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SMOOTHING EFFECT IN SEMILINEAR
PARABOLIC EQUATIONS

Abstract. The purpose of this paper is to describe the smoothness of solutions of
semilinear parabolic equations with 2m-th order elliptic operator. Similar result for second
order equations was given e.g. by F. Rothe [RO] under the name of "bootstrap” and
" feedback”.

1. Introduction

The semigroups generated by elliptic operators (supplemented appropri-
ate boundary condition) can be considered on any Lebesgue space LP for
p € (1,00). The hard L' case was treated by D. Guidetti in [GU]. Similarly,
the regularity of solutions of evolution partial differential equations can be
investigated on any Lebesgue space. However we often consider such nonlin-
ear equations on "wide” spaces L?, with small exponent p close to 1. This
allows us to take initial data from large set. But in this case we have to im-
pose additional restrictions on the growth of the nonlinear term to ”keep”
the solution in LP.

Consider an abstract Cauchy problem of the form:

i+ Au=F(u), t>0,
u(0) = uy,

(1.1)

where A is a sectorial operator and F' is a nonlinear function. It is well known
that we need to restrict the growth of the nonlinear function F' to ensure the
existence of global solutions. Then the semigroup {7T'(t)}:>0 corresponding
to (1.1) may be defined by the formula T'(t)up = u(t, up) for ¢t > 0.

In this paper we study the regularity of solutions for semilinear parabolic
problem of the type (1.1). We describe the smoothing effect in such partial
differential equations. The particular case of this method has been stud-
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ied for instance in the monograph by F. Rothe [RO], under the name of
"bootstrap and feedback”.

In Section 2 we introduce some preliminaries. The smoothing effect for
the semilinear equations with second order operator was investigated by F.
Rothe. Our main goal is to formulate the result extending those considera-
tions to the case of higher order elliptic operators. The main result of the
present paper is given in Section 3. Finally, Section 4 contains the consid-
erations for the semilinear equations with a second order operator and an
example.

2. Preliminaries
Let X be a Banach space with the norm ||-||. Let (A4, D(A)) be a sectorial
operator acting from D(A) into X, where D(A) C X is the domain of A.
For a € (0, 00) we define fractional power of the operator A (cf. [CH-D],
[FR), [HE], [PA]) as the operator A= : X — X given by the integral
formula:

o ]
A % S tole— Aty dt,
0

" Ta)

Denote by X the domain of A%, o > 0; in particular X = X° and
D(A) = X!. Then we can define a local X®-solution of (1.1) (see, e.g.,
[CH-D, Chapter II}, [HE, Section 3.3]).

DEFINITION 2.1. Let ug € X%, a € [0,1). A function u € C(|0,7]; X%)
having for some real 7 > 0 the following properties:

(i) u(0) = o,

(if) w € C1((0, 7]; X),

(iii) u(t) belongs to D(A) for each t € (0, 7],

(iv) the first equation in (1.1) holds in X for all ¢t € (0, 7],

is called a local X*-solution of (1.1) .

REMARK 2.1. The existence of a local X*-solution of problem (1.1) for any
a € [0,1) (under the assumption that F' : X* — X is Lipschitz continuous
on bounded sets) is ensured by the existence theory of Henry [HE]. Then
the solution has the following properties of smoothness (cf. [CH-D, Corollary
2.3.1)):

u € C([0,7]; X*) nCY((0,7]; X), e C((0,7];X7) forany ~ve€0,1).

REMARK 2.2. The maximal existence time of X*-solution, associated with
ug, is called the life time of solution u(t,up) and denoted as 7,,.

Next result is well known (cf. [G-T, Chapter VII], [PA, Chapter 7]).
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PROPOSITION 2.1. Let 2 C R™ be a bounded domain of class C™. Then the
Sobolev embeddings hold:

L%(Q) if rp<n, 1<p<oo,

WiP(Q) c —
0" () {ck(n) if 0<k<r-2, keN

As a consequence of the Sobolev embeddings we obtain the following
result (cf. [CH-D, Proposition 1.3.8]):

PROPOSITION 2.2. Let Q C R" be a bounded domain of class C™ and
(A, D(A)) be a sectorial operator in LP(?), 1 < p < oo, with D(A) C
W?2mP(Q) for some m > 1. Then for a € [0,1] the following inclusions hold:

X W(Q) if 2ma-22>s-%2, 1<p<g<oo, 520,
CHu®@) if 2ma-2>k+p, keN, pe(0,1)

REMARK 2.3. The second embedding holds also with i = 0, provided that
strict inequality 2ma — 2 > k is satisfied. The inclusion X* C W=2(Q)
holds whenever 2ma —- 2> s.

Next definition will be useful in the paper.

DEFINITION 2.2. A real function f = f(z,y1,...,yaq) defined on a subset Q2 x
R? (for arbitrary domain Q C R™) is said to be locally Lipschitz continuous
with respect to 4, . .., yq uniformly for z € §), if foralli = 1,...,d and each
compact subset B C R? there exists a positive constant L = L(i, B) such
that the inequality

|f($ay1a"'ay‘i’-"1yd)_f(x’yla"'ay{,'-'ayd)l SLly‘l_El
holds for all (z,y1,...,%i,-.-,¥d), (T, ¥1,.- -, Tis.--,Ya) €  x B.

3. The main result

In this section we describe the smoothing effect for the case of semilinear
equations with 2m-th order elliptic operators. Further, our Theorem 3.1 will
be applied to the exemplary problem (see Section 4).

Let © C R™ be a bounded domain of class C?™, m € N. Consider a
parabolic equation of order 2m

(3.1) u + Au = f(z,d™u), t>0, z€Q,
where
A= Z a,(z)D’
lo|<2m

is an elliptic operator of order 2m. Assume that A is uniformly strongly
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elliptic, i.e. the uniform strong ellipticity condition (cf. [FR, p.2]) holds:
(3.2) A 3c>0\7'aceﬂ\7'£elikﬂ\{0}("l)mRe[ Z as(z)€°] > c|§|2m-

lo|=2m
Denote by d™wu a vector of spatial partial derivatives of u, of order not
exceeding mg, mo < 2m — 1. Assume that f : @ x R® — R, dg = ("';’:"), is
continuous and locally Lipschitz continuous with respect to each functional
argument separately (see Definition 2.2).
Together with (3.1) consider the initial-boundary conditions:

(3.3) u(0,z) = up(z), z€Q,
(3.4) Byu(t,z) = Bau(t,z) = ... = Bpu(t,z) =0, t>0, ze€dQ,
where

Bi= Y W(@D° j=1...m,
lo|<m;
are linear boundary operators of orders m;, 0 < m; <2m — 1.

The triple (—A, {B;},) forms a regular elliptic boundary value problem
(cf., e.g., [CH-D, Definition 1.2.1]).

Let A := A+ Al and F(u) := f(z,d™u) + Mu for a sufficiently large
number A > 0. Then the operator (A, D(A)) acting in LP(Q) with p € (1, 00)
and D(A) = ng‘j’f (R2) (the close subspace of the space W2™P((QQ) consisting
of functions satisfying - in the sense of traces - boundary conditions B;)
is sectorial and positive (cf., e.g., [CH-D, Example 1.3.8]). Therefore the

problem (3.1),(3.3),(3.4) can be rewritten in an abstract form:
(3.5) t+ Au=F(u), t>0,
u(0) = ug.

It is well known that for the existence of local X“*-solution of (3.5), except
for the sectoriality of the operator A on LP(Q1), we have to know that F :
Xio) — LP(Q) is Lipschitz continuous on bounded subsets of X T @) (for
certain a € [0,1)).

Fix such « € [0,1) and consider the expression 2ma — %- The following
cases are possible:

@) 2ma — % > my,
(ii) 2ma — % = mo,

(ii) 2ma — g < mo.
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If 2ma — 3 > myo, then the embedding X7, C C™ (Q) holds and the
nonhneanty F:Xfoq — LP(Q) is Lipschitz continuous on bounded sets
of X7, q)- In consequence, a unique X*-solution of the problem (3.5) exists

on its maximal interval of existence [0,7y,) (cf. [CH-D, Theorem 2.1.1}).
Because 2ma — 2 > my, then X7 o) C Wm0 (Q)). Whence the local X -
solution lies in W™0:®°(Q)) for t > 0.

In the second case we get only the embedding X }J,(Q) C Wmoee(Q).
We remember that X“-solution belongs to the domain of operator A, i.e.
u(t) € Xip(g), for t > 0 and as long as it exists. Hence the local solution
changes in W™0:>°(Q) for ¢t > 0 in this case, too.

The third case requires further discussion.

Assume additionally that the real function f satisfies the local Lipschitz
condition of the form:

(36) If(zvyla vydo) - f('T Yiy- - aydo)l

<CZ|yJ T+ |y "+ g,

where y1,...,Ydo,¥1,- - -, U4, lie in R, C is a constant and admissible values
of exponents -y; will be precised below in formula (3.10).

For the composite function f(x,d™u(t,z)) condition (3.6) implies that
(3'7) |f(xa d’mou) - f(:l:, dmo”)'

mo
SCY 3 ID(u =)l +[DPul® ™ +D% 7).
3=016|=j

The next remark will be useful in the sequel:

LEMMA 3.1. The abstract nonlinearity F satisfies the estimate:

(3-8)  [[F(u) = F(v)llzee)

mo

< " elllullypsrs gy ol ) e = vl oy
Jj=0

where ¢ is a non-decreasing function in each variable.

Proof. Using the Holder and Minkowski inequalities and the condition
(3.7), we obtain
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(§17 - Flo)Pdz)?

( |(f (2, d™u) + M) — (f(=z,d™v) + )\v)|pd:r)%

|
Q
(§11t 7o) = f(aroo)pa)? +3({ - opaz)

<
Q
<(J(C3 3 108 =)+ [DPul* Do) da)
Q" §=0lal=;
1
+ A( flu— 'ulpda:)"
. (v;=1) 9. 1 H
<a) Y (S IDP(u — v)[P(1 + |DPu| P 4 Ingl("/:— )p)dz)p
i=0181=j @ .

+ /\( | |u-—v|”d:c)%
0

<oy ¥ (JIDPw-v)fd)

i=0|g=; @

r; ri—1
X (S(l + lDﬂul('Yj—l)P + |Dﬂv|(7j—1)p)#—‘1dx)7?"7 + )\( S lu— v|"fdz)517,
@ Q

where the constants r;, j =0,...,mo, are chosen from the conditions
r
i=(v;—1 1
pri = (v )Prj _1
Therefore
Ti =7 for j=0,...,m0,

hence, we get the estimate (3.8).

Define the critical exponents as follows (the parameters n, m, p have been
precised at the beginning of Section 3):

DEFINITION 3.3. The values I'; > 1, j =0,...,myq, given by

n
—_—_— if n>(2m-j)p,
e ( jp
L= arbitrarily large absolute value if n = (2m — j)p,
00 if n<(m-jp

are called critical exponents.
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REMARK 3.4. For n > (2m — j)p, the critical exponents I';, j = 0,...,my,
satisfy the conditions

n n
3.9 2m——-=j—- —.
(3.9) . 2T
In particular, for m = 1 and j = 0 the critical exponent I'y is equal to
n
Iy = .
L 2p

Consider the problem (3.5) on the space LP(2), with p close to 1. Con-
sider a local X*-solution of this problem, where parameter o satisfies the
condition (iii).

We will show the following result:

THEOREM 3.1. If the values of exponents v; <T'j, j=0,...,mq, in (3.7)
satisfy the inequality (3.10) below, then the local X*-solution of the problem
(3.5), considered on the space LP(Q), belongs to W™»°(Q2) for t > 0.

Proof. We know that the local X*-solution of (3.5) exists, whenever the
operator (A, D(A)) is sectorial and positive on LP(2), while the nonlin-
ear function F : X7, o) — LP(€2) is Lipschitz continuous on bounded sets
in X7, q)- The first of these requirements is satisfied (see [CH-D, Exam-
ple 1.3.8]). The second one follows from the estimate (3.8), the embedding

Xiv) C WP (Q) and the estimate |||y .0 @ S C"‘P"Xz‘p(m;

mo

| F'(u) - F(”)”LP(Q) < Z C("“"wm‘fa‘ Q) ||U||WJ"P7J'(Q))”U - 'U"wivmj ()
=

< e(Cllullxgy g, Cllvlixg, o, )Cllu = vllx

LP(D)? LP(R) ZP(Q) ’
provided that
n n
3.10 2ma~—->j—— for j=0,...,mm.
( ) p P

Assume that the nonlinear function F in (3.5), acting on LP(2), fulfils the
condition (3.7) with growth exponents «v; < I'; for each j =0, ..., mo. Then
we can choose the parameter o« (close to 1) satisfying (3.10). Denote by oy
this parameter (which can be chosen independent of j). The corresponding
to it local X*1-solution of (3.5) has the following regularity properties:

u € C([0, Tuo)v‘XZ;(Q)) N Cl((OaTuo)aXIl,;(Q)) N C((o, Tuo)vxiP(Q))a

where Ty, > 0 is the life time of solution of problem (3.5). For t € (0, 7y,)
such solution (local in time) belongs to X}IP(Q) and the composite function
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f(-,d™u) has values in L™ () with any r; satisfying

T
3.11 <rn< min L.
( ) P ! ij{O,...,mo} Y
Indeed, the embedding Xip(n) Cc W3m%(Q) holds for j = 0,...,mo, pro-
vided that
p pL; 1Y

Therefore pI'; > r1y; with j = 0,...,mo, so that (3.11) is satisfied.

Consider now the equations (3.1) and (3.4) on L™(Q) for ¢t € (g,7u,)

with the new initial condition
(3.12) u(e, z) = ui{z), z €9,

defined by the value of X73 o -solution u for ¢ = ¢ (¢ close to 0). As a con-
sequence of the above considerations, such local solution exists on L™(2).

The following cases are possible:
. Iy n
1) pmin — > —,
(i) pra) Y > Im —me
iy Y n
i1) pmin = < ——,
(if) p s 2 S Im —me
In the first case we choose r; > 2m+mo, satisfying (3.11), which is near
pmin ,—Sj— Then we have X}, @ C Wmo.20(()); this ends our study, since
j

X*1_solution belongs to the domain of operator A for ¢ > ¢ and as long as
it exists.

In the second case our considerations describing the smoothness have to
be repeated. Consider the problem (3.1),(3.4),(3.12) on the space L™ ().
Notice (from Definition 3.3) that the new critical exponents I‘} for j =
0,...,mgp are equal to

n
. om — i

1 — if n>(2m-jn,

I'; = { arbitrarily large absolute value if n = (2m — j)r1,

00 if n<(@2m-j)r.

Moreover we have

n n 1
T

= =Tl

n=@m-j)p n-@m-jn
provided that n > (2m — j)r;. Hence we get

1

r T

Vi

foreach j7=0,...,m;.



Semilinear parabolic equations 363

It means that the smoothness in the subsequent step will be at least that high
as in the previous step. For t € (&, 7,) the local X77, (q)-Solution belongs to
X1 ()- Moreover the function f (+,d™u) belongs to L™2(2) for t € (¢, Tu,)
P " . I
and any r9 satisfying the condition 71 < 7 < 71 min ,—Y]-L
3

When we repeat the above procedure (considering the solutions, which
starts with ¢ being equal to ¢, €+ §, e+ £+ %, ... ) the exponents p, 71,79, ...
in the subsequent steps satisfy the following conditions:

Ly Ly

p<ri<pmin—= and —=>1,
T
! rl .
rm<ra<rmin—< and -2L>-L>1,
J Vi
etc.
for j=0,...,mop.

Fix a number s such that 1 < s < min ,—I;-JL Take r; := ps, which satisfies
J
(3.11). If mjnl"}- = oo for 7 = 0,...,mo, then we may choose 72 such that
J

T2 > gt If mjin I"Jl- < oo for at least one coefficient j, we take rq :=

. . Ty . I} .
r18 = ps?. Notice that 1 < s < min ,% < min %. The sequence {rt }rer With
J J
e = ps® tends to infinity. Hence after finite number of steps the inequalites
Y n
r;min =% > ———
i 2m — myg

hold for j = 0,...,mp and some ¢. Then the X7 +1(Q)-solution belongs to
i
wmee(Q) fort>e ) §1r, as a consequence of the case (i).
=0

The above considerations stay valid for each arbitrarily small € > 0.
Therefore the smoothness of solution extends for ¢ > 0.
The proof of Theorem is complete.

REMARK 3.5. Under the sufficiently regular data, such as smoothness of the
domain €2 and the coefficients of the operators A and B, the X®-solution
described in our considerations is in fact classical solution. We remind that
continuous function u on [0,7] x Q is called a classical solution of (3.1),
(3.4),(3.12), if u has continuous derivatives u; and D%u, |a| < 2m, in (0, 7] x
) and u satisfies (3.1) in (0, 7] x .

The proof of the classicality of our solution is divided into several steps.
We start with the proof of the regularity of solution v and its derivatives
u¢ and D*u with respect to z, which is based on the Sobolev embeddings.
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Next, we notice that the result of [HE, Theorem 3.5.2] allows us to obtain
the continuity of the derivative u; with respect to (t,z). In the last step,
applying Lemma 3.1 of [L-S-U] to the first order derivatives u;,, the second
order derivatives uz,s;, etc., we show that the derivatives D*u are continuous
functions with respect to (¢, z).

The precise proof of the classical solvability of solution will be omitted
here, because it would require to define additionally spaces H Ly ([0, 7] x )
(I-positive and not integer) (cf. [L-S-U, p.706]). Similar considerations are
well known in literature (see, e.g., [DL1, p.491], [DL2, p.396)).

4. Second order equation. Example
A special case of semilinear equation is the simple scalar parabolic equa-
tion of the form (4.1). We describe the smoothing effect in this case.
Assume that @ C R™ is a bounded domain of class C2. Consider the
Dirichlet problem

t=Au+ f(u), t>0, ze€q,
(4.1) u(t,z) =0, t>0, zedq,
u(0,z) = uo(z), =z €.
It is well known that the differential operator A = (—A, Dir.) is uniformly
strongly elliptic (see condition (3.2)) in © (cf. {FR, p.2], [PA, p.209]). Let
f : R — R be a function satisfying the following local Lipschitz condition:
(42)  Fpo>1Vuperlf(w) = f() < Clu—v|(1+ [u[™ " + o).
It appears that if only the exponent v in (4.2) is not too large, then
a local X*-solution of (4.1) belongs to L*°(Q2) for t > 0 and as long as it
exists.
Indeed, the Calderon-Zygmund estimation for the linear problem
vn=Av+g(tz), t>0, z€Q,
v(t,z) =0, t>0, ze€od,
v(0, z) = vo(x), z€eN
has the following form:

(4.3) lvllwze(q) < const.(|vllzeq) + lIgllLr )

(cf. [G-T, Theorem 9.13}, 1 < p < 00). Using (4.3), for p > n and a > % we
can estimate a local X*-solution of (4.1). Next in accordance with the clas-
sical Sobolev embedding W2P(Q) C C1(Q), p > n, we are able to estimate
the first order derivatives of v in the Holder norm. And, finally, we estimate
the solutions of (4.1) based on the estimate of composite function f(u) in
C'*#(Q)-norm, p > 0 (where we need to assume that f € C1*#). In further
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studies of the regularity of solutions the theory by O. A. Ladyzhenskaya, V.
A. Solonnikov and N. N. Uralceva [L-S-U] can be also used.

The problem of the higher regularity of solutions is often investigated
on "wide” spaces LP(2), with small exponent p (e.g. with p = 1,2). Then
we have to be able to ”consolidate” of the smoothness of solutions so as to
show that f(u(t)) € L>®(Q) for each small positive time ¢.

REMARK 4.1. The properties of solutions of (4.1) deteriorate together with
the growth of exponent ~p, which restricts the growth of nonlinear term (cf.
[RO)]).

Consider a local X *-solution of problem (4.1) in the sense of Henry. Our
further considerations depend on the expresion 2a — 2. If 2o — 2 > 0 or
20 — 2 = 0 hold, then X*- solution (over LP(Q)) lies in L°°(2) for small
positive times. In the first case the embedding X75 ) C L™ (€2) holds and
then X®-solution lies in L*°(f2) for ¢ > 0. In the second case we get only the
embedding X}, C L®(Q), since 2 — 2 > 2a — 2 = 0. We remember that
X®-solution varies in the domain of operator A for t > 0, i.e. u(t) € Xll,r(n)’
and as long as it exists. Hence X“-solution changes on L>(Q2) for ¢ > 0 in
this case, too. The studies of the case 2a— % < 0 lead to the following result:

THEOREM 4.2. The local X®-solution of problem (4.1) belongs to L*(Q) for
t > 0 independently of the choice of the basic space LP(Q) and a € [0,1), if
only the exponent v < T'g in (4.2) satisfies the inequality
(4.4) 20— = >~

p 0]
REMARK 4.2. Theorem 4.2 is a special case of Theorem 3.1 with m = 1.

REMARK 4.3. The critical exponent I'g > 1 is given by (cf. Definition 3.3)

n .
— if n>2p,
Lo = arbitrarily large absolute value if n = 2p,
00 if n<2p,

Now, we illustrate Theorem 3.1 in the case m = 1. We describe the
smoothing effect for some nonlinear evolution equation of second order.
Assume that  C R* (n = 4) is a bounded domain of class C2.

EXAMPLE 4.1. Consider the Dirichlet problem
ut=Au+u|u|k“1, t>0, z€Q, k>1,
(4.5) u(t,z) =0, t>0, ze0d9,
u(0, z) = uo(zx), z €.
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Notice that the differential operator (—A, Dir.) is uniformly strongly
elliptic in Q (see [FR]). Moreover the real function f(u) = ulu|*~* satisfies
the local Lipschitz condition (4.2). We study the problem (4.5) in the space
L3 (Q) (p=32). Consider X 3-solution of (4.5) in the sense of Henry (a = 3).
Then

K

n 5

1
20—;—2'5—'%'—'—§<0.
The critical exponent 'y is equal to
n 4
Iy = = =4.
0 n—2p 4—2-%

Let the nonlinearity f : L3k Q) - L () fulfils the condition (4.2) with
the growth v9 < 4, e.g. 0 = 3. Then we can choose the parameter a;
satisfying (4.4), i.e.

4

—
53

4
2(11 -3 > —
2
Hence we get a1 > g.
Since the operator (—A, Dir.) is sectorial and the nonlinearity is Lip-
schitz continuous on bounded sets in XZ:} . then X“1-solution of (4.5)

exists. We can choose such exponent r that

3 To
=-<r<p— =2,
P ) P,YO

e.g. r = 1. For such choice of r and ¢ € (0, 7,,) we have f(u) € Li Q).

In the next step we study the problem (4.5) over the space L%(Q), for
t € (€,Tug), € > 0 with the initial condition defined by X:% a -solution at

the moment ¢t = €. The new critical exponent is equal to I'; = 8. If we take
oz > 18 (like a;), then X:i (Q)-solution of (4.5) exists. For t € (g, Ty,) such

solution belongs to le,%(n) and f(u) € L*(?) with such s that

r=lcscrii

4 v 3
Now, we consider the problem (4.5) over the space L*(Q2) for t € (¢ + £, T,)
and choose a3 (like o). Because f is Lipschitz continuous on bounded sets

in ng(ﬂ)’ then XZ_‘,‘(Q)-solution exists. However r% > %, so we can choose
ssuch that s > 2= 3, eg. s= %. Notice that
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2

2— =2+§=—>0
i

and the embedding Xlll%(n) C L*(Q) is true for t > & + 5. Therefore the
local solution of (4.5) belongs to L*°(£2).

5. Comments

The arguments of Theorem 3.1 use a local Lipschitz condition, which
ensures the existence of solutions for bounded initial data. Additional re-
strictions on the growth of the nonlinear term, such as the condition (3.7),
allow to get through Theorem 3.1 the high smoothness of the solutions on
their interval of existence (0, 7,), and even the global existence of solutions
by the classical results of A. Friedman [FR] or O. A. Ladyzhenskaya, V. A.
Solonnikov and N. N. Uralceva [L-S-U].

Acknowledgments. I thank Professor Tomasz Dlotko for his helpful
comments improving the redaction of the present paper.
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