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PERIODIC SOLUTIONS OF THE RICCATI EQUATION
IN BANACH SPACES

Abstract. In this paper we study the problem of the existence and the construction
of periodic solutions of the Riccati equation with continuous periodic coefficients defined
on the real line with values in Banach space.

0. Introduction

The theory of invariant manifolds, especially the theory of center man-
ifolds, yields an important contribution to the study of some systems of
differential equations [2]-[11]. The main theorems of the invariant mani-
fold theory have been already proved, generally speaking, for quasi-linear
systems with a block-diagonal structure of their linear parts.

For this reason an important problem arises how to construct a trans-
formation, which transforms an arbitrary system of differential equations
to such a form. However, this transformation significantly complicates the
nonlinear part of the system. On the other hand, some results of the invari-
ant manifold theory may be obtained for so-called systems of special form,
which are differential systems with block-triangular structure of the linear
part [4;5], [11]. In this connection a crucial question arises: how to construct
a transformation, which transforms this system to a system of special form.
To this end, we must construct a solution of the corresponding differential
Riccati equation. We also note that systems of special form can be easily
transformed to systems with block-diagonal structure of their linear parts. If
the given and obtained systems are periodic, then the solution of the Riccati
equation is also periodic. This motivates the study of periodic solutions of
the Riccati equation.
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Our aim is to study the problem of existence and construction of periodic
solutions of the Riccati equation with continuous periodic coefficients in an
arbitrary Banach space. As far as we know the obtained results in this paper
have not been published yet in finite dimensional case.

In Section 1 we establish conditions under which the problem of existence
and construction of periodic solutions of the differential Riccati equation
reduces to an analogous problem of the algebraic Riccati equation. In Section
2 and 3, under some additional assumptions, we transform our problem to
an integral equation problem which makes it possible to apply the Banach
fixed point and thus to obtain criteria of existence of periodic solutions. We
investigate particular cases when the spectra of some operators are disjoint
and some of them are separated by a vertical strip. In Section 4 we consider
the cases when the investigation of existence and construction of periodic
solutions leads to an application of appropriate Green functions. In the final
section several examples for periodic Riccati equations are presented.

1. General existence criterion

Let Bjx be the space of bounded linear operators acting from a Banach
space B; to a Banach space Bx (j,k = 1,2); by Fj;i we denote the space
of continuous functions which are defined on R with values in Bji. In what
follows we shall deal with the Riccati differential equation

(1) X'+ XA(t) + XB(t)X = C(t)X + D(2)
satisfying the following conditions:

(a1) A€ Fn, Be€ Fa, C € Fa, D€ Fia.
(a2) The operator-valued functions A, B, C and D are w-periodic.

Let us introduce the corresponding linear equation

. (A B
(2) z' = H(t)z, H—(D C)'

Let & = &(t) be the Cauchy operator of equation (2). We can represent the
operator ® in the same way as H, so that

a2 %)
®; P4
It easy to verify that the following lemma holds [3].

LEMMA 1. Under the assymption (a1) equation (1) has a unique solution
satisfying the initial condition X (0) = Q € B1a, given by

3) X = (23 + 24Q) (21 + 22Q)7".
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We shall also consider the algebraic Riccati equation
(4) QM + QMQ = MyQ + M;,
where M; = ®;(w), j=1,...,4.

THEOREM 1. Suppose that assumptions (a1) and (ag) hold. Then the solution
(3) of equation (1) is w-periodic if and only if the initial value X(0) =
Q satisfies the algebraic Riccati equation (4) and that this solution can be
continued to the interval [0, w].

Proof. If the solution (3) is w-periodic, then evidently it can be contin-
ued to the interval [0,w] and the condition X (w) = X (0) is valid as well.
Substituting (3) in this condition we obtain the equation

(Ms + MyQ)(My + MyQ)™' = Q,

which is equivalent to (4). Hence the operator Q is a solution of (4).

Conversely, suppose that the assumptions of Theorem 1 are valid. Let
X (t) denote a solution on the interval [0,w] of the equation (1). It easy
to check, that X (¢t + w) is a solution on the interval [~w,0] of equation
(1). Since the solution X(t) is of the form (3), it follows from (4) that
X(0) = X(w). We also observe that equation (1) with initial condition has
a unique solution. Thus, the solution X(t) can be continued to [-w,w].
Obviously, this procedure can be continued to obtain a periodic solution of
equation (1). This completes the proof.

2. The case when spectra are disjoint
The next result has already been proved in [1, Theorem 3.1].

LEMMA 2. Suppose that assumptions (a;) and (az2) hold and that the spectra
of My and My are disjoint, that is o(M1) No(My) = 0.
Then the algebraic Riccati equation (4) is equivalent to the integral equa-
tion
1 157 -
(5) Q= §A = Ma)"'M(\ — My)~ld,

2mi r

where T' is a Cauchy contour around o(M,) separating o(My) from o(M)
and M = M3 — QM->Q); for simplicity we write A — M instead of \I — M.

Let us denote m; = ||M;|| for j = 2,3; m; = max{||(A— M;)7!||: A €T}
for j = 1,4 and by v the length of I".
We now establish one of the main results.
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THEOREM 2. Assume that:

1) assumptions (a1) and (a3) hold;

2) every solution X (t) of equation (1) such that

X (0| < m(mimamyy)~!

can be continued to the interval [0,w);

3) the spectra of My and My are disjoint;

4) the inequality
(6) mimgyy/moms < m
holds.

Then equation (1) has an w-periodic solution defined by (3), where Q is
a solution of (4).

Proof. Let S C Bjs be the closed ball with radius p > 0 and centre Q = 0.

On the ball S we define a metric d by the formula d(Q, Q) = ||Q — Q|- Then

S is a complete metric space. We define the mapping F' : S — Bjs by
1 —~
F(Q) = —5— {(A\ = M)™'M(\ ~ M1)dA.
g

For my > 0 we show that F is a contractive mapping of the space S into
itself. We set

(7) p = mq(mimamyy) ™!
for some positive constant ¢ < 1. Since

7| F(Q) — F(Q)|| < mimamavp|iQ — Q|
for every Q, Q € S, this implies

IF(Q) - F@)I < qllQ - Qll.
Furthermore, we remark that
2r||F(Q)|| € mymyy(ma + map?).
Hence, we only need to prove that
mimgy(ma + map?) < 2mp.

By using (7) this inequality may be rearranged in the form

m%mﬁmgmg'y2 < 01r2,

where 6 = ¢(2 — g). Since 8 < 1, this inequality follows from (6). Therefore,
by Banach contraction principle, F has a unique fixed point in S. According
to Lemma 1 and Theorem 1 it follows that (1) has an w-periodic solution
given by (3). If mg = 0, then (1) and (4) become linear equations. The
integral equation (5) becomes a formula for periodic solution of (4). This
completes the proof.
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3. The case of separated spectra

Consider the particular case where Re(\ — p) < 0 or Re(A — p) > 0 for
all A € 6(My) and p € o(M;). In this case we say that the spectra of M
and My are separated [1].

LEMMA 3. Let the spectra of M1 and My be separated. Then there erist
positive numbers N and v such for t > 0 one of the estimates

(8a) [l exp(Mat)|||| exp(—Mrt)|| < N exp(-vt),
(8b) || exp(—Mat)|||| exp(M1t)]| < N exp(-vt)
holds.

Proof. Suppose that Re(A — p) < 0 for all A € o(My) and all p € o(M).
Then there exist real numbers a and 8 such that 8 < a, ReA < 8 and
Re(—p) < —a. We note that o(—M;) = —o(M) {8].
From this and Theorem 4.1 in (8] it follows that there exist positive
numbers N7 and N3 such that
llexp(—Mit)|| < Ny exp(—at),
| exp(Mat)|| < N2 exp(—pt).
Hence the estimate (8a) is true. By the same reasoning as above we assert
that the estimate (8b) holds if Re(A — p) > 0. This completes the proof.

THEOREM 3. Assume that:
1) equation (1) satisfies (a1) and (a2);
2) every solution of equation (1) can be continued to the interval [0,w];
- 3) the spectra of My and My are separated;
4) the inequality
(9) 2N,/m2m3 <v
is satisfied.
Then the equation (1) has the w-periodic solution defined by (3), Q being
a solution of equation (4).

Proof. Let I'; be a Cauchy contour around o(M;) separating o(M;) from
o(Mj). The formula

FOM) = 5 § £ = M),
Iy

which is analogous to the Cauchy formula for scalar analytic functions, de-
fines an operator f(Mj) [1,8]. Thus we have

(=)™ = o § = )™ = M)l
I
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Therefore, we can rewrite equation (5) in the form
1 —
Q=—15§(A - M)"'Mdr [ (A — p)7 (- M1)dp.
4r?
r I
Let Re(A — p) < 0. Substituting

(A=)~ == { exp((A - p)t)de
0
in this equation, we obtain
[ o]
Q= S exp(Myt) M exp(—Mt)dt.
0

On the ball S = {Q € B2 : |Q|| < p} we define the mapping F' by
F(Q) = | exp(Myt)M exp(—Mit)dt.
0

From this and estimate (8a) we assert that

IF@)Il £ Nv~i(ma + map?),
IF(@) - F(Q)l < 2Nv™'pmy||Q - Qll, @, Q€ S.
If
p= qu(2Nm2)"1, 0<g<l1, me>0,
then
IF@I<e, IF@) -FQ)I<4ql@-Ql

Therefore, the existence and uniqueness of solution @, of (4) in S follow
from the Banach contraction principle.
If Re(A — p) > 0, then equation (5) can be transformed to the equation
o0
Q=- S exp(—Myt) M exp(M;t)dt.
0
The proof of the existence of a solution of (4) in this case is omitted since
it is based on the same reasoning as above. This completes the proof.

REMARK 1. The approximative solution of the Riccati equation (4) can be
obtained by Picard method. For given Qg € S, let Q41 be a solution of the
linear equation

QMI"M4Q=M3—QkM2Qk’ k=031,

Under the assumptions of Theorem 2 or 3 the sequence (Qx) converges to a
solution @, of equation (4).
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4. Green’s function and its application

Let U(t) and V(t) be Cauchy operators of the equations v = A(t)u
and v’ = C(t)v, respectively, and let U(t,s) and V(t,s) be corresponding
evolution operators. If operator I — V(w) has a bounded inverse, we define

the Green function by
V() -V(w) v <t
Gt = [ VOU-VEIVH), st
Vit +w)[I - V(W) V1(s), s>t
Note that for t, s € [0,w] there exist positive numbers 3, §, K and N such
that
1B(t) <8, IDMI<6 [[UEs)I<K, [GEs)|<N.
THEOREM 4. Assume that
1) the assumptions (a1) and (a2) hold;
2) the operator I — V(w) has a bounded inverse and U(w) = I;
3) the inequality
2KNw+/B6 < 1
holds.
Then the equation (1) has an w-periodic solution.

Proof. The solution X (t) of equation (1), satisfying the initial condition
X(0) = Q, is a solution of the integral equation

Q=[I-Vw)]! :S: V(w,s)D(s)U(s)ds.

Hence, we can write the integral equation for this w-periodic solution in the

form
w

X(t) = | G(t, s)D(s)U(s, t)ds.
0
Let

Q={X € Fr2: | X|| £ p}-
We define the mapping

F(X) = “S)G(t, s)D(s)U(s,t)ds, X €.
0

For X, X € Q we have

IFON < KNu(8 + 86%),
IP(X) — F(X)|| < 2KNBp sup |IX - XI.
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Let us choose p > 0 such that
p=(2KNB)lq, 0<qg<l.
Then it is easy to see that
HE(X)I < p,
IF(X) - F(X)|| < ¢ sup X - X].
0<t<w

Hence, the existence of an w-periodic solution of equation (1) follows from
the Banach contraction principle. This completes the proof.

If operator U(w) — I has a bounded inverse, we define the Green function
by
U(s+ w)[U(w) = I]7U(t)~1(2), s < t;
Gl(t, s) =
U(s)[U(w) — 71U, s>t

Let
IBOW <8, IDON<S V(R ) <K, Gt s)ll < Ny,

where t, s € [0,w].
The next theorem can be proved by arguments completely analogous to
those in the proof of Theorem 4.

THEOREM 5. Let the assumptions (a1) and (a2) hold, let the operator I —
U(w) be invertible with bounded inverse and let V(w) = I.
If the inequality
2K 1N1w\/m <1

holds, then the equation (1) has an w-periodic solution.

We note that under the assumptions of Theorem 4 or 5 the approximative
w-periodic solution of equation (1) can be obtained by Picard’s method.

5. Examples

The first example shows that equation (1) may have a unique periodic
solution if the spectra of the operators M; and Mj are not disjoint.

EXAMPLE 1. It easy to see that the Riccati equation
(10) X'+ X? = Xsint + cost

has solution (3), where

¢

®; = exp(l — cost), Po= Sexp(cos'r — cost)dr,
0

&3 = ®,(t)sint, &4 = Pa(t)sint + 1.
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Since the period w = 27 we have

2
My =1 M;= S exp(cosT —1)dr, M3 =0, My=1.
0

Therefore, we can write (4) as

2m
Q? S exp(cosT — 1)dr = 0.
0

Consequently @ = 0. Hence by Theorem 1, equation (10) has the unique
2m-periodic solution X = sint. We note that in this example the spectra of
operators M; and My coincide.

The following example shows that equation (1) may have infinitely many
periodic solutions in the case when the spectra of the operators M; and M,
are disjoint.

EXAMPLE 2. If
A=0, B=(0,1), C=1I,, D= %(cost —sint, 0)T,

then equation (1) is of the form

1
(11) :c'+:z:y=:z:+§(cost—sint), y+yi=y.
Since in this case
$, =1, &, = (0, expt — 1),
1 : 1 .
&; = (Isint, 0)T, &, = ( expt g(cost+sint—1)expt — gsint )
0 expt

we assert by Theorem 1 that equation (11) has infinitely many 27-periodic
solutions, namely

X= (%sint, O)T and X = (4(sint +cost) + ¢, 1)T,

¢ being an arbitrary constant.

Although it was assumed above that the considered solution could be
continued to the interval [0,w] this interval can be replaced by the interval
R+ = [0, 00). This remark may be useful first of all in the case when equation
(1) is autonomous.

ExAMPLE 3. The autonomous Riccati equation
X' +X2+1=0
has a solution (3), where

®; =cost, &2 =sint, &3 =-—sint, &, = cost.



352 J. Baris, A. Buraczewski

The arbitrary initial value X (0) = Q satisfies equation (4), but no solution
can be continued to R;. Hence, by Theorem 1 this illustrating equation has
no periodic solution.

ExaAMPLE 4. If

A=O’ B=(1’0)7 D= 0 3 C= 01 )
0 -1 0

then equation (1) can be written as the system
(12) —y+22=0, y+z+xy=0.

This system has a solution (3), where

®; =1, &, =(sint, 1— cost), CI)3=(8), (1)4=( cost smt)O

—sint cost

For w = 27 equation (4) reduces to Q@ = Q. Let Q = (p, q)T . Then solution
X (t) can be continued to Ry if |p| < 1, ¢ > 0. Hence, by Theorem 1 the
solution (3) of system (12) is 2m-periodic if |p} < 1, ¢ > 0.

References

[1] V. M. Adamjan, H. Langer and Ch. Tretter, Existence and uniqueness of con-
_tractive solutions of some Riccati equations, J. Funct. Anal. 179 (2001), 448-473.

[2] B. Aulbach, T. Wanner, The Hartman-Grobman theorem for Caratheodory-type
differential equations in Banach spaces, Nonlinear Analysis 40 (2000}, 91-104.

[3] Ja.S.Baris, Integral manifolds and solutions of matriz Riccati equation, Dokl. Akad.
Nauk. Ukrain. SSR, Ser. A, 11 (1986) 7-10 (in Russion).

[4] Ja. S. Baris, On the method of constructing approzimate integral manifolds, Dokl.
Akad. Nauk. 301 (1988), N2; English transl. in Soviet Math. Dokl. 38 (1989), 57--59.

[5] Ja.S. Baris, O. B. Lykowa, Integral manifolds and the reduction principle in stabil-
ity theory, Dokl. Akad. Nauk. 311 (1990), N2; English transl. in Soviet Dokl. Math.
41 (1990), 232-235.

[6] N. N. Bogoliubov, Y. A. Mitropolskii, Asymptotic Methods in the Theory of
Nonlinear Oscillations, Gordon and Breach, New York, 1961.

[7] 1. Carr, Applications of Centre Manifold Theory, Springer, New York, 1981.

[8] J. L. Daleckii, M. G. Krein, Stebility of Solutions of Differential Eguations in
Banach Spaces, AMS Math. Monographs, vol. 43, Amer. Math. Soc., Providence,
1995. :

[9] O.B.Lykovaand J. S. Baris, Approzimate Integral Manifolds, " Naukova Dumka”,
Kiev, 1993 (in Russian).

(10} Ju. A. Mitropolskii, O. B. Lykowa, Integral Manifolds in Nonlinear Mechanics,
Nauka, Moscow, 1973 (in Russian).



Periodic solutions of the Riccati equation 353

[11] K. Schneider, J. S. Baris, O. B. Lykova, S. A. Nakonechna, Qualitative anal-
ysis of some dynamical system of hydrodynamical type, Proc. Inter. Conf. Mod-
ern Mathem. Problems, part 3, Inst. of Mathematics NAS of Ukraine, Kiev, 1998,
226-230.

Jakow Baris

FACULTY OF MATHEMATICS AND INFORMATICS
WM UNIVERSITY

Zolnierska 14A

10-561 OLSZTYN, POLAND

E-mail: baris@matman.uwm.edu.pl

Adam Buraczewski

THE COLLEGE OF ECONOMICS AND COMPUTER SCIENCE
Wyzwolenia 30

10-106 OLSZTYN, POLAND

E~-mail: adambu@matman.uwm.edu.pl

Received July 22nd, 2002.






