in [0, 1] satisfying the following conditions:

(2) S lun’ || < oo

(b) lim, 00 ||un |=0,i=2k;

(c) imp oo tSL) =0,i=1,k;

(d) Zn—l t(l)
Let 2 be an arbztrary point in X. Suppose (z,) is a sequence in X which
satisfies recurrent formula (2), (yn) is a sequence in X,

en = llynt1 — (1 = t)yn — tOTYY —uPll, n=0,1,...
where
y) = ST TP Tyn + (1=t )yn +ulP) + ) + (1 = tF D)y, + Y
fori=1,.., k-1 andy( ) =y, n=0,1,....
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Then

(I) limpooyn =p € F(T) implies limy 00 €, = 0.
(II) The sequence (z,,) is almost T stable.

Proof. (I) Let limp—00 yn = p € F(T), then by some simple calculations
and by the conditions of the theorem we obtain

= llgn+1 — (1 = t0)yn — tDTYD — )|
< 1 = pll+ (1 = tD)lyn — pll + tONTHD = pll + U] — 0
as n — 00. Thus the first part of the theorem follows.
(IT) First we show that the sequence (y,) is bounded. We have
19n+1 = 2l < llymsr = (1 = 80y — tDTyED — ulD)|
HI(1 =t (yn — ) + 1D (T = Tp) + )|
< (1= tW)llyn — pll + tONTYD - pll + [uD]] + €n
< (1= tD)]lyn — pll + tHM + |[ulP|| + &,

where M = sup,eNu(o) ||Ty,(,1) — p||- By Lemma 3 it follows boundedness of
(yn). Let My = sup ||y,(,i) — p||, where we take supremum over ¢ € {1, ..., k}
and n € NU {0}.
By Lemma 2 we obtain
llyn+1 =PI = llyne1 = (1 = t)yn — DTyl —uld)
+(1 = tD)(yn — p) + t(Ty = Tp) +u{)||?
<11 = t0) (g — p) + (TP - Tp) + uP|P?
+2(yns1 — (1 =ty — PO TYD — uD, j(yns1 — p))
&) < (1= )|y — pl* + 2(68(Tyl ~ T),
31 =)y — p) + D (TyY — Tp) + ) — j(mD - p)
+2(t8(Tyl) - Tp), i) - p))
+2(ud, (A =t (yn — p) + P (TyH - Tp) + u))
+2(¥ns1 = (1= t8)yn ~ Ty — o, j(yns1 — p))-
We have
@ @ 31— t0) = p) + E(TYY - Tp) + ) < My D],
where
My = sup{ (1 — t))|lyn — pl| + tDN Ty — Tol| + |[ud]| },
and where we take supremum over i € {1,...,k} and n € NU {0}.
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On the other hand
B) 1yt — (1 = tP)yn — tOTYY = ul), j(gns1 — P < Mign.
From (3), (4) and (5) we obtain
llgn+1 =PI < (1= )2 |lyn — pI1? + 26Ty — Tp), 5((1 — 1) (v — p)
(6) +tO(TyH - Tp) + ul) — () - p))
+2t(Ty" — Tp), i (1" - p)) + 2Mz |[ul)|| + 2Mien.

Since T is strongly pseudocontractive, I — T is strongly accretive, and
for every z,y € D(T) there exists j € J(z — y) such that

(7) (I =T)z~(I-T)y),j(x ~y)) 2 krllz -yl
where kr = (t — 1)t=1.
From (7) we obtain

(8) (Tz - Ty, j(z —y)) < (1 - kr)llz — 9ll%,
for all z,y € K. In particular
9) (Ty) — Tp), i) — p)) < (1= k)l — 2l

for every n € N and for some j € J (yn - p).
Combining (6) and (9) we obtain
llyns1 — pI* < (1 = )2 |y — plI? + 26D (TS ~ Tp),
(10) 3((1 =t (yn — p) + tD Ty - Tp) + ) - () - p))
+2t8P (1 = kr) [y — plI* + 2Mz ||ulD|| + 2Mien.
Now we show that the following sequence
o) = (Ty{) - Tp), §((1 - ) (yn — )+t Ty ~ Tp) +ull) - () ~p))
converges to zero as n — oo.
Really, by the conditions of the theorem and because y,, Ty(l) and Tyg)

are bounded sequences in X,
(1 =ty — p) + tD(TYP - Tp) +ull) - (4P ~p) =
= (49 — D)y + EOTYD — DTy + )~ 0

as n — 0o. Because X is a uniformly smooth Banach space, J is uniformly
continuous on any bounded subset of X. Hence we have

(A=t (yn — p) + P Ty - Tp) +ull) — i@ —p) = 0
)

as n — oo and consequently ar,

[Yn+1 — pl|2
< (1=t D)2 lyn—p| 2+ 2t (1= ko) |y — p[12 4 aD) +2M3 | [ulD}| + 2 M.

— 0 as n — 0o. From (10) we obtain



410 S. Stevié

Similarly
llyD—pll? < (1=t ||yn—PII2+2t(2)((1 —kr)|ly$) 7l +aD)+2M, ||,
where a{2) = ((Ty(z) Tp), j( -p)—3j (yn —p)). As above we can show

that aP—»Oasn—»oo.
After k£ — 1 steps we obtain

lyl=2 — pl|2

< (1=t 2|y, — plI* + 260 ((1 = k1) |18 — pl|? + o) + 2M; ||uB))],
i.e.
[lyle=D — p)|?

< (1=t lyn = pII? + 268((1 = kr)llyn — 2l + al) + 204 ||,
(k) _

because of yn ' = yn, n € N, where

o® = (Ty® - Tp), j(u*D - p) — 5P - p)).

Similarly we can show that o) 0 asn — co.
Hence
(1) lgner = pIP < (1= t)? + 260(( - br) (1 - t2)?

+2tD((1 - k) -+ 26%D((1 - 1P))?
+2t0 (1= k1)) -+ )lyn — plI> +

2t ((1 - k)2t (A = k) -+ + £
(1= k)2t + o) + - ) + 2My|[uP)))
+a1) + 2My|[uV|| + 2M€,,.

From (11) and the conditions of the theorem we obtain

k
s =9I < (1= ZEH0 ) llgm = oI+ 20l + 2Ms6 + o(t)

for sufficiently large n, for example n > nyp.
From this, by condition (a), (d) and since Y 22 ,€, < 00, by Lemma 2,
we obtain that y, — p as n — oo, from which the result follows.

The uniqueness of F(T) follows from (9). Indeed, if p,q € F(T) and
p # q then we have

lp—all* = (p—q,J(p— 9)) < (L—kr)llp —qlI*
Because kr € (0,1), we have p = g, arriving at a contradiction.

REMARK 1. For ¢, = 0, n € N U {0}, we obtain that the sequence (z,)
converges strongly to p € F(T) and F(T) is a single set.
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