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AN ELEMENTARY PROOF OF A SCHWARZ LEMMA 
FOR THE SYMMETRIZED BIDISC 

Abstract. Agler-Young obtained a Schwarz lemma for the symmetrized bidisc. Their 
proof uses an earlier result of them whose proof is operator-theoretic in nature. They posed 
the question to give an elementary proof of the Schwarz lemma for the symmetrized bidisc. 
In this paper, we give an elementary proof of the Schwarz lemma for the symmetrized 
bidisc. 

1. Introduction 
Let 

r = {(Ai + A 2 ,A iA 2 ) :|Ai|<l ,|A 2|<l } 

be the symmetrized bidisc. Agler-Young [2] obtained a Schwarz lemma for 
analytic functions ip from the unit disc D to T with y?(0) = (0,0). Their 
proof uses a result in Agler-Young [1] whose proof is operator-theoretic in 
nature. However, the nature of the assertion for the Schwarz lemma for the 
symmetrized bidisc is purely function-theoretic. So, they posed the question 
to give an elementary proof of the Schwarz lemma for the symmetrized 
bidisc. 

In this paper, we will give an elementary proof of the Schwarz lemma for 
the symmetrized bidisc. 

A Schwarz lemma for the symmetrized bidisc throws light on the spectral 
Nevanlinna-Pick problem, which is to interpolate from the unit disc to the 
set of k x k matrices of spectral radius no greater than 1 by analytic matrix 
functions. The spectral Nevanlinna-Pick problem has been much studied 
over the past 15 years by engineers as well as mathematicians, because 
it is a special case of the /z-synthesis problem in control engineering. The 
problem is fundamental to the H°° approach to robust stabilization in the 
face of structured uncertainty. Although there are packages Matlab toolbox 
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[3] which search for numerical solutions of /¿-synthesis problems, there is not 
yet a definitive theory. 

2. Preliminaries 
Agler-Young [2, Theorem 1.1] obtained the following Schwarz lemma for 

the symmetrized bidisc. The purpose of this paper is to give an elementary 
proof of the following theorem. 
THEOREM 2.1. Let Ao 6 D and (so>Po) € r . Then the following conditions 
are equivalent: 

(1) There exists an analytic function <p : D —> T such that <p(0) = (0,0) 
and <p(A0) = (so,Po)-

(2) | so | < 2 and 

(2.1) ^ ^ < |Ao|. 

(3) 

(2.2) ||A0|25O ~POSO\ + |po|2 + (1 - |A 0 | 2 )^ - |A0|2 < 0. 

(4) 

M < Y ^ Y (|Ao||l -P<&2\ ~ ||A0|2 -Po*2|) , 

where ui is a complex number of unit modulus such that so = |so|w. 
Moreover, for any analytic function 

V = (<PU>P2) : © r 
such that<p(0) = (0,0), 

± K ( 0 ) | +1^(0)1 < 1 . 

Agler-Young [2, Lemma 1.2] cited the following lemma without proof. 
To show that this lemma can be proved by an elementary method, we give 
a proof. 

LEMMA 2.1. Suppose that (s,p) € T and that |s| < 2. Then 

/4|p|2 + |s|2 2|s — + |s2 — 4p| 
V 4 + |s|2 " 4 — |s|2 

Proof . Let (s,p) € T with |s| < 2. By considering (el9s,e2iep), we may 
assume that p is real and non-negative. Let 

r (A - 2 P ~ S Z 
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Then Gs>p maps the unit circle T to the circle with center and radius 

4p — s2 2|s — 
4 — |s|2 

respectively. Let x € T be such that 5R(«x) < 0 and SR(sx) > 0. Then 

4|p|2 + H 2 2\s-ps\ + \s2-<ip\ 
V 4 + |s|2 * | G s ' p ( x ) l * * " 

Agler-Young [2, Lemma 1.3] derived the following lemma from a theorem 
of Schur [4], [5] on the zeros of polynomials. So, its proof is elementary. 

LEMMA 2.2. Let A e D and s,p 6 C satisfy 

|A|2s-sp + |p|" + (1 - |A| - |A|* < 0. 2 , ii l\|2\lsl I \ |2 
2 

4 
Then (s,p) e intT. 

3. An elementary proof of Theorem 2.1 
In this section, we will give an elementary proof of Theorem 2.1. 
If Ao = 0 and one of the conditions (2), (3) and (4) holds, then so = 

po = 0. Therefore, the conditions (1), (2), (3) and (4) are equivalent when 
Ao = 0. Also, if Ao 0 and (so,po) = (0,0), then the conditions (1), (2), (3) 
and (4) are true. 

We will consider the case that Ao ^ 0 and (so,po) (0,0). The equiv-
alence of the conditions (3) and (4) is proved in Agler-Young [2, Theorem 
1.1] by an elementary method. Also, they proved that the condition (3) is 
equivalent to the conditions that |sq| < 2, 

/4bo|2 + M 2 

|Ao1 " V 4 + M 2 

2|s0 - Po«oI - |«o — 4Po| 2|sp — PqSq| + jsp - 4 p o f 
4 - M 2 4 - M 2 

by an elementary method. Then using Lemma 2.1, we can show that the 
condition (2) implies the condition (3). 

To show that the condition (3) implies the condition (1), we first show 
the following theorem. Agler-Young [2, Theorem 1.4] constructed an inter-
polating function (p for data satisfying the inequality (2.1) with equality, 
and they used it to prove Theorem 2.1. We will construct an interpolating 
function p for data satisfying the inequality (2.2) with equality, and we will 
use it to prove Theorem 2.1. 
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THEOREM 3.1. Let Ao € 0 and (so,Po) € r be such that Ao ^ 0 and 

||Ao|2so -Po*>| + |po|2 + (1 - | A 0 | 2 ) ^ - |A0|2 = 0. 

Then there exists an analytic function (p : O —• T such that y>(0) = (0,0) 
and <p(Ao) = (so,Po), given explicitly as follows. 

If |po| = |Ao|, then <p(A) = (0, wA), where u is a complex number of unit 
modulus such that wAo = po-

/ / |po | < |Ao|, then <p = (<fii,<P2), where 

< A 
ViW = 

( l -AoAJi l+PiCMA)) ' 
V(A) = t

A" , CAo = |A0|w, s0 = |s0|w, 1 — AoA 

Pi = c = ^ { | A 0 - p0AoC2| - |AqC2 - pel}, 

_ A ( C M A ) + P 1 ) 

^ 2 ( A ) " 1 + P i CM A ) • 

Proof . Since 
4|po|2 + N 2 , ,2 N 2 ( l - bo I2) ^ n 

T T n P N = 4 + |«o|2 

we have 
/4|pp|2 + |sp|2 

| p o | - V * + M 2 - | A o 1 

by (3.1). Since the condition (3) is equivalent to the condition (4), we have 

M = ( | A O ) | L - P O W 2 | - ||A0|2 - p o a ; 2 | ) , 

where u> is a complex number of unit modulus such that so = |so|w. Then 
we can show that <£>(Ao) = (so, po) and </?(D) C T as in the proof of Theorems 
1.4 and 1.5 of Agler-Young [2] by a direct manipulation. 

Now, we will prove that the condition (3) implies the condition (1). 
Assume that Ao G B>\ {0} and (so,po) € T \ {(0,0)} satisfy the condition (3). 
If |so| = 2, then there exists a n w G T such that so = 2u>, po = w2. Then, 

||Ao|2*> ~Poso\ + |po|2 + (1 - | A 0 | 2 ) ^ - |A0|2 = 4(1 - |A0|2) > 0, 

which contradicts with the condition (3). Therefore, |so| < 2. Let 

N(r) = ||A 0| 2S 0 - r2poso| + r 3 |p 0 | 2 + r ( l - | A 0 | 2 ) ^ - M . 
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Then N( 1) < 0 by the condition (3) and N(r) —• oo as r —• oo. So, there 
exists an r\ > 1 such that N(r\) = 0. Let (si ,pi) = (?"iso,riPo)- Thus, we 
have 

||Ao|2 «1 - Pisi + IPII2 + ( I -|AO| 2 )^-|AO| 2 = O. 

By Lemma 2.2, (si ,pi) € I\ By Theorem 3.1, there exists an analytic func-
tion ij> = (^1,^2) : D T such that ip(0) = (0,0) and V>(Ao) = (si ,pi). Let 
ip = (rj"1-i/'i, rj~2^2)- Then <p is an analytic function from D into T such that 
<£>(0) = (0,0) and y?(Ao) = (so,Po)- Thus, the condition (1) is satisfied. 

Finally, we will show that the condition (1) implies the condition (2). 
Let : O —> T be an analytic function such that <¿>(0) = (0,0) and y>(Ao) = 
(so.Po), where A0 € B, (so,po) € I\ Let <p = (^1,^2)- Then y?i(0) = <¿>2(0) 
= 0. Moreover, we have |¥>I(A)| < 2 and |<̂ 2(A)| < 1 for A € O by the 
maximum principle. For x G T, let 

Fx(s,p) = 
2 p - x s 
2-xs ' 

Then Fx o <p is an analytic function on O such that Fx o <p(0) = 0. If (s,p) = 
(AI + A2, AIA2) with (AI, A2) € T x T \ {(x, x ) } . then we have 

2AiA 2-X(AI + A2) 
2 - x(Ai + A2) 

A I A 2 ( 2 - X ( A I + A 2)) 

2 - X ( A I + A2) 
= 1. 

Let H(AI, A 2) = F X ( A I + A 2, Ai_A2) and let A 2 € T \ { x } be fixed. H{•, A 2) is 
analytic on D, is continuous on D and |H(-, A2)| = 1 on T. Then |JI(AI, A2)| < 

1 for Ai 6 D, A2 € T \ { x } by the maximum principle. By continuity, we 
have |II(AI, A2)| < 1 for AI € D, A 2 € T. Since H{AI, •) is analytic on D with 
respect to A2 for AI G D, we have \H(\i, A2)| < 1 for AI € D, A2 € D. But 

< 1 on D and this implies that |Fxo<^(A)| < 1 on D. Since Fxo<p(0) = 0, 
we have |FX o y>(A)| < 1 on D by the maximum principle. Then we have 
|FX o y>(A)| < |A| on D by the Schwarz lemma on D. For A = Ao, this implies 
that |Gs0 ,po(x)l < |Ao| for x € T. Since GSOiPO maps T to the circle with 
center and radius 

4p0 - Sq a n d 21 s0 - posol 
4 - H 2 4 — (soj2 

respectively, the maximum of |GSOiPO(x)| on T is 

|4po - sg| 2|sp - ppsol 
4-|s0|2 + 4 — |so|2 " 

Thus we obtain the condition (2). This completes the proof. 



334 H. Hamada , H. Segawa 

References 

[1] J. Agier , N. J. Young , A commutant lifting theorem for a domain in C 2 and spectral 
interpolation, J. Funct. Anal. 161 (1999), 452-477. 

[2] J. Agier , N. J. Young , A Schwarz lemma for the symmetrized bidisc, Bull. London 
Math. Soc. 33 (2001), 175-186. 

[3] Matlab p-analysis and synthesis toolbox, The MathWorks Inc., Natick, MA, 
http://www .mathworks. com/products / muanalysis / . 

[4] V. P t a k , N. J. Young , A generalization of the zero location theorem of Schur and 
Cohn, IEEE Trans. Automat. Control 25 (1980), 978-980. 

[5] I. Schur , Uber Potenzreihen, die im Innern des Einheitskreises beschränkt sind, 
J. für Math. 147 (1917), 205-232, 148 (1918), 122-145. 

FACULTY OF ENGINEERING 
KYUSHU SANGYO UNIVERSITY 
3-1 Matsukadai 2-chome, HIGASHI-KU 
FUKUOKA 813-8503, JAPAN 
email: h.hamada@ip.kyusan-u.ac.jp 

Received April 8, 2002. 


