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HOLOMORPHIC EXTENSION OF LOCALLY
HOLDER FUNCTIONS

Abstract. Let v be a smooth Jordan curve in the extended complex plane passing
trough the point at infinity. In the paper are given sufficiently conditions under which a
complex function defined on 4 admits a holomorphic extensions into a region complemen-
tary to ~.

1. Introduction

1.1. A complex function f, defined on a (nonempty) set E C C, is called
locally Hélder function (LH-function) on E if for each { € E there exist
a (circular) neighbourhood U of (, a positive constant K and a positive
number p (usually supposed to be not greater than one) such that whatever
the points {; € ENU, j = 1,2 are, the inequality |f(¢1)— f(¢2)] < K|{1—¢a}*
holds.

REMARKS. (1) U, K and p may depend on the point ¢ € E.
(2) A LH-function does not need, in general, to be a Holder function.

Let v+ C C be a Jordan curve and let f be a continuous function defined
on 7. We say that f admits a holomorphic extension into the interior G(v)
of v if there exists a complex function F' € C(G(y)) N H(G(y)) (i.e. F is
continuous on the closure of the region G(v) and holomorphic in G(y)) such
that F'(¢) = f(¢) for each ¢ € 4.

1.2. A classical criterion for existence of holomorphic extensions is the
following theorem [1, p. 359, Theorem 4; 3, p. 231]:

Let v C C be a smooth Jordan curve and let f be a LH-function on it.
Then the following propositions are equivalent:

(i) f admits holomorphic extension into G(v);

(1.1) @ {8 dw= 1@, cer
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(i) |flw)w"dw=0, n=0,1,2....
Y

REMARK. The integral in (1.1) is understood as a main value in the Cauchy
sence, i.e.

S —i(iv) dw := }ir% S ——J)(w)c dw,

¥ Y\7(¢:6)

where v(¢;0) := {w € v : Jw— (| < 8}, and its existence is a corollary of the
assumption that f is a L H-function on ~.

1.3. If v is a smooth Jordan curve in the extended complex plane C =
Cu{oo} passing trough the point at ifinity, then the above propositions are
not equivalent in general. Here are two exmples which affirm this.

(I) The function f(z) = exp(—z?),z € R has a holomorphic extension
into the upper as well as into the lower half-plane, but
o0
S exp(—z?)zdz #0, n=0,1,2....

—00

Moreover, since the function £~ exp(—z?),z € R\ {0} is odd, we have
also that

T i),

i.e. in the case under consideration the singular integral equation (1.1) is
not satisfied.

(IT) Define s(z) = z~°8* sin(2m log z) when z > 0 and s(0) = 0. As it
is well-known (Stieltjes [2, pp. 461,462]),
S s(z)z"dz =0, n=0,1,2....
0
Define f(z) = s(z) for £ > 0 and f(z) = s(—z) for z < 0. It is clear that
f is continuous and, moreover, {* _f(z)z?"dz = 0, n = 0,1,2,.... But
since f is even, we have also that Siooo f(x)z™*ldz =0, n=0,1,2,....
Suppose that f has a holomorphic extension F in the upper half-plane,
then F(—1) = f(~1) = s(1) = 0. But F(z) = exp(—(log 2)?) sin(2r log 2)
for Sz > 0, hence, lim,_,_; F(z) = exp(n?)sin(2w2i) # 0, which is a con-
tradiction.

REMARK. In each of the above examples the function f is a (global) Lipshitz
function, since its derivative is bounded on the whole real axis.
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2. Laguerre’s and Hermite’s associated functions

2.1. The system of Laguerre polynomials {LS“’) (2)}824, with arbitrary com-
plex parameter «, is a solution of the second order linear recurrence equation
[5, (5.1.10)]

(n+ Dyns1 + (z=2n—a = 1)y, + (n+ @)yn_1,2 € C,n € N+,

If Ra. > —1, then the system of complex functions {M,(f‘) (2)}2, defined
in the region C\ [0, 00) by the equalities
a - (a)
2 exp(-O)Ln (1)
t—=z

M) = - |
0

n=0,1,2,...,

is a "second” solution of the same equation, i.e. for every n =1,2,3,... we
have
21) (n+ DM (2) + (2 =20 — a0 = YMII(2) + (n + Q) M2y (2) = 0

provided z € C\ [0, 00).
As a corolary of the definition just given as well as of the Rodrigues’
formula for the Laguerre polynomials [5, (5.1.5)] we easily obtain that

a T tte exp(—t)
M@ =)

dt, n=0,1,2,....

The integral on the right-hand side exists when R(n + o) > -1, ie.
when Ra > —n — 1, hence, the above integral representation as well as the
recurrrence relation (2.1) can be used to define the functions {M,(f‘)(z)};?:o
when a is an arbitrary complex number which is not equal to —1, -2, -3, .. ..
We call them Laguerre’s associated functions.

Let 0 < A < 0o and let p()\) be the image of the straight line T'(A) : w =
—t + 14X, —00 < t < oo under the mapping z = w?, i.e. p(\) is the parabola
with vertex at the point —A? and focus at the origin. Denote by A()) the
interior of p(}), i.e. A(A) : R(—2)!/2 < A, and by A*()\) the exterior of of
p(A), i.e. A*(A) =C\ A(N).

A Jordan curve v C C, passing trough the point at infinity, is called
A-admissible, if 0 < X := sup¢., R(—¢)Y/2 < oo.

REMARK. It is clear that if v is A-admissible, then A()) is the smallest
closed domain containing 7 provided that the closure of A()\) is formed
with respect to the extended complex plane.

Further, denote by G(v) that component of C\ v which lies in A()) and
call it interior of v. We assume v to be positively oriented with respect to
G(7)-
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LEMMA 1. Let o € R\ Z~ and let f be a complex function which is locally
L-integrable on the locally rectifiable A-admissible Jordan curve v C C.
Suppose that |f(w)] = |f(u + iv)| = O{|w|® exp(—u)}, for some B <
af2+1/4, when w = u + v tends to infinity. Then the function
Ay(2) = is%dw, zeC\y

2mi Jw
¥

has an ezpansion in the region A*()) in a series of the Laguerre associated
functions with parameter a, i.e.

Ay(2) = i an M) (2), ze€ A*(N).

n=0

Moreover, the integral representations

1
L) d =0,1,2,...,
27ri1£“)§,f(<) 0, n=0,1,

(2.2) ap = —

hold for the coefficients, where I = I'n+ a+1)/T'(n+1).

The proof is analogous to that of [4, Theorem 9.3]. More precissely, it
is based on the Christoffel-Darboux type formula [4, (2.20)] for the sys-
tems of Laguerre’s polynomials and associated functions as well as on their
asymptotic properties.

2.2. The system of Hermite’s polynomials {H,(z)}32, is a solution of the
linear second order recurrence equation [5, (5.5.8)]

(2.3) Yntl — 22Yn +2nyn_1 =0, neNT,
Every of the systems of functions

() = _ T exp(—t?)Ha(t)
Gi) = - | =

where H*(H™) is the upper (lower) half-plane, is a “second” solution of the
equation (2.3). We call these systems Hermite’s associated functions.

Let 7 > 0 be arbitrary. A smooth Jordan curve v C C, passing trough
the point at infinity, is called 7+ (77)-admissible Jordan curve if —co0 <
inf¢eqy S¢ < supeen, S¢ < —7(7 < infeey I¢ < supee, S¢ < 00).

Denote by H*(y)(H~ (7)) that component of C \ v which contains the
real axis. Define H} (y) = C\ H*(y) and H; (v) = C\ H~(y). We suppose
that « is positively oriented with respect to H+(v)(H™(%)).

dt, ze HY(H™), n=0,1,2,...,

LEMMA 2. Let y be a 7 (77 )-admissible smooth Jordan curve passing trough
the point at infiity. Suppose that f : v\ {00} — C is a locally L-integrable
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function such that (w = u + iv)

(2.4) |f (w)| = O(lw|~“ezp(~u?)),
for some o > 0 when w tends to infinity. Then the function

B,(2) = — S ) dw zeC\y

2mi

is representable in the region Hf,': () as a series of the kind

B,(2) = Z bnG:E(Z)

n=0

with coefficients

1
be = g S (), m=0,12,....
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The proof is analogous to that of [4, Theorem 9.6] and is based on the
Christoffel-Darboux formula [4, (2.22)] for the systems of Hermite’s polyno-

mials and associated functions.

3. The results

3.1. As an application of Lemma 1 we shall prove the following statement:

THEOREM 1. Let v C C be a A-admissible smooth Jordan curve, passing
trough the point at infinity, and let f be a LH-function on v\ {oo}. Suppose
that |f(w)| = | f(u+iv)| = O(|w|? exp(—u)) for some B € R when w = u+iv

tends to infinity. If

(3.1) | fwpw"dw=0n=0,1,2,...,
4
then f admits a holomorphic extension into the region G(v).

Proof. Define

Fy(2)= 2L S dw z € G(y)
and !
Fi(z) = 27rzs'z£(f))zdw z € G*(y) :=C\ G(v).

It is easy to prove that for every { € -y there exist

(3.2) lim P (2) = %A5%d+f@
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and

(3.3) llm Fi(2) = S f(w) - %f(()

i

Indeed, there exists § > 0 such that y({;d) := yN{w : |w - (| < é}
is a (smooth) Jordan arc and, moreover, the function f satisfies a Holder
condition on v((; 8). If we define

(34 2(fi2)= o | 1w, zeC\y(G:9)
7(¢;8)
and
33 WlfiD=ge | Idw, zeC\(\ G,
T\7(¢£;96)
then there exist
: 1 f(w)
(3.6) sedim, C<I>5(f, =5 —,(48;5)“’ <d w+ f(C),
- =L f) g1
@1 Glm  @a(fi2) =5 7((5;5)w_<dw 570
and
. - L f(w)
(38) ze«:\(w\l-i&l;s)),zec\p"(f %) = om S C

\v(¢ :6)

Since ®;5(f; 2) + ¥s(f;2) = F,(z) when z € G(v) and ®5(f; z) + ¥s(f; 2)
= F3(z) when z € G*(7), the equalities (3.2) and (3.3) are corollaries of
(3.4), (3.5), (3.6), (3.7) and (3.8).

Choose a € R\ Z~ to be greater than 26 —-1/2,i.e. 8 < a/2+1/4. Then
by Lemma 1,

o0
Fi(2) =) anM{(2), z € A*(N)
n=0
and, moreover, the coefficients {a, }32, are given by the equalities (2.4).
Since deg L,(f’) =n, n=0,1,2,..., the system of Laguerre’s polynomials
with parameter o is a basis in the space of all (algebraic) polynomials.
Then from the condition (3.1) of the theorem it follows that a, = 0 for
n=0,1,2,..., ie. the function F} is identically zero in the region A*(}).
But G*(A) D A*(}), hence, by the identity theorem, F;(z) = 0 for each



Holomorphic extension 341

z € G*(y). Further, (3.3) yields that

1 flw) . 1
for every ¢ € . Hence, if we define F,(¢) = f({) for { € v, then F, should
be the holomorphic extension of the function f in the region G(v), since
liszG('y),z—v( F’y(z) = f(C) for every ¢ € .
REMARK. As a corollary of (3.9) we obtain that the function f satisfies the
singular integral equation (1.1).

It seems that the converse of Theorem 1 is not true, in general, but under
some additional assumptions it can be "reversed”.

We say that a A-admissible Jordan curve v C C is regular at infinity if
the intersection C(v; p) = G(v) N C(0; p), where C(0; p) is the circle with
center at the origin and radius p, has only one component provided that
p > po and pg is large enough.

THEOREM 2. Let v C C be a A-admissible smooth Jordan curve regular at
infinity and let f be a LH -function on y\{oo} satisfying the growth condition
of Theorem 1. If f admits a holomorphic eztension F., into the region G(v)
and, moreover, |F,(z)| = O(|z|*) for some w < 1/2 when z € G(v) tends to
infinity, then the equalities (3.1) of Theorem 1 hold.

Proof. We shall prove that F} = 0 in the region G*(v). If p > po and

po > 2)? is large enough, then the Cauchy theorem gives that for every
z € G*(7),

@10) = B 4, S flw )d + § = W) gy <o,
-z z
v crm
where v, :=yN{w: |w| < p}.
Denote by ¢*(), p) those of the endpoints of the circular arc C(); p) :=
A(A)NC(0; p) for which SC*(A; p) > 0. If 6*(X; p) = arg (*(A; p), then

tan 6*(X; p) = 2X(p — A%)1/23(p — 22%) !
Further, for the lenght I(; p) of C(v; p) we obtain that
1(7; p) < 208" (X; p) = 2parctan(2X(p — A)/2(p — 2X%)71)
and, therefore, I(; p) = O(p/?) when p tends to infinity. Hence,

S E'Y—(_i)dw < S I%L(w?)lds < Const(F,,z)p“ /2.
C(vip) C(ip)
Then, letting p — oo, from (3.10) we obtain that F(z) = 0. Further,
the equality
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[ o]

Y anMP(z) =0, zeA*(N)

n=0
and the uniqueness property of the expansions in series of Laguerre’s asso-
ciated functions [4, Theorem 5.6] yield that a, =0, n=0,1,2,..., ie.

| fw) L (w)dw=0, n=0,1,2,....
be
But, as it was already mentioned, the system of Laguere’s polynomials
is a basis in the space of (algebraic) polynomials, hence, the equalities (3.1)
of Theorem 1 follow.

3.2. The following statement is a corollary of Lemma 2. Its proof is com-
pletely analogous to that of Theorem 1.

THEOREM 3. Let v be a 7+ (77)-admissible curve and let f be a LH-function
on v\ {oo}. If f satisfies the conditions (2.4) and (3.1), then f admits a
holomorphic extension into the region H (v)(H ™ (v)).

It is clear that a statement like Theorem 2 can be established. More
precissely, we have the following proposition:

THEOREM 4. Let v C C be a 7% (77)-admissible curve regular at infinity and
let f be a LH-function on v\ {oo} satisfying the growth condition (2.9). If
f admits a holomorphic extension F, into the region G(v) and, moreover,
|Fy(2)| = o(1) when z € G(y) tends to infinity, then the equalities (3.1) of
Theorem 1 hold.
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