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SMOOTHING EFFECT IN SEMILINEAR 
PARABOLIC EQUATIONS 

Abstract. The purpose of this paper is to describe the smoothness of solutions of 
semilinear parabolic equations with 2m-th order elliptic operator. Similar result for second 
order equations was given e.g. by F. Rothe [RO] under the name of "bootstrap" and 
"feedback". 

1. Introduction 
The semigroups generated by elliptic operators (supplemented appropri-

ate boundary condition) can be considered on any Lebesgue space LP for 
p 6 (1, oo). The hard L1 case was treated by D. Guidetti in [GU]. Similarly, 
the regularity of solutions of evolution partial differential equations can be 
investigated on any Lebesgue space. However we often consider such nonlin-
ear equations on "wide" spaces LP, with small exponent p close to 1. This 
allows us to take initial data from large set. But in this case we have to im-
pose additional restrictions on the growth of the nonlinear term to "keep" 
the solution in Lp. 

Consider an abstract Cauchy problem of the form: 

(11) (u + Au = F(u), t> 0, 

where A is a sectorial operator and F is a nonlinear function. It is well known 
that we need to restrict the growth of the nonlinear function F to ensure the 
existence of global solutions. Then the semigroup {T(t)}t>o corresponding 
to (1.1) may be defined by the formula T(t)ito = U(t, UQ) for t > 0. 

In this paper we study the regularity of solutions for semilinear parabolic 
problem of the type (1.1). We describe the smoothing effect in such partial 
differential equations. The particular case of this method has been stud-
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ied for instance in the monograph by F. Rothe [RO], under the name of 
"bootstrap and feedback". 

In Section 2 we introduce some preliminaries. The smoothing effect for 
the semilinear equations with second order operator was investigated by F. 
Rothe. Our main goal is to formulate the result extending those considera-
tions to the case of higher order elliptic operators. The main result of the 
present paper is given in Section 3. Finally, Section 4 contains the consid-
erations for the semilinear equations with a second order operator and an 
example. 

2. Preliminaries 
Let X be a Banach space with the norm || • ||. Let (A, D(A)) be a sectorial 

operator acting from D(A) into X, where D(A) C X is the domain of A. 
For a € (0, oo) we define fractional power of the operator A (cf. [CH-D], 

[FR], [HE], [PA]) as the operator A~a : X X given by the integral 
formula: 

1 0 0 

A~av = -j— \ ta-le~Mvdt. 
r ( « ) I 

Denote by Xa the domain of Aa, a > 0; in particular X = X° and 
D(A) = X1. Then we can define a local XQ-solution of (1.1) (see, e.g., 
[CH-D, Chapter II], [HE, Section 3.3]). 

DEFINITION 2.1. Let u0 € Xa, a e [0,1). A function u e C([0,r];Xa) 
having for some real r > 0 the following properties: 

(i) u(0) = u0, 
( i O u e C H M ; * ) , 
(iii) u(t) belongs to D(A) for each t e (0, r], 
(iv) the first equation in (1.1) holds in X for all t € (0,r], 

is called a local Xa-solution of (1.1) . 

REMARK 2.1 . The existence of a local XQ-solution of problem (1 .1 ) for any 
a € [0,1) (under the assumption that F : Xa —> X is Lipschitz continuous 
on bounded sets) is ensured by the existence theory of Henry [HE]. Then 
the solution has the following properties of smoothness (cf. [CH-D, Corollary 
2.3 .1]) : 

«€C([0,r] ;r)nC1((0,r];I) , u € C((0,r];X^) for any -y € [0,1). 
REMARK 2.2 . The maximal existence time of Xa-solution, associated with 
wo» is called the life time of solution u(t, uo) and denoted as ruo. 

Next result is well known (cf. [G-T, Chapter VII], [PA, Chapter 7]). 
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PROPOSITION 2.1. Let fict" be a bounded domain of class CT. Then the 
Sobolev embeddings hold: 

Wr'p(Q) C \ L ^ ^ if rp<n, 1 < p < oo, 
0 1 ' |C f e ( i i ) if 0<k<r-*, ke N. 

As a consequence of the Sobolev embeddings we obtain the following 
result (cf. [CH-D, Proposition 1.3.8]): 

PROPOSITION 2.2. Let FI C KN be a bounded domain of class Cm and 
(A,D(A)) be a sectorial operator in 1^(0,), 1 < p < oo, with D(A) C 
W2m'p(n) for some m> 1. Then for a 6 [0,1] the following inclusions hold: 

if 2ma-2>s-*, 1<P<<7<00, * > 0, 

j c ^ i ! ) if 2 m a - 2 > H / i , ke N, /xe(0, l ) . 

REMARK 2.3. The second embedding holds also with /I = 0, provided that 
strict inequality 2ma — 2 > fc is satisfied. The inclusion Xa C 
holds whenever 2ma — 5 > s. p 

Next definition will be useful in the paper. 

DEFINITION 2.2. A real function / = f(x, y i , . . . , yd) defined on a subset fl x 
Rd (for arbitrary domain Cl c M") is said to be locally Lipschitz continuous 
with respect to y i , . . . , y^ uniformly for x E i), if for alii = 1,..., d and each 
compact subset B C Rd there exists a positive constant L = L(i, B) such 
that the inequality 

\f(x,yu ...,yu ...,yd) - f(x,yi, • • • ,yi, • • • ,ya)\ < L\yi -yi\ 

holds for all (x, yi,..., yu ..., yd), (x, yu ..., yi,..., yd) G Cl x B. 

3. The main result 
In this section we describe the smoothing effect for the case of semilinear 

equations with 2m-th order elliptic operators. Further, our Theorem 3.1 will 
be applied to the exemplary problem (see Section 4). 

Let fl C 1 " be a bounded domain of class C2m, m 6 N. Consider a 
parabolic equation of order 2m 

(3.1) ut + Au = f(x, <T-°u), t> 0, i 6 i i , 

where 

A= a°(.x )D<T 

|<r|<2m 

is an elliptic operator of order 2m. Assume that A is uniformly strongly 
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elliptic, i.e. the uniform, strong ellipticity condition (cf. [FR, p.2]) holds: 

(3.2) 3c>oV l 6 i iV?6Rn\{0}(-l)mRe[ £ ^(x)?] > c\(\2m. 
|<r|=2m 

Denote by d^u a vector of spatial partial derivatives of u, of order not 
exceeding m0 , m 0 < 2m - 1. Assume that / : U x R^0 R, d0 = , is 
continuous and locally Lipschitz continuous with respect to each functional 
argument separately (see Definition 2.2). 

Together with (3.1) consider the initial-boundary conditions: 

(3.3) u(0,x) = uo(x), x E CI, 

(3.4) Biu(t, x) = B2u(t, i ) = ... = Bmu(t, x) = 0, t > 0, x 6 dCl, 

where 
Bj= £ bi(x)D°, j = l , . . . , m , 

\<r\<m.j 

are linear boundary operators of orders mj , 0 < m j < 2m — 1. 
The triple (—>1, {Bj},Q) forms a regular elliptic boundary value problem 

(cf., e.g., [CH-D, Definition 1.2.1]). 
Let A := A + XI and F(u) :— f(x, tf1 0«) + Au for a sufficiently large 

number A > 0. Then the operator (A, D{A)) acting in Lp(fi) with p G (1, oo) 
and D(A) = W^ ' j ' ( f i ) (the close subspace of the space W2 m 'p(fl) consisting 
of functions satisfying - in the sense of traces - boundary conditions Bj) 
is sectorial and positive (cf., e.g., [CH-D, Example 1.3.8]). Therefore the 
problem (3.1),(3.3),(3.4) can be rewritten in an abstract form: 

(35) (u + Au = F(u), t> 0, 
\ u( 0) = tto• 

It is well known that for the existence of local ^"-solution of (3.5), except 
for the sectoriality of the operator A on LP{Vt), we have to know that F : 
•^Lp(n) W i t y i s Lipschitz continuous on bounded subsets of (for 
certain a G [0,1)). 

Fix such a G [0,1) and consider the expression 2ma — j*. The following 
cases are possible: 

(i) 2ma — — > mo, 
P 

.... n 
(II) 2ma = tuq, 

V 
..... _ n (III) 2ma < mo-
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If 2ma - a > mo, then the embedding X£P(n ) c Cm°(fi) holds and the 
nonlinearity F : —»• LP(£l) is Lipschitz continuous on bounded sets 
of In consequence, a unique XQ-solution of the problem (3.5) exists 
on its maximal interval of existence [0, ruo) (cf. [CH-D, Theorem 2.1.1]). 
Because 2ma - | > m0, then X£p ( n ) c fi). Whence the local X a -
solution lies in WTOo-00(ii) for t > 0. 

In the second case we get only the embedding X^,^ C Wmo'°°(Cl). 
We remember that XQ-solution belongs to the domain of operator A, i.e. 
u(t) 6 -^¿p(n), for t > 0 and as long as it exists. Hence the local solution 
changes in Wm° ,00(f2) for t > 0 in this case, too. 

The third case requires further discussion. 
Assume additionally that the real function / satisfies the local Lipschitz 

condition of the form: 

(3.6) \f(x,yh...,ydo) - f(x,yu... 

< C f:\yj-VjKl + ly^-' + W^-1), 
3=1 

where y i , . . . , y^ , y^ , . . . , y ^ lie in R, C is a constant and admissible values 
of exponents 7j will be precised below in formula (3.10). 

For the composite function / (x , x)) condition (3.6) implies that 

(3.7) I f ( x , d r > u ) - f ( x , t r ° v ) \ 
mo 

< c £ I D ^ u - t O K l + I D ' V * +|D / , t ; |7 i ). 
i=o\p\=i 

The next remark will be useful in the sequel: 

LEMMA 3 . 1 . The abstract nonlinearity F satisfies the estimate: 

(3.8) | | F ( u ) - F ( V ) | | L P ( n ) 
mo 

^ Y A M w ^ w ll^llw^j-^))!!" ~ t,IIwi'in,j(fi)' 
j=0 

where c is a non-decreasing function in each variable. 

P r o o f . Using the Holder and Minkowski inequalities and the condition 
(3.7), we obtain 
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(\\F(u)-F(v)fdx)' 
n 

= (\ \(f(x,<r°u) + xu) - (f(x,<r°v) + \v)\pdx)> 
n 

< (j |f{x,dr°u) - f{x,<r°v)\pdx)> + a ( J1«-v\ p dx)* 
n n 

mo 1 

n j=o \p\=j 

+ \u-vfdxy 
u 

< C , £ 5 : ( i \D?(u - v)\p(l + \D^'1)P + \DPv\^-1)p)dx)> 

+ A( \ \u-v\pdxy 
n 

< C i £ £ ( j l D ^ u - v ) P d x ) ^ 
j=o\p\=j a 

x ( J ( 1 + + | D ^ - ^ ^ d x ) ^ + A( J -
n n 

where the constants rj, j = 0,..., mo, are chosen from the conditions 
T' 

VTj = (70 -
Tj 1 

Therefore 
rj - ij for j = 0,... ,m0, 

hence, we get the estimate (3.8). 
Define the critical exponents as follows (the parameters n, m, p have been 

precised at the beginning of Section 3): 

DEFINITION 3.3. The values Tj > 1, j = 0,..., m0, given by 

— - — if n > (2m - j)p, 
n — (2m — j)p 
arbitrarily large absolute value if n — (2m — j)p, 
oo if n < (2m — j)p 

are called critical exponents. 

F J = 
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REMARK 3.4. For n > (2m — j)p, the critical exponents Tj, j = 0 , . . . , mo, 
satisfy the conditions 

n n 
3.9 2 m - - = j - — . 

P pFj 
In particular, for m = 1 and j = 0 the critical exponent To is equal to 

n 
r0 = n — 2p 

Consider the problem (3.5) on the space LP^l), with p close to 1. Con-
sider a local Xa-solution of this problem, where parameter a satisfies the 
condition (iii). 

We will show the following result: 

THEOREM 3.1. If the values of exponents 7 j <Tj, j = 0 , . . . , mo, in (3.7) 
satisfy the inequality (3.10) below, then the local Xa-solution of the problem 
(3.5), considered on the space LP(VL), belongs to W 1 0 - 0 0 ^ ) for t > 0. 

P roo f . We know that the local X°-solution of (3.5) exists, whenever the 
operator (A,D(A)) is sectorial and positive on 1^(0.), while the nonlin-
ear function F : LF(Cl) is Lipschitz continuous on bounded sets 
in X^p^y The first of these requirements is satisfied (see [CH-D, Exam-
ple 1.3.8]). The second one follows from the estimate_£3.8), the embedding 

and the estimate < C||^IU«P(n); 

mo 

j=0 
< c ( c i i u i u 2 p ( n ) , a i | v i u 2 p ( n ) ) c i | u - v | i ^ p ( n ) , 

provided that 
Tl Tl 

(3.10) 2 ma > 7 for 7 = 0 , . . . , m0. 
P Plj 

Assume that the nonlinear function F in (3.5), acting on I^(fi), fulfils the 
condition (3.7) with growth exponents 7j < Tj for each j = 0 , . . . , mo. Then 
we can choose the parameter a (close to 1) satisfying (3.10). Denote by a i 
this parameter (which can be chosen independent of j) . The corresponding 
to it local XQ1-solution of (3.5) has the following regularity properties: 

u e c([0,T u o ) ,X£ ( i i ) ) n ^ a o , ^ ) , ^ ^ ) n c ( ( o , r u o ) , x i P ( n ) ) , 

where r ^ > 0 is the life time of solution of problem (3.5). For t 6 (0,TUO) 
such solution (local in time) belongs to and the composite function 
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/(•, dm°u) has values in LT1 (fl) with any t\ satisfying 
p. 

(3.11) p < ri < p min —. 
je{o m0} 7j 

Indeed, the embedding -X^p^) C WJ',ri7-»'(fl) holds for j = 0 , . . . ,mo, pro-
vided that 

n n n 
2m = j — > j . 

P pFj ri7j 
Therefore pl^ > ri7j with j = 0,..., mo, so that (3.11) is satisfied. 

Consider now the equations (3.1) and (3.4) on Lri(fl) for t € (e, TUQ) 
with the new initial condition 

(3.12) U(E, X) = ui(a;), x € ft, 

defined by the value of -solution u for t = e (e close to 0). As a con-
sequence of the above considerations, such local solution exists on Lri(Q,). 

The following cases are possible: 
/•\ • n 
(l) p min — > 

j ~/j 2m — mo' 
r-\ • r i ^ n 
(11) p mm — < 

j 7j 2m — mo 
In the first case we choose r\ > 2m-m0' satisfying (3.11), which is near 

p 1 
p min . Then we have X[ri (n) C VFmo'°°(fi); this ends our study, since j j ^ ' 
Xai-solution belongs to the domain of operator A for t > e and as long as 
it exists. 

In the second case our considerations describing the smoothness have to 
be repeated. Consider the problem (3.1),(3.4),(3.12) on the space Lri(Cl). 
Notice (from Definition 3.3) that the new critical exponents r j for j = 
0 , . . . , mo are equal to 

if n > (2m — j)ri, 
i n - (2m - j)r\ 

Fj = ^ arbitrarily large absolute value if n = (2m — j ) n , 
oo if n < (2m — j)r\. 

Moreover we have 

r . = 2 < 2 = r 1 , 
3 n — (2m — j)p n — (2m — j)r\ 3' 

provided that n > (2m — j)r\. Hence we get 
r r^ 
— < — for each j = 0 , . . . , mo-
7 j 7 j 
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It means that the smoothness in the subsequent step will be at least that high 
as in the previous step. For t G (e,ruo) the local Xf^i^y-solution belongs to 
Xln(jj). Moreover the function f(-,dm°u) belongs to LT2(VL) for t € ( S , T U O ) 

r1. 
and any r<i satisfying the condition r\ <r-i < r\ min -1-. 

j 7j 
When we repeat the above procedure (considering the solutions, which 

starts with t being equal toe , £ + § , e + § + | , . . . ) the exponents p, r\, 7*2,... 
in the subsequent steps satisfy the following conditions: 

r - r -
p < r\ < pmin — and — > 1, 

J 73 7; 
r* r* r -

r\ <V2 < n min — and — > — > 1, 
i li 73 73 

etc. 
for j = 0 , . . . , mo- p. 

Fix a number s such that 1 < s < min - 1 . Take r\ := ps, which satisfies 
j 13 

(3.11). If min r j = 00 for j = 0 , . . . , mo, then we may choose r^ such that j J 

r<i > 2m-m0 • ^ m i n r ) < 0 0 for at least one coefficient j , we take ti := 
3 r r i s = ps2. Notice that 1 < s < min < min The sequence {rk}keR with 

3 j j 

rk = psk tends to infinity. Hence after finite number of steps the inequalites 
. r j n 

Ti mm — > 
j 7j 2m — mo 

hold for j = 0 , . . . , mo and some i. Then the X^K+i ^-solution belongs to 
i 1 

WTno'00(i)) for t > e X) KTi as a consequence of the case (i). 
1=0 

The above considerations stay valid for each arbitrarily small e > 0. 
Therefore the smoothness of solution extends for t > 0. 

The proof of Theorem is complete. 
REMARK 3.5. Under the sufficiently regular data, such as smoothness of the 
domain U and the coefficients of the operators A and B, the Xa-solution 
described in our considerations is in fact classical solution. We remind that 
continuous function u on [0, r] x Q, is called a classical solution of (3.1), 
(3.4),(3.12), if u has continuous derivatives ut and Dau, |a| < 2m, in (0, r] x 
Q and u satisfies (3.1) in (0, r] x ii. 

The proof of the classicality of our solution is divided into several steps. 
We start with the proof of the regularity of solution u and its derivatives 
ut and Dau with respect to x, which is based on the Sobolev embeddings. 
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Next, we notice that the result of [HE, Theorem 3.5.2] allows us to obtain 
the continuity of the derivative ut with respect to (t, x). In the last step, 
applying Lemma 3.1 of [L-S-U] to the first order derivatives uXi, the second 
order derivatives uXiX., etc., we show that the derivatives Dau are continuous 
functions with respect to (t, x). 

The precise proof of the classical solvability of solution will be omitted 
here, because it would require to define additionally spaces H1' 2 ([0, r] x fi) 
(¿-positive and not integer) (cf. [L-S-U, p.706]). Similar considerations are 
well known in literature (see, e.g., [DL1, p.491], [DL2, p.396]). 

4. Second order equation. Example 
A special case of semilinear equation is the simple scalar parabolic equa-

tion of the form (4.1). We describe the smoothing effect in this case. 
Assume that ii C 1 " is a bounded domain of class C 2 . Consider the 

Dirichlet problem 

u = Au + f(u), t> 0, xeii, 
(4.1) tt(£, x) = 0, t > 0, xedil, 

u(0, x) = uo(x), x € (I. 

It is well known that the differential operator A = (—A, Dir.) is uniformly 
strongly elliptic (see condition (3.2)) in ft (cf. [FR, p.2], [PA, p.209]). Let 
/ : R —» R be a function satisfying the following local Lipschitz condition: 

(4.2) 3 7 0 >iV u , „ e R | / ( « ) - / ( « ) | < C\u - «1(1 + l u r 0 " 1 + l ^ r " 1 ) . 

It appears that if only the exponent 70 in (4.2) is not too large, then 
a local XQ-solution of (4.1) belongs to L°°(Q) for t > 0 and as long as it 
exists. 

Indeed, the Calderon-Zygmund estimation for the linear problem 

vt = Av + g(t,x), t> 0, x € f I , 

v(t, x) = 0, t> 0, x € dil, 

v(0,x) = vo(x), XEQ, 

has the following form: 
(4.3) IMIw2>p(ii) < consi.(||t;||Lp(n) + |MIlp(«)) 

(cf. [G-T, Theorem 9.13], 1 < p < 00). Using (4.3), for p > n and a > \ we 
can estimate a local Xa-solution of (4.1). Next in accordance with the clas-
sical Sobolev embedding W2'p(fl) C C1(S7), p> n, we are able to estimate 
the first order derivatives of v in the Holder norm. And, finally, we estimate 
the solutions of (4.1) based on the estimate of composite function /(it) in 
C1 + i i(fi)-norm, /x > 0 (where we need to assume that / 6 Cl+t*). In further 
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studies of the regularity of solutions the theory by O. A. Ladyzhenskaya, V. 
A. Solonnikov and N. N. Uralceva [L-S-U] can be also used. 

The problem of the higher regularity of solutions is often investigated 
on "wide" spaces LP (CI), with small exponent p (e.g. with p = 1,2). Then 
we have to be able to "consolidate" of the smoothness of solutions so as to 
show that f(u(t)) 6 L°°(íí) for each small positive time t. 

REMARK 4.1. The properties of solutions of (4.1) deteriorate together with 
the growth of exponent 70, which restricts the growth of nonlinear term (cf. 
[RO]). 

Consider a local .X""-solution of problem (4.1) in the sense of Henry. Our 
further considerations depend on the expresión 2a — If 2a — jj > 0 or 
2a - 2 = 0 hold, then Xa- solution (over L"(fi)) lies in L°°(i]) for small 
positive times. In the first case the embedding c L°°(CI) holds and 
then XQ-solution lies in L°°(Cl) for t > 0. In the second case we get only the 
embedding C L°°(Ci), since 2 - £ > 2a - £ = 0. We remember that 
^"-solution varies in the domain of operator A for t > 0, i.e. u(t) 6 
and as long as it exists. Hence Xa-solution changes on L°°(Cl) for t > 0 in 
this case, too. The studies of the case 2a— < 0 lead to the following result: 

THEOREM 4 .2 . The local Xa-solution of problem (4 .1 ) belongs to L ° ° ( f i ) for 
t > 0 independently of the choice of the basic space jy(fi) and a € [0,1), if 
only the exponent 70 < To in (4.2) satisfies the inequality 

p p7o 

REMARK 4.2. Theorem 4.2 is a special case of Theorem 3.1 with m = 1. 

REMARK 4.3. The critical exponent To > 1 is given by (cf. Definition 3.3) 

r0 

71 if n > 2p, 
n — 2p 
arbitrarily large absolute value if n — 2p, 
00 if n < 2p, 

Now, we illustrate Theorem 3.1 in the case m = 1. We describe the 
smoothing effect for some nonlinear evolution equation of second order. 
Assume that fl C R4 (n = 4) is a bounded domain of class C2. 

EXAMPLE 4 .1 . Consider the Dirichlet problem, 

ut = Au + tx|u|fc_1, t > 0, x £ CI, k > 1, 
u(t,x) = 0, i > 0, x€dn, 
u ( 0 , x) = UQ(X), x G £i . 

(4.5) 
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Notice that the differential operator (—A, Dir.) is uniformly strongly 
elliptic in Q (see [FR]). Moreover the real function f(u) = u|u|fc_1 satisfies 
the local Lipschitz condition (4.2). We study the problem (4.5) in the space 
L i ( i l ) (p = |). Consider X 2-solution of (4.5) in the sense of Henry (a = 5). 
Then 

5 
2a = 2 • - — T = —- < 0. 

P 2 § 3 

The critical exponent To is equal to 

_ n 4 
To = = t = 4. 

n — 2p 4 - 2 - | 

Let the nonlinearity / : L3 fc(Q) —> i J ( f i ) fulfils the condition (4.2) with 
the growth 70 < 4, e.g. 70 = 3. Then we can choose the parameter c*i 
satisfying (4.4), i.e. 

4 4 
2oi - T > -3 ^ 3 O-

2 2 ' 

Hence we get c*i > |. 
Since the operator (—A, Dir.) is sectorial and the nonlinearity is Lip-

schitz continuous on bounded sets in -solution of (4.5) 

exists. We can choose such exponent r that 

3 r 0 0 
p = _ < r < p — = 2, 

I 7o 

e.g. r = For such choice of r and t € (0, rUQ) we have f(u) € L*(fl). 
7 

In the next step we study the problem (4.5) over the space L*(SY), for 
T € (S,TUO), E > 0 with the initial condition defined by ^-solution at 

the moment t = e. The new critical exponent is equal to Ti = 8. If we take 
a2 > M (^ke ai ) , then -solution of (4.5) exists. For t € (e, r ^ ) such 

solution belongs to and f(u) € Ls(fl) with such s that 

7 Ti 14 
r = - < s < r— = —. 

4 7 0 3 

Now, we consider the problem (4.5) over the space Ls(Tt) for t € (e + §, ruo ) 
and choose <23 (like 0:2). Because / is Lipschitz continuous on bounded sets 
in X^^Qy then -solution exists. However r ^ > so we can choose 

s such that s > 2 = e.g. s = Notice that 
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2 -
n 
s 

and the embedding X 1
9 c L°°(Ct) is true for t > s + §. Therefore the 

L i ( n) 

local solution of (4.5) belongs to L°°(f2). 

5. Comments 
The arguments of Theorem 3.1 use a local Lipschitz condition, which 

ensures the existence of solutions for bounded initial data. Additional re-
strictions on the growth of the nonlinear term, such as the condition (3.7), 
allow to get through Theorem 3.1 the high smoothness of the solutions on 
their interval of existence (0, TUQ), and even the global existence of solutions 
by the classical results of A. Friedman [FR] or O. A. Ladyzhenskaya, V. A. 
Solonnikov and N. N. Uralceva [L-S-U]. 
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