

Peter Rusev

HOLOMORPHIC EXTENSION OF LOCALLY HÖLDER FUNCTIONS

Abstract. Let γ be a smooth Jordan curve in the extended complex plane passing through the point at infinity. In the paper are given sufficient conditions under which a complex function defined on γ admits a holomorphic extension into a region complementary to γ .

1. Introduction

1.1. A complex function f , defined on a (nonempty) set $E \subset \mathbb{C}$, is called a *locally Hölder function (LH-function)* on E if for each $\zeta \in E$ there exist a (circular) neighbourhood U of ζ , a positive constant K and a positive number μ (usually supposed to be not greater than one) such that whatever the points $\zeta_j \in E \cap U$, $j = 1, 2$ are, the inequality $|f(\zeta_1) - f(\zeta_2)| \leq K|\zeta_1 - \zeta_2|^\mu$ holds.

REMARKS. (1) U, K and μ may depend on the point $\zeta \in E$.

(2) A LH-function does not need, in general, to be a Hölder function.

Let $\gamma \subset \mathbb{C}$ be a Jordan curve and let f be a continuous function defined on γ . We say that f admits a *holomorphic extension* into the interior $G(\gamma)$ of γ if there exists a complex function $F \in \mathcal{C}(\overline{G(\gamma)}) \cap \mathcal{H}(G(\gamma))$ (i.e. F is continuous on the closure of the region $G(\gamma)$ and holomorphic in $G(\gamma)$) such that $F(\zeta) = f(\zeta)$ for each $\zeta \in \gamma$.

1.2. A classical criterion for existence of holomorphic extensions is the following theorem [1, p. 359, Theorem 4; 3, p. 231]:

Let $\gamma \subset \mathbb{C}$ be a smooth Jordan curve and let f be a LH-function on it. Then the following propositions are equivalent:

- (i) f admits holomorphic extension into $G(\gamma)$;
- (1.1) (ii) $\frac{1}{\pi i} \int_{\gamma} \frac{f(w)}{w - \zeta} dw = f(\zeta), \quad \zeta \in \gamma;$

$$(iii) \quad \int_{\gamma} f(w) w^n dw = 0, \quad n = 0, 1, 2, \dots$$

REMARK. The integral in (1.1) is understood as a main value in the Cauchy sense, i.e.

$$\int_{\gamma} \frac{f(w)}{w - \zeta} dw := \lim_{\delta \rightarrow 0} \int_{\gamma \setminus \gamma(\zeta; \delta)} \frac{f(w)}{w - \zeta} dw,$$

where $\gamma(\zeta; \delta) := \{w \in \gamma : |w - \zeta| < \delta\}$, and its existence is a corollary of the assumption that f is a *LH*-function on γ .

1.3. If γ is a smooth Jordan curve in the extended complex plane $\overline{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$ passing through the point at infinity, then the above propositions are not equivalent in general. Here are two examples which affirm this.

(I) The function $f(x) = \exp(-x^2)$, $x \in \mathbb{R}$ has a holomorphic extension into the upper as well as into the lower half-plane, but

$$\int_{-\infty}^{\infty} \exp(-x^2) x^{2n} dx \neq 0, \quad n = 0, 1, 2, \dots$$

Moreover, since the function $x^{-1} \exp(-x^2)$, $x \in \mathbb{R} \setminus \{0\}$ is odd, we have also that

$$\int_{-\infty}^{\infty} \frac{\exp(-x^2)}{x} dx = 0,$$

i.e. in the case under consideration the singular integral equation (1.1) is not satisfied.

(II) Define $s(x) = x^{-\log x} \sin(2\pi \log x)$ when $x > 0$ and $s(0) = 0$. As it is well-known (Stieltjes [2, pp. 461, 462]),

$$\int_0^{\infty} s(x) x^n dx = 0, \quad n = 0, 1, 2, \dots$$

Define $f(x) = s(x)$ for $x > 0$ and $f(x) = s(-x)$ for $x \leq 0$. It is clear that f is continuous and, moreover, $\int_{-\infty}^{\infty} f(x) x^{2n} dx = 0$, $n = 0, 1, 2, \dots$. But since f is even, we have also that $\int_{-\infty}^{\infty} f(x) x^{2n+1} dx = 0$, $n = 0, 1, 2, \dots$

Suppose that f has a holomorphic extension F in the upper half-plane, then $F(-1) = f(-1) = s(1) = 0$. But $F(z) = \exp(-(\log z)^2) \sin(2\pi \log z)$ for $\Im z > 0$, hence, $\lim_{z \rightarrow -1} F(z) = \exp(\pi^2) \sin(2\pi^2 i) \neq 0$, which is a contradiction.

REMARK. In each of the above examples the function f is a (global) Lipschitz function, since its derivative is bounded on the whole real axis.

2. Laguerre's and Hermite's associated functions

2.1. The system of Laguerre polynomials $\{L_n^{(\alpha)}(z)\}_{n=0}^{\infty}$, with arbitrary complex parameter α , is a solution of the second order linear recurrence equation [5, (5.1.10)]

$$(n+1)y_{n+1} + (z - 2n - \alpha - 1)y_n + (n + \alpha)y_{n-1}, z \in \mathbb{C}, n \in \mathbb{N}^+.$$

If $\Re\alpha > -1$, then the system of complex functions $\{M_n^{(\alpha)}(z)\}_{n=0}^{\infty}$, defined in the region $\mathbb{C} \setminus [0, \infty)$ by the equalities

$$M_n^{(\alpha)}(z) = - \int_0^{\infty} \frac{t^{\alpha} \exp(-t) L_n^{(\alpha)}(t)}{t - z} dt, \quad n = 0, 1, 2, \dots,$$

is a "second" solution of the same equation, i.e. for every $n = 1, 2, 3, \dots$ we have

$$(2.1) \quad (n+1)M_{n+1}^{(\alpha)}(z) + (z - 2n - \alpha - 1)M_n^{(\alpha)}(z) + (n + \alpha)M_{n-1}^{(\alpha)}(z) = 0$$

provided $z \in \mathbb{C} \setminus [0, \infty)$.

As a corollary of the definition just given as well as of the Rodrigues' formula for the Laguerre polynomials [5, (5.1.5)] we easily obtain that

$$M_n^{(\alpha)}(z) = - \int_0^{\infty} \frac{t^{n+\alpha} \exp(-t)}{(t - z)^{n+1}} dt, \quad n = 0, 1, 2, \dots$$

The integral on the right-hand side exists when $\Re(n + \alpha) > -1$, i.e. when $\Re\alpha > -n - 1$, hence, the above integral representation as well as the recurrence relation (2.1) can be used to define the functions $\{M_n^{(\alpha)}(z)\}_{n=0}^{\infty}$ when α is an arbitrary complex number which is not equal to $-1, -2, -3, \dots$. We call them *Laguerre's associated functions*.

Let $0 < \lambda < \infty$ and let $p(\lambda)$ be the image of the straight line $T(\lambda) : w = -t + i\lambda, -\infty < t < \infty$ under the mapping $z = w^2$, i.e. $p(\lambda)$ is the parabola with vertex at the point $-\lambda^2$ and focus at the origin. Denote by $\Delta(\lambda)$ the interior of $p(\lambda)$, i.e. $\Delta(\lambda) : \Re(-z)^{1/2} < \lambda$, and by $\Delta^*(\lambda)$ the exterior of $p(\lambda)$, i.e. $\Delta^*(\lambda) = \mathbb{C} \setminus \overline{\Delta(\lambda)}$.

A Jordan curve $\gamma \subset \overline{\mathbb{C}}$, passing through the point at infinity, is called λ -admissible, if $0 < \lambda := \sup_{\zeta \in \gamma} \Re(-\zeta)^{1/2} < \infty$.

REMARK. It is clear that if γ is λ -admissible, then $\overline{\Delta(\lambda)}$ is the smallest closed domain containing γ provided that the closure of $\Delta(\lambda)$ is formed with respect to the extended complex plane.

Further, denote by $G(\gamma)$ that component of $\mathbb{C} \setminus \gamma$ which lies in $\Delta(\lambda)$ and call it interior of γ . We assume γ to be positively oriented with respect to $G(\gamma)$.

LEMMA 1. Let $\alpha \in \mathbb{R} \setminus \mathbb{Z}^-$ and let f be a complex function which is locally L -integrable on the locally rectifiable λ -admissible Jordan curve $\gamma \subset \overline{\mathbb{C}}$.

Suppose that $|f(w)| = |f(u + iv)| = O\{|w|^\beta \exp(-u)\}$, for some $\beta < \alpha/2 + 1/4$, when $w = u + iv$ tends to infinity. Then the function

$$A_\gamma(z) = \frac{1}{2\pi i} \int\limits_{\gamma} \frac{f(w)}{w - z} dw, \quad z \in \mathbb{C} \setminus \gamma$$

has an expansion in the region $\Delta^*(\lambda)$ in a series of the Laguerre associated functions with parameter α , i.e.

$$A_\gamma(z) = \sum_{n=0}^{\infty} a_n M_n^{(\alpha)}(z), \quad z \in \Delta^*(\lambda).$$

Moreover, the integral representations

$$(2.2) \quad a_n = -\frac{1}{2\pi i I_n^{(\alpha)}} \int\limits_{\gamma} f(\zeta) L_n^{(\alpha)}(\zeta) d\zeta, \quad n = 0, 1, 2, \dots,$$

hold for the coefficients, where $I_n^{(\alpha)} = \Gamma(n + \alpha + 1)/\Gamma(n + 1)$.

The proof is analogous to that of [4, Theorem 9.3]. More precisely, it is based on the Christoffel-Darboux type formula [4, (2.20)] for the systems of Laguerre's polynomials and associated functions as well as on their asymptotic properties.

2.2. The system of Hermite's polynomials $\{H_n(z)\}_{n=0}^{\infty}$ is a solution of the linear second order recurrence equation [5, (5.5.8)]

$$(2.3) \quad y_{n+1} - 2zy_n + 2ny_{n-1} = 0, \quad n \in \mathbb{N}^+.$$

Every of the systems of functions

$$G_n^{\pm}(z) = - \int\limits_{-\infty}^{\infty} \frac{\exp(-t^2) H_n(t)}{(t - z)} dt, \quad z \in H^+(H^-), \quad n = 0, 1, 2, \dots,$$

where $H^+(H^-)$ is the upper (lower) half-plane, is a "second" solution of the equation (2.3). We call these systems *Hermite's associated functions*.

Let $\tau > 0$ be arbitrary. A smooth Jordan curve $\gamma \subset \overline{\mathbb{C}}$, passing through the point at infinity, is called $\tau^+(\tau^-)$ -admissible Jordan curve if $-\infty < \inf_{\zeta \in \gamma} \Re \zeta \leq \sup_{\zeta \in \gamma} \Re \zeta \leq -\tau$ ($\tau \leq \inf_{\zeta \in \gamma} \Re \zeta \leq \sup_{\zeta \in \gamma} \Re \zeta < \infty$).

Denote by $H^+(\gamma)(H^-(\gamma))$ that component of $\mathbb{C} \setminus \gamma$ which contains the real axis. Define $H_+^*(\gamma) = \mathbb{C} \setminus \overline{H^+(\gamma)}$ and $H_-^*(\gamma) = \mathbb{C} \setminus \overline{H^-(\gamma)}$. We suppose that γ is positively oriented with respect to $H^+(\gamma)(H^-(\gamma))$.

LEMMA 2. Let γ be a $\tau^+(\tau^-)$ -admissible smooth Jordan curve passing through the point at infinity. Suppose that $f : \gamma \setminus \{\infty\} \mapsto \mathbb{C}$ is a locally L -integrable

function such that ($w = u + iv$)

$$(2.4) \quad |f(w)| = O(|w|^{-\sigma} \exp(-u^2)),$$

for some $\sigma > 0$ when w tends to infinity. Then the function

$$B_\gamma(z) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(w)}{w - z} dw, \quad z \in \mathbb{C} \setminus \gamma$$

is representable in the region $H_*^\pm(\gamma)$ as a series of the kind

$$B_\gamma(z) = \sum_{n=0}^{\infty} b_n G_n^\pm(z)$$

with coefficients

$$b_n = \frac{1}{2\pi i} \int_{\gamma} f(w) H_n(w) dw, \quad n = 0, 1, 2, \dots$$

The proof is analogous to that of [4, Theorem 9.6] and is based on the Christoffel-Darboux formula [4, (2.22)] for the systems of Hermite's polynomials and associated functions.

3. The results

3.1. As an application of Lemma 1 we shall prove the following statement:

THEOREM 1. Let $\gamma \subset \overline{\mathbb{C}}$ be a λ -admissible smooth Jordan curve, passing through the point at infinity, and let f be a LH-function on $\gamma \setminus \{\infty\}$. Suppose that $|f(w)| = |f(u+iv)| = O(|w|^\beta \exp(-u))$ for some $\beta \in \mathbb{R}$ when $w = u+iv$ tends to infinity. If

$$(3.1) \quad \int_{\gamma} f(w) w^n dw = 0 \quad n = 0, 1, 2, \dots,$$

then f admits a holomorphic extension into the region $G(\gamma)$.

Proof. Define

$$F_\gamma(z) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(w)}{w - z} dw, \quad z \in G(\gamma)$$

and

$$F_\gamma^*(z) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(w)}{w - z} dw \quad z \in G^*(\gamma) := \mathbb{C} \setminus \overline{G(\gamma)}.$$

It is easy to prove that for every $\zeta \in \gamma$ there exist

$$(3.2) \quad \lim_{z \rightarrow \zeta} F_\gamma(z) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(w)}{w - \zeta} dw + \frac{1}{2} f(\zeta)$$

and

$$(3.3) \quad \lim_{z \rightarrow \zeta} F_\gamma^*(z) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(w)}{w - \zeta} dw - \frac{1}{2} f(\zeta).$$

Indeed, there exists $\delta > 0$ such that $\gamma(\zeta; \delta) := \gamma \cap \{w : |w - \zeta| < \delta\}$ is a (smooth) Jordan arc and, moreover, the function f satisfies a Hölder condition on $\gamma(\zeta; \delta)$. If we define

$$(3.4) \quad \Phi_\delta(f; z) = \frac{1}{2\pi i} \int_{\gamma(\zeta; \delta)} \frac{f(w)}{w - z} dw, \quad z \in \mathbb{C} \setminus \gamma(\zeta; \delta)$$

and

$$(3.5) \quad \Psi_\delta(f; z) = \frac{1}{2\pi i} \int_{\gamma \setminus \gamma(\zeta; \delta)} \frac{f(w)}{w - z} dw, \quad z \in \mathbb{C} \setminus (\gamma \setminus \gamma(\zeta; \delta)),$$

then there exist

$$(3.6) \quad \lim_{z \in G(\gamma), z \rightarrow \zeta} \Phi_\delta(f; z) = \frac{1}{2\pi i} \int_{\gamma(\zeta; \delta)} \frac{f(w)}{w - \zeta} dw + \frac{1}{2} f(\zeta),$$

$$(3.7) \quad \lim_{z \in G^*(\gamma), z \rightarrow \zeta} \Phi_\delta(f; z) = \frac{1}{2\pi i} \int_{\gamma(\zeta; \delta)} \frac{f(w)}{w - \zeta} dw - \frac{1}{2} f(\zeta)$$

and

$$(3.8) \quad \lim_{z \in \mathbb{C} \setminus (\gamma \setminus \gamma(\zeta; \delta)), z \rightarrow \zeta} \Psi_\delta(f; z) = \frac{1}{2\pi i} \int_{\gamma \setminus \gamma(\zeta; \delta)} \frac{f(w)}{w - \zeta} dw.$$

Since $\Phi_\delta(f; z) + \Psi_\delta(f; z) = F_\gamma(z)$ when $z \in G(\gamma)$ and $\Phi_\delta(f; z) + \Psi_\delta(f; z) = F_\gamma^*(z)$ when $z \in G^*(\gamma)$, the equalities (3.2) and (3.3) are corollaries of (3.4), (3.5), (3.6), (3.7) and (3.8).

Choose $\alpha \in \mathbb{R} \setminus \mathbb{Z}^-$ to be greater than $2\beta - 1/2$, i.e. $\beta < \alpha/2 + 1/4$. Then by Lemma 1,

$$F_\gamma^*(z) = \sum_{n=0}^{\infty} a_n M_n^{(\alpha)}(z), \quad z \in \Delta^*(\lambda)$$

and, moreover, the coefficients $\{a_n\}_{n=0}^{\infty}$ are given by the equalities (2.4).

Since $\deg L_n^{(\alpha)} = n$, $n = 0, 1, 2, \dots$, the system of Laguerre's polynomials with parameter α is a basis in the space of all (algebraic) polynomials. Then from the condition (3.1) of the theorem it follows that $a_n = 0$ for $n = 0, 1, 2, \dots$, i.e. the function F_γ^* is identically zero in the region $\Delta^*(\lambda)$. But $G^*(\lambda) \supset \Delta^*(\lambda)$, hence, by the identity theorem, $F_\gamma^*(z) = 0$ for each

$z \in G^*(\gamma)$. Further, (3.3) yields that

$$(3.9) \quad \frac{1}{2\pi i} \int_{\gamma} \frac{f(w)}{w - \zeta} dw = \frac{1}{2} f(\zeta)$$

for every $\zeta \in \gamma$. Hence, if we define $F_{\gamma}(\zeta) = f(\zeta)$ for $\zeta \in \gamma$, then F_{γ} should be the holomorphic extension of the function f in the region $G(\gamma)$, since $\lim_{z \in G(\gamma), z \rightarrow \zeta} F_{\gamma}(z) = f(\zeta)$ for every $\zeta \in \gamma$.

REMARK. As a corollary of (3.9) we obtain that the function f satisfies the singular integral equation (1.1).

It seems that the converse of Theorem 1 is not true, in general, but under some additional assumptions it can be "reversed".

We say that a λ -admissible Jordan curve $\gamma \subset \mathbb{C}$ is *regular at infinity* if the intersection $C(\gamma; \rho) = \overline{G(\gamma)} \cap C(0; \rho)$, where $C(0; \rho)$ is the circle with center at the origin and radius ρ , has only one component provided that $\rho \geq \rho_0$ and ρ_0 is large enough.

THEOREM 2. *Let $\gamma \subset \overline{\mathbb{C}}$ be a λ -admissible smooth Jordan curve regular at infinity and let f be a LH-function on $\gamma \setminus \{\infty\}$ satisfying the growth condition of Theorem 1. If f admits a holomorphic extension F_{γ} into the region $G(\gamma)$ and, moreover, $|F_{\gamma}(z)| = O(|z|^{\omega})$ for some $\omega < 1/2$ when $z \in G(\gamma)$ tends to infinity, then the equalities (3.1) of Theorem 1 hold.*

Proof. We shall prove that $F_{\gamma}^* \equiv 0$ in the region $G^*(\gamma)$. If $\rho \geq \rho_0$ and $\rho_0 > 2\lambda^2$ is large enough, then the Cauchy theorem gives that for every $z \in G^*(\gamma)$,

$$(3.10) \quad \int_{\gamma} \frac{F_{\gamma}(w)}{w - z} dw = \int_{\gamma_{\rho}} \frac{f(w)}{w - z} dw + \int_{C(\gamma; \rho)} \frac{F_{\gamma}(w)}{w - z} dw = 0,$$

where $\gamma_{\rho} := \gamma \cap \{w : |w| \leq \rho\}$.

Denote by $\zeta^*(\lambda, \rho)$ those of the endpoints of the circular arc $C(\lambda; \rho) := \overline{\Delta(\lambda)} \cap C(0; \rho)$ for which $\Im \zeta^*(\lambda; \rho) > 0$. If $\theta^*(\lambda; \rho) = \arg \zeta^*(\lambda; \rho)$, then

$$\tan \theta^*(\lambda; \rho) = 2\lambda(\rho - \lambda^2)^{1/2}(\rho - 2\lambda^2)^{-1}.$$

Further, for the length $l(\gamma; \rho)$ of $C(\gamma; \rho)$ we obtain that

$$l(\gamma; \rho) \leq 2\rho \theta^*(\lambda; \rho) = 2\rho \arctan(2\lambda(\rho - \lambda^2)^{1/2}(\rho - 2\lambda^2)^{-1})$$

and, therefore, $l(\gamma; \rho) = O(\rho^{1/2})$ when ρ tends to infinity. Hence,

$$\left| \int_{C(\gamma; \rho)} \frac{F_{\gamma}(w)}{w - z} dw \right| \leq \int_{C(\gamma; \rho)} \frac{|F_{\gamma}(w)|}{|w - z|} ds \leq \text{Const}(F_{\gamma}, z) \rho^{\omega-1/2}.$$

Then, letting $\rho \rightarrow \infty$, from (3.10) we obtain that $F_{\gamma}^*(z) = 0$. Further, the equality

$$\sum_{n=0}^{\infty} a_n M_n^{(\alpha)}(z) = 0, \quad z \in \Delta^*(\lambda)$$

and the uniqueness property of the expansions in series of Laguerre's associated functions [4, Theorem 5.6] yield that $a_n = 0$, $n = 0, 1, 2, \dots$, i.e.

$$\int_{\gamma} f(w) L_n^{(\alpha)}(w) dw = 0, \quad n = 0, 1, 2, \dots$$

But, as it was already mentioned, the system of Laguerre's polynomials is a basis in the space of (algebraic) polynomials, hence, the equalities (3.1) of Theorem 1 follow.

3.2. The following statement is a corollary of Lemma 2. Its proof is completely analogous to that of Theorem 1.

THEOREM 3. *Let γ be a $\tau^+(\tau^-)$ -admissible curve and let f be a LH-function on $\gamma \setminus \{\infty\}$. If f satisfies the conditions (2.4) and (3.1), then f admits a holomorphic extension into the region $H^+(\gamma)(H^-(\gamma))$.*

It is clear that a statement like Theorem 2 can be established. More precisely, we have the following proposition:

THEOREM 4. *Let $\gamma \subset \overline{\mathbb{C}}$ be a $\tau^+(\tau^-)$ -admissible curve regular at infinity and let f be a LH-function on $\gamma \setminus \{\infty\}$ satisfying the growth condition (2.9). If f admits a holomorphic extension F_{γ} into the region $G(\gamma)$ and, moreover, $|F_{\gamma}(z)| = o(1)$ when $z \in G(\gamma)$ tends to infinity, then the equalities (3.1) of Theorem 1 hold.*

References

- [1] A. Hurwitz, R. Courant, *Theory of Functions*, Moscow, 1968 (Russian).
- [2] I. P. Natanson, *Constructive Theory of Functions*, Moscow, 1949 (Russian).
- [3] I. I. Privalov, *Introduction to the theory of functions of a complex variable*, Moscow, 1948 (Russian).
- [4] P. Rusev, *Analytic functions and classical orthogonal polynomials*, Sofia, 1984.
- [5] G. Szegő, *Orthogonal polynomials*, Providence, 1939.

BULGARIAN ACADEMY OF SCIENCES
 INSTITUTE OF MATHEMATICS AND INFORMATICS
 Acad. G. Bonchev str., bl. 8
 1113 SOFIA, BULGARIA
 e-mail: pkrusev@math.bas.bg

Received June 13, 2002.