

Nguyen Thanh Long, Dinh Van Ruy

ON THE NONEXISTENCE OF POSITIVE SOLUTION  
 OF SOME NONLINEAR INTEGRAL EQUATION

**Abstract.** We consider the nonlinear integral equation

$$(1) \quad u(x) = \int_{R^N} \frac{g(x, y, u(y))dy}{|y - x|^\sigma}, \quad \text{for all } x \in R^N,$$

where  $\sigma$  is a given positive constant and the given function  $g(x, y, u)$  is continuous and  $g(x, y, u) \geq M \frac{|y|^\beta u^\alpha}{(1+|x|)^\gamma}$  for all  $x, y \in R^N$ ,  $u \geq 0$ , with some constants  $\alpha, \beta, \gamma \geq 0$  and  $M > 0$ . We prove in an elementary way that if  $0 \leq \alpha \leq (\beta + N)/(\sigma + \gamma)$ ,  $0 < \sigma < \min\{N, N + \beta - \gamma\}$ ,  $N \geq 2$ , the nonlinear integral equation (1) has no positive solution.

## 1. Introduction

We consider the nonexistence of positive solutions of the following nonlinear integral equation

$$(1.1) \quad u(x) = b_N \int_{R^N} \frac{g(x, y, u(y))dy}{|y - x|^\sigma}, \quad \text{for all } x \in R^N,$$

where  $b_N = 2((N - 1)\omega_{N+1})^{-1}$  with  $\omega_{N+1}$  being the area of unit sphere in  $R^{N+1}$ ,  $N \geq 2$ ,  $\sigma$  is a given positive constant with  $0 < \sigma < N$ , and  $g : R^{2N} \times R_+ \rightarrow R$  is given continuous function satisfying:

There exist the constants  $\alpha, \beta, \gamma \geq 0$  and  $M > 0$  such that

$$(1.2) \quad g(x, y, u) \geq M \frac{|y|^\beta u^\alpha}{(1+|x|)^\gamma} \quad \text{for all } x, y \in R^N, u \geq 0,$$

and some auxiliary conditions below.

In the case of  $\sigma = N - 1$ , the integral equation (1.1) is a consequence of the following nonlinear Neumann problem

$$(1.3) \quad \Delta v = \sum_{i=1}^{N+1} v_{x_i x_i} = 0, \quad x \in R^N, \quad x_{N+1} > 0,$$

$$(1.4) \quad -v_{x_{N+1}}(x, 0) = g(x, v(x, 0)) = 0, \quad x \in R^N,$$

of which the boundary value  $u(x) = v(x, 0)$  together with some auxiliary conditions will be a solution of the equation

$$(1.5) \quad u(x) = b_N \int_{R^N} \frac{g(y, u(y)) dy}{|y - x|^\sigma}, \quad \text{for all } x \in R^N.$$

In [1] the authors have studied a problem (1.3), (1.4) for  $N = 2$  with the Laplace equation (1.3) having the axial symmetry

$$(1.6) \quad u_{rr} + \frac{1}{r} u_r + u_{zz} = 0, \quad \forall r > 0, \quad \forall z > 0,$$

and with the nonlinear boundary condition of the form

$$(1.7) \quad -u_z(r, 0) = I_0 \exp(-r^2/r_0^2) + u^\alpha(r, 0), \quad \forall r > 0,$$

where  $I_0, r_0, \alpha$  are given positive constants. The problem (1.6), (1.7) is the stationary case of the problem associated with ignition by radiation. In the case of  $0 < \alpha \leq 2$  the authors in [1] have proved that the problem (1.6), (1.7) has no positive solution. Afterwards, this result has been extended in [7] to the general nonlinear boundary condition

$$(1.8) \quad -u_z(r, 0) = g(r, u(r, 0)), \quad \forall r > 0.$$

In [8] the problem (1.3), (1.4) is considered for  $N = 2$  and for a function  $g$  which is continuous, nondecreasing and bounded below by the power function of order  $\alpha$  with respect to the third variable. It is proved that for  $0 < \alpha \leq 2$  such a problem has no positive solution.

In [2]–[3] we have considered the problem (1.3), (1.4) for  $N \geq 3$ . The function  $g : R^N \times [0, +\infty) \rightarrow [0, +\infty)$  is continuous, nondecreasing with respect to variable  $u$ , satisfies the condition (1.2) with  $\gamma = 0$  and some auxiliary conditions. In the case of  $0 \leq \alpha \leq N/(N - 1)$ ,  $N \geq 2$  we have proved that the problem (1.3), (1.4) has no positive solution.

In [5], [6] the authors have proved the nonexistence of a positive solution of the problem (1.3), (1.4) with

$$(1.9) \quad g(x, u) = u^\alpha.$$

In [5] it is proved with  $1 \leq \alpha < N/(N - 1)$ ,  $N \geq 2$ , and in [6] with  $1 < \alpha < (N+1)/(N-1)$ ,  $N \geq 2$ . We also note that the function  $g(x, u) = u^\alpha$  does not satisfy the conditions assumed in the papers [2], [7], [8].

In this paper, we consider the nonlinear integral equation (1.1) for  $0 < \sigma < \min\{N, N + \beta - \gamma\}$ ,  $N \geq 2$ . The function  $g(x, y, u)$  is continuous, satisfies the condition (1.2) for which (1.9) is a special case. By proving elementarily we generalize the results from [1]–[9] that for  $0 \leq \alpha \leq (\beta + N)/(\sigma + \gamma)$  the equation (1.1) has no continuous positive solution.

## 2. The theorem of nonexistence of positive solution

Without loss of generality, we can suppose that  $b_N = 1$  with a change of the constant  $M$  in the assumption (1.2) of  $g$ . We rewrite the integral equation (1.1)

$$(2.1) \quad u(x) = Tu(x) \equiv \int_{R^N} \frac{g(x, y, u(y))dy}{|y - x|^\sigma}, \quad \text{for all } x \in R^N.$$

Then we have the main result as follows.

**THEOREM.** *Let  $g : R^{2N} \times [0, +\infty) \rightarrow R$  be a continuous function satisfying the hypothesis:*

*There exist constants  $M > 0$ ,  $\alpha, \beta, \gamma \geq 0$ ,  $0 < \sigma < \min\{N, N + \beta - \gamma\}$ ,  $N \geq 2$  such that*

$$(2.2) \quad g(x, y, u) \geq M \frac{|y|^\beta u^\alpha}{(1 + |x|)^\gamma} \quad \text{for all } x, y \in R^N, u \geq 0.$$

*If  $0 \leq \alpha \leq (\beta + N)/(\sigma + \gamma)$  then, the integral equation (2.1) has no continuous positive solution.*

**REMARK 1.** The result of Theorem is stronger than that in [2], [8]. Indeed, corresponding to the same equation (1.5), the following assumptions which were made in [2], [8] are not needed here

$(G_1)$   $g(y, u)$  is nondecreasing with respect to variable  $u$ , i.e.,

$$(g(y, u) - g(y, v))(u - v) \geq 0,$$

for all  $u, v \geq 0, y \in R^N$ .

$(G_2)$  The integral  $\int_{R^N} \frac{g(y, 0)dy}{(1 + |y|)^{N-1}}$  exists and is positive.

First, we need the following Lemma.

**LEMMA.** *For every  $p \geq 0$ ,  $q \geq 0$ ,  $0 < \sigma < N$ ,  $x \in R^N$ . Put*

$$(2.3) \quad A[p, q](x) = \int_{R^N} \frac{|y|^p (1 + |y|)^{-q} dy}{|y - x|^\sigma},$$

*we have*

$$(2.4) \quad A[p, q](x) = +\infty,$$

if  $q - p \leq N - \sigma$ ,

$$(2.5) \quad A[p, q](x) \text{ convergent and } A[p, q](x) \geq \left( \frac{1}{N+p} + \frac{1}{q} \right) \frac{\omega_N}{2^\sigma} \frac{|x|^{p+N-\sigma}}{(1+|x|)^q},$$

if  $q - p > N - \sigma$ , where  $\omega_N$  is the area of unit sphere in  $R^N$ .

**Proof.** a) Let  $N - \sigma \geq q - p$ . We note that from the elementary inequality

$$(2.6) \quad |y - x| \leq |y| + |x| \quad \text{for all } x, y \in R^N,$$

we deduce

$$(2.7) \quad \begin{aligned} A[p, q](x) &\geq \int_{R^N} \frac{|y|^p (1+|y|)^{-q} dy}{(|y|+|x|)^\sigma} \\ &= \omega_N \int_0^{+\infty} \frac{r^{p+N-1} dr}{(1+r)^q (r+|x|)^\sigma} = \omega_N J_{p,q,\sigma}. \end{aligned}$$

The integral  $J_{p,q,\sigma}$  is divergent for  $q + \sigma - p - N + 1 \leq 1$  or  $q - p \leq N - \sigma$  and convergent for  $q - p > N - \sigma$ .

$$(2.8) \quad \forall x \in R^N, \quad A[p, q](x) \text{ is divergent for } N - \sigma \geq q - p.$$

b) Let  $N - \sigma < q - p$ . i) Let  $x = 0$ , we have

$$(2.9) \quad \begin{aligned} A[p, q](0) &= \int_{R^N} \frac{(1+|y|)^{-q} dy}{|y|^{\sigma-p}} \\ &= \omega_N \int_0^{+\infty} \frac{r^{N-1} dr}{(1+r)^q r^{\sigma-p}} = \omega_N \int_0^{+\infty} \frac{dr}{(1+r)^q r^{\sigma-p-N+1}}. \end{aligned}$$

Hence, the integral  $\int_0^{+\infty} \frac{dr}{(1+r)^q r^{\sigma-p-N+1}}$  is convergent  $\iff \sigma - p - N + 1 < 1 < q + \sigma - p - N + 1 \iff -p < N - \sigma < q - p \iff N - \sigma < q - p$  and the integral  $\int_0^{+\infty} \frac{dr}{(1+r)^q r^{\sigma-p-N+1}}$  is divergent  $\iff \sigma - p - N + 1 \geq 1 \text{ or } 1 \geq q + \sigma - p - N + 1 \iff N - \sigma \leq -p \text{ or } N - \sigma \geq q - p \iff N - \sigma \geq q - p$ . Hence,

$$(2.10) \quad A[p, q](0) \text{ is convergent} \iff N - \sigma < q - p,$$

and

$$(2.11) \quad A[p, q](0) \text{ is divergent} \iff N - \sigma \geq q - p.$$

ii) Let  $x \neq 0$ , and  $R > 3|x| > 0$ . We rewrite

$$(2.12) \quad \begin{aligned} A[p, q](x) &= \int_{|y-x| \leq R} \frac{|y|^p (1+|y|)^{-q} dy}{|y-x|^\sigma} + \int_{|y-x| \geq R} \frac{|y|^p (1+|y|)^{-q} dy}{|y-x|^\sigma} \\ &\equiv I_R(x) + J_R(x). \end{aligned}$$

Estimate  $I_R(x) = \int_{|y-x| \leq R} \frac{|y|^p(1+|y|)^{-q}dy}{|y-x|^\sigma}$ . We have

$$\begin{aligned}
 (2.13) \quad I_R(x) &= \int_{|y-x| \leq R} \frac{|y|^p(1+|y|)^{-q}dy}{|y-x|^\sigma} \\
 &\leq \sup_{|y-x| \leq R} |y|^p(1+|y|)^{-q} \int_{|y-x| \leq R} \frac{dy}{|y-x|^\sigma} \\
 &= \sup_{|y-x| \leq R} |y|^p(1+|y|)^{-q} \omega_N \int_0^R r^{N-\sigma-1} dr < +\infty.
 \end{aligned}$$

Estimate  $J_R(x) = \int_{|y-x| \geq R} \frac{|y|^p(1+|y|)^{-q}dy}{|y-x|^\sigma}$ . We have

$$\begin{aligned}
 (2.14) \quad J_R(x) &= \int_{|y-x| \geq R} \frac{|y|^p(1+|y|)^{-q}dy}{|y-x|^\sigma} \\
 &\leq \int_{|y| \geq R-|x|} \frac{|y|^p(1+|y|)^{-q}dy}{|y-x|^\sigma} \\
 &\leq \int_{|y| \geq R-|x|} \frac{|y|^p(1+|y|)^{-q}dy}{||y|-|x||^\sigma} \\
 &= \omega_N \int_{R-|x|}^{+\infty} \frac{r^p(1+r)^{-q}r^{N-1}dr}{|r-|x||^\sigma} \\
 &= \omega_N \int_{R-|x|}^{+\infty} \frac{dr}{|r-|x||^\sigma(1+r)^q r^{p-N+1}}.
 \end{aligned}$$

Notice that, from  $R > 3|x| > 0$ , we have  $r \neq |x|$ , for all  $r \geq R-|x|$ . Hence, the integral  $\int_{R-|x|}^{+\infty} \frac{dr}{|r-|x||^\sigma(1+r)^q r^{p-N+1}}$  is convergent for  $\sigma + q - p - N + 1 > 1$  or  $N - \sigma < q - p$ . Hence,

$$(2.15) \quad J_R(x) \text{ is convergent for } N - \sigma < q - p.$$

Combining (2.10), (2.12), (2.13) and (2.15), we then have

$$(2.16) \quad \forall x \in R^N, \quad A[p, q](x) \text{ is convergent for } N - \sigma < q - p.$$

Furthermore, for  $q - p > N - \sigma$ , we rewrite

$$\begin{aligned}
 (2.17) \quad J_{p,q,\sigma} &= \int_0^{|x|} \frac{r^{p+N-1}dr}{(1+r)^q(r+|x|)^\sigma} + \int_{|x|}^{+\infty} \frac{r^{p+N-1}dr}{(1+r)^q(r+|x|)^\sigma} \\
 &= J_{p,q,\sigma}^{(1)} + J_{p,q,\sigma}^{(2)}, \text{ for all } x \in R^N.
 \end{aligned}$$

We estimate respectively the integrals  $J_{p,q,\sigma}^{(1)}$  and  $J_{p,q,\sigma}^{(2)}$ .

j) Estimate  $J_{p,q,\sigma}^{(1)}$

$$(2.18) \quad J_{p,q,\sigma}^{(1)} \geq \int_0^{|x|} \frac{r^{p+N-1} dr}{(1+r)^q (|x|+r)^{\sigma}} = \frac{1}{(N+p)2^{\sigma}} \frac{|x|^{p+N-\sigma}}{(1+|x|)^q}.$$

jj) Estimate  $J_{p,q,\sigma}^{(2)}$

$$\begin{aligned} (2.19) \quad J_{p,q,\sigma}^{(2)} &\geq \int_{|x|}^{+\infty} \frac{r^{p+N-1} dr}{(1+r)^q (r+r)^{\sigma}} \\ &= \frac{1}{2^{\sigma}} \int_{|x|}^{+\infty} \frac{r^{p+N-\sigma} dr}{r(1+r)^q} \geq \frac{|x|^{p+N-\sigma}}{2^{\sigma}} \int_{|x|}^{+\infty} \frac{dr}{(1+r)^{q+1}} \\ &= \frac{1}{q2^{\sigma}} \frac{|x|^{p+N-\sigma}}{(1+|x|)^q}. \end{aligned}$$

Hence, (2.5) is deduced from (2.7), (2.17)–(2.19). Lemma is proved completely.

**Proof of Theorem.** We proceed by contradiction. Suppose that there exists a continuous positive solution  $u(x)$  of the integral equation (2.1). We suppose that there exists  $x_0 \in R^N$ , such that  $u(x_0) > 0$ . Since  $u$  is continuous, then there exists  $r_0 > 0$  such that

$$(2.20) \quad u(x) > \frac{1}{2}u(x_0) \quad \text{for all } x \in R^N, |x - x_0| \leq r_0.$$

It follows from (2.1), (2.2), (2.20) and the monotonicity of the integral operator

$$\begin{aligned} (2.21) \quad u(x) &= Tu(x) \geq M(1+|x|)^{-\gamma} \int_{R^N} \frac{|y|^{\beta} u^{\alpha}(y) dy}{|y-x|^{\sigma}} \\ &\geq M(1+|x|)^{-\gamma} \left( \frac{1}{2}u(x_0) \right)^{\alpha} \int_{|y-x_0| \leq r_0} \frac{|y|^{\beta} dy}{|y-x|^{\sigma}}, \quad \text{for all } x \in R^N. \end{aligned}$$

Using the inequality

$$(2.22) \quad |y-x| \leq |y| + |x| \leq (1+|x_0|+r_0)(1+|x|),$$

for all  $x, y \in R^N, |y-x_0| \leq r_0$ ,

we obtain from (2.21), (2.22) that

$$(2.23) \quad u(x) \geq u_1(x) = m_1(1+|x|)^{-q_1}, \quad \text{for all } x \in R^N,$$

where

$$(2.24) \quad q_1 = \sigma + \gamma, \quad m_1 = M \left( \frac{1}{2} u(x_0) \right)^\alpha (1 + |x_0| + r_0)^{-\sigma} \int_{|y-x_0| \leq r_0} |y|^\beta dy.$$

Using again the equality (2.1), it follows from (2.2), (2.23) that

$$\begin{aligned} (2.25) \quad u(x) &= Tu(x) \geq M(1 + |x|)^{-\gamma} \int_{R^N} \frac{|y|^\beta u^\alpha(y) dy}{|y - x|^\sigma} \\ &\geq M(1 + |x|)^{-\gamma} \int_{R^N} \frac{|y|^\beta u_1^\alpha(y) dy}{|y - x|^\sigma} \\ &\geq Mm_1^\alpha (1 + |x|)^{-\gamma} A[\beta, \alpha q_1](x), \text{ for all } x \in R^N. \end{aligned}$$

Now, we consider separately the cases of different values of  $\alpha$ .

**Case 1:**  $0 \leq \alpha \leq (\beta + N - \sigma)/(\sigma + \gamma)$ . We obtain from (2.4), (2.25) with  $p = \beta, q = \alpha q_1 = \alpha(\sigma + \gamma), q - p = \alpha(\sigma + \gamma) - \beta \leq N - \sigma$ , that

$$(2.26) \quad u(x) = +\infty, \quad \text{for all } x \in R^N.$$

It is a contradiction.

**Case 2:**  $(\beta + N - \sigma)/(\sigma + \gamma) < \alpha < (\beta + N)/(\sigma + \gamma)$ . Using (2.5) with  $p = \beta, q = \alpha q_1 = \alpha(\sigma + \gamma), q - p = \alpha(\sigma + \gamma) - \beta > N - \sigma$ , we deduce from (2.25) that

$$(2.27) \quad u(x) \geq u_2(x) = m_2 |x|^{p_2} (1 + |x|)^{-q_2}, \text{ for all } x \in R^N,$$

where

$$(2.28) \quad p_2 = \beta + N - \sigma, q_2 = \sigma q_1 + \gamma, \quad m_2 = Mm_1^\alpha \frac{\omega_N}{2^\sigma} \left( \frac{1}{\beta + N} + \frac{1}{\alpha q_1} \right).$$

Suppose that

$$(2.29) \quad u(x) \geq u_{k-1}(x) = m_{k-1} |x|^{p_{k-1}} (1 + |x|)^{-q_{k-1}}, \quad \text{for all } x \in R^N.$$

If  $\alpha q_{k-1} - \beta - \alpha p_{k-1} > N - \sigma$ , then, using (2.1), (2.2), (2.5) and (2.29), we obtain

$$\begin{aligned} (2.30) \quad u(x) &= Tu(x) \geq M(1 + |x|)^{-\gamma} \int_{R^N} \frac{|y|^\beta u^\alpha(y) dy}{|y - x|^\sigma} \\ &\geq M(1 + |x|)^{-\gamma} \int_{R^N} \frac{|y|^\beta u_{k-1}^\alpha(y) dy}{|y - x|^\sigma} \\ &= Mm_{k-1}^\alpha (1 + |x|)^{-\gamma} A[\beta + \alpha p_{k-1}, \alpha q_{k-1}](x) \\ &\geq Mm_{k-1}^\alpha \left( \frac{1}{N + \beta + \alpha p_{k-1}} + \frac{1}{\alpha q_{k-1}} \right) \end{aligned}$$

$$\times \frac{\omega_N}{2^\sigma} |x|^{\beta + \alpha p_{k-1} + N - \sigma} (1 + |x|)^{-\alpha q_{k-1} - \gamma}.$$

Hence

$$u(x) \geq u_k(x) = m_k |x|^{p_k} (1 + |x|)^{-q_k}, \quad \text{for all } x \in R^N,$$

where the sequences  $\{p_{k-1}\}, \{q_{k-1}\}, \{m_{k-1}\}$  are defined by the recurrence formulas

$$(2.31) \quad \begin{aligned} p_k &= \beta + \alpha p_{k-1} + N - \sigma, \quad q_k = \alpha q_{k-1} + \gamma, \\ m_k &= \frac{1}{2^\sigma} M \omega_N m_{k-1}^\alpha \left( \frac{1}{p_k + \sigma} + \frac{1}{\alpha q_{k-1}} \right), \quad k \geq 3. \end{aligned}$$

From (2.28), (2.31) we obtain

$$(2.32) \quad p_k = \begin{cases} (k-1)(\beta + N - \sigma), & \text{if } \alpha = 1, \\ \left( \frac{1 - \alpha^{k-1}}{1 - \alpha} \right) (\beta + N - \sigma), & \text{if } (\beta + N - \sigma)/(\sigma + \gamma) < \alpha < (\beta + N)/(\sigma + \gamma), \quad \alpha \neq 1, \end{cases}$$

$$(2.33) \quad q_k = \begin{cases} \sigma + k\gamma, & \text{if } \alpha = 1, \\ q_1 \alpha^{k-1} + \gamma \left( \frac{1 - \alpha^{k-1}}{1 - \alpha} \right), & \text{if } (\beta + N - \sigma)/(\sigma + \gamma) < \alpha < (\beta + N)/(\sigma + \gamma), \quad \alpha \neq 1. \end{cases}$$

It follows from (2.1), (2.2) and (2.30), that

$$(2.34) \quad u(x) \geq M m_k^\alpha (1 + |x|)^{-\gamma} A[\beta + \alpha p_k, \alpha q_k](x), \quad \text{for all } x \in R^N.$$

So, from (2.33), (2.34), we only need to choose the natural number  $k \geq 3$  such that

$$(2.35) \quad \alpha q_k - \beta - \alpha p_k \leq N - \sigma < \alpha q_{k-1} - \beta - \alpha p_{k-1},$$

since  $A[\beta + \alpha p_k, \alpha q_k](x) = +\infty$ .

By (2.32), (2.33), (2.35) we choose  $k$  as follows

- j) If  $\alpha = 1$ , we choose  $k$  satisfying  $\frac{\sigma}{\beta + N - \sigma - \gamma} \leq k < 1 + \frac{\sigma}{\beta + N - \sigma - \gamma}$ ,
- jj) If  $\frac{\beta + N - \sigma}{\sigma + \gamma} < \alpha < \frac{\beta + N}{\sigma + \gamma}$  and  $\alpha \neq 1$ , we choose  $k$  satisfying  $k_0 \leq k < k_0 + 1$ , where  $k_0 = \frac{1}{\ln \alpha} \ln \left( \frac{\alpha \gamma + \sigma - \beta - N}{\alpha(\sigma + \gamma) - \beta - N} \right)$ .

**Case 3:**  $\alpha = (\beta + N)/(\sigma + \gamma)$ . We rewrite (2.25)

$$(2.36) \quad \begin{aligned} u(x) &\geq M m_1^\alpha (1 + |x|)^{-\gamma} \int_{R^N} \frac{|y|^\beta (1 + |y|)^{-\beta - N} dy}{|y - x|^\sigma} \\ &= M m_1^\alpha (1 + |x|)^{-\gamma} A[\beta, \beta + N](x), \quad \text{for all } x \in R^N. \end{aligned}$$

On the other hand, for every  $x \in R^N$ ,  $|x| \geq 1$ , we have

$$\begin{aligned}
 (2.37) \quad A[\beta, \beta + N](x) &\geq \int_{R^N} \frac{|y|^\beta (1 + |y|)^{-\beta - N} dy}{(|y| + |x|)^\sigma} \\
 &= \omega_N \int_0^{+\infty} \frac{r^{\beta + N - 1} dr}{(1 + r)^{\beta + N} (r + |x|)^\sigma} \\
 &\geq \omega_N \int_1^{|x|} \frac{r^{\beta + N - 1} dr}{(1 + r)^{\beta + N} (r + |x|)^\sigma} = \omega_N H(x).
 \end{aligned}$$

Notice that for every  $r$  such that  $1 \leq r \leq |x|$  we have

$$(2.38) \quad \left( \frac{r}{1+r} \right)^{\beta+N} \geq \frac{1}{2^{\beta+N}}, \text{ and } \frac{1}{(r+|x|)^{\sigma-1}} \geq \frac{\min\{1, 2^{1-\sigma}\}}{|x|^{\sigma-1}}.$$

Then

$$\begin{aligned}
 (2.39) \quad H(x) &= \int_1^{|x|} \left( \frac{r}{1+r} \right)^{\beta+N} \frac{1}{(r+|x|)^{\sigma-1}} \frac{dr}{r(r+|x|)} \\
 &\geq \frac{1}{2^{\beta+N}} \cdot \frac{\min\{1, 2^{1-\sigma}\}}{|x|^{\sigma-1}} \cdot \int_1^{|x|} \frac{dr}{r(r+|x|)} \\
 &= \frac{1}{2^{\beta+N}} \cdot \frac{\min\{1, 2^{1-\sigma}\}}{|x|^\sigma} \cdot \ln\left(\frac{1+|x|}{2}\right).
 \end{aligned}$$

It follows from (2.36), (2.37), (2.39) that

$$(2.40) \quad u(x) \geq v_2(x) = \begin{cases} 0, & \text{if } |x| \leq 1, \\ C_2 |x|^{-\sigma} (1 + |x|)^{-\gamma} (\ln(\frac{1+|x|}{2}))^{s_2}, & \text{if } |x| \geq 1, \end{cases}$$

with

$$(2.41) \quad s_2 = 1, \quad C_2 = M m_1^\alpha \omega_N \frac{\min\{1, 2^{1-\sigma}\}}{2^{\beta+N}}.$$

Suppose that

$$\begin{aligned}
 (2.42) \quad u(x) &\geq v_{k-1}(x) \\
 &= \begin{cases} 0, & \text{if } |x| \leq 1, \\ C_{k-1} |x|^{-\sigma} (1 + |x|)^{-\gamma} \left( \ln\left(\frac{1+|x|}{2}\right) \right)^{s_{k-1}}, & \text{if } |x| \geq 1, \end{cases}
 \end{aligned}$$

and  $C_{k-1}, s_{k-1}$ , are positive constants. Then, using (2.1), (2.2), (2.42), we have

$$(2.43) \quad u(x) \geq M (1 + |x|)^{-\gamma} \int_{R^N} \frac{|y|^\beta v_{k-1}^\alpha(y) dy}{|y - x|^\sigma}$$

$$\begin{aligned}
&\geq M(1+|x|)^{-\gamma} \int_{|y|\geq 1} \frac{|y|^\beta v_{k-1}^\alpha(y) dy}{(|y|+|x|)^\sigma} \\
&= M(1+|x|)^{-\gamma} C_{k-1}^\alpha \int_{|y|\geq 1} \frac{|y|^\beta (\ln(\frac{1+|y|}{2}))^{\alpha s_{k-1}} dy}{|y|^{\alpha\sigma} (1+|y|)^{\alpha\gamma} (|y|+|x|)^\sigma} \\
&= M\omega_N C_{k-1}^\alpha (1+|x|)^{-\gamma} \int_1^{+\infty} \frac{r^{\beta-\alpha\sigma} \left(\ln\left(\frac{1+r}{2}\right)\right)^{\alpha s_{k-1}} r^{N-1} dr}{(1+r)^{\alpha\gamma} (r+|x|)^\sigma} \\
&= M\omega_N C_{k-1}^\alpha (1+|x|)^{-\gamma} \int_1^{+\infty} \frac{r^{\beta+N-\alpha\sigma-1} (\ln(\frac{1+r}{2}))^{\alpha s_{k-1}} dr}{(1+r)^{\alpha\gamma} (r+|x|)^\sigma}.
\end{aligned}$$

Considering  $|x| \geq 1$ , we have

$$\begin{aligned}
(2.44) \quad &\int_1^{+\infty} \frac{r^{\beta+N-\alpha\sigma-1} \left(\ln\left(\frac{1+r}{2}\right)\right)^{\alpha s_{k-1}} dr}{(1+r)^{\alpha\gamma} (r+|x|)^\sigma} \\
&\geq \left(\ln\left(\frac{1+|x|}{2}\right)\right)^{\alpha s_{k-1}} \int_{|x|}^{+\infty} \frac{r^{\beta+N-\alpha\sigma-1} dr}{(r+r)^{\alpha\gamma} (r+r)^\sigma} \\
&= \frac{1}{2^{\alpha\gamma+\sigma}} \left(\ln\left(\frac{1+|x|}{2}\right)\right)^{\alpha s_{k-1}} \int_{|x|}^{+\infty} r^{-1-\sigma} dr \\
&= \frac{1}{\sigma 2^{\alpha\gamma+\sigma}} \cdot \frac{1}{|x|^\sigma} \cdot (\ln(\frac{1+|x|}{2}))^{\alpha s_{k-1}}.
\end{aligned}$$

We deduce from (2.43), (2.44) that

$$(2.45) \quad u(x) \geq v_k(x) = \begin{cases} 0, & \text{if } |x| \leq 1, \\ C_k |x|^{-\sigma} (1+|x|)^{-\gamma} \left(\ln\left(\frac{1+|x|}{2}\right)\right)^{s_k}, & \text{if } |x| \geq 1. \end{cases}$$

where

$$(2.46) \quad s_k = \alpha s_{k-1}, \quad C_k = \frac{1}{\sigma 2^{\alpha\gamma+\sigma}} M\omega_N C_{k-1}^\alpha, \quad k \geq 3.$$

From (2.41), (2.46) we obtain

$$(2.47) \quad s_k = s_2 \alpha^{k-2} = \alpha^{k-2} = \left(\frac{\beta+N}{\sigma+\gamma}\right)^{k-2}, \quad C_k = \frac{1}{D} (DC_2)^{\alpha^{k-2}},$$

where  $D = (\frac{1}{\sigma 2^{\alpha\gamma+\sigma}} M\omega_N)^{1/(\alpha-1)}$ .

Then, with  $|x| \geq 1$ , we rewrite (2.45) in the form

$$(2.48) \quad u(x) \geq v_k(x) = \frac{1}{D} |x|^{-\sigma} (1 + |x|)^{-\gamma} \left( D C_2 \ln \left( \frac{1 + |x|}{2} \right) \right)^{\alpha^{k-2}}$$

Choosing  $x_0$  such that

$$D C_2 \ln \left( \frac{1 + |x_0|}{2} \right) > 1.$$

By (2.48), we deduce that  $u(x_0) = +\infty$ . It is a contradiction.

Theorem is proved completely.

**REMARK 2.** a) In the case of  $\alpha = N/\sigma$ ,  $\sigma = N-1$ ,  $N = 2$ , the estimate (2.45) is simpler than that in [1], where  $v_k(r)$  is given in the form of a functional series.

b) In the case of  $g(x, u)$  we have not a conclusion about  $\alpha > N/(N-1)$ , and  $N \geq 2$ , yet. However, when  $g(x, u) = u^\alpha$ ,  $N \geq 2$ ,  $N/(N-1) \leq \alpha < (N+1)/(N-1)$ , B. Hu in [6] have proved that the problem (1.3), (1.4), (1.9) has no positive solution. In the *limiting case*  $\alpha = (N+1)/(N-1)$ , positive solutions do exist (See [4-6]). In particular, for this value of  $\alpha$ , the authors of [4] gave explicit forms for all nontrivial nonnegative solutions  $u \in C^2(\overline{R_+^{N+1}}) \cap C^1(\overline{R_+^{N+1}})$  of the problem

$$\begin{cases} -\Delta u = a u^{\alpha + \frac{2}{N-1}} & \text{in } \overline{R_+^{N+1}}, \\ -u_{x_{N+1}}(x', 0) = b u^\alpha(x', 0) & \text{on } x_{N+1} = 0. \end{cases}$$

They proved the following results:

(i) If  $a > 0$  or  $a \leq 0$ ,  $b > B = \sqrt{a(1-N)/(N+1)}$ , then

$$u(x) = C(|x - x^0|^2 + \beta)^{(1-N)/2}$$

for some  $C > 0$ ,  $\beta \in \mathbb{R}$ , and  $x^0 = (x_1^0, \dots, x_{N+1}^0) \in \overline{R_+^{N+1}}$ , where  $x_1^0 = \frac{b}{N-1} C^{2/(N-1)}$  and  $\beta = \frac{a}{(N+1)(N-1)} C^{4/(N-1)}$ ;

(ii) If  $a = 0$  and  $b = 0$ , then

$$u(x) = C \quad \text{for some } C > 0;$$

(iii) If  $a = 0$  and  $b < 0$ , then

$$u(x) = C x_1 + \left( \frac{-C}{b} \right)^{(N-1)/(N+1)} \quad \text{for some } C > 0;$$

(iv) If  $a < 0$  and  $b = B$ , then

$$u(x) = \left( \frac{2B}{N-1} x_1 + C \right)^{(1-N)/2} \quad \text{for some } C > 0;$$

(v) If  $a < 0$  and  $b < B$ , then there is no nontrivial nonnegative solution of the problem.

**Acknowledgements.** The author wish to thank the referees for their constructive and useful remarks.

### References

- [1] F. V. Bunkin, V. A. Galaktionov, N. A. Kirichenko, S. P. Kurdyumov, A. A. Samarsky, *On a nonlinear boundary value problem of ignition by radiation*, J. Comp. Math. Phys. 28 (1988), 549–559 (in Russian).
- [2] Duong Thi Thanh Binh, Tran Ngoc Diem, Dinh Van Ruy, Nguyen Thanh Long, *On a nonexistence of positive solution of a nonlinear Neumann problem in half-space*, Demonstratio Math. 31 (1998), 773–782.
- [3] Duong Thi Thanh Binh, Nguyen Thanh Long, *On the nonexistence of positive solution of Laplace equation in half-space with a nonlinear Neumann boundary condition*, Demonstratio Math. 33 (2000), 365–372.
- [4] M. Chipot, I. Shafrir, M. Fila, *On the solutions to some elliptic equations with nonlinear Neumann boundary conditions*, Advances in Diff. Equ. 1 (1996), 91–110.
- [5] B. Hu, H. M. Yin, *The profile near blow-up time for solution of the heat equation with a nonlinear boundary condition*, Trans. AMS. 346 (1994), 117–135.
- [6] B. Hu, *Nonexistence of a positive solution of the Laplace equation with a nonlinear boundary condition*, J. Diff. and Int. Equ. 7 (1994), 301–313.
- [7] Nguyen Thanh Long, Dinh Van Ruy, *On a nonexistence of positive solution of Laplace equation in upper half-space with Cauchy data*, Demonstratio Math. 28 (1995), 921–927.
- [8] Nguyen Thanh Long, Duong Thi Thanh Binh, *On the nonexistence of positive solution of a nonlinear integral equation*, Demonstratio Math. 34 (2001), 837–845.
- [9] Dinh Van Ruy, Nguyen Thanh Long, Duong Thi Thanh Binh, *On a nonexistence of positive solution of Laplace equation in upper half-space*, Demonstratio Math. 30 (1997), 7–14.

Nguyen Thanh Long

DEPARTMENT OF MATHEMATICS-INFORMATICS  
UNIVERSITY OF NATURAL SCIENCE  
VIETNAM NATIONAL UNIVERSITY HOCHIMINH CITY  
227 Nguyen Van Cu Str., Dist. 5  
HOCHIMINH CITY, VIETNAM  
e-mail: longnt@hcmc.netnam.vn

Dinh Van Ruy

DEPARTMENT OF MATHEMATICS  
COLLEGE OF INDUSTRY 4  
HOCHIMINH CITY  
12 Nguyen Van Bao Str.  
GO VAP DIST., HOCHIMINH CITY, VIETNAM

*Received May 5, 2002; revised version December 2002.*