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AN ELEMENTARY PROOF OF A SCHWARZ LEMMA
FOR THE SYMMETRIZED BIDISC

Abstract. Agler-Young obtained a Schwarz lemma for the symmetrized bidisc. Their
proof uses an earlier result of them whose proof is operator-theoretic in nature. They posed
the question to give an elementary proof of the Schwarz lemma for the symmetrized bidisc.
In this paper, we give an elementary proof of the Schwarz lemma for the symmetrized
bidisc. :

1. Introduction
Let
= {(\+ 22, Ahe) 1| 1, 2] <1}

be the symmetrized bidisc. Agler-Young [2] obtained a Schwarz lemma for
analytic functions ¢ from the unit disc D to I" with ¢(0) = (0,0). Their
proof uses a result in Agler-Young [1] whose proof is operator-theoretic in
nature. However, the nature of the assertion for the Schwarz lemma for the
symmetrized bidisc is purely function-theoretic. So, they posed the question
to give an elementary proof of the Schwarz lemma for the symmetrized
bidisc.

In this paper, we will give an elementary proof of the Schwarz lemma for
the symmetrized bidisc.

A Schwarz lemma for the symmetrized bidisc throws light on the spectral
Nevanlinna-Pick problem, which is to interpolate from the unit disc to the
set of k x k matrices of spectral radius no greater than 1 by analytic matrix
functions. The spectral Nevanlinna-Pick problem has been much studied
over the past 15 years by engineers as well as mathematicians, because
it is a special case of the u-synthesis problem in control engineering. The
problem is fundamental to the H* approach to robust stabilization in the
face of structured uncertainty. Although there are packages Matlab toolbox
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[3] which search for numerical solutions of u-synthesis problems, there is not
yet a definitive theory.

2. Preliminaries

Agler-Young [2, Theorem 1.1] obtained the following Schwarz lemma for
the symmetrized bidisc. The purpose of this paper is to give an elementary
proof of the following theorem.

THEOREM 2.1. Let Mg € D and (so,po) € I'. Then the following conditions
are equivalent:

(1) There exists an analytic function ¢ : D — T' such that ¢(0) = (0,0)
and p(Xo) = (s0, po)-

(2) |s0] < 2 and

2|so — poo| + |53 — 4po

21) ol 1500l < pal.
®) 2

22)  |holso - po| + lpol? + (1 — o)L — g2 <.
(@)

2 —2 2 —2
|sol < T=pop (|>\0||1 — pow”| — ||)\0| — pow D ;
where w is a complez number of unit modulus such that sy = |sg|w.
Moreover, for any analytic function

¢=(p1,p2): DT
such that ¢(0) = (0,0),

1
3171 (0) + |#(0)] < 1.

Agler-Young [2, Lemma 1.2] cited the following lemma without proof.
To show that this lemma can be proved by an elementary method, we give
a proof.

LEMMA 2.1. Suppose that (s,p) € ' and that |s| < 2. Then

4lp? + s _ 2|s — 3| + |s* — 4p|
4+[s* ~ 4—|sf? '

Proof. Let (s,p) € T with |s| < 2. By considering (e%s, e?*p), we may
assume that p is real and non-negative. Let

2p — sz
Gsp(2) =

2-3z°
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Then G, , maps the unit circle T to the circle with center and radius
4p — s? 2|s — p3|
i 2 T

respectively. Let x € T be such that R(sx) < 0 and R(35x) > 0. Then

/4|p|2 + |s|? 2|s — p3| + |s% — 4p|
L N ML G’s < .
4+|3|2 —| ,P(X)l— 4__|sl2 u

Agler-Young (2, Lemma 1.3] derived the following lemma from a theorem
of Schur [4], [5] on the zeros of polynomials. So, its proof is elementary.

LEMMA 2.2, Let A € D and s,p € C satisfy
||

[IA%s = 39| + Ipl? + (1 = )= = AP <.

Then (s,p) € intT.

3. An elementary proof of Theorem 2.1

In this section, we will give an elementary proof of Theorem 2.1.

If Ao = 0 and one of the conditions (2), (3) and (4) holds, then so =
po = 0. Therefore, the conditions (1), (2), (3) and (4) are equivalent when
Ao = 0. Also, if Ao # 0 and (so, po) = (0,0), then the conditions (1), (2), (3)
and (4) are true.

We will consider the case that A9 # 0 and (so,po) # (0,0). The equiv-
alence of the conditions (3) and (4) is proved in Agler-Young [2, Theorem
1.1] by an elementary method. Also, they proved that the condition (3) is
equivalent to the conditions that |so| < 2,

[4]po|? + |so|?
3.1 Aol > i 3t ML el BN
( ) | Ol = 4+ |30|2
2|so — poSo| — |s§ — 4pol| 2|so — poSo| + |s§ — 4:00|>

and
A
I 0| ¢ ( 4— |30|2 ) 4 — |SOI2

by an elementary method. Then using Lemma 2.1, we can show that the
condition (2) implies the condition (3).

To show that the condition (3) implies the condition (1), we first show
the following theorem. Agler-Young [2, Theorem 1.4] constructed an inter-
polating function ¢ for data satisfying the inequality (2.1) with equality,
and they used it to prove Theorem 2.1. We will construct an interpolating
function ¢ for data satisfying the inequality (2.2) with equality, and we will
use it to prove Theorem 2.1.
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THEOREM 3.1. Let Ao € D and (so,po) € ' be such that A\g # 0 and

[Pol2ao o] + ool + (1~ af®) 2L~ rg2 = 0.

Then there ezists an analytic function ¢ : D — 1" such that ¢(0) = (0,0)
and ¢(Ao) = (S0, p0), given ezplicitly as follows.

If |po| = | o], then p(A) = (0,w)), where w is a compler number of unit
modulus such that wlg = pg.

If |po| < |Xal, then ¢ = (¢1, p2), where

e1(N) 2
1 = = — 3
(1= 20A)(1 + 71¢20(N))
v(A) = 1/\__X/:,(j\, ¢Ao = [Aolw, so = |so|w,
. 2
=2 = (R0 - BoroC?l - N3¢ - pol},
X’ |l
_ APy +m)
w2(N) = 14,0200
Proof. Since
dlpol’ +Isof? 2 _ JsoP (L= Ipol)
4 + |sol? 4+|sol> ~7

we have

by (3.1). Since the condition (3) is equivalent to the condition (4), we have
= 2 —2 2 —2
|so| = =P (I/\olll — pow*| - ||/\o| — pow |) ;

where w is a complex number of unit modulus such that sp = |sg|w. Then
we can show that (o) = (so,po) and ¢(D) C I as in the proof of Theorems
1.4 and 1.5 of Agler-Young [2] by a direct manipulation.

Now, we will prove that the condition (3) implies the condition (1).
Assume that A\g € D\ {0} and (sg,po) € '\ {(0,0)} satisfy the condition (3).
If |so| = 2, then there exists an w € T such that sg = 2w, pp = w?. Then,

s
[olso — poo| + ol? + (1~ o) 2L~ rof? = 41 = raft) > 0,
which contradicts with the condition (3). Therefore, |so| < 2. Let

s Xo|?
N(r) = |Ihofs0 = r2po + r3pol? + (1 — rafty 0L — o
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Then N(1) < 0 by the condition (3) and N(r) — oo as 7 — 00. So, there
exists an r; > 1 such that N(r;) = 0. Let (s1,p1) = (r150,73p0). Thus, we
have

2
S
[Pof?sn = p31] + a2+ (1~ Do) 225 g2 =0

By Lemma 2.2, (s1,p1) € I'. By Theorem 3.1, there exists an analytic func-
tion ¥ = (v1,%2) : D — I such that 4(0) = (0,0) and ¥(Xo) = (s1,p1). Let
@ = (r1 Y1, 77 %42). Then ¢ is an analytic function from D into I' such that
©(0) = (0,0) and ¢(Ao) = (s0,p0). Thus, the condition (1) is satisfied.

Finally, we will show that the condition (1) implies the condition (2).
Let ¢ : D — I' be an analytic function such that ¢(0) = (0,0) and ¢(Xo) =
(s0,po), where Mg € D, (so,po) € I'. Let ¢ = (1, ¥2). Then ;1(0) = ¢2(0)
= 0. Moreover, we have |p1(A)] < 2 and |p2(X)] < 1 for A € D by the
maximum principle. For x € T, let

_2p—xs
FX(s)p) - 2 —73 .
Then F, oy is an analytic function on D such that F, o ¢(0) = 0. If (s,p) =
(A1 4+ A2, A1 Ag) with (A, A2) € T x T\ {(x, x)}, then we have

2222 = X1 + )| _ [Ande(2 - X+ Ae))| _
2-%(A1+ A2) 2 —X(A1+ A2)

Let H(A1, A2) = Fy (A1 + A2, A\1A2) and let A2 € T\ {x} be fixed. H(, Ag) is
analytic on D, is continuous on D and |H(-, A2)] = 1 on T. Then |H (A1, Ag)| <
1for A\; € D, A2 € T\ {x} by the maximum principle. By continuity, we
have |H(A1,A2)] < 1for \; € D, Ag € T. Since H()\y, -) is analytic on D with
respect to A; for A\; € D, we have |H(\1, Ag)| < 1 for \; € D, A2 € D. But
|p2| < 1 on D and this implies that |Fy o¢(A)] < 1 on D. Since F, 0¢(0) =0,
we have |F) o ¢(A)] < 1 on D by the maximum principle. Then we have
|Fy 0 @(A)| £ |A| on D by the Schwarz lemma on D. For A = X, this implies
that |Gsope(X)| < |Xo| for x € T. Since Ggyp, maps T to the circle with
center and radius

1.

|Fx(s,p)| =

4pg — s} 2|s0 — poSol
' L V] q 220 AUl
a-lso 0 T4 (s

respectively, the maximum of |Gy, po(X)| on T is

l4po — s3| | 2lso — poSol
4 — |so|? 4—lso|?

Thus we obtain the condition (2). This completes the proof. =
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