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HOLOMORPHIC EXTENSION OF LOCALLY 
HOLDER FUNCTIONS 

Abstract. Let 7 be a smooth Jordan curve in the extended complex plane passing 
trough the point at infinity. In the paper are given sufficiently conditions under which a 
complex function defined on 7 admits a holomorphic extensions into a region complemen-
tary to 7. 

1. Introduction 
1.1. A complex function / , defined on a (nonempty) set E C C, is called 
locally Holder function (LH-function) on E if for each ( € E there exist 
a (circular) neighbourhood U of a positive constant K and a positive 
number \i (usually supposed to be not greater than one) such that whatever 
the points Q e E(~)U,j = 1,2 are, the inequality |/(Ci) —/(C2) i < K|Cx—C2 |M 

holds. 
REMARKS. (1) U, K and /x may depend on the point £ G E. 

(2) A LH-function does not need, in general, to be a Holder function. 
Let 7 C C be a Jordan curve and let / be a continuous function defined 

on 7. We say that / admits a holomorphic extension into the interior G{7) 
of 7 if there exists a complex function F € C(G(7)) fl 7i(G(j)) (i.e. F is 
continuous on the closure of the region G{7) and holomorphic in G(7)) such 
that F(C) = /(C) for each < 6 7 . 
1.2. A classical criterion for existence of holomorphic extensions is the 
following theorem [1, p. 359, Theorem 4; 3, p. 231]: 

Let 7 C C be a smooth Jordan curve and let f be a LH-function on it. 
Then the following propositions are equivalent: 

(i) / admits holomorphic extension into G(7); 

(l.i) (ii) ±\l(™ldw = f(0, C e 7; 
7TI J W — C 

7 ^ 
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( i i i ) \ f { w ) w n dw = 0 , n = 0 , 1 , 2 

7 

REMARK. The integral in (1.1) is understood as a main value in the Cauchy 
sence, i.e. 

lim ( ^ - d w , 
J w — C s—*o J w — C 
7 S 7\7(C;«5) S 

where 7(^5 S) := {w 6 7 : \w — < 5}, and its existence is a corollary of the 
assumption that / is a LH-function on 7. 

1.3. If 7 is a smooth Jordan curve in the extended complex plane C = 
C U {00} passing trough the point at ifinity, then the above propositions are 
not equivalent in general. Here are two exmples which affirm this. 

(I) The function f ( x ) = e x p ( — x 2 ) , x € R has a holomorphic extension 
into the upper as well as into the lower half-plane, but 

00 
J e x p ( - x 2 ) x 2 n d x ^ 0, n = 0 , l , 2 . . . . 

—00 

Moreover, since the function x-1 e x p ( — x 2 ) , x G R \ {0} is odd, we have 
also that 

T e-^ldx=0, 
J X —00 

i.e. in the case under consideration the singular integral equation (1.1) is 
not satisfied. 

(II) Define s(x) = x ~ X o ^ x sin(27rlogx) when x > 0 and s(0) = 0. As it 
is well-known (Stieltjes [2, pp. 461,462]), 

00 

J s ( x ) x n d x = 0, n = 0 ,1 ,2 . . . . 
0 

Define f(x) = s(x) for x > 0 and f(x) = s(—x) for x < 0. It is clear that 
/ is continuous and, moreover, ^ o o f { x ) x 2 n d x = 0, n = 0 , 1 , 2 , — But 
since / is even, we have also that / ( x ) x 2 n + 1 d x = 0, n = 0,1,2, — 

Suppose that / has a holomorphic extension F in the upper half-plane, 
then F{-1) = / ( - 1 ) = s(l) = 0. But F(z) = exp(-(log*)2)sin(27rlogz) 
for > 0, hence, lim2_>_i F(z) = exp(7r2) sin(27r2z) / 0, which is a con-
tradiction. 

REMARK. In each of the above examples the function / is a (global) Lipshitz 
function, since its derivative is bounded on the whole real axis. 
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2. Laguerre's and Hermite's associated functions 

2.1. The system of Laguerre polynomials with arbitrary com-
plex parameter a, is a solution of the second order linear recurrence equation 
[5, (5.1.10)] 

(n + l)i/„+i + (z - In - a - 1 )yn + (n + ot)yn_uz € C, n € N+. 

If > —1, then the system of complex functions {MÍa\z)}%L0, defined 
in the region C \ [0, oo) by the equalities 

ML°\z) = - J exp(~')¿"°'W dt, n = 0 ,1 ,2 , . . . , 

is a "second" solution of the same equation, i.e. for every n = 1,2,3, . . . we 
have 
(2 .1) ( n + 1 )M^1(z) + ( z - 2 n - a - 1 )M^\z) + ( n + a)M^\{z) = 0 

provided í 6 C \ [ 0 , o o ) . 
As a corolary of the definition just given as well as of the Rodrigues' 

formula for the Laguerre polynomials [5, (5.1.5)] we easily obtain that 

The integral on the right-hand side exists when 5ft(n + a) > —1, i.e. 
when > — n — 1, hence, the above integral representation as well as the 
recurrrence relation (2.1) can be used to define the functions {Mn°^(z)}£l0 
when a is an arbitrary complex number which is not equal to —1, —2, —3, 
We call them Laguerre's associated functions. 

Let 0 < A < oo and let p(A) be the image of the straight line T(A) : w = 
—t + iX, —oo < t < oo under the mapping z = w2, i.e. p(A) is the parabola 
with vertex at the point —A2 and focus at the origin. Denote by A (A) the 
interior of p(A), i.e. A(A) : jft(-z)1/2 < A, and by A*(A) the exterior of of 
p(A), i.e. A*(A) = C \ A(A). 

A Jordan curve 7 C C, passing trough the point at infinity, is called 
A -admissible, if 0 < A := sup^e7 9?(—C)1^2 < 00. 

R E M A R K . It is clear that if 7 is A-admissible, then A ( A ) is the smallest 
closed domain containing 7 provided that the closure of A(A) is formed 
with respect to the extended complex plane. 

Further, denote by G(7) that component of C \ 7 which lies in A(A) and 
call it interior of 7. We assume 7 to be positively oriented with respect to 
G( 7 ) . 



338 P. Rusev 

L E M M A 1. Let a e i \ Z " and let f be a complex function which is locally 

L-integrable on the locally rectifiable X-admissible Jordan curve 7 C <C. 

Suppose that |/(u>)| = \f(u + iv)\ = 0{|u;|^exp(—u)}, for some (3 < 

a/2 + 1/4, when w = u + iv tends to infinity. Then the function 

1 

has an expansion in the region A* (A) in a series of the Laguerre associated 

functions with parameter a, i. e. 

Ay(z) = '£anM^(z), z € A* (A) . 
n = 0 

Moreover, the integral representations 

( 2 . 2 ) an = - — 4 s , J f(0Lia\0 dC, n = 0 , 1 , 2 , . . . , 

¿Kiln 1 

hold for the coefficients, where In 

The proof is analogous to that of [4, Theorem 9.3]. More precissely, it 
is based on the Christoffel-Darboux type formula [4, (2.20)] for the sys-
tems of Laguerre's polynomials and associated functions as well as on their 
asymptotic properties. 

2.2. The system of Hermite's polynomials {Hn(z)}^L0 is a solution of the 
linear second order recurrence equation [5, (5.5.8)] 

(2.3) yn+1 - 2zyn + 2nyn_1 = 0 , n 6 N + . 

Every of the systems of functions 

<£(*) = - I e X P ( " ! ^ n ( t ) dt, zeH+(H~), n = 0,1,2, . . . , 
—00 ' 

where H+(H~) is the upper (lower) half-plane, is a "second" solution of the 
equation (2.3). We call these systems Hermite's associated functions. 

Let r > 0 be arbitrary. A smooth Jordan curve 7 C C, passing trough 
the point at infinity, is called r + (r-)-admissible Jordan curve if —00 < 
inf^e7 < sup i e 7 < —r(r < inf^67 < sup i e 7 < 00). 

Denote by H + ( ' y ) ( H ~ (•y)) that component of C \ 7 which contains the 
real axis. Define H+(7) = C \ H+(7) and # " ( 7 ) = C \ # - ( 7 ) . We suppose 
that 7 is positively oriented with respect to # + ( 7 ) ( i f - ( 7 ) ) . 

LEMMA 2. Let 7 be a r + (T~)-admissible smooth Jordan curve passing trough 

the point at infiity. Suppose that f : 7 \ { 0 0 } 1—> C is a locally L-integrable 
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function such that (w = u + iv) 

(2.4) l/MI = 0{\w\-°exV{-u2)), 

for some a > 0 when w tends to infinity. Then the function 

i 
is representable in the region H^ (7) as a series of the kind 

00 

Br(z) = J > G ± ( z ) 
n=0 

vnth coefficients 

bn = -^-.\f(w)Hn(w)dw, n = 0 , 1 , 2 , . . . . 
7 

The proof is analogous to that of [4, Theorem 9.6] and is based on the 
Christoffel-Darboux formula [4, (2.22)] for the systems of Hermite's polyno-
mials and associated functions. 

3. The results 

3.1. As an application of Lemma 1 we shall prove the following statement: 

THEOREM 1. Let 7 C C be a X-admissible smooth Jordan curve, passing 
trough the point at infinity, and let f be a LH-function on 7 \ {00}. Suppose 
that l/HI = \f(u+iv)\ = 0(|w|/3exp( —u)) for some ¡3 6 R when w = u+iv 
tends to infinity. If 

(3.1) \f{w)wndw = 0 n = 0 , 1 , 2 , . . . , 

then f admits a holomorphic extension into the region G(7). 

P r o o f . Define 

1 
and 

1 
It is easy to prove that for every £ € 7 there exist 

1 
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and 

(3.3) S j W - S i * • - £ / « > . 
7 ^ 

Indeed, there exists S > 0 such that 7(C;^) := 7 H {w : \w - < 
is a (smooth) Jordan arc and, moreover, the function / satisfies a Holder 
condition on 7(C; 5). If we define 

(3.4) *,(/;*) = J _ j J M . d w , z 6 c \ 7 ( ( ; i ) 
¿m J w — z 

7(C;i) 

and 

(3.5) (/; z) = J L \ 7(C; 5)), 
7\7(C;<5) 

then there exist 

(3.6) lim *,(/;*) = J L J i i ^ + i / K ) , 

(3.7) lim * , ( / ; , ) = - L j 1 / ( C ) 

7«;<s) 

and 

(3.8) lim = _ L t fW 
«eC\(7\7(Ci«)),*-»C " w '" / 2tti ^ „ » o - C 

7\7(C;5) 

dw. 

Since $*(/;*) + **(/;*) = F7(z) when 2 € G(7) and $*(/;«) + **(/;«) 
= F*(z) when z G G*(7), the equalities (3.2) and (3.3) are corollaries of 
(3.4), (3.5), (3.6), (3.7) and (3.8). 

Choose a 6 R\ Z" to be greater than 2/3 - 1/2 , i.e. /? < a/2 +1/4. Then 
by Lemma 1, 

00 

F7*(z) = £ a J ^ a ) C z ) < *€A*(A) 
n = 0 

and, moreover, the coefficients {an}£i0 are given by the equalities (2.4). 

Since deg L ^ = n, n = 0 ,1 ,2 , . . . , the system of Laguerre's polynomials 
with parameter a is a basis in the space of all (algebraic) polynomials. 
Then from the condition (3.1) of the theorem it follows that an = 0 for 
n = 0 ,1 ,2 , . . . , i.e. the function F* is identically zero in the region A*(A). 
But G*(A) D A*(A), hence, by the identity theorem, F*(z) = 0 for each 
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z E G*{7). Further, (3.3) yields that 

7 

for every ( € 7. Hence, if we define F7(£) = /(C) for C € 7, then F 7 should 
be the holomorphic extension of the function / in the region G{7), since 
l i m , € C ( 7 ) , * - C F 7 ( Z ) = /(C) for every C 6 7 . 

R E M A R K . A S a corollary of ( 3 . 9 ) we obtain that the function / satisfies the 
singular integral equation (1.1). 

It seems that the converse of Theorem 1 is not true, in general, but under 
some additional assumptions it can be "reversed". 

We say that a A-admissible Jordan curve 7 C C is regular at infinity if 
the intersection C(y;p) = G(7) fl C(0;p), where C(0;p) is the circle with 
center at the origin and radius p, has only one component provided that 
p> po and po is large enough. 

T H E O R E M 2 . Let 7 C C be a X-admissible smooth Jordan curve regular at 
infinity and let f be a LH-function on 7\{oo} satisfying the growth condition 
of Theorem, 1. If f admits a holomorphic extension F7 into the region G(j) 
and, moreover, |F7(z)| = 0(\z\u) for some u> < 1 / 2 when z € G(7) tends to 
infinity, then the equalities (3.1) of Theorem 1 hold. 
P r o o f . We shall prove that F* = 0 in the region G*(7). If p > po and 
po > 2A2 is large enough, then the Cauchy theorem gives that for every 
* 6 G*(7), 

(3.10) \ M a l d w = \ I M . d w + \ * M d w = 0 , 3 w — z J w — z J w — z 
•y ip C{r,p) 

where 7^ := 7 fl {10 : < p}. 
Denote by £*(\,p) those of the endpoints of the circular arc C(A; p) := 

A(A) nC(0 ;p) for which > 0. If 0*(\-p) = argC*(A;p), then 
tan^*(A; p) = 2A(p - A 2 ) 1 / 2 (p - 2A2)"1. 

Further, for the lenght Z(7; p) of C(7; p) we obtain that 

l(r,p) < 2p^*(A;p) = 2parctan(2A(p — X2)1^2(p - 2A2) - 1) 
and, therefore, l(7; p) = 0(p1^2) when p tends to infinity. Hence, 

3 w — z 
C(r,p) 

< ( pl^ds<Const(Fy,z)p^-1/2. 3 \w — z 
c(r,p) 1 1 

Then, letting p —• 00, from (3.10) we obtain that F*(z) = 0. Further, 
the equality 
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f > n M ( ° ) ( z ) = o, zeA*(X) 
n = 0 

and the uniqueness property of the expansions in series of Laguerre's asso-
ciated functions [4, Theorem 5.6] yield that an = 0, n = 0 ,1 ,2 , . . . , i.e. 

\ f(w)l£Xw) dw = 0 , n = 0 , 1 , 2 , . . . . 

7 

But, as it was already mentioned, the system of Laguere's polynomials 
is a basis in the space of (algebraic) polynomials, hence, the equalities (3.1) 
of Theorem 1 follow. 
3.2. The following statement is a corollary of Lemma 2. Its proof is com-
pletely analogous to that of Theorem 1. 
THEOREM 3. Let 7 be a r + (r~)-admissible curve and let f be a LH-function 
on 7 \ {00}. If f satisfies the conditions (2.4) and (3.1), then f admits a 
holomorphic extension into the region H+ (~/)(H~ (7)). 

It is clear that a statement like Theorem 2 can be established. More 
precissely, we have the following proposition: 

THEOREM 4. Let 7 C C be a T+(T~)-admissible curve regular at infinity and 
let f be a LH-function on 7 \ {00} satisfying the growth condition (2.9). If 
f admits a holomorphic extension F7 into the region G(7) and, moreover, 
| F 7 ( Z ) | = o ( l ) when z € G(7) tends to infinity, then the equalities (3.1) of 
Theorem 1 hold. 

References 

[1] A. Hurwi t z , R. C o u r a n t , Theory of Functions, Moscow, 1968 (Russian). 
[2] I. P. N a t a n s o n , Constructive Theory of Functions, Moscow, 1949 (Russian). 
[3] 1.1. P r i v a l o v , Introduction to the theory of functions of a complex variable, Moscow, 

1948 (Russian). 
[4] P. Rusev, Analytic functions and classical orthogonal polynomials, Sofia, 1984. 
[5] G. Szego, Orthogonal polynomials, Providence, 1939. 

BULGARIAN ACADEMY OF SCIENCES 
INSTITUTE OF MATHEMATICS AND INFORMATICS 
Acad. G. Bonchev srt., bl. 8 
1113 SOFIA, BULGARIA 
e-mail: pkrusevQmath.bas.bg 

Received June 13, 2002. 


