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PARABOLIC SEMILINEAR DIFFERENTIAL PROBLEM 
WITH NONLOCAL CONDITIONS 

IN AN UNBOUNDED DOMAIN 

Abstract. This paper deals with the mixed problem for the semilinear parabolic 
equation of the second order in an unbounded domain with some nonlocal boundary 
data. We prove that there exists the unique global time solution for any locally integrable 
initial data and right-hand term: hence, no growth condition at infinity for these functions 
is required. 

This paper deals with the mixed problem for the semilinear parabolic 
equation of the second order in an unbounded domain with some nonlocal 
boundary data. We prove that there exists a global time solution for any 
locally integrable initial data and right-hand term: hence, no growth con-
dition at infinity for these functions is required. Moreover the solution is 
shown to be unique in that class. 

A systematic investigation of Cauchy problem for linear parabolic equa-
tions increasing at infinity initial data was started with the paper of A. 
Tychonoff [1]. Therein, under the condition 

|uo(z)| < cexp(ci|x|2), Vz 6 Rn, c, c\ > 0 
it was established the solvability of the Cauchy problem for the heat conduc-
tion equation and was founded the well-known class of uniqueness 
(Tychonoff class). 

Afterwards a lot of investigations were devoted to the extension of this 
result to different classes of linear parabolic equations and systems of equa-
tions ( see e.g. [2] and the references therein quoted). 

A. Kalashnikov in [3] obtained the first exact result about solvability of 
Cauchy problem for nonlinear parabolic equation with increasing at infinity 
initial data. The solvability and uniqueness of Cauchy and mixed problem 
with increasing at infinity initial data for other classes of nonlinear parabolic 
equations were considered also in others papers (see e.g. [4] and the refer-
ences therein quoted). 
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Some papers were devoted to establishing existence and uniqueness a 
solution of Cauchy and Cauchy-Dirichlet problem for nonlinear diffusion 
equation [5] and semilinear parabolic equations independently of the be-
haviour of initial data for |z| large [6-9]. Our goal is to extend such results 
on semilinear parabolic equation of the second order in unbounded domain 
with nonlocal conditions for the first space variable. 

Let a domain ii G Rn be of the form 0, = (0,1) x D, where D is an 
unbounded domain with boundary dD G C1. 

We will be working under the assumption, that DhBr (Br is the ball in 
Rn~l of radius R and centre in origin of coordinates) is a connected domain. 

For simplicity of notation we write: QT = ii x (0, T) for T > 0 and 
ST = (0,1) xdDx (0,T). 

Our differential problem considered in QT is of the form 
n n 

(1) Ut~J2 t)Uxi)xj + ai(X> Uxi + a°(X ' U + b(X ' = 

i,j=1 t=l 
and 

(2) ( u ( 0 , x ' , t ) = ocu(l,x',t), x' = (x2,...,xn) G D 
[ auXl (0, x', t) = uxi (I, x', t), a — const 

(3) U\ST = 0, 
(4) u(x, 0) = UQ(X), x€$l. 

The following assumptions will be needed throughout the paper: 

(i) Functions A,ij, eij, ao G L°°(Qt) for i = 1 , . . . , n, j = 2 , . . . , n; function 
x\ h-> an(x,t) is continuous for almost every (x',t) G D x (0 ,T) , function 
(x',t) h-> au(x, t) belongs to L°°(D x (0,T)) for all x\ G [0,1], functions ay-
satisfy the following conditions: 

an(0,x',t) = an(l,x',t) for (x',t) € D x (0,T), 
a2aii(0,x',t) = aii(l,x',t) for (x',t) G D x (0,T), i = 2 , . . . ,n if a ^ 0 

and an inequality 
n n 

£ a t j ( x , > V^ € R n , v = const > 0. 
i,j=1 i=1 

(ii) Function £ h-> b(x, t, f ) is continuous in R for almost every (x, t) G 
QT; function (x,t) i—> b(x,t,£) is measurable in QT for all £ G R; the 
following inequalities are satisfied: 

(b(x, t, i) - b(x, t, rtM ~ V) > fcoie " V\p 



Parabolic semilinear differential problem 371 

for p > 2, bo = const > 0 and V£, 77 6 R, 

i&0M,oi<*iier1 

for 61 = const > 0, for almost every (x, t) 6 QT, V£ € R; 
(iii) f e Lq((0, D ; L?oc(fi)); «0 € L ^ f t ) , where I + J = 1, 

L U f l ) = {u : u G L r(fJ n B r ) for every i? > o}, 1 < r < 00. 

Remark 1. The function 

b(x,t, 0 = 6o(x,i)|er2e,&o € L°°(QT)Mx,t) > h > 0 

almost everywhere in QT can be an example of a function satisfying the 
condition (ii). 

Let NR = (0,I) x DR, DR = Df l BR, R> 0 and set 

= {u G : u(0,x') = aii(Z>®,)>ti|(o1i)x{aDnBfl} = 0}, 

KiiocW = {ue v i ? > o } . 

Definition. A function u e c([0,T\-,L?oc(Q,)^ n L 2((0,T); W^;2ioc(ii)) n 
1 ^ ( 0 , T ) ; ¿¿^(fi)^ is said to be a weak solution of problem (l)-(4) if u 

satisfies the integral equality 
n n 

(5) \ ( - u v t + aij(x,t)uXivXj+ ^2di(x,t)uXiv 

QT IJ=L *=1 

+ ao(x, t)uv + b ( x , t , u)v — f ( x , t)V^dxdt + J UQ(X)V(X, 0 ) d x = 0 

n 
for every v € L\(0,T)-W$loc(n)) n ^ ( ( O . T J j L ^ f t ) ) , i* G L2((0,T); 
L ^ ( f i ) ) , v(x,T) = 0 and having a bounded support. 

Remark 2. Set 
n n 

A(u) = - ^ (ajjOc, + ^ t)uXi + ao(x, t)u + b(x, t, u), 

i,j=1 j ¿=1 
where u is a weak solution of problem (l)-(4). 

Then 
A(u) e L 9 ( (0 ,T) ; + L'(SlRj) 

and 
ut € V ((0, T); ( < ' o ( i ^ ) r + ¿«(iifl)) for all R > 0. 

By Remark 1.2 [10, Part 2] the equality (5) is satisfied for the function 
v(x,t) = u(x,t)(p(x)r](t), where <p G C&(Rn), rj G C([0,T]), r]t G L°°(0,T), 

V(T)=0. 
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We can now formulate our main result. 

THEOREM. Let the functions aij,ai,ao,b and f be given and satisfy the as-
sumptions (i)-(iii). iSet n < • Then there exists exactly one weak solution 
of problem ( l ) - (4) . 

P r o o f . The proof will be divided into 2 steps. 
Let us first prove that the problem has a unique weak solution. Con-

versely, suppose that there are two weak solutions m, U2 of problem (l) - (4) . 
By the definition of weak solution we have for u = U\ — U2 

j n ti 
(6) \ ( - uvt + Y^ aij(x> t)uXivXj + t)ux.v 

QT ^ IJ=1 » = 1 

+ OQ(X, t)uv + (b(x,t,ui) — b(x,t,U2)SJVSjdxdt = 0. 

Let v be a function defined by the formula v = wp2r]e~Xt, where 

5(FL2-|X|2), \X\<R, 

|x| > R, (7) ¥>(*) = 

(8) 
1 r E f , T < t < T , 

and r 6 (0 ,T) is an arbitrary constant. 
We estimate every summand of (5) singly. First, using Remark 2, we can 

rewrite (5) for v defined above. Thus 

/i = — J uvtdxdt = — J u(vup2r)e~Xt^ dxdt 
QT QT 

= - j uut<p2r]e~Xtdxdt - J u2<p2t]te~Xtdxdt + A j u2(p2rie~xtdxdt 
QT QT QT 

= ——^—- J u2ip2e~Xidxdt + ^ J u2<p2rje~Xtdxdt, 
2{-T ~ T> QT,T 2 QT 

where Qt,T = FT X (T, T). 

Prom (i) we find that there exists a constant fi > 0 such that 

kiOM)| < M, |ai(x,i)| < n, |a0(x,t)| < M, hj = 1 ,...n,(x,t) e QT-

Therefore 
n 

h = J ajj(x, t)uXivXidxdt 
QT « J = 1 
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n 
= j aij(x,t)uXi(u<p2r)e~dxdt 

Qri,i=l Xj 

n 
— \ ^ aij(x,t)uXiuXjip2i]e~Xtdxdt 

Q t i,3=1 
n 

+ 2 j y : aij(x, t)uXiu(p<pXiT]e~Xtdxdt 
QtiJ=1 

= /21 + /2 2 ; 

n n 
J2 = j y : ag(x, t)uXiuXiip2r}e~>'tdxdt > v J ^ u2.<p2r)e~Xtdxdt; 

Qt QT »=1 
n 

if = 2 J u<fT]e~Xi ^ a,ijUXi(pXjdxdt 
Qt i,j=1 

t,j=i Q t 

< 2 £ ( j a l u l . ^ e ' ^ d x d t ) ^ [ \ \u\p^r]e-Xtdxdt)~p 

»J=l Qt QT 

x ( S ^ 1 ̂  V^~Xtdxdt) ^ 
Qt 

< 2 E ( | i a%uiyne-*dxdt 
i.J=i Qt 

+ - J |u|P¥P27?e_Aidxdi + j y ? 2 - ^ 
P QT P\°) QT 

n On2i 
< nSfj? J Y1 u2Xif2Ve~Xtdxdt + — J |u|VV~Atiix£tt 

Qt »>j=l P Qt 
2 r o 2p 2p . 

+ £ I ^ j I P~2 tie- dxdt, 

™'°) Qt itj=i 

where 5 > 0; 

n n i At i At 
h = \ T CLiUXiuip2r]e~Xtdxdt = ^ j (a,iUXi<pr)?(utpr)?e^^jdxdt 

Qt »=1 i=l Qt 

< E ( j afu2Xiip2r}e-Xtdxdt)l2( j \u\^e^dxdtf 
i=1 Qr Qt 
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5 a'>uli<P2Ve-Xtdxdt + ±- J \u\Vve~Xtdxdt) 
¿=1 Qt

 1 Qt 

I ti<'P2Ve-Xtdxdt+^- \ MVve~Xtdxdt, 
Qt *=l Z6iQT 

where ii > 0; 
I4— \ ao(x,t)uvdxdt = j ao(x,t)u2<p2T]e~Xtdxdt, 

Qt Qt 
|/4| < /x \ u2ip2rie~Xtdxdt. 

Qt 
From (ii) we get 

J5 = j (b(x,t,u{) - b(x,t,U2f)u<p2r)e~Xtdxdt > b0 J \u\p<p2r)e~Xtdxdt. 
Qt Qt 

Putting these estimates into (5) yields the following inequality 

(9) —-—- \ u2<p2j]e~Xtdxdt+^ \ u2<p2T)e~Xtdxdt 
AJ T) QT,t 1 QT 

n n 

i H2uxii>P2Tle~Xtdxdt-n5n2 J ^u2
x.y2r)e~Xtdxdt 

Qt«=1 Qt»=1 

J \u\p(p2r]e~Xtdxdt y^t \ J2\^Xj\7^r]e-Xtdxdt 
3t > Qt ¿=1 

" I $ f^uWve-^dxdt-^- j \u\2<p2rie-xtdxdt 
2 Qt»=1 * QT 

- n \ u2tp2rje~Xtdxdt + b0 \ \u\p<p27)e~Xidxdt 
Qt Qt 

= S u2<p2e~Xtdxdt + - - fi) J u2ip2rje~Xidxdt 
2 ( T _ r ) Q T , r 2 261 Qt 

1 n 

+ ( v - nSfi2 - -fj.2S 1] j u2.ip2r)e~xtdxdt 
2 ' QTi= 1 

+ (b0-2—) \ \u\p<p27]e-Xidxdt 
P Qt 

TTs J ^ \(pXj\p^T]e~Xtdxdt < 0. 
Q t i=1 

We can choose the constants A, 6,5i so that the following inequalities a 

(9) 

Qt 
2 n2d 
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satisfied 
A n „ _ 9 1 9_ 2n2S 

In addition, we note that 

\<p2~&\<px.\'&dx < j <p2~&dx < J (R+ \x\f~&dx 
n n ciR 

< 2 ^ ( 2 R ) 2 - & j dx = 
BR 

where C\ is a constant depending on n. Then from (9) it follows that 

(10) $ u2rie~Xtdxdt < C2R2~^+n, 

Qt 

where C2 is a constant independent on R and Q^ = CIr X (0,T). 
Let us now take Ro > 0, R > Ro. It is easily seen that 

j u2(p2rje~xtdxdt = J u2<p2r)e~Xtdxdt + J u2(p2rje~Xidxdt 

> \ u2<p2r)e~Xtdxdt > J u2T]e~Xt{R- Rofdxdt. 

Comparing this to (10) we obtain 
5 u2r)e~Xt(R - Rofdxdt < C2R2~&+n. 

Therefore 

\ u 2
V e - X t d x d t < ( - ^ — Y R n - & . 

Qto \R~RoJ 

Take arbitrary e. Since l im^+oo (r-RQ)2 = 1 and n < so for R large 
enough we obtain 

\ u2r)e~Xtdxdt < e. 

Q? 

Thus 
\ u2rje~Xtdxdt = 0 and ti = 0 inQ^° . 

But Ro is an arbitrary number so u = 0 in Qt- This completes the proof of 
uniqueness. 
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It remains to prove that there exists a solution of problem (l)-(4). For 
this purpose we apply the Galerkin method. Let 

u*(x) = W * 0 ' 1  6  

\o, x e n \ n R , 

f R ( x ^ = 

\ 0 , ( x , t ) e Q T \ Q $ . 

1 0 
We construct the base of W0' ( f l R ) n V { S I r ) in the following way. Select a 
base {u)m(x')} of the space Wq' 2(Dr) fl W(Dr) and a sequence {yfc(xi)} of 
the eigenfunctions of the problem 

y" = Ay, x i G ( 0 ,1) , 

y ( 0 ) = ay(l), ay'(0) = y'(l). (*) 
Then the sequence {ii;m(a;')yfc(xi)} of all possible products forms a base of 
w a r n . 

Let us denote by {vfci®)} the base in Wq'2(CIr) n W{SIR) and let 

{fk, ¥>i)i2(n«) = <*[• 

Take a function u N(x, t) be of the form 
N 

u N ( x , t ) = 52c%(t)<p k(x), N = 1 , 2 , . . . , 
k=i 

where . . . , cj? (t) are the solutions of the following Cauchy problem 

( i i ) j + £ ai ju»<p iXj 

iifi i,j=1 

+ £ + u N<p l + b(x, t, u N)<p l - f R<p l)dx = 0 , 
i = i 

<£«>) = < f c , l,k = l , . . . , N , 

N 

Uo,R = T, uo,k<P k(x), Uo,R—*Uo in L 2(nR). 
k=1 

The Caratheodory theorem [11] implies that there exists the solution of 
problem (11) and it is absolutely continuous in [0,T]. Multiplying equation 
(11) by c^(i), summing over I, for I = 1 , . . . , N and integrating over t, for 
t € (0, r), we obtain the following equation 
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(12) J ( u ? u " + £ a , , « , 
n« ¿,¿=1 

+ £ + OQUNUn + b(x, t, uN)uN - fRuN)dx = 0. 
»=i 

We estimate every summand of (12). First 

Jx = \ v?uNdxdt = i \ {{uN)\dxdt = i J {uNfdx - i \ (u$)2dx. 

Q? Q? fi? itf 

From (i) we get 

j 2 = S E M x , * ) « ^ > i, S ¿ ( < ) 2 d x d t ; 
QR t,j=l Or ¿=1 

n n 
J 3 = J = £ J ( a i U % ) u N d x d t 

QRi= 1 * i=lQ« 

< E ( S a 2 « ) 2 d * d i ) * ( J {uNfdxdtf 
0? Q? 

< E ( | S + l J (tt»)2Ardi) 
¿=1 Q? Q? 

< ^ i / x 2 J ± i u » f d x d t + ? - \ (uN)2dxdt for S > 0; 
2 QiM=i ' 2 6 Q? 

J 4 = j aouNuNdxdt = S ao{uN)2dxdt, \J4\ < /x \ (uNfdxdt. 

Q? Q? Q? 

By assumption (ii) we obtain 

J 5 = 5 b(x,t,uN)uNdxdt>b0 \ \uN\pdxdt 

Q? Q? 

and from (iii) we find 

J 6 = J fR(x,t)uNdxdt<( J |/R|«dxdt)'( J l i /^dxdt)* 
Q? 0? Q? 

< — J \uN\*dxdt + S \fR\qdxdt for <$i > 0 . 
P Qt q^i Q? 
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Putting these estimates into (12) yields the following inequality 

('v-\n6y,2) j ¿(<)2<*rdi + (60--) J \uN\pdxdt+\ \{uN)2dx< 
1 * p q? si? 

(13) < - i j - J \fR\"dxdt+ J u g d x + ( / i + ^ ) j (u N ) 2 dxdt. 

qSi Qr n« Q? 
We choose the constants ¿,¿1 in the inequality (13) so that f — ̂ nSfj? = 

60 — = Then, in particular, from (13) we obtain an inequality 
T 

(14) J l u ^ d z < /il 5 5 \uN\2dxdt + H2, 
si? 0 si? 

where ¿ti,/X2 are the constants independent on N. 
Making use of the Gronwall-Bellman lemma, from (13) and (14) we get 

the estimates 

J (\VuN\2 + \uN\)dxdt<ii3, 

5 \uN\pdxdt<H3, 

Qt 
J \uN\2dx < for T € [0, T], the constant /¿3 being independent on N. 

Sir 

It is easily seen that 

J \b{x,t,uN)uN\qdxdt<b\ J \uN\pdxdt < bqlti3. 

QT QT 

A subsequence { u k } can be extracted from { u N } such that 

uk —• uR weakly in I/(Qt), 

uk _ U R w e a k l y ^ ^ ( ( O . T ) ; « - 1 ^ ) ) , 

uk — „ UR Weakly-star in L°°((0, T) , L2(QR)), 

&(•, uk) —> zR weakly in Lq(Q$), 

as k —> +00. 

It is easy to show that a function u satisfies the equality 
n 

(15) \ ( - uRvt + aijuxiv + aouRv + ZRV - fRv)dxdt 

= j uRv(x,0)dx 
SlR 

for every v e C°°{[0,T]-,C^(QR)),v(x,T) = 0. 
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Notice that uR 6 C([0,T];L2(f2fl)) and so we can in (15) put v = uR. 
Analogously as in [10] we obtain that zR = b(x,t,uR). If R receives values 
1,2,3,.. .that we have a sequence {um(x,t)}. Prolong every function um by 
zero beyond the domain Q™. Then for the members of the sequence {um} 
we have an equality 

* n n \ 
\ (-umvt+ ]T aijU^ivXj+J2aiU^iv+a°umv + b ( x ' t ' u 7 n ) v ~ f R v ) d x d t = 

qR ^ ij=1 i=l ' 

(16) = \ u%v(x,0)dx 
iiH 

for every v G C°° ([0, T]; C^(fi)) , v(x, T) = 0, in particular for the function 
v = umip2r7, where the functions <p, T] are of the form (7),(8). Let 

u k - u m = uk'm for k,m> R. 

Subtracting the corresponding equations for uk and um we have 
/ n 

(17) j ( - uk'mvt + Y , "ii^Tv + aouk'mv 
Q* ^ i,j=i 

+ (b(x, t, uk) - b(x, t, um))v^dxdt = 0. 

We estimate the summands of (17) as we have it done earlier in (5): 

h = - \ uk'mvtdxdt = - \ uk'm(uk'm<p2ri) dxdt 

Qt * 

= - } U^U^ip^dxdt - \ (Uk'm)2<p271tdxdt 

<3? Q? 
= S i ^ n V d x d t ; 

2 ( T " T ) Q* **r,T 
n n 

J2= S ^ ai3uk>™vXjdxdt = \ J2 aijuxT{uKrniP2^) d x d t 

Q5»J=1 Q* ¿,j=l X] 

n 
= \ aijuk?luk>Jn<p2r)dxdt + 2 \ ^ a^u^u^^^dxdt 

= J* + 

= i E a ^ u ^ r j d x d t > i/ \ 
Q* U=1 »=1 
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n 

I\ = 2 \ £ aijukx>™uk'm<p<pxjridxdt 
Q* «>¿=1 

< n7iu2 J ± { u ^ ? ^ d x d t 
Qt t'i 

+ j \uk<m\P<p2ridxdt+-^ j Y1 V'^Wx^Vdxdt-
P Q* 

rt n 
/3 = \ J2 aiukx'tmvdxdt = j £ aiUk'™uk'mip'2Tidxdt 

Q* »=1 Q« ¿=1 

<L2i J V 2 ^ + ^ ( \uk'm\2tp2r]dxdt; 

/4= J a0uk>mvdxdt = J aQ(uk'm)2<p2T)dxdt, 
Qt Q? 

|/4| < /x J (uk'm)2ip2rfdxdt\ 
Qt 

I5= \ (b(x,t,uk) -b(x,t,umf)vdxdt 
Qt 

= j (b(x,t,uk) -b(x,t,um))uk>m<p2j]dxdt 
Qt 

>b0 \ \uk,rn\p(p2r)dxdt. 
Qt 

Summarizing, we have 

(18) r J ( u k < m ) V d x d t + * J ¿ ( " x H V V ^ i 

- n 7 / i 2 \ £ (u£m) V V z d * - — j |ufc'mpVV*<ft 
* P Q* 

Q« ¿=1 

"¿7 \ l « f c , m | : - fi \ (uk,m)2ip2r]dxdt + \ lu^I'VVxdi < 0 2o 3 J 
Qt Qt Qt 
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Let £ > 0. Then, analogously as in the proof of the uniqueness,there exists 
R such that, from (18) we may obtain the following estimates 

j \uk'm\pdxdt < e, 

QT 

S ¿ « m ) 2 d x d i < 
Q « i = 1 

and 
\ \uk<m\2dx<e, t e [ 0 , r ] . 

We have proved that the sequence {ufc} satisfies the Cauchy condition. 
Therefore this sequence is convergent at its limit is the solution of prob-
lem (l)-(4). The proof of the theorem is complete. 

REMARK 3. We have used the Galerkin method in the proof of the theo-
1 2 

rem. We chose the special base of the space W^'^fifl) n [^(QR). The self-
adjointness of problem (*) is important to this choice; that is why the same 
parametr a is in (2). 
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