DEMONSTRATIO MATHEMATICA
Vol. XXXVI No 2 2003

Tomasz Swiderski

GLOBAL APPROXIMATION THEOREMS
FOR THE GENERALIZED MODIFIED SZASZ-MIRAKYAN
OPERATORS IN POLYNOMIAL WEIGHT SPACES

Abstract. In the present paper we study the modified Sz4sz-Mirakyan operators.
This modification generalizes the integral operators proposed by S. M. Mazhar and V.
Totik in [3]. Moreover we present bonduary value problems related to these integrals.

1. Introduction

S. M. Mazhar and V. Totik in [3] have introduced the integral modifica-
tion of the Szdsz-Mirakyan operators to approximate functions defined on
[0,00) as

[ o] [o o)
La(f,2) =1 Y pos(®) | pak(®f(Ddt, neN={0,1,2,...}
k=0 0 .

where pp k(z) = e‘"”f.(('ﬂ—:y. The approximation properties of these opera-

tors have been studied by H. S. Kasana [2], A. Sahai and G. Prasad [4]. Now,
we shall generalize the above mentioned operators in the following way.
Let v € (-1, 00). We consider

o0

My (f,z)=n an,k(z) S Pk+o(t)f(t)dt, n€eN.
k=0 0

We observe that M3(f,z) = L,(f,z) and that the kernel of the operator
M} for v # 0 is not symmetric for z and t.
In the paper [5] E. Wachnicki considered the integral V,(f, z,t) given by

Vlfot) == | (f)’ e HI, (‘/’”_> f(s)ds

4t0 T 2t
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for t € (0,00), z € (0,00), where I, is the modified Bessel function, i.e.

( )u+2k
1) L(z) = Z R+ k+1)°
For t = £-, n € N* =N\ {0}, by (1) we obtain
1 T S 2 —(ZTT+s)n
Wlha g =n| (2) e erorranvans(s)ds
. -—(:: sin (n\/_)u+2k s)ds
- (S, (z) ' Zk'I‘(u+k+1)f( )
= M;(f,2).

Using the results of the paper [5], we observe that the function

(:l?, t) — VV(f: z, t)
is a solution of the problem

du(z,t) . 8%u(z,t) Ou(z,t)
@) o e T D
Jim u(zo,t) = £(o),

where the function f is continuous at =gy € [0,00). This implies that the
operator M} can be used to the approximation of the solution of the problem
(2).

In this paper, we will con51der operators M} in polynomial weighted
spaces. Let po(t) = 1, p,(t) = 1+t" for r € N* and ¢ € [0, 00).

Let B, denote the set of measurable functions f : [0,00) — R, such that

3M > 0Vt € [0,00) | F(B)pr(t) |< M.

The norm on B; is defined by || f ||-= sups¢o,0) (| (t)|P-(t)). We consider
also the space C, = B, N C[0, 00).

In section 3 we prove, as main results, that

1) M7(f) € By for f € B, and || Mz (f,2) ||l-< LY || f |I-,

2) lim(p, z)—(c0,z0) M (f,Z) = f(x0), for f € B, and zo € [0,00) is the
point of continuity of f.

3) IMX(f,z) - f(2)| < Liwr (f,\/2+ %) for f € Cr, where LY is a
constant, depending only on r and v, while w,(f,.) stands for the weighted
modulus of continuity of the function f, i.e.

wr(fyh) = oy )(Pr(z)lf(t)—f(w)l)-
I’t—zlﬁz
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We also give the Voronovskaya theorem for the operator M}. The results
of this type for the Szasz-Mirakyan operators have been obtained by
M. Becker [1] and for modified Szdsz-Mirakyan operators by S. M. Mazhar
and V. Totik [3].

2. Auxiliary results

First, we need certain properties of the sequence (pn k). It is easy to
observe that the series

o0
Z k*Pn k()
k=0

is convergent for z € [0,00),n € N* and s € N. Let us denote

An,s(z) = Z kspn,k(:l:), seN

k=0
and observe that A, o(z) = 1. Since
(3) kpn,k(z) = nxpn,k—l(z)7 n, ke N*’ TE [Oa OO),
by induction argument we get

(s
@ Ansi(@) =nzy" () Ans(2)
1=0

for n € N*, s € N and z € [0, 00). Moreover
(5) |An,i(2)| < Lin'(1+ )
and ' . .
(6) |An,it+1(z) — (nz)*! < Kin'(1 + %),

where L;, K, are some positive constants depending only on <. Using the
properties of the Gamma function we obtain

™ oxotspn,kw(t)dt = p—(s+1) I'k+v+s+1)

for k €N, s,n € N*

° Fk+v+1)
and
[0 o]
n S Pn ko (t)dt = 1.
0

Notice that

Fk+v+s+1) &gy
(8) T+ v D —(k+u+1)-...-(k+u+s)—ngs,,-,

where By ; are coefficients depending only on 4,s and v, By, = 1. By easy
calculations we get

M::(la 1:) =1,



386 T. Swiderski

ME((¢ - 2), )-"“,

(9) My((t - 2)?2) =

(1 +v)(2+ u)
n?
02 1 Co
Mrlzl((t - :12)4,1‘) = 1:2"_2 +z n3 +—

where C; for i € {0,1,2} are constants depending only on v.

LEMMA 1. Let s, € N, r < 3. There exists a constant L (depending only
on s and v) such that for all n € N* and z € [0, 00),

(10) ps(2)| My (P71, )| < LY.
Proof. Let r € N*. It is easy to observe that (7), (8) imply

(11) MY(p7lz)=M!(1+t",z)=n an,k(a:) S (1+t")pn, k+,,(t)dt

k=0 0
r-1
= 1+ 0™ Ay (2) 4777 3 BifAn(a).
1=0

On the other hand
1407 "Ap(z) =14 2" + n7"(Ay - (z) — (nZ)").

Hence, by (6), we have |1 + n~" A, (z)| < (1 +2z7) + K, (1 4+ z""1). By (5)
we obtain

r—-1
[ B: Am(z)l Z BY,Lin*~"(1 + ).
i=0 i=0
Finally, because
142"
142z
we get (10). The case r = 0 is obvious.

<2 forz €[0,00), r € {0,1,..., s},

LEMMA 2. Let 3> a > 6 > 0. Then

z—4

hm n Z Pn k() S 1 Pp k4o (t)dt =
=0

uniformly on [a, B).
Proof. By the inequality
t’e ' <a% % t>0,a>0
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the series 3 22 Pn k(Z)Pn k+v(t) is uniformly convergent on [0, 00) with re-
spect to t for every n € N, £ > 0 and v > —1. Thus

00 z—94 z—86 oo
nY Pok(2) § tPaprn(t)dt= § ) pop(@)pnrr(t)tdt.
k=0 0 0 k=0

But
4Rk +v+1) > (26— DIT(v + 2)
for k € N* and v > —1. Hence

[o o]
7Y Pk (Z)Pa k4o (B
k=0

(o] 2 t)k
< Ane~"(=+t) (nt)¥t" (1 + _(n z )
k2=:1 (2k - 1)!

< Ane""(’“)(nt)"t’(l + 2n\/;£e2"‘/’”—t)
= Apvtle—n(z+t)w+r +2 Anv+2 \/Etv+r+% e—n(ﬁ_ﬁ)2’

where 4 = ma.x{ﬁvl—_Hj, ﬂﬁ;} This implies that

1—6 [os)
0< S n Z pﬂ,k(z)pn,k+u(t)trdt
0 k=0

na2
< L(e—nﬁnu-}-l + nv+2e—ﬂ-)
for = € [a, B], where L is a positive constant. Hence the lemma follows.

LEMMA 3. Let 8,0 > 0. Then

o0 o0
Jm {2 Y pop(@)papn(E)tTdt =0
z+6 k=0

uniformly on [0, B).

Proof. Similarly to the proof of Lemma 2 we have

[= <IN ¢

0< | 7)) Pai(@)Pnksn(t)tdt
z4+6 k=0
[o o] [e o] 1
< AemmE L | et a4 2402 /B | e VAV i gy
z+5 x40
= Ji(z) + Jo(x)
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for z € [0, B]. Observe that

n’ ®
< -2z v+
Ji(z) < —_I‘(u+ 0 ,§5€ 2¥Tdz,

S0 we get
lim, 0 J1(z) = 0 uniformly on [0, 3.
Let a € (0,1 — N/Ee_b']' Then a < 1+ /7% for t € (z + 4,00) and
z € [0, 8]. Moreover /z — /t > av/t for t € (z+6,00) and z € [0, 3]. Hence
o0 o0
Jo(z) < 24nv*2/B S e~naltyrr gy < Knl- " S e 22" dz
z+6 na2é
for £ € [0,8], where K is a positive constant. This ends the proof of
Lemma 3.

3. Main results
THEOREM 1. Letr € N, n € N*, If f € B, then

| Mz (f, ) e < L AL S Iy

for some constant LY depending only on r and v.

Proof. Let f € B,.. We have

pr()| My (f, )| = pr(2)| My (7 ' £, 2)| < pr(2) || £ Il 1Mer (7 )|
and by Lemma 1 the result follows.
COROLLARY 1. Let r € N, n € N*. Then the operator M} : B, — B, is
linear, positive, continuous and || MY ||< LY.
THEOREM 2. Let f € B, and zo € [0,00). If f is continuous at zo, then
lim(n,z)—v(oo,a:o) My (f,z) = f(zo).
Proof. Let zo # 0 and ¢ > 0. We take é§ € (0, o) such that |t — zo| <
implies |f(t) — f(zo)| < 5. Then we have

z0—0 o0

IMY(f,z) ~ f(zo)| < § 7D pra(@)prssn(DIf () — F(zo)|dt
0 k=0
zo+6 o0

+ | 2 Pk (@Pakrn (B F () ~ f(zo)ldt
ro—48 k=0

+ | 0 Y pap(@Pngru®)If () = f(zo)ldt
zo+d k=0

=J1+ Jo+ J3.
By (9) we get Jo < $M}/(1,z) = 5.
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Using Lemma 2 and Lemma 3 we can choose ng € N such that J1+J3 < §
for n > ng and |z — zo| < §.
In case zg = 0 we consider only Jp = Sg and J3 = {3°, where § > 0 is
such that ¢ € (0, 6) implies |f(t) — f(0)] < 5.
COROLLARY 2. If f € C,, then
Jim M;(f, z) = f(z) forz € [0,00)
and this convergence is uniform on every compact subset of [0, 00).

THEOREM 3. Let r € N, n € N*. Assume that the function f € C, is
differentiable on [0,00) and f' € C,. Then for z € [0, 0),

(12) pr(@)IML(S,2) = F@I I 7 I L2y E 4

where LY is a constant depending only on r and v.

Proof. We have
; t

f(t) = f(z) = | f'(r)dr

x

and therefore
1£@) ~ F@) I f e 1t = 2|7 (8) + 27 (2))
Hence, by (9), we obtain
pr(z)|M7(f,z) - f(2)]
< f e (M (1t = 21, 2) + pr(@) ME (|t - zlp7 ' (8), 2))
= (A +R) I f I
Since M is a positive operator then
(13) M;(|fgl,z) < \/ME(f% 2) My (6P, ).
Using (13) we get

J1 = M (|t — zl,z)
< \/ME(L )My (¢t - )2, 2)
< \/2_m+ (v+1)(v+2)

n n?

and
Jo = pr(@)My, (It - 2l (1), 2)

< /Mz((t - 2), 2)p2(z) ME (5 2(t), ).
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But
P2(t) < par(t) and p72(t) < p3; (2) + 207 (8).
So
PR(@) M (972, 2) < por(2) (M3 (3, 2) + 2My (97, 7).
Hence, by Lemma 1, we obtain
p@) My (57, %) < KY

where KY is a positive constant. Thus

2z (v+1)(v+2) . I
J1+J25\/7+T(1+\/Ky)_L,\/;+F,

where LY is a positive constant. This completes the proof of (12).
THEOREM 4. Let r € N, n € N*. If f € C,, then for all z € [0, 00),

P @M1, 2) - (@) < Leon (£, 2+ 75

where LY denotes a constant depending only on r and v.
Proof. Let f € C,. We define the Stieklov function fp:

h
fu(@) =h7{ f(z+t)dt for z € [0,00), h € (0, 00).
0

Notice that
pr(z)| M7 (f, z) - f(z)|
< pr(@){IME(f = fro D)+ 1M (f, 2) = (@) + | fa(2) = f(2)]}
=N+ J2+ Js.
By Theorem 1 we have

Ji S LY f ~ fo llr< Liwe(f, B)
and
J3 I f = fu llr< wr(f, B).
From Theorem 3 we get

B <l Sl L n+—

< L¥h~Yw, (f, h)y/ = + —
Finally,

P @M, 2) — S@) < (B + 14D L2 4 5 Jan(1, )
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Setting h = /% + ;12 we obtain the assertion of Theorem 4.

THEOREM 5. Let r € N, n € N* and f € C,, f € C'. We assume that there
erists f"(z) at a fized z € [0,00). Then

lim n[MX(f,2) = f@)] = (v + Df'(z) +2f"(z).
Proof. For fixed z € [0, 00) we define

ct0) = (= WO = 1@ + @ -2) + 4= i 1£2,

0 ift==z.
The function e is continuous on [0, 00) and lim;—,, €(t, z) = 0. Let us notice
that

lME(f,2) = £(z)
= nMZ (£ @)t - 2) + 5 @) - 2 + et 2)(t - 2%, )

o+ 1+v)(2+v)

= @+ 7@+ ( ik

By (13) we get
nM(e(t,2)(t — 2), @) < /M (¢ - @)1, 2) M (&(t, 2), ).
From (9) we have

)f"(m) + M (elt, )t - )2, 7).

[ny/ M (¢ - )4, 2)] < L¥(=),
where L¥(z) is independent of n. By Corollary 2 we have

nl_l_'nolo V My (ez(ta z),z) =0,

so we get the assertion.

REMARK. If the assumptions of Theorem 5 hold for a function f then the
rate of convergence of MY(f,z) is O(%)
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