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GLOBAL APPROXIMATION THEOREMS 
FOR T H E GENERALIZED MODIFIED SZASZ-MIRAKYAN 

OPERATORS IN POLYNOMIAL WEIGHT SPACES 

Abstract. In the present paper we study the modified Szasz-Mirakyan operators. 
This modification generalizes the integral operators proposed by S. M. Mazhar and V. 
Totik in [3]. Moreover we present bonduary value problems related to these integrals. 

1. Introduction 
S. M. Mazhar and V. Totik in [3] have introduced the integral modifica-

tion of the Szasz-Mirakyan operators to approximate functions defined on 
[0, oo) as 

oo oo 
Ln(f, x) = n £ Pntk(x) 5 pn>k{t)f{t)dt, n € N = {0,1,2,. . .}, 

fc=0 0 

where pn,k(x) = e _ n xr$c+ïy - The approximation properties of these opera-
tors have been studied by H. S. Kasana [2], A. Sahai and G. Prasad [4]. Now, 
we shall generalize the above mentioned operators in the following way. 

Let v € (—1, oo). We consider 
oo oo 

MXif, Pn,fc(x) S PnMu(t)f(t)dt, n 6 N. 
k=0 0 

We observe that M°( / , x) = L„(/ , x) and that the kernel of the operator 
for v ^ 0 is not symmetric for x and t. 

In the paper [5] E. Wachnicki considered the integral V v ( f , x, t) given by 

V„(f, x, t) = i J ( £ ) * f(s)ds 
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for t € (0, oo), x 6 (0, oo), where /„ is the modified Bessel function, i.e. 
oo (z\v+2k 

For t = n € N* = N \ {0}, by (1) we obtain 

= n T ( i ) 2e-{x+3)nIu(2ny/^)f(s)ds 

° ° f ( s ) d s 
OO / s J 

= M Z ( f , x ) . 

Using the results of the paper [5], we observe that the function 

(x,t) —*Vv{f,x,t) 

is a solution of the problem 
' du(x,t) d2u(x,t) . du(x,t) 

- = 4x - ' /l'" ' 1 * -
(2) ft " t ^ + ^ + V- dx 

l i m u(xo,t) = f(xo), t i—>0+ 
where the function / is continuous at xo € [0, oo). This implies that the 
operator can be used to the approximation of the solution of the problem 
(2). 

In this paper, we will consider operators in polynomial weighted 
spaces. Let po(t) = 1, pr(t) = yqfp for r G N* and t € [0, oo). 

Let Br denote the set of measurable functions / : [0, oo) —> R, such that 
3M > 0 Vt € [0, oo) | f(t)pr(t) |< M . 

The norm on Br is defined by || / | | r= supt6[0 oc)(|/(i)|p r(i)). We consider 
also the space Cr = BrCI C[0, oo). 

In section 3 we prove, as main results, that 
1) M£(/) 6 Br for f e B r and || M£(/ ,x) | | r< UT || / ||r> 

2) lim(nil)_>(OO)I0)M^(/,x) = /(xo), for / € Br and x0 G [0,oo) is the 
point of continuity of / . 

3) \M%(f, x) - / (x) | < Lv
rur ( / , ^ + for / e Cr> where V r is a 

constant, depending only on r and u, while ujr(f,.) stands for the weighted 
modulus of continuity of the function / , i.e. 

u r ( f , h ) = s u p ( p r ( x ) \ f ( t ) - f ( x ) \ ) . 
i,te[0,oo) 
\t-x\<h 
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We also give the Voronovskaya theorem for the operator The results 
of this type for the Szasz-Mirakyan operators have been obtained by 
M. Becker [1] and for modified Szasz-Mirakyan operators by S. M. Mazhar 
and V. Totik [3]. 

2. Auxiliary results 
First, we need certain properties of the sequence (pn,fc)- It is easy to 

observe that the series 

oo 

k=0 is convergent for x G [0, oo), n G N* and s G N. Let us denote oo 
An,s (®) = 53 k°Pn>k (®)'> S 6 N 

fc=0 

and observe that .An,o(x) = 1. Since 

(3) kpn<k{x) = nxpnik-i(x), n, k G N*, x G [0, oo), 

by induction argument we get 

(4) = nx 5 3 ^ An,i (x) 

for n G N*, s G N and x G [0, oo). Moreover 

(5) I^m(X) | < 2 ^ ( 1 + *<) 

and 
(6) \An,i+1(x) - ( n x ) i + 1 | < Kin'i 1 + x% 

where Lj , K{ are some positive constants depending only on i. Using the 
properties of the Gamma function we obtain 

(7) °\t°pnM„(t)dt = n - ( * + l ) r ( f c + ^ + 1 ) f o r fc G N, S , n G N* 
o 1 \ K + V ' L ) 

and oo 
n 5 Pn,k+v{t)dt = 1. 

0 
Notice that 

(8) =(k + v + l)-...-(k + v + s) = ± VB^ 

where B^ axe coefficients depending only on i, s and v, B^s = 1. B y easy 
calculations we get 

Mvn{ l , x ) = l , 
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U+l 
MZ((t-x),x) = 

n 

(9) = 
n n' 

•K/rvii± \4 \ 2^2 . Co 
~ *) . *) = ® ~2 + XZJ + ZA ' 

where Cj for i 6 {0 ,1 ,2 } are constants depending only on v. 

LEMMA 1. Let s, r € N, r < s. There exists a constant L"s (depending only 
on s and v) such that for all n 6 N* and x € [0, oo), 

(10) Ps{x)\M^\x)\<Va. 

Proof. Let r e N*. It is easy to observe that (7), (8) imply 

(11) x) = A O 1 + t\ x) = n £ pn<k(x) J(1 + tr)pnMv(t)dt 
k=0 0 

r—1 
= 1 + n"M n , r (x) + n~T £ B^An>i(x). 

i=0 

On the other hand 

1 + n-rAnir(x) = l + xr + n~r(Antr(x) - (nx)r). 

Hence, by (6), we have |1 + n"Mn , r(x)| < (1 + xT) + Kr{ 1 + a?-1). By (5) 
we obtain 

|n_r E B^An<i(x)\ < £ B^Uri-'i 1 + 
i=0 i=0 

Finally, because 

< 2 for a; € [0, oo), r 6 {0,1,.. . , s}, 

we get (10). The case r = 0 is obvious. 

LEMMA 2. Let /3 > A > 6 > 0 . Then 
oo x—S 

„ ' ^ " E ^ W \ trPn,k+At)dt = ° 
n - > ° ° fc=0 0 

uniformly on [a,/?]. 

Proof. By the inequality 
tae~l < aae~a, t > 0, a > 0 
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the series J2kLoPn,k(x)Pn,k+v(t) is uniformly convergent on [0,oo) with re-
spect to t for every n 6 N, x > 0 and v > —1. Thus 

oo x—S x—6 oo 
\ trPn,k+v{t)dt = j n^r,pnik(x)pn,k+l,(t)trdt. 

k=0 0 0 fc=0 

But 
4fcfc!r(A: +1/ + 1) > ( 2 k - 1)!I> + 2) 

for k G N* and u > —1. Hence 

oo 

fc=0 

< Ane-n^(nt)vtr{l + 2 n ^ t e 2 " ^ ) 

= Anv+1e~<x+thu+T + 2Anu+2^tl/+r+h-n^~Vi)2, 

where j4 = max{r^t/
1

+1^, This implies that 

x—S oo 
o < \ n Pn,k{x)Vn,k+u{t)trdt 

0 fc=0 

< L ( e " n / V + 1 + n ' + V ^ ) 

for x € [a, /?], where L is a positive constant. Hence the lemma follows. 

LEMMA 3. Let 13,5 > 0. Then 
oo oo 

l im \ n Y] pn<k(x)Pn,k+v(t)trdt = 0 n—>oo J ' 1+5 Jfc=0 
uniformly on [0, j3]. 

Proof . Similarly to the proof of Lemma 2 we have 
00 oo 
\ n^2Pn,k{X)Pn,k+At)tTdt 

x+S k=0 
oo oo 

< Ae-nxnv+1 j e~nttv+rdt + 2Anv+2\/j3 \ e~n^-^2tv+r+^dt 
x+S x+S 

= Jl(x) + J2(x) 
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for x G [0,/3]. Observe that 
T OO 

so we get 
l im^oo J i ( i ) = 0 uniformly on [0, /?]. 

Let a G (0,1 - Then a < 1 + f o r t € (x + 6, oo) and 

x G [0, /?]. Moreover -̂ /i — \ft> ocy/t for t € (x + J, oo) and x € [0, /?]. Hence 
OO oo 

J2(x) < \ e~na2tt"+rdt < Knl~T \ e~zzv+rdz 
x+6 na2S 

for x G [0, /?], where K is a, positive constant. This ends the proof of 
Lemma 3. 

3. Maun results 

T H E O R E M 1. Let r e N , n e N * . If f e Br then 

II K ( f , - ) llr<^||/||r, 

for some constant L" depending only on r and v. 

Proo f . Let / G Br. We have 

Pr(x)\MZ(f,x)\ =pr(x)\M^p-1prf,x)\ <Pr(x) || / ||r |M^{p~\x)\ 

and by Lemma 1 the result follows. 

C O R O L L A R Y 1. Let r G N , n G N * . Then the operator : Br —> Br is 

linear, positive, continuous and || ||< L". 

T H E O R E M 2. Let f G Br and xq G [0, O O ) . If f is continuous at xo, then 

l i m (n ,x ) - » ( oo ,x 0 ) MZ(f,x) = / ( X 0 ) . 

Proo f . Let xo ^ 0 and e > 0. We take S G (0,xo) such that 11 — xo| < 6 

implies |/(i) — /(xo)| < Then we have 

xo—<5 oo 

|AC(/,x) - /(xo)| < J nY,Pn,k(x)PnMAt)\m - f(xo)\dt 
0 fc=0 
xo+5 oo 

+ \ nJ2pn<k(x)pn<k+l/(t)\f(t)-f(x0)\dt 
XO-6 k=0 

oo oo 

x 0 +5 k=0 

= Jl + J2 + J3-

By (9) we get J2 < §M£(1, x) = 
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Using Lemma 2 and Lemma 3 we can choose no 6 N such that J\+Jz < | 
for n > no and \x — rco| < f • 

In case XQ = 0 we consider only J2 = $Q and J3 = where S > 0 is 
such that t 6 (0,5) implies \ f(t) - /(0) | < f . 

COROLLARY 2 . If f e Cr, then 
lim M£(/ , x) = }{x) for x G [0, oo) n—*oo 

and this convergence is uniform on every compact subset of [0, oo). 

THEOREM 3. Let r € N, n E N*. Assume that the function f € CT is 
differentiable on [0, oo) and f € CT. Then for x G [0, oo), 

(12) pr(x)\Mn(f, x) - /(*)| <|| f ||r V n n z 

where L" is a constant depending only on r and v. 

Proo f . We have 

f { t ) - f { x ) = \f'{T)dT 
X 

and therefore 

l/(t) - m \ <11 / ' llr It - xKp^it) + p;\x)). 
Hence, by (9), we obtain 

Pr(x)\MZ(f,x)-f(x)\ 
<11 f llr (MZ(\t-x\,x) + pr(x)MZ(\t-x\p;\t),x)) 
= (Jl + J2) II f llr • 

Since is a positive operator then 

(13) MZ(\fg\,x) < \ J x ) M % ( g 2 , x). 

Using (13) we get 

h = Mv
n{\t-x\,x) 

< \/M%(l,x)Mz((t-x)2,x) 

^ 12x | (u + l)(u + 2) 
~ V n n2 

and 
J2=pr{x)M^[\t-x\p-l{t\x) 

< y/MZ((t - x)2, x)p?(x)M%(p72{t), x). 
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But 
P2r(t) < P2r(t) and p-\t) < p£(t) + 2p~1(t). 

So 
pl{x)M^{p-\x) < P2r(x)[Mn>2-r1, x) + 2M£(p~1, *)]. 

Hence, by Lemma 1, we obtain 

pl{x)Mvn(p~\x) < K?, 

where K " is a positive constant. Thus 

J t + J 2 < ^ + ( " + ' ) ( > + 2 > a + ^ = k J T ^ , 

V n n1 V V n n* 
where L" is a positive constant. This completes the proof of (12). 
T H E O R E M 4 . Let r e N, N € N * . If f G CT, then for all x € [0, oo), 

Pr(x)\Mn(f, x) - f(x)I < L r v ( / , v f + 5 ) . 

where L" denotes a constant depending only on r and v. 
Proof . Let f £ Cr. We define the Stieklov function fh'-

h 
fh(x) = h_1 \ f(x + t)dt for x € [0, oo), h € (0, oo). 

o 
Notice that 

Pr(x)\Mn{f,x) - f(x)I 
" < Pr{x){\M»{f - fh,x)I + IMZ(fh,x) - fh(x)I + Ifh{x) - f(x)\} 

= Ji + Ji + h-
By Theorem 1 we have 

Jx<L»r\\f-fh\\r<LvrUr{f,h) 

and 
J3<\\f-fh\\r<Ur(f,h). 

Prom Theorem 3 we get 

£11A 

Finally, 

Pr(*)|Mn'(/,x) - /(x)| < ( 1 4 + 1 + h - l L " r ^ + ± y r ( f , h ) . 
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Setting h = yj^ + we obtain the assertion of Theorem 4. 

THEOREM 5. Let r € N, n E N* and f e Cr, f e C1. We assume that there 
exists f"(x) at a fixed x € [0, oo) . Then 

to« x) - /(*)] = (u + 1 )/ ' (*) + x/"(x). 

P roo f . For fixed x G [0, oo) we define 
e ^ x ) = i ( t - x ) - 2 [ f ( t ) - f ( x ) + f ( x ) ( t - x ) + y"(x)(t-x)>} i f i j i x , 

lO if i = x. 
The function e is continuous on [0, oo) and limt_»x e(t, x) = 0. Let us notice 
that 
n [ M £ ( / , x ) - / ( x ) ] 

= nM% f'(x)(t - x ) + ±f"(x)(t - x)2 + e(£, x)(t - x ) 2 ,x ) 

= (u + 1 )/ ' (x) +(x+ ( 1 + ^ 2 + t / ) ) / " ( * ) + ^ ( 6 ( 4 , x)(i - x)\ x). 

By (13) we get 

nMZ(e(t, x)(t - x)2, x) < ( ( t - x ) 4 , x) (e2(t, x), x). 

From (9) we have 

|n^MZ((t-x)\x)\ < LJf(x), 

where L"(x) is independent of n. By Corollary 2 we have 

nlim y/MZ{e*(t,x)tx) = 0, 

so we get the assertion. 

REMARK. If the assumptions of Theorem 5 hold for a function / then the 
rate of convergence of M%(f, x) is O(^). 
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