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ON THE NONEXISTENCE OF POSITIVE SOLUTION
OF SOME NONLINEAR INTEGRAL EQUATION

Abstract. We consider the nonlinear integral equation

1) u)= | Lo g o e RV,
N ly —z|

where o is a given positive constant and the given function g(z,y,u) is continuous and

B, o
g(z,y,u) > M H_: for all z,y € RV, u > 0, with some constants ¢, 8,7 > 0 and

M > 0. We prove in an elementary way that if 0 < a < (8+4+ N)/(c+17),0 < 0 <
min{N, N + 8 — v}, N > 2, the nonlinear integral equation (1) has no positive solution.

1. Introduction

We consider the nonexistence of positive solutions of the following non-
linear integral equation

(1.1) u(@) =by | LB g e RV,
v ly—7l

where by = 2((N — 1)wn41)~! with wy4; being the area of unit sphere
in RN*1 N > 2,0 is a given positive constant with 0 < ¢ < N, and g :
R?N x R, — R is given continuous function satisfying:

There exist the constants o, 3,y > 0 and M > 0 such that

ly|Pu
1+ |z])7

and some auxiliary conditions below.

(1.2) 9(z,y,u) > M for all z,y € RN, u >0,
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In the case of 0 = N — 1, the integral equation (1.1) is a consequence of
the following nonlinear Neumann problem

N+41

(1.3) Av=> vz, =0, z€RY, an4 >0,
i=1

(1.4) ~Uzny1 (2,0) = g(z,v(2,0)) =0, z€ RN,

of which the boundary value u(z) = v(z,0) together with some auxiliary
conditions will be a solution of the equation

(1.5) u(z) = by S g(yL(y)Zdy, for all z € RV,
av =7l
In [1] the authors have studied a problem (1.3), (1.4) for N = 2 with the
Laplace equation (1.3) having the axial symmetry

1
(1.6) Upr + ~ur +u,,=0, Vr>0, V2>0,
and with the nonlinear boundary condition of the form
(1.7) —u,(r,0) = Iy exp(—r?/rd) + u®(r,0), Vr >0,

where Iy, 70, @ are given positive constants. The problem(1.6), (1.7) is the
stationary case of the problem associated with ignition by radiation. In the
case of 0 < a < 2 the authors in [1] have proved that the problem (1.6),
(1.7) has no positive solution. Afterwards, this result has been extended in
[7] to the general nonlinear boundary condition

(1.8) —u,(r,0) = g(r,u(r,0)), Vr>0.

In [8] the problem (1.3), (1.4) is considered for N = 2 and for a func-
tion g which is continuous, nondecreasing and bounded below by the power
function of order @ with respect to the third variable. It is proved that for
0 < a < 2 such a problem has no positive solution.

In [2]-[3] we have considered the problem (1.3), (1.4) for N > 3. The
function g : RV x [0,+00) — [0,400) is continuous, nondecreasing with
respect to variable u, satisfies the condition (1.2) with v = 0 and some
auxiliary conditions. In the case of 0 < o < N/(N —1),N > 2 we have
proved that the problem (1.3), (1.4) has no positive solution.

In [5], [6] the authors have proved the nonexistence of a positive solution
of the problem (1.3), (1.4) with

(1.9) g(z,u) = u®.

In [5] it is proved with 1 < a < N/(N —1),N > 2,and in [6] with
1<a< (N+1)/(N-1), N > 2. We also note that the function g(z, u) = u®*
does not satisfy the conditions assumed in the papers (2], [7], [8].
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In this paper, we consider the nonlinear integral equation (1.1) for 0 <
o < min{N, N+(3—v}, N > 2. The function g(z, y, u) is continuous, satisfies
the condition (1.2) for which (1.9) is a special case. By proving elementarily
we generalize the results from [1]-[9] that for 0 < a < (68+ N)/(o + v) the
equation (1.1) has no continuous positive solution.

2. The theorem of nonexistence of positive solution

Without loss of generality, we can suppose that by = 1 with a change
of the constant M in the assumption (1.2) of g. We rewrite the integral
equation (1.1)

(2.1) u(e) = Tu(z) = | 9.9, 84y ¢ ;e RV
v ly=zl7
R
Then we have the main result as follows.

THEOREM. Let g : R?N x [0,+00) — R be a continuous function satisfying
the hypothesis:

There exist constants M > 0, o, 8,7 >0, 0 < 0 < min{N, N + 8 — v},
N > 2 such that

lylPue
(1 + |e])”
If 0 <a< (B+N)/(c+7) then, the integral equation (2.1) has no con-
tinuous positive solution.

2.2 T,y u) > M for all z,y € RN, u>0.
(2:2) 9(z,y,u) 'Y

REMARK 1. The result of Theorem is stronger than that in [2], [8]. Indeed,
corresponding to the same equation (1.5), the following assumptions which
were made in [2], [8] are not needed here

(G1)  g(y,u) is nondecreasing with respect to variable u, i.e.,
(9(y,w) — g(y, v))(u—v) 20,
for all u,v >0,y € RV,
(G2)  The integral {,n 19_&’,0 % exists and is positive.
First, we need the following Lemma.

LEMMA. For everyp>0,¢>0,0<0 <N,z € RN. Put

(23) Alp,q(z) = | lylp(llytlﬂl_qdy
RN

?

we have

(2.4) Alp, g)(z) = +o0,
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fg-p<N-o,
1\ wy Jz[ptN—e
(2.5) Alp,q](z) convergent and Ajp, q)(x) > (N +p —) 29 (1+ |z))7’

if g—p > N — 0, where wy is the area of unit sphere in RN,

Proof. a) Let N — o > ¢ — p. We note that from the elementary inequality

(2.6) ly —z| < |y| +|z| for all z,y € RN,
we deduce
lylP(1 + lyl)~9dy
2.7 Alp, g)(z) 2
P2 | TR
+oo p+N-1
=wWN 4 dr = wNJp,q,0-

o (L+7)(r+|z()°

The integral J, ., 18 divergent forg+o—-p—-N+1<lorgq-p<N-o
and convergent forg—p > N — 0.

(2.8) vz € RN, Alp, q](z) is divergent for N — o > g — p.
b) Let N — 0 < ¢ — p. i) Let z = 0, we have

29) Apg(0)= | U
RN

w +S°° rN-1gpr w +§° dr
= WN T4 Naro—p ¥N —p—N+1°
o (1+r)aro—r 5 (14 r)aro—r-N+

Hence, the integral S;‘w Zm)'iva;-r—m’f is convergent <= o —p — N+1<
l1<qgq+o-p- N+14=>—p<N—a<q p<= N-0c<q-p
and the integral So HW is divergent <> o0 -p—-N+12>1or
1>q+0-p—-N+1<= N-oc<-porN-o>q-p<—N-02>q-p.
Hence,

(2.10) A[p, q)(0) is convergent <> N —0 < q—p,
and
(2.11) A[p, q](0) is divergent <= N —0 > q—p.

ii) Let = # 0, and R > 3|z| > 0. We rewrite

(212) App,g)(z)= | |y"’(|1y+_ |?;||?’""dy v Iyl”(|1y+_ Iilll“'dy
ly—zI<R

= Ip(z) + Jr(z).

ly—=z|>R
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Estimate Ip(z) = §,,_,<r JLL’K]%EP;'!E_ We have

P(1 + |y|)~d
(213)  Ip(@)= | lylP( Iyll Y
_ ly — =|
ly—=|<R
< sup PP(L+ )7 |
ly—zI<R ly-z|<R
R

_dy
ly — z|°

= sup |ylP(L+|y)"%wn | V7 ldr < oo

ly—=z|<R 0

Estimate Jr(z) =§,,_,;>n Llﬂlli_l-}"),-i! We have

(2.14) Jr@= | |yIP(|1y'|; Izlll—qdy

ly—=z|>R
< lyP(1 + fy|)~9dy
wizRolzl 97"
< lylP(1 + ly)~dy
S-S |l

& rP(147)"9rN-14r
Ir — I=l|”

+oo dr

N D

397

Notice that, from R > 3|z| > 0, we have r # |z|, for all r > R—|z|. Hence,

: +o00
the integral {5~ .\ =1

d
(1+:)'1r‘P"
or N - 0 < q— p. Hence,

(2.15) Jr(z) is convergent for N — o0 < ¢ —p.
Combining (2.10), (2.12), (2.13) and (2.15), we then have

(2.16) Vz € RN, Alp,qg)(x) is convergent for N —o < g — p.

Furthermore, for ¢ — p > N — o, we rewrite

x
=] rP+N=1gp rPHN=-14,

S fe S T+ r)(r + [al)”

= _](1) +J®

r.q,0 P:q,0?

forall:cGRN.

x+T is convergent for o +g—p—-N+1>1
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We estimate respectively the integrals J,S,lq),, and J,(,?g,,.
j) Estimate J,(,,lq),a

|z}

(2.18) I > |

pP,q,0 —
0

rP+N-14r 1 |g|ptN—<
(147l + =)~ (N+p)2° 1+ |z|)7

jj) Estimate J,(,?q) o

+oo p+N-14,
219) J@ > r
(2.19) S (1+r)(r+r)°

P90 —

=]
1 ¥ pptN-og, |z|p+N_" +oo dr

= 5o - o +1
2 2 r(l+r)e 2 2 (1+7)9

_ 1 |m|p+N—-a
T @ (Tl

Hence, (2.5) is deduced from (2.7), (2.17)-(2.19). Lemma is proved com-
pletely.

Proof of Theorem. We proceed by contradiction. Suppose that there exists
a continuous positive solution u(z) of the integral equation (2.1). We suppose
that there exists o € RV, such that u(zo) > 0. Since u is continuous, then
there exists rg > 0 such that

(2.20) u(z) > %u(mo) for all z € RN, |z — zo| < ro.

It follows from (2.1), (2.2), (2.20) and the monotonicity of the integral
operator

(2.21) u(z) =Tu(z) > M1+ |z|)~" S ly|Puc(y)dy

O
& B
>MQ1+ =)~ (%u(xo)) | I.vl/y|——flj"’ for all z € RN,
ly—zo|<ro

Using the inequality

(222)  |y—z| < |yl + =] £ (1 + |zo| +70)(1 + |2]),
for all z,y € RN, ly — xo| < 7o,

we obtain from (2.21), (2.22) that
(2.23) u(z) > uy(z) = my(1+ |z])~%, forall z € RN,



On the nonezxistence of positive solution 399

where

1 a
28 a=o -+, mi=M(Gu) (ol tro) |l
: ly—zol<ro
Using again the equality (2.1), it follows from (2.2), (2.23) that

By
(2.25) u(z) = Tu(z) > M1 + |z|)™" S |y||y L Sjlldy
RN

B, a
> M(]. + |I|)—7 S Iyl ui (yldy
v 1y —=l
> MmS(1 + |z|)~"A[B, aq1](x), for all z € RV,
Now, we consider separately the cases of different values of c.

Case 1: 0 < o < (f+ N —o0)/(0+~). We obtain from (2.4), (2.25) with
p=Bg=aq=clc+7),9-p=0a(0+7)-B<N-o,that
(2.26) u(z) = 400, forallz e RV.
It is a contradiction.

Case 2: (B+ N —0)/(c +7) < a < (B+ N)/(o + ). Using (2.5) with

p=08,9q=aq =a(c+7),q—p=al(c+v)— B> N — o, we deduce from
(2.25) that

(2.27) w(z) > ug(x) = mo|z|P2(1+ |2|)~%, for all z € RV,
where

WN 1 1
2.28 = N - = = aXNe = 4=
( ) D2 ﬂ+ 0,42 = 0qy +7, M2 Mm]_ 00 (ﬂ'i'N aq1)

Suppose that
(2.29)  u(z) > up_1(z) = mp_q|z|P*-1 (1 + |z])"%-1, for all z € RV,

If agk—1 — B — apr—1 > N — o, then, using (2.1), (2.2), (2.5) and (2.29),
we obtain

(2.30) u(z) = Tu(x) > M(1 + |z|)~7 S Iyllﬂuj@/'ldy
rv WTF
lylPug_y (y)dy

>M(A+ |z~
e §

=Mmg_;(1+ |z|)7"A[B + apx_1, agx-1](z)

1 1
> Mmg
- k-1 (N+,3+ opr—1 + aqk—l)
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5 ‘;_2’|$|ﬂ+am_1+N—a(1 + |zf) o1,

Hence
u(z) > ug(z) = my|z|P*(1 + |z|)~%, for all z € RV,

where the sequences {px—1}, {qk—1}, {mr—1} are defined by the recurrence
formulas

o7 =B +apk_1 + N~ 0, g = age_1 + 7,

(2.31) 1 1 1
mE = 2_"Mwng_l(Pk ), k>3.

From (2.28), (2.31) we obtain
((k-1)(B+ N ~0), ifa=1,

(2.32) pr = < (L——"’c——i)(ﬂ+N—a),

l-a
(| f(B+N-0)/(e+7)<a<(B+N)/(c+7), a#l,

(o+ky, fa=1,

1-— k-1
(2.33) g = { qrak—! +7(L),

l1-a

( f(B+N-0)/(c+7)<a<(B+N)/(c+7), a#l
It follows from (2.1), (2.2) and (2.30), that

(2.34) u(z) > Mmg(1+ |z|) " A[B + apk, ag)(x), for all z € RV,

So, from (2.33), (2.34), we only need to choose the natural number k > 3
such that

(2.35) agr — B —apx <N -0 < age—1 — f — ape_1,

since A[B + apk, aqxk](z) = +o00.
By (2.32), (2.33), (2.35) we choose k as follows

j) If o = 1, we choose k. satisfying grg=— <k <1+ g%,
i) If BEY=2 « o < BN 4nd o # 1, we choose k satisfying ko < k <

o4y o+ N
ko + 1, where ko = iz In(FLE5=6-10)

Case 3: a = (8 + N)/(o + 7). We rewrite (2.25)

(236) u(:l,‘) > Mmfi“(l + |$|)—7 S |y|ﬂ(1|_;|j/l3:|_aﬂ_Ndy
RN

= Mm$(1+ |z|)~7A[B,B+ N|(z), forallze RV.
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On the other hand, for ei/ery z € RN, |z| > 1, we have

lylP (1 + Jyl)~#~Ndy
(2.37) A[B,B+ N)(z) > RSN (ol + |2)°

+oo rP+N-14,

= | TPy

el rA+N-14y
>
Z WN § (1 + 1.),3+N(7~ + |.’L'|)”

= wyH(z).

Notice that for every r such that 1 < r < |z| we have

B+N : 1-0
T 1 min{1,2°~°}
. D> — > .
e3®) (1) 2 g ad ey 2 TR0
Then

||

r B+N 1 dr
(2.39) H(z) = § (1—:;) (r+|z)o=1r(r + |z|)

1  min{1,2!"7} GO

> .

S A e
1  min{1,2!7°} 1+ |z|

SN T e )

It follows from (2.36), (2.37), (2.39) that
0, ifl[z]<1,
(2.40) u(z) 2 vo(x) = {C2|x|—a(1 + |x|)——y(ln(1_-l-2]1|))sg, if |z > 1,
with
o min{1,2-°
(241) sg = ]_, C2 = Mml wN%—}
Suppose that

(2.42)  u(z) > ve—1(z)

0, if|z|<1,
_ Sk-1
=\ Ce-tlelo(1 + |a:|)“7(ln (3-*#)) . if g 21,

and Ck_1, sk—1, are positive constants. Then, using (2.1), (2.2), (2.42), we
have

(243)  u(z) > M(1+|z|)~" | lylPvg_, (y)dy
RN |y - x|6
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1 lyPvEii(y)dy
L W E

_ [yl (n(2HH))ees -1 dy
= M(1 YCR 2
A+l | poets = (a1 T

asg_1
oo (1 (32)) 7 o
= o _’Y
MwnCg_ (1 + |=]) § (14 r)>(r + |z|)°

+oo ﬂ+N—Ot¢T—1(l 147 ask—1.
_ N oy r n( 2 )) T
M e +12D™ § — e e

Considering |z| > 1, we have

asp_1
4oo TBTN—ao—1 (ln (I—“Q'i)) dr

2.44

e e ey

asg_y +00 B+N—-ao-1
> (1 1+ |z| S T dr
2 ol (r+r)>r(r+r)°

1 L+ 2\ \** T e
- 2a7+a(ln (T)) J roi7odr

||

1 1

= gav+o ) |$l:|°

We deduce from (2.43), (2.44) that

. (ln( 1 -|-2|IE| ))ask._l )

0, iflz|<1,
(245) (@) 2 0= =\ Cylai=~(1-+1a)7 (10 (L5)), it el 21
where
1 (¢
(246) Sk = ASk—1, Ck = WMCUNCIC_I, k Z 3.

From (2.41), (2.46) we obtain

k-2
o k—2_ k-2_ [B+N _1 ak=?
(2.47) Sk = So =« = ( o ) , Cr= D(DC’g) ,

where D = (TC}T,;MwN)I/(a_l).
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Then, with |z| > 1, we rewrite (2.45) in the form

(248)  u(z) > w(z) = %|:1:|“’(1 + |z|) =7 (DC2 In (1 +2|:B|)>
Choosing g such that

DCyln (%”iﬂ) >1.

By (2.48), we deduce that u(zo) = +00. It is a contradiction.
Theorem is proved completely.

REMARK 2. a) In the case of @ = N/o,0 = N—1, N = 2, the estimate (2.45)
is simpler than that in [1], where vg(r) is given in the form of a functional
series.

b) In the case of g(z,u) we have not a conclusion about a> N/(N-1),
and N > 2, yet. However, when g(z,u) = u*, N > 2, N/(N-1) L a <
(N +1)/(N —1), B. Hu in [6] have proved that the problem (1.3), (1.4),
(1.9) has no positive solution. In the limiting case « = (N + 1)/(N - 1),
positive solutions do exist (See [4-6]). In particular, for this value of a, the
authors of [4] gave explicit forms for all nontrivial nonnegative solutions

u € C*(RY*1) N CY(RY*?) of the problem
—Au=au®t®T in Rf'H,
“Uznyr (:B/,O) = bua(l‘/,O) onzy4y =0.

They proved the following results:
(()Ifa>00ra<0,b>B=+/a(l - N)/(N +1), then

u(z) = C(|lz - °2 + )1~/
for some C > 0, B € R, and z° = (a3,...,2% ;) € RN*!, where 2§ =

7O/ ani = [ty YN
(ii) If a = 0 and b = 0, then
u(z) =C for some C > 0;
(iii) If a = 0 and b < 0, then
_o\ (N-D/(N+1)
u(z) = Czy + <T)
(iv) If a < 0 and b = B, then

for some C > 0;

. 9B (1-N)/2
u(z) = (N_la:1+C) for some C > 0;
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(v) If a < 0 and b < B, then there is no nontrivial nonnegative solution
of the problem.

Acknowledgements. The author wish to thank the referees for their
constructive and useful remarks.

References

[1] F. V. Bunkin, V. A. Galaktionov, N. A. Kirichenko, S. P. Kurdyumov,
A. A. Samarsky, On a nonlinear boundary value problem of ignition by radiation,
J. Comp. Math. Phys. 28 (1988), 549-559 (in Russian).

[2] Duong Thi Thanh Binh, Tran Ngoc Diem, Dinh Van Ruy, Nguyen Thanh
Long, On a nonexistence of positive solution of a nonlinear Neumann problem in
half-space, Demonstratio Math. 31 (1998), 773-782.

[3] Duong Thi Thanh Binh, Nguyen Thanh Long, On the nonezistence of posi-
tive solution of Laplace equation in half-space with a nonlinear Neumann boundary
condition, Demonstratio Math. 33 (2000), 365-372.

[4] M. Chipot, I. Shafrir, M. Fila, On the solutions to some elliptic equations with
nonlinear Neumann boundary conditions, Advances in Diff. Equ. 1 (1996), 91-110.

[5] B. Hu, H. M. Yin, The profile near blow-up time for solution of the heat equation
with a nonlinear boundary condition, Trans. AMS. 346 (1994), 117-135.

[6] B. Hu, Nonezistence of a positive solution of the Laplace equation with a nonlinear
boundary condition, J. Diff. and Int. Equ. 7 (1994), 301-313.

[7] Nguyen Thanh Long, Dinh Van Ruy, On a nonezistence of positive solution
of Laplace equation in upper half-space with Cauchy data, Demonstratio Math. 28
(1995), 921-927.

(8] Nguyen ThanhLong, Duong Thi Thanh Binh, On the nonezistence of positive
solution of a nonlinear integral equation, Demonstratio Math. 34 (2001), 837-845.

[9) Dinh Van Ruy, Nguyen Thanh Long, Duong Thi Thanh Binh, On a nonez-
istence of positive solution of Laplace equation in upper half-space, Demonstratio
Math. 30 (1997), 7-14.

Nguyen Thanh Long

DEPARTMENT OF MATHEMATICS-INFORMATICS
UNIVERSITY OF NATURAL SCIENCE

VIETNAM NATIONAL UNIVERSITY HOCHIMINH CITY
227 Nguyen Van Cu Str., Dist. 5

HOCHIMINH CITY, VIETNAM

e-mail: longnt@hcme.netnam.vn

Dinh Van Ruy

DEPARTMENT OF MATHEMATICS
COLLEGE OF INDUSTRY 4

HOCHIMINH CITY

12 Nguyen Van Bao Str.

GO VAP DIST., HOCHIMINH CITY, VIETNAM

Received May 5, 2002; revised version December 2002.



