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PARABOLIC SEMILINEAR DIFFERENTIAL PROBLEM
WITH NONLOCAL CONDITIONS
IN AN UNBOUNDED DOMAIN

Abstract. This paper deals with the mixed problem for the semilinear parabolic
equation of the second order in an unbounded domain with some nonlocal boundary
data. We prove that there exists the unique global time solution for any locally integrable
initial data and right-hand term: hence, no growth condition at infinity for these functions
is required.

This paper deals with the mixed problem for the semilinear parabolic
equation of the second order in an unbounded domain with some nonlocal
boundary data. We prove that there exists a global time solution for any
locally integrable initial data and right-hand term: hence, no growth con-
dition at infinity for these functions is required. Moreover the solution is
shown to be unique in that class.

A systematic investigation of Cauchy problem for linear parabolic equa-
tions increasing at infinity initial data was started with the paper of A.
Tychonoff [1]. Therein, under the condition

|luo(z)| < cexp(eilzf?), Vz € R, c,e1>0

it was established the solvability of the Cauchy problem for the heat conduc-
tion equation and was founded the well-known class of uniqueness
(Tychonoff class).

Afterwards a lot of investigations were devoted to the extension of this
result to different classes of linear parabolic equations and systems of equa-
tions ( see e.g. [2] and the references therein quoted).

A. Kalashnikov in [3] obtained the first exact result about solvability of
Cauchy problem for nonlinear parabolic equation with increasing at infinity
initial data. The solvability and uniqueness of Cauchy and mixed problem
with increasing at infinity initial data for other classes of nonlinear parabolic
equations were considered also in others papers (see e.g. [4] and the refer-
ences therein quoted).
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Some papers were devoted to establishing existence and uniqueness a
solution of Cauchy and Cauchy-Dirichlet problem for nonlinear diffusion
equation [5] and semilinear parabolic equations independently of the be-
haviour of initial data for || large [6-9]. Our goal is to extend such results
on semilinear parabolic equation of the second order in unbounded domain
with nonlocal conditions for the first space variable.

Let a domain 2 € R™ be of the form Q = (0,!) x D, where D is an
unbounded domain with boundary 8D € C!.

We will be working under the assumption, that DNBg (Bp is the ball in
R™~1of radius R and centre in origin of coordinates) is a connected domain.

For simplicity of notation we write: Qr = Q2 x (0,T) for T > 0 and
St =(0,1) x 8D x (0,T).

Our differential problem considered in @Qr is of the form

(1) U — i (a’ij(za t)ul‘i)l‘j + Eai(zat)uzi + ao(z, t)u +b(z, ¢, u) = f(z,1)

ij=1 i=1

and

@) {u(O, 7', t) = au(l, 7, t), z' = (x9,...,2,) €D
aug, (0,7, t) = ug, (I,2',t), o = const

3) ulsy =0,

(4) u(z,0) = up(z), z €.

The following assumptions will be needed throughout the paper:

(i) Functions a;j,ai,a0 € L>®(Qr) fori=1,...,n,j = 2,...,n; function
z1 — aj1(z,t) is continuous for almost every (z/,t) € D x (0,T), function
(z',t) = ai1(z,t) belongs to L=®(D x (0,T)) for all z; € (0,1}, functions a;;
satisfy the following conditions:

a11(0,7',t) = an1(l, 7, t) for (z',t) € D x (0, T),
o?a;1(0,2',t) = a;1 (1, 2',t) for (¢',t) € Dx (0,T), i=2,...,n if a#0

and an inequality

n

3 aij(z, )t > vd & VE€R™, v =const > 0.
i=1

L,j=1

(ii) Function ¢ — b(z,t,£) is continuous in R for almost every (z,t) €
Qr; function (z,t) — b(z,t,£) is measurable in Qr for all £ € R; the
following inequalities are satisfied:

(b(z, t,€) — b(x,t,m)(€ — m) = bol§ — nf’
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for p > 2, by = const > 0 and V{,n € R,

|b(z,t,£)| < brl€fP
for by = const > 0, for almost every (z,t) € Qr, V€ € R;
(i) f € L3((0,T); L{,o()); w0 € Lioo(d), where £ + 4 =1,

loc
L7..(Q) = {u :u € L"(Q2N BR) for every R > 0}, 1<r<o.
REMARK 1. The function

b(.’l}, t, 5) = b()(l’, t)l&]p—2§7 b0 € LOO(QT)) bo(l‘, t) 2> b2 >0
almost everywhere in Qr can be an example of a function satisfying the
condition (ii).
Let Qp = (0,1) X Dgr, Dp = DN Bg, R >0 and set
Wo3(QR) = {u € WHH(QR) : u(0,7') = au(l, =), vl yyx{aDnBR} = O},
Wit 1) = {u € W23(Qr) VR > 0}

a,0,loc

DEFINITION. A function u € C([0, T); L3,.()) N L2((0,T); Wa3 (@) N

a,0,loc
Ly ((0, T);Lfoc((_l)) is said to be a weak solution of problem (1)-(4) if u
satisfies the integral equality

(5) S (—uvt + Z aij(z, t)u,,.v;,j + Z:ai(a:,t)uziv

Qr i,j=1 i=1
+ ap(z, t)uv + b(z, t, u)v — f(z, t)v)dmdt + S uo(z)v(z,0)dz =0
Q
for every v € L%((0,T); Wy'g 10c()) N LP((0,T); L,o(2)), v € L2((0, T);

a,0,loc

L2 (), v(z,T) = 0 and having a bounded support.
REMARK 2. Set

Alu) = — Z (a,-j(:v,t)u,,i) + Zai(z, t)ug, + ao(z, t)u + bz, t,u),
i,j=1 %=

where u is a weak solution of problem (1)—(4).
Then
A(u) € L((0, T); (Wai (Qm))* + LU(NR))
and
u € L9((0, T); (Wa(Qr))* + L)) for all R > 0.

By Remark 1.2 [10, Part 2] the equality (5) is satisfied for the function
v(z,1) = u(z, Yp()n(t), where p € CH(R™), 1 € C(0,T)), . € L°(0,T),
n(T) =0.
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We can now formulate our main result.

THEOREM. Let the functions a,J,a,,ao,b and f be given and satisfy the as-
sumptions (i)-(iii). Set n < ;%£;.Then there exists ezactly one weak solution
of problem (1)-(4).

Proof. The proof will be divided into 2 steps.

Let us first prove that the problem has a unique weak solution. Con-
versely, suppose that there are two weak solutions uj, us of problem (1)-(4).
By the definition of weak solution we have for u = u; — u2

(6) S ( uv, + Z aij (2, t)uz, vz Za,(z t)uzv

QT i,j=1

+ ag(z, t)uv + (b(z, t,uy) — b(z,t, u2))v) dzdt = 0.

Let v be a function defined by the formula v = up?ne~*t, where

L(R? — |o]?), |zl < R

7 — 'R( ’ = 44

¢ o() {O, o> B
1 0Lt

8 t= b Y

®) () {T_, ier

and 7 € (0,T) is an arbitrary constant.
We estimate every summand of (5) singly. First, using Remark 2, we can
rewrite (5) for v defined above. Thus

5L =- S uvidzdt = — S u(ugpzne")‘t)tdxdt
Qr

Qr
= - S uugp’ne Mdzdt — S wlo?pe~Mdzdt + A S ulp’ne~Mdzdt
Qr Qr Qr
1 2 2 Xt At 22 ~
= —— u“pe " Vdzdt + - | u‘pne”Vdzdt,
2T —) Q- 2 QST

where Q,1 =Q x (7,T).
From (i) we find that there exists a constant x > 0 such that
|aij(m’ t)l < W, Ia,-(:z:, t)l <y |0.0($, t)l <u, 4L,j= 1,...n, (1:, t) € QT°

Therefore

n
L= S Z a’ij(z’t)uzivxjdmdt
QT 11]=1
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= S Xn: a,-j(:l:,t)u,...(u<p2ne"’\t)xjd:cdt

Qrij=1
n
= S Z aij(:r,t)u,iu,j<p2ne_”da:dt
Qrij=1
n
+2 S E aij(z, t)u,iucpcpzj'r)e_’“d:vdt
Qrij=1
=1 +I3;
n n
= [ Y aj(= t)u,iuzjcpzne_’\tdmdt >v | Zugitpzne"\tdmdt;
Qrij=1 Qri=1
n
122 =2 S ucpne_}‘t Z iUz, Pz dzdl
Qr i,j=1
n
=2 Z S (a,,u,, <pn§e:2x_t) (ucp:nrl'e :t)(cp_%cpzjngﬁze_’\t%z)dmdt
1,j=1Qr
n 1 1
<2 Z ( S a,Ju P ne_’“da:dt)a( S Iu|p<p2ne"’\tda:dt)’
ij=1 Qr Qr
l-—z
x (| ‘p2'725l<pz,~|£5ne"“dzdt) ”'
Qr
n
E ( S a,Ju p*ne~Mdzdt
1,j=1
6 { luPo’neMdzdt + 15 o %lcp,jh_z-zfne"\‘dxdt)
pQT p( )QT
i 2n26
< néu® S z u2i<p2ne"\tdxdt+— S luPp?neMdzdt
Qm'= P or

2
[ Y ¢ P, [FaneNdzt,
Qri,j=1

p()

where 6 > 0;
n
I3 = S Zn:aiuziucp21;e"’\tdxdt = Z S (aiuz'cpnie_;‘) (uwn%e"z&)dzdt
Qri=1 i=1Qr

( S a?“i.-‘Pzne_’\tdzdt)%( S |u|2902ne"\tdzdt)%

=1 Qr QT

IA
s.M:
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n
SZ(% { afu2 p’ne '\td:z:dt+2—1- | uPp?ne” )‘tdzdt)
i=1 QT 1or

<p % S Zu pine )‘td:zdt,+2—é.1 S lu2p?ne~*dzdt,
Qr i=1 Qr
where 8; > 0;
I, = S ao(z, t)uvdzdt = S ao(z, t)yutp?ne Mdzdt,
Qr Qr
|Is] < p S ulpPne~Mdzdt.
Qr
From (ii) we get

Is = S (b(:v,t, u1) — b(z, ¢, uz))ucpzne_’\tdxdt > by S lulPp?ne~dzxdt.

Qr Qr
Putting these estimates into (5) yields the following inequality
1
9 —At 2 -t
(9) 2(T S u? <p ne d:vdt+ S u? <p ne~“dzxdt

Q‘rT Q

v S Zugicpzne"\tdzdt—nduz S Zugicpzne_'\‘dzdt

Qri=1 Qr i=1
2n25 2 Do 2 22
| luPynededt -~ § 30" PRl [ine™ dadt
p Qr Qri=1
1o ~. 2 2 Xt n 2,2 At
~ 5k 0 S ;uzitp ne “dzrdt — %, S |ul*p“ne”"dzdt
Qri=1 Qr
—u S wp’ne~dzdt + by S |uPp?ne*dzdt
Qr Qr
1 - A n -
2(T ) S 202~ Mdzdt + (5—--27— ) S up?ne Mdzdt
Qr
1 n
2 2 2 2 -\t
+ (V—né,u —gH 61) S Zuz‘,go ne~“dxdt
Qri=1
+ (bo - 2223) S [ulPone~ dzdt
p

Qr

n
p(6 S @ = Z |<p=j|P_2-%ne_)‘tdmdt <0.

We can choose the constants ), d,d; so that the following inequalities are
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satisfied
A on o 1 4 2n2%§
- —_ > — [ > -2
5~ 58, p>1v—nép 2u 4120, P 0.
In addition, we note that
Scp P—2l<p P-de < 27 S <p2-P_2-%dz < 9522 | (R+ |x|)2—r_2-%dx
Q Q Qr
<277 (2R)> %3 | do = O RP PP,
Br

where C) is a constant depending on n. Then from (9) it follows that
(10) | une~Mdzdt < Csz_P_zﬁ"'",
QF
where Cj is a constant independent on R and Q? = Qg x (0, 7).
Let us now take Ry > 0, R > Ry. It is easily seen that

Su2cp2ne"’\tdzdt= S wlpne~Mdzdt + S wp?neMdzdt

QF Qr° Qr "
> S wlp?neMdzdt > S u’ne (R — Rp)%dzdt.
Rg Ry
QT QT

Comparing this to (10) we obtain
S u’ne=*(R — Ro)’dzdt < Cng—FZ'-L?'*'".

Qe
Therefore \
{ u’ne Mdzdt < ( R ) R,
Rg R-Ro
Q7

Take arbitrary €. Since limp_, ;o0 (R@}Ef =1land n < ;2-_% so for R large
enough we obtain

S ulne~Mdzdt < ¢.
Qr°
Thus
S u?ne Mdzdt =0 and u=0in Q¥0.
Qr°
But Ry is an arbitrary number so v = 0 in Qr. This completes the proof of
uniqueness.
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It remains to prove that there exists a solution of problem (1)-(4). For
this purpose we apply the Galerkin method. Let

uo(z), z € QpR,
uf(z) = | 00
0, z € N\ QpR,
R _ f(za t)’ ($1 t) € an
f (:t, t) = R
0, (:L‘, t) € QT\QT.
We construct the base of W(} 2(Qgr) N LP(Q2R) in the following way. Select a

base {wm(z')} of the space W32(Dg) N LP(Dg) and a sequence {yi(z1)} of
the eigenfunctions of the problem

y' =Xy, z1 € (0,),
y(0) = ay(l), ay'(0) =¢'()). (¥ |
Then the sequence {wm(z')yx(z1)} of all possible products forms a base of
Woo(QR).
Let us denote by {px(z)} the base in Wy*(2r) N LP(Qg) and let
(x> 1) L2(025) = Ok

Take a function uM (z,t) be of the form

N
ulV(z,t) = chN(t)<pk(:z:), N=1,2,...,
k=1

where ci(t),...,c (t) are the solutions of the following Cauchy problem
n
ay (vawl + Y aiullel,
Qr 1,j=1

n
+ z a,-uﬁgal + aguN g + b(z, t,uN)! — ngol) dz =0,
i=1
CkN(O) = ué\flm lik = 1""aNa

N
“{)YR = Z ug{kcpk(z), “&’R — uf,2 in L2(QR).
k=1
The Caratheodory theorem [11] implies that there exists the solution of
problem (11) and it is absolutely continuous in [0,T]. Multiplying equation
(11) by ¢ (t), summing over [, for I = 1,..., N and integrating over ¢, for
t € (0,7), we obtain the following equation
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(12) S (ut u + Z a,]uziuz
QR i,j=1

Za,u ul + aguNu + bz, t, uN ¥ —~ fRuN)dz =0.

i=1

We estimate every summand of (12). First

377

= | ugVuNdzdt=% { ((uN)2)tdzdt=-;- S(uN)zdm—% | (u))?%dz.

QR QR R af

From (i) we get

n n
L= Y ay(z, tyullulldedt > v | 3 (ul)2dedt;

QRi,j=1 Q. i=1
n n
J3 = S Za,-uﬁuN dzdt = z S (aiuﬁ)uN dzdt
QRi=1 i=1 QF
n 1 1
< z ( S a?(uz)zdzdt) 2 ( S (uN)2dzdt) :
i=1 QR Qf

< zn:( S a?(ul )2d.'ndt+ 26 S (uN)2d:rdt)

,_.

<_ Ny2 Ny2 0;
< 50 QSRZ:(u )d:z:dt+26 S(u )“dzdt for é >

= S aouNuldzdt = S ao(uN)zda:dt FARYT S (u)?dzdt.

QF QR QF
By assumption (ii) we obtain

Js= | b(z,t,u)uNdzdt > by | |uV|Pdzdt
QF QE
and from (iii) we find
1 1
Jg = S Rz, t)uNdzdt < ( S IfRquzdt)"( S |uN|”dzdt)”
QF QF QR

QR g0 QF
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Putting these estimates into (12) yields the following inequality
[ (. Ny2 41 N 1 Ny2
(l/ - §n6,u ) S z;(uzi) dxdt + (bo - ;) S |u” [Pdzdt + 3 S (u)dz <
QFi=1 QF 7
1 R 2 n Ny2
(13)  <—5 | |fRdzdt+ | wdo+ (u+ %) | (wN)?dedt.
907 QF of QF

We choose the constants §,d; in the inequality (13) so that v — %nd;ﬂ =
%u, bo— & = %bo. Then, in particular, from (13) we obtain an inequality

4
T

(14) § NPz < § § W"Pdzdt + o,
QR 0QR
where puj, uo are the constants independent on N.
Making use of the Gronwall-Bellman lemma, from (13) and (14) we get
the estimates

§ (IVel P2+ [uM))dzdt < ps,
QF
S |u [Pdzdt < ps,
QF
S |uM|2dz < ps3, for T € [0, T), the constant u3 being independent on N.
Q.

It is easily seen that
{ bz, t, uMNYuN|9dzdt < b { [uN Pdzdt < blps.
QF QF
A subsequence {u*} can be extracted from {u™} such that
u* — u® weakly in LP(QH),
u* — u® weakly in L2((0,T); H'(QR)),
u*¥ — u® weakly-star in L>°((0, T), L*(QR)),
b(-,-,u*) — 2 weakly in LI(QR),
as k — +o0.
It is easy to show that a function u satisfies the equality

n
(15) S ( — ufy + Z aijUﬁ,v + agultv + v — va)dxdt
QR ij=1
= S ufv(z, 0)dz
Qr

for every v € C°°([0,T];C{)’°(QR)),U(:L',T) =0.
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Notice that u® € C([O,T];L2(QR)) and so we can in (15) put v = uf.

Analogously as in [10] we obtain that zF = b(z, t,uR). If R receives values
1,2,3,...that we have a sequence {u™(z,t)}. Prolong every function u™ by
zero beyond the domain QF. Then for the members of the sequence {u™}
we have an equality

n n
S (—u’"’ut+ Z iUy, Vz; +Z aiuy,v+aou"v+b(z,t, u"‘)v—va)da:dt =
QR ij=1 i=1

(16) = S ugv(z,0)dzr
Qp
for every v € C’°°([O, T); 08°(Q)),v(:z, T) = 0, in particular for the function
v = u™p?n, where the functions ¢, 7 are of the form (7),(8). Let
uf —u™ =™ for k,m > R.
Subtracting the corresponding equations for u* and 4™ we have
n
(17) S ( —ub™y, 4 Z aiju:;m'v + agu®™v
Q? i,7=1
+ bz, t, u¥) — b(a, t, um))v) dzdt = 0,
We estimate the summands of (17) as we have it done earlier in (5):

I =—- S uF "y dzdt = — S uk'm( kym ©? ) dxdt

QF Qr
= - 8 uk'muf’m *ndzdt — S (u*™) 2% dzdt
QF QF
1

=3 T=7) ) S (™) 2% dxdt;

L= S Z aiju:’:;m'vzjdmdt= S i auu’;:m( km90277) dxdt
QRij=1 QRij=1

n
S Z a,Jukm km 2pdadt + 2 S Z aiju:;muk’mcpcpzjndzdt
QR 7".7_ Q? 1‘7.7=1
=E+&

n
S E a,,u'”" km o2ndrdt > v S Z(uﬁ;m)ch%dxdt,
QR 1,j=1 Q? i=1
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n
2=2 S E aiju';;muk""cptp,jnda:dt

QRij=1
< nyu? S Z(uk"‘ )2p2ndzdt
QR ij
2n?y kmp 2 2 ~ - 2B
+ = | [uPelndedt + — | 3 ©® 773 g, |P-Indzdt;
p Q¥ p( ) QR i,j=1
Iy = S Za, ’“"'ud:z:dt— S Eau’”" e;m 2nd:z:dt
QR =1 QR i=1
1
2u26 S Z(ukm)2<p2ndxdt+-—— S |ub™ 2o ndzdt,
QR i=1 Q‘r
Iy = S aguF™vdzdt = S ao(uk"")2(,o2ndzdt,
QF QF
L] < p § (u5™)?pPndzdt;
QF
= S (b(a:, t, u*) — b(z, t, u"‘))vd:cdt
Qf
= S (b(a:, t,u*) — b(z, ¢, um)) km o2ndxdt
QF
>bo | |uF™Pp2ndzdt.
QF
Summarizing, we have
1 k)2, 2 o~/ kmy2, 2
18) 575 ng (™) drdt+Vq§R ;(uzi )2p?ndzdt
T T

—nyu? S Z(u""")2 217d:z:dt———— S |ub™Po2ndzdt
QRij=1 P QR

( ) { Z ¥ P‘2I¢=,|P_'E’ndmdt—§u25 | Z(u""‘)zwzndmdt
p ‘Y QR‘IJ_]. QR =1

- S |ub™2p2ndzdt — p S (uF™)2p%ndzdt + by S [ub™Pp2ndzdt < 0
26 R R R
Q7 Qr Qr
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Let € > 0. Then, analogously as in the proof of the uniqueness,there exists
R such that, from (18) we may obtain the following estimates

S |ub™|Pdzdt < e,

QF

n
S E(u’;;m)zdzdt <€,
Qg i=1
and

{ W™ 2dz < ¢, t € [0,T).
Qr

We have proved that the sequence {u*} satisfies the Cauchy condition.
Therefore this sequence is convergent at its limit is the solution of prob-
lem (1)-(4). The proof of the theorem is complete.

REMARK 3. We have used the Galerkin method in the proof of the theo-
rem. We chose the special base of the space Wal,,g (©2R) N LP(2R). The self-
adjointness of problem (*) is important to this choice; that is why the same
parametr « is in (2).
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