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PERIODIC SOLUTIONS OF THE RICCATI EQUATION 
IN BANACH SPACES 

Abstract. In this paper we study the problem of the existence and the construction 
of periodic solutions of the Riccati equation with continuous periodic coefficients defined 
on the real line with values in Banach space. 

0. Introduction 
The theory of invariant manifolds, especially the theory of center man-

ifolds, yields an important contribution to the study of some systems of 
differential equations [2]—[11]. The main theorems of the invariant mani-
fold theory have been already proved, generally speaking, for quasi-linear 
systems with a block-diagonal structure of their linear parts. 

For this reason an important problem arises how to construct a trans-
formation, which transforms an arbitrary system of differential equations 
to such a form. However, this transformation significantly complicates the 
nonlinear part of the system. On the other hand, some results of the invari-
ant manifold theory may be obtained for so-called systems of special form, 
which are differential systems with block-triangular structure of the linear 
part [4;5], [11]. In this connection a crucial question arises: how to construct 
a transformation, which transforms this system to a system of special form. 
To this end, we must construct a solution of the corresponding differential 
Riccati equation. We also note that systems of special form can be easily 
transformed to systems with block-diagonal structure of their linear parts. If 
the given and obtained systems are periodic, then the solution of the Riccati 
equation is also periodic. This motivates the study of periodic solutions of 
the Riccati equation. 
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Our aim is to study the problem of existence and construction of periodic 
solutions of the Riccati equation with continuous periodic coefficients in an 
arbitrary Banach space. As fax as we know the obtained results in this paper 
have not been published yet in finite dimensional case. 

In Section 1 we establish conditions under which the problem of existence 
and construction of periodic solutions of the differential Riccati equation 
reduces to an analogous problem of the algebraic Riccati equation. In Section 
2 and 3, under some additional assumptions, we transform our problem to 
an integral equation problem which makes it possible to apply the Banach 
fixed point and thus to obtain criteria of existence of periodic solutions. We 
investigate particular cases when the spectra of some operators are disjoint 
and some of them are separated by a vertical strip. In Section 4 we consider 
the cases when the investigation of existence and construction of periodic 
solutions leads to an application of appropriate Green functions. In the final 
section several examples for periodic Riccati equations are presented. 

1. General existence criterion 
Let Bjk be the space of bounded linear operators acting from a Banach 

space Bj to a Banach space Bk ( j ,k = 1,2); by Fjk we denote the space 
of continuous functions which are defined on M with values in Bjk• In what 
follows we shall deal with the Riccati differential equation 

(1) X' + XA{t) + XB(t)X = C(t)X + D(t) 

satisfying the following conditions: 

(ai) A 6 Tiu B e C 6 ^22, D 6 

(02) The operator-valued functions A, B, C and D are w-periodic. 

Let us introduce the corresponding linear equation 

(2) z' = H(t)z, 

Let $ = be the Cauchy operator of equation (2). We can represent the 
operator $ in the same way as H, so that 

* = ( V 
V $3 $4 J 

It easy to verify that the following lemma holds [3]. 

LEMMA 1. Under the assymption (ai) equation (1) has a unique solution 

satisfying the initial condition X(0) = Q € #12, given by 

(3) X = + + 
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We shall also consider the algebraic Riccati equation 

(4) QMi + QM2Q = MaQ + M3, 

where Mj = j = 1 , . . . , 4. 

THEOREM 1. Suppose that assumptions (ai) and (<22) hold. Then the solution 
(3) of equation (1) is uj-periodic if and only if the initial value X(0) = 
Q satisfies the algebraic Riccati equation (4) and that this solution can be 
continued to the interval [0, u]. 

Proof . If the solution (3) is w-periodic, then evidently it can be contin-
ued to the interval [0,w] and the condition X(u) — X(0) is valid as well. 
Substituting (3) in this condition we obtain the equation 

(M3 + M4Q)(Mi + M4Q)-1 = Q, 

which is equivalent to (4). Hence the operator Q is a solution of (4). 
Conversely, suppose that the assumptions of Theorem 1 are valid. Let 

X(t) denote a solution on the interval [0, u>] of the equation (1). It easy 
to check, that X(t + LJ) is a solution on the interval [—u>,0] of equation 
(1). Since the solution X(t) is of the form (3), it follows from (4) that 
Jf(0) = X(u;). We also observe that equation (1) with initial condition has 
a unique solution. Thus, the solution X(t) can be continued to [—a>,u>]. 
Obviously, this procedure can be continued to obtain a periodic solution of 
equation (1). This completes the proof. 

2. The case when spectra Eire disjoint 
The next result has already been proved in [1, Theorem 3.1]. 

LEMMA 2. Suppose that assumptions (ai) and hold and that the spectra 
of Mi and M4 are disjoint, that is a(M\) C\o{Mi) = 0. 

Then the algebraic Riccati equation (4) is equivalent to the integral equa-
tion 

(5) Q = ~ J(A - M4)"1M(A - M1y1d\, 

where T is a Cauchy contour around o^M^) separating o(M±) from a{M\) 
and M = M3 — QM2Q; for simplicity we write A — M instead of XI — M. 

Let us denote mj = \\Mj\\ for j = 2,3; mj = max{||(A - Mj)~l\\ : A € T} 
for j = 1,4 and by 7 the length of T. 

We now establish one of the main results. 
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THEOREM 2. Assume that: 
1) assumptions (ai) and (a^) hold; 
2) every solution X(t) of equation (1) such that 

||X(0)|| < 7r(mim2m47)_1 

can be continued to the interval [0, u]; 
3) the spectra of Mi and M4 are disjoint; 
4) the inequality 

(6) 77117714707127713 < 7T 
holds. 

Then equation (1) has an u>-periodic solution defined by (3), where Q is 
a solution of (4). 
P r o o f . Let S C B12 be the closed ball with radius p > 0 and centre Q = 0. 
On the ball S we define a metric d by the formula d(Q,7$) = ||Q — Then 
5 is a complete metric space. We define the mapping F : S —» B12 by 

F(Q) = ~ J(A - MA)~lM{A - M\)~ld\. 

For 7712 > 0 we show that F is a contractive mapping of the space S into 
itself. We set 
(7) p = 7rq(mi77i2m47)_1 

for some positive constant q < 1. Since 
tt||F(Q) - F(Q)|| < m^m^pWQ - Q\\ 

for every Q, Q e S, this implies 
| | F ( Q ) - F ( Q ) | | < g | | Q - Q | | . 

Furthermore, we remark that 
27r||F(Q)|| < 771177147(7713 + m2p2). 

Hence, we only need to prove that 
771177147(7713 + 7712P2) < 27rp. 

By using (7) this inequality may be rearranged in the form 
2 2 2 ^ n 2 77117714771277137 < vir , 

where 6 = q(2 — q). Since 0 < 1, this inequality follows from (6). Therefore, 
by Banach contraction principle, F has a unique fixed point in S. According 
to Lemma 1 and Theorem 1 it follows that (1) has an w-periodic solution 
given by (3). If 7712 = 0, then (1) and (4) become linear equations. The 
integral equation (5) becomes a formula for periodic solution of (4). This 
completes the proof. 
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3. The case of separated spectra 
Consider the particular case where Re(A — //) < 0 or Re(\ — fi) > 0 for 

all A e o{M\) and fx 6 a(M\). In this case we say that the spectra of M\ 
and M4 are separated [1]. 
LEMMA 3. Let the spectra of M\ and M4 be separated. Then there exist 
positive numbers N and u such for t > 0 one of the estimates 
(8a) || exp(M4i)|||| exp(-Mii)| | < Nexp(-ut), 
(86) || exp(-M4i) | | || exp(Mii)|| < N exp(-vt) 
holds. 

Proof . Suppose that Re(A — (i) < 0 for all A 6 <J(M\) and all /1 6 a(M\). 
Then there exist real numbers a and ¡3 such that /3 < a, Re A < ¡3 and 
Re(-FI) < -a. We note that A(-MI) = -<J(M{) [8]. 

From this and Theorem 4.1 in [8] it follows that there exist positive 
numbers N\ and iV2 such that 

| |exp(-Mii)| | < iVi exp(—at), 
||exp(M4i)|| < N2exp(-f3t). 

Hence the estimate (8a) is true. By the same reasoning as above we assert 
that the estimate (8b) holds if Re(X — ¡x) > 0. This completes the proof. 

THEOREM 3. Assume that: 
1) equation (1) satisfies (ai) and (02); 
2) every solution of equation (1) can be continued to the interval [0, u]; 
3) the spectra of Mi and M4 are separated; 
4) the inequality 

(9) 2N^m2m3 < v 
is satisfied. 

Then the equation (1) has the u-periodic solution defined by (3), Q being 
a solution of equation (4). 

P roof . Let Ti be a Cauchy contour around cr(M\) separating a(M\) from 
a(M\). The formula 

f(M\) = -i-: J f ( f x ) ( f i — Mi)-1d/i, 

which is analogous to the Cauchy formula for scalar analytic functions, de-
fines an operator / (Mi) [1,8]. Thus we have 

(A - M1)~1 = - L J (A - ^"H/x - M i ) " V 
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Therefore, we can rewrite equation (5) in the form 

Q = - - L J (A - M4)~ 1Md\ \ (A - n)-\n - Mi)" V 
r rx 

Let Re(A - n) < 0. Substituting 
oo 

(A - n)' 1 = - \ exp((A - n)t)dt 
o 

in this equation, we obtain 
oo 

Q = \ exp(MAt)M exp(-Mit)dt. 
o 

On the ball S = {Q € Bn : ||Q|| < p} we define the mapping F by 
oo 

F(Q) = \ exp(M4i)Mexp(-Mii)di. 
o 

Prom this and estimate (8a) we assert that 

\\F{Q)\\<Nv-\mz + m2p 2), 
||F(Q) - F(Q)\\ < 2M/-Vm2 | |Q - Q\\, Q,QeS. 

If 
p = qi/(2Nm2)~ 1, 0 < q < 1, m2 > 0, 

then 
| |F (0 ) | |<p , | | F ( g ) - F ( Q ) | | < g | | g - Q | | . 

Therefore, the existence and uniqueness of solution Q* of (4) in S follow 
from the Banach contraction principle. 

If Re(A — ¡J) > 0, then equation (5) can be transformed to the equation 
oo 

Q = - \ exp(-M4t)Mexp(Mii)dt. 
o 

The proof of the existence of a solution of (4) in this case is omitted since 
it is based on the same reasoning as above. This completes the proof. 

REMARK 1. The approximative solution of the Riccati equation (4) can be 
obtained by Picard method. For given Qo € S, let Qk+i be a solution of the 
linear equation 

QM1-M4Q = M 3 - Q k M 2 Q k , k = 0 ,1 , . . . . 

Under the assumptions of Theorem 2 or 3 the sequence (Qk) converges to a 
solution Q* of equation (4). 
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4. Green's function and its application 
Let U(t) and V(t) be Cauchy operators of the equations vl = A(t)u 

and v' = C(t)v, respectively, and let U(t,s) and V( i , s) be corresponding 
evolution operators. If operator I — V(u) has a bounded inverse, we define 
the Green function by 

Gf i S ) = i ^ ( i ) [ / " y ( a ; ) ] " l y " 1 ( s ) ' S - t ; 

' \V(t + u})[I-V{u)]-1V-1{s),s>t. 

Note that for t, s 6 [0, u] there exist positive numbers /?, 6, K and N such 
that 

\\B(t)<(3, ||C(t)||<5, r ( i , a )||</r , \\G(t,s)\\<N. 

THEOREM 4. Assume that 

1) the assumptions (ai) and (a^) hold; 

2) the operator I — V(co) has a bounded inverse and U(a;) = I; 

3) the inequality 

2KNuy/p5 < 1 

holds. 

Then the equation (1) has an co-periodic solution. 

Proo f . The solution X(t) of equation (1), satisfying the initial condition 
X(0 ) = Q, is a solution of the integral equation 

U) 
Q = [I - F(w)]-1 \ V{u, s)D(s)U(s)ds. 

o 
Hence, we can write the integral equation for this a>-periodic solution in the 
form 

X(t) = \G(t,s)D(s)U(s,t)ds. 
o 

Let 
n = {X € : ||X|| < p}. 

We define the mapping 

F(X) = \ G(t, s)D(s)U(s, t)ds, X € i). 
o 

For X, X 6 CI we have 

_ \\F(X)\\<KNu(5 + Pp2),_ 

||F(X) - F(X)|| < 2KN/3p sup \\X - X||. 
0<t<LJ 
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Let us choose p > 0 such that 

p = (2KNf3)~lq, 0<q<l. 

Then it is easy to see that 

| |F (X) | |<p , 
| | F ( X ) - F ( X ) | | < g sup \ \ X - X l 

0 <t<w 

Hence, the existence of an w-periodic solution of equation (1) follows from 
the Banach contraction principle. This completes the proof. 

If operator U (oj) — I has a bounded inverse, we define the Green function 
by 

G (t s) = J u(a + - i\-lm-Ht),»< t; 
U ' ; \ U(s)[U(u>) - I^U-^t), s > t. 

Let 

||-B(i)|| < (5, \\D(t)\\<S, ||Gi(t,a)||<iVi, 
where t, s € [0,w]. 

The next theorem can be proved by arguments completely analogous to 
those in the proof of Theorem 4. 

THEOREM 5. Let the assumptions (ai) and (<22) hold, let the operator I — 
U(u) be invertible with bounded inverse and let V(u) = I. 

If the inequality 
2KiNiuy/j36 < 1 

holds, then the equation (1) has an u>-periodic solution. 

We note that under the assumptions of Theorem 4 or 5 the approximative 
w-periodic solution of equation (1) can be obtained by Picard's method. 

5. Examples 
The first example shows that equation (1) may have a unique periodic 

solution if the spectra of the operators Mi and M2 are not disjoint. 

EXAMPLE 1. It easy to see that the Riccati equation 

(10) X'+ X2 = X smt + cost 

has solution (3), where 
t 

$1 = exp(l — cos t), $2 = $ exp(cos r — cos t)dr, 
0 

$3 = ^i(i) sini, = ^2(0 sini + 1. 
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Since the period cj = 2n we have 
2tt 

Mi = 1, M2 = J exp(cosr — l)dr, M3 = 0, M4 = 1. 
0 

Therefore, we can write (4) as 
2ir 

Q2 j exp(cosr — l)dr = 0. 
0 

Consequently <2 = 0. Hence by Theorem 1, equation (10) has the unique 
27r-periodic solution X = sini. We note that in this example the spectra of 
operators Mi and M4 coincide. 

The following example shows that equation (1) may have infinitely many 
periodic solutions in the case when the spectra of the operators Mi and M4 
are disjoint. 

EXAMPLE 2 . I f 

A = 0, B = (0, 1), C = I2, D = i ( c o s t - s i n t , 0)T , 

then equation (1) is of the form 

(11) x' + xy = x + ^(cosi — sini), y' + y2 = y. 

Since in this case 

$1 = 1, $ 2 = (0, e x p i - 1 ) , 

$3 = (¿sini, O f , $ 4 = i e X P i > s i + s i n i - X ) e x P 
\ 0 exp t J 

we assert by Theorem 1 that equation (11) has infinitely many 27r-periodic 
solutions, namely 

X = (^sini, 0)T and X = (^(sint + cost) + c, 1)T, 

c being an arbitrary constant. 
Although it was assumed above that the considered solution could be 

continued to the interval [0, u] this interval can be replaced by the interval 
R+ = [0,00). This remark may be useful first of all in the case when equation 
(1) is autonomous. 

EXAMPLE 3. The autonomous Riccati equation 

X' + X2 + 1 = 0 

has a solution (3), where 

$ i = cost, $2 = sini, $3 =—sini , $4 = cosi. 
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The arbitrary initial value X(0) = Q satisfies equation (4), but no solution 
can be continued to R+. Hence, by Theorem 1 this illustrating equation has 
no periodic solution. 

EXAMPLE 4 . If 

A = O , » - » . A ) . / > - ( ; ) , C . ^ ® ; ) , 

then equation (1) can be written as the system 

(12) x' - y + x2 = 0, y' + x + xy = 0. 

This system has a solution (3), where 

H I / 0 \ _ ( cos t siní \ $1 = 1, = (sin i, 1 - cos t), = , $4 = 
\ 0 / \ — siní cosí J 

For u> = 2n equation (4) reduces to Q = Q. Let Q = (p, q)T . Then solution 
X(t) can be continued to R+ if |p| < 1, q > 0. Hence, by Theorem 1 the 
solution (3) of system (12) is 27r-periodic if \p\ < 1, q > 0. 
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