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CHARACTERIZATION OF DOMAINS THROUGH 
FAMILIES OF MEASURES 

Abstract. Let Q be a plane domain limited by a regular Jordan curve F. For every 
(L) measurable subset E of T and every point z € CI, consider the probability P{E\ z) 
that a Brownian particle starting its motion at z hits the boundary T (by the first time) 
in a point belonging to E. Now, let C be a constant such that 0 < C < |T| and consider 
the optimization problem 
(1) s u p { P ( £ ; z ) : | £ | = C} 

(| • | denotes the Lebesgue measure on the boundary T). What are the domains Q such 
that single arcs of the boundary are optimal subsets for (1) for every z 6 fi and every 
o < c < in? 

For a plane domain Cl which is starlike with respect to an interior point O, the internal 
visual angle ©(O; E) of a measurable subset of the boundary E C <90 is defined to be the 
single under which E is observed from O. Posing the optimization problem 

(2) s u p { © ( 0 ; E ) : | E | = C}, 

it is asked for the convex domains CI such that single arcs of the boundary are optimal 
subsets for (2) for every O € CI and every 0 < C < |T|. 

A suitable response to these questions is given in this paper. 

1. Introduction and preliminaries 
Let Cl be a plane domain bounded by a regular curve 7. For every point 

x € suppose we are given a measure Ax defined on the Lebesgue mea-
surable subsets of the boundary dfi. Denote by A the whole family of these 
measures indexed by x e ii; i.e., A = {Ax : x e f i } . To fix ideas, consider 
a Brownian particle starting its motion at x € ii. If T is a (measurable) 
subset of d f l , the particle has a certain probability of hitting the boundary 
dil for the first time at a point of T. As it is well known, this probability 
coincides with the harmonic measure u>(x; fi, T) of T at the point x € ii. In 
this case, A = {u(x; •) : x G f2} and we expect that a number of special 
properties to be shared by all the measures in A provided that the geom-
etry of i) has a certain "symmetry". For example, if Q, = Br is a circle of 
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radius r, then we easily see that A is a family of coalescent measures (with 
respect to the Lebesgue measure on the boundary) in the sense that, for 
every 0 < C < 2irr, the optimization problem 

(3) max{w(i; ft, T) : T C dBr, |r| = C} 

is solved by a single arc T* with measure |r| = C. This means, in the 
probabilistic interpretation, that a certain single "window" T* of length 
C on the circumference dBT maximizes the probability that a Brownian 
particle starting at any point x € Br hits the boundary dBT by the first 
time at a point of the "windows" T with "total length" C. 

Our present interest will be focalized on a sort of inverse problem: what 
can be said on the geometry of ft when it is known that a particular property 
is enjoyed by every member of the family of measures A? Of course, this 
question is meaningless when formulated in its full generality (what is seen 
by realizing that certain families A of measures are defined disregarding 
the geometry of the domain ft; v.g., the family of identically zero measures 
\ x = 0, x e ft), but in posing our problem we are implicitly assuming that 
the family of measures is somewhat related to the geometry of the domain 
ft. Indeed, the above question is directed to deepen in the nature of these 
relationships when these ones are known to exist. For instance, we can ask 
for the domains f2 such that the family {w(x; ft, •) : x € ft} of harmonic 
measures with respect to ft is a coalescent family. As another significative 
example, we consider in this paper the family of internal visual angles. 

By assuming that ft is starlike with respect to an interior point O, it 
makes sense to consider the internal visual angle 0 ( 0 ; E) under which an 
arc E of 7 is seen by an observer placed at O (see Figure 1). More generally, 
if E is a measurable subset of 7; then, the quantity 0(O; E) represents the 
total visual angle under which the subset E of the boundary is seen from 
O. By representing the boundary curve 7 in polar coordinates with pole at 
O, we have 

© ( 0 ; £ ) = {e: (e,p(0,e)) eE}c [0,2*], 

where p(0;9), 0 < 0 < 27T, is the polar equation of 7. Of course, @(0;E) 
is a measurable set and the same notation will be indistinctly used for its 
measure from now on. When a measurable set E C 7 is varying on 7 so that 
its total length is kept equal to a constant 0 < C < |<9Q|, we can expect 
the visual angle @(0;E) to attain a maximum value for certain subsets 
E* (O) C 7; concretely, we are referring to subsets E* (O) of 7 that solve the 
optimization problem 

(4) max{0(0 ; E) : \E\ = C}. 
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Figure 1 

Using the polar representation of the boundary curve 7, a more explicit 
formulation can be given to this problem. In fact, (4) can be rewritten in 
the form 

where the classical expression ds = \J p2{0] 6) + [p'(O;O)]2d0 is used for the 
differential of arc of a C1 curve 7 given in polar coordinates by the equation 
p = p(0; 6). The double meaning of Q(0;E) both as a set and a measure 
should not cause confusion in (5). 

In many situations it occurs that an optimal set E* (O) for problem (4) is 
but a single arc of length C. In the formulation (5), this case corresponds to 
optimal angular coordinates of de form ©(O; E*{0)) = [a, a:©C], expression 
in which 0 < a < and '©' stands for the sum modulus 2tt. For instance, 
if fi is a circle of radius r and O is its center, then 0(O; E) = r - 1 \E\ is 
constant on the measurable subsets E of dQ with |i£| = C; therefore, every 
one of these sets, in particular an arc of length C, is optimal for problem (4). 
When this property holds for every 0 < C < |e?ii|; i.e., when problem (4) is 
solved by an arc of length C whichever be 0 < C < |dii|, we say that the 
internal visual angle ©(O; •) is coalescent with respect to the length of arc (or 
simply coalescent). For a convex plane domain fi, the internal visual angle 
©(O; •) is naturally defined for every O € f2. Then, we can ask whether or 
not a convex domain exists such that the visual angle ©(O; •) turns out to 
be coalescent for every O € fi and, in the affirmative case, we can look for 
suitable characterization of such domains. 

A general attack of questions related to coalescence of measures in ab-
stract measure spaces was made in [2]. As a matter of fact, the optimization 
problems (3) and (4) are particular cases of the following more general one: 

(5) max :{©(0; E) : J ^(O; 0) + [^(O; 0)]H9 = C}, 
e(o,E) 

(6) sup{v(E) : pi{E) = C} , 
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where /x and u are two <r-iinite Borel measures on a topological space X. 
When !/••-is absolutely continuous with respect to /¿, the existence of the 
Radon-Nikodym derivative du/dfj, is guaranteed and it is in terms of this 
derivative that the following analytical equivalent of coalescence was derived 
([2], Theorem 12). 

THEOREM 1. Suppose thatSf, the distribution function o f f = dv/dyL, is con-
tinuous on its support. Then, problem (6) has a connected optimal solution 
(for every C in the range of fx) provided that f is a connected function. 
Conversely, if problem (6) has a connected optimal solution for every C in 
the range of ¡j, and sup{t>(E) : n(E) = C} < +oo (for every 0 < C < fx(X) 
in the range of fi); then f = dv/dfi is a ^-connected function. 

The range of a measure // is constituted by the set of the (extended) 
real values reached by fi or, equivalently, the set fi(A) C R, where A is 
the underlying cr-algebra. A Borel subset B of X is said to be ¡JL- connected 
when it is "connected in a measure-theoretic sense"; i.e., if there exists a 
/¿-null set N such that B U N is connected. A function / : X —• R is named 
[L-connected when all their level sets are ¿¿-connected. For example, the graph 
of a continuous L-connected function / : R —>R is "unimodal"; i.e., looks like 
a "bump". The intuition behind Theorem 1 is simple: a solution to problem 
(6) is basically given by a level set of the Radon-Nikodym derivative du/dfi, 
so that these solutions will be all connected if (and only if) the level sets of 
dvjdp. are all connected. 

The following results, whose proof is the main concern of this paper, 
provide a suitable response to the above posed questions on the harmonic 
measure and visual angles. 

THEOREM 2. The circle is the unique Dini-smooth domain i i such that the 
harmonic measure u ( x • ) is coalescent whichever be the point ieil. 

THEOREM 3. The circle is the unique convex C1 domain such that the inter-
nal visual angle ©(O; •) is coalescent whichever be the point O € fi. 

The proof we will give in Section 2 for Theorem 2 is based on the Theo-
rem 1 and conformal invariance of the Laplace equation. Beyond a moderate 
geometric appeal, the problem of characterization of domains such that the 
family of internal visual angles is coalescent can be considered as a slight 
variation of the case corresponding to the harmonic measure. After all, when 
fi = (the half plane), the harmonic measure coincides, up to a multi-
plicative constant, with the internal visual angle. Nevertheless, conformal 
invariance is a powerful tool which is absent for internal visual angles, a fact 
that makes the study of visual angles to be considerably more involved than 
that one needed for harmonic measures. Consistently, in Section 3 we de-
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velop from scratch a proof for Theorem 3. This proof is organized as follows: 
without resorting to Theorem 1, a characterization of optimal sets for prob-
lem (4) is firstly developed in subsection 3.1 (Theorem 4) and it is expressed 
in terms of distributions functions of the function 

As a consequence of this characterization, an analytic criterion for coales-
cence is obtained (Theorem 5) and applied to prove a part of Theorem 3. 
Filling the gap existing between the analytic condition furnished by Theo-
rem 5 and the geometric content of Theorem 3, in subsection 3.2 we prove 
a result (Theorem 6) that provides a characterization of the circle using the 
set-valued map O argmin/?(0; •). Finally, the remaining part of Theo-
rem 3 is proved in subsection 3.3 by assembling Theorems 5 and 6. The final 
Section 4 gathers together some general observations and remarks. 

Some special, perhaps infrequent, notations are used along this paper. 
For instance, arg min / will denote the set of minimizers of a given function 
/ and F+,F~ will stand for certain distributions functions associated with 
/ . The very meaning of every particular notation will always be opportunely 
declared. 

2. Proof of Theorem 2 
To prove Theorem 2, it is sufficient to restrict ourselves to consider C-

windows E composed by a finite union of arcs, as we will make from now on. 
In this case, it is well known that the harmonic measure u ( z \ E ) coincides 
with the solution u(z) to the Dirichlet problem 

' A u(z) = 0, z Ed 

(7) < u(z) = 1, z e E 

k u(z) = 0, z e dn\E 

When ii is a circle, the Poisson kernel enables us to write the solution to 
problem (7) in an explicit way. Namely, if f2 = £i(0), we have 

( 8 ) = —ii——7-7——T7 5- dd w v ' ' ' 27r J, 1 — 2r cos (<f> — 0) + r2 

where z = re"^ and, without any risk of confusion, the set E C dBi(O) has 
been identified with the set of its angular coordinates. 

Now, we are to complete our argument. First suppose that fl is a circle; 
since the Poisson kernel 

0 - * = 1 — 2r cos"("</'— 6) + r 2 
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is connected (when considered as a function on S1, of course), the Poisson 
formula (8) and Theorem 1 ensure that 

sup{u;(z;Bi(0),£?) : \E\ = C} = uJ(z;B1(0),E*), 

where E* is an arc of length C and z e -Bi(O) is arbitrary. This proves a 
part of Theorem 2. In order to prove the converse, choose a Dini-smooth 
domain i) such that, for very z Eft and 0 < C < | r | , the identity 

sup{u;(z; ft, E) : \E\ = C} = u(z; Cl, E*) 

holds with E* a single arc of length C. Let $ : Bi(0) —> Cl conformally maps 
the unit disk i?i(0) on the domain Q. Since the boundary dfi, was supposed 
to be a sufficiently regular (Dini-smooth; see, for instance, [3], pg. 48) Jordan 
curve, the Riemann map $ and its derivative both extend continuously up 
to the boundary dtl. Then, the function v(z) = £i(0), $ _ 1 ( £ ) ) 
is the harmonic measure of the set C S1 and we can write 

\E\ = ]ds= J \&(ei0)\d9. 
E 

In consequence, we have 

s u p { u j ( z - , n , E ) : \E\ = C} 

= sup{ W ($ - 1 W;Bi(0) > $- 1 (^ ) ) : J \&(ei6)\dd = C} 

= supiw^-H^jBiCO),^) : i I&{ei(,)\de = C } , 
A 

and then, setting $ _ 1 ( z ) = re^, Theorem 1 (with dv = P(r,(f>]9) d9 and 
dfi = $'(e l5) dO) enable us to conclude that 

(9) » " " 1 ^ 1 

dfi 27r 1 — 2r cos (<f> — 9) + r 2 |$'(e ifl)| 

is a connected function for every 0 < r < 1, 0 < ^ < 2n. In particular, by 
taking r = 0 we see that 6 w 1/ $'(e t6) must be a connected function (its 
graph looks like a single bump when traced on Sl). Indeed, since the Poisson 
kernel is an approximate identity, it is easily deduced that 9 i-> 1/ $'(e l°) 
must be a constant (in other case, the graph of the product given by (9' 
would contain a second bump around <j> = 9)] therefore, is a constant 
on S1. Since does not vanish on 5i(0), an application of the Maximum 
Modulus Theorem shows that reduces to a constant a; thus, 3>(z) = az+b 
and fi = $(5i(0)) is a circle. This finishes the proof of Theorem 2. 
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3. Proof of Theorem 3 
3.1. Optimal sets and an analytic condition for coalescence 

With the purpose of obtaining a characterization of optimal sets cor-
responding to problem (5), some preliminary concepts are needed. For a 
continuous and positive function / : 5 1 - + 1 we define 

(10) F+W= \ f(0)d0, AGR, 
{0:/(0)<A} 

and 
(11) F~(X)= \ f(0)d0, A € R . 

{e:f(6)< A} 
Integrals extended to the A-level set {9 : f{9) < A} and to the strict A-level 
set {9 : f(9) < A} of function / are respectively involved in the expression 
of F+ and F~, so that these functions can be considered as distribution 
functions corresponding to the measure dfj,(9) = f(0)dd on S1. The main 
properties of these functions are collected in the following lemma. 

LEMMA 1. If f is a positive and continuous function, then functions F+ and 

F~, respectively defined by (10) and (11), satisfy the following properties: 

i) F+ and F~ are strictly increasing functions on [min /, max /]. 
ii) F+ and F~ are constant on R \ [min/,max/]. Moreover, F+{A) 

> F~(A), A 6 R, and 

2ir 
F+ (max /) = \f(9) d9, F~ (min /) = 0. 

o 
iii) F+ is right-continuous, F~ is left-continuous and 

F+( A " ) = lim F+Oi) = F~( A), F~( A+) = lim F+(/x) = F+( A). 

mTA MA 

Proo f . For Ai,A2 € [min/,max/], Ai < A2, we have 
( 1 2 ) - F+(Ai ) = J { , : A l < / W<A 2 } m de 

- \{e:\i<m<\2} f(d)de-

Since {9 : Ai < f(9) < A2} is a non-void open set by the continuity of 
/ and since / is positive, we see that the last integral in (12) is positive. 
Then, F+(\2) — F+(Ai) > 0 and F+ is strictly increasing on [min/, max/]. 
That so it is F~ can be shown by means of a similar reasoning. This proves 
i). Properties ii) are immediate. As for properties iii), they are an easy 
consequence of the following identities 

Um<a{0 : f(6) <H} = {0: f(9) < A} = U / i < A {0 : f(9) < 

nM>A{6 : /(*) < /x} = {9 : f(9) < A} = ^ { 9 : f(9) < /x}, 



320 L. R. Berrone 

and of basic results in Measure Theory (see, for example, [4], Theor. 10.11, 
p. 166). • 

For a regular domain ii which is starlike with respect to the point O 6 fi, 
we now consider the functions F+ and F~ associated with 

f(9) = y/ffi(0-,9) + [pr(0-,6)]*, 0 < 9 < 2tt. 

In view of Lemma 1-i), ii), given a C with 0 < C < |dii| = f(9) dO, one 
at least from the following three alternatives hold: 

A) There exists a A such that F+(A) = C. 
B) There exists a A such that F~ (A) = C. 
C) There exists a A such that F (A) < C < F+(X). 

Since F+ and F~ are strictly increasing functions, one and only one 
value of A exists such that A), B) or C) holds. Furthermore, A > 0 by the 
positivity of / . Note that A) and B) simultaneously hold when A is a point of 
continuity of F+. The nature of optimal solutions to problem (4) depends 
on what alternative A), B) or C) do occur. Concretely, we can state the 
following: 

THEOREM 4 . The A-level set 

( 1 3 ) E* = {9 : f(6) < A } 

or the strict A -level set 
( 1 4 ) E* = {6 : f(e) < A } 

are optimal for problem (4) depending on whether alternative A) or B) holds, 
respectively. In the case in which alternative C) holds, any measurable subset 
E* of 7 is optimal provided that 

(15) {6 : f(9) <\}CE*C{6: f(9) < A} 

and f(9) d9 = C. All these optimal sets are unique in a measure-theoretic 
sense: if A is another optimal set then 0(O; A A E*) = 0. 

P r o o f . Let us prove that the indicated sets are optimal. First suppose that 
alternative A) occurs and denote by A any measurable subset of 7 satisfying 
the restriction 

\f(9)d9 = C. 
A 

By calling E* = {9 : f(9) < A}, A being the unique solution to F+(A) = C, 
we have 

J f(9)d9+ j f(9)dB=\f{9)d$ 
A\E" AnE' A 

= C 
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= F+(X) 

= i m d B 
E* 

= i m<w+ 5 m o o , 
E*\A AC\E' 

whence we obtain 

(16) A Q(0-A\E*)< J f(Q)dB = J f(0)d$<\Q(O-E*\A), 
A\E* E'\A 

or, in view of A > 0, 

(17) e(0-,A\E*)<Q(0]E*\A). 

From inequality (17), we easily derive the following ones 

9 ( 0 ; A) = 9 ( 0 ; A \ E*) + 9 ( 0 ; A n E*) 

< 9 ( 0 ; E*\A) + 9 ( 0 ; A n E*) 

= 9 ( 0 ; £ T ) , 

which prove the optimality of E* when alternative A) holds. That (14) and 
(15) are optimal when, respectively, alternative B) or C) occurs is similarly 
proved. 

Now we show the uniqueness in the sense of Measure Theory of the 
exhibited optimal sets. To this end, suppose that A is an optimal subset 
for problem (4) and that alternative A) occurs. If it were 9 ( 0 ; E* \ A) > 0 
then, reasoning as before we would have 

(18) A 9 ( 0 ; A\E*)< \ f(0) d0 = J f { 6 ) d d ^ Ae(°;E* \ A) 
A\E* E'\A 

and hence 
@(0-,A)<e(0]E*). 

This inequality is in contradiction with the supposed optimality of A; there-
fore, it must be 9 ( 0 ; E* \ A) = 0 and, since / is bounded away from 0, the 
middle equality in (18) implies that 9 ( 0 ; A\E*) = 0. Thus, 9 ( 0 ; AAE*) = 
9 ( 0 ; E* \A) + 9(O; A \ E*) = 0, as it was affirmed. 

The proof of uniqueness is analogous for alternative B) and we will omit 
its details, but further discussion is needed to prove alternative C). If al-
ternative C) holds and inclusions (15) do not hold in the measure-theoretic 
sense by a measurable set A satisfying f(6) dd = C, then we obtain as 
before that A9(0; A\E*)< A9(0; E* \ A) and, since A > 0, 

(19) Q(0;A) < 9 ( 0 ; £ * ) . 
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By setting E*+ = {9 : f(9) < A} and E*_ = {9 : / (0) < A}, we can see that 
one of the following inequalities 

(20) @{0]E*_\A)>0 
or 
(21) e(0;A\E*+)> 0 

holds. First suppose that inequality (20) holds. Then we obtain strict in-
equality in the last inequality (16) and, talking into account that El C E*, 
we deduce 

Q(0]A\E*) < Q(0]E*\A); 

hence strict inequality in (19), a contradiction. Likewise, if (21) occurs, then 
the first inequality (16) will be strict and consequently ©(O; A \ E*) < 
0 ( 0 ; E* \ A), leading again to strict inequality in (19), a contradiction to 
the optimality of E*. This completes the proof. • 

In order to state in a concise way our analytic condition for coalescence 
of visual angles, the concept of a connected function defined on S 1 becomes 
useful: we say that a function / : S 1 —» M is connected on S1 when, for every 
A G R, its A-level set is a connected subset of Sl. Since the complement 
Sl\E is connected whenever E it is, a function / : S1 —• R is connected if 
and only if {x e Si : f ( x ) > A} is connected for every A. Furthermore, a 
continuous function / is connected on S 1 if and only if their strict A-level 
sets axe connected. In fact, assume / is connected and, for any A, let 81,62 
be two distinct points of the strict A-level set {9 : f{9) < A}. Without 
loss of generality, we can suppose that f(0i) = A — ¿1, f(92) = A — ¿2 with 
0 < ¿1 < 62 and therefore, £>1,62 G {9 : f(9) < A —¿1}. By the connectivity of 
{8 • f (0) < A — ¿1}, at least one of the supplementary axes of 5 1 \{e l f l l , e , f l2} 
is included in this set, and hence in {9 : f(6) < A}. Therefore {9 : f(9) < A} 
is connected. Conversely, if the strict level sets of / are connected and the 
A-level set {9 : f(9) < A} was not connected for some A, then {9 : f(9) > A} 
would not be connected as well and a contradiction can be reached using a 
similar argument. 

We are now ready to prove the following: 

THEOREM 5. The internal visual angle &(0, •) is coalescent if and only if 
the function f = y/p'2(0; •) + [p/(O; -)]2 is connected on S1. 

P r o o f . First suppose that / is a connected function and choose 0 < C < 
Since / is continuous, the previous discussion shows that the sets 

{9 : f(9) < A} and {9 : f(9) < A} are connected for every value of A, 
in particular for that value corresponding to any alternative A), B) or C) 
of Theorem 4. It is clear, by this reason, that there exists a connected 
optimal solution to problem (4) when alternative A) or B) holds. Since 



Characterization of domains 323 

{9 : f(9) < A} C {0 : f(9) < A}, we can choose a connected measurable set 
E* such that \E. f(9) dO = C and {6 : f{9) < A} C E* C {9 : f(9) < A}; 
therefore, problem (4) admits a connected optimal solution also in the 
case C). 

Conversely, assume that the internal visual angle ©(O, •) is coalescent. 
Given a positive A, from Theorem 4 we conclude that every set E* satisfying 

{9 : f(9) <\}QE*C{9: f(9) < A} 

must differ from a connected set in a null set at most. Now, since / is a 
continuous function, we see that this can occur if and only if the level sets 
{9 : f{9) < A} and {9 : f(9) < A} are connected; i.e., / is a connected 
function. • 

Take for instance the case Q = Br(0), the circle of radius r centered at 
the origin. Even if the calculations involved in this case are simple enough, 
we think that a thorough discussion may be helpful. To begin with, fix an 
interior point O = roe1^ e Br (see Figure 2); then we have 

(22) p2(O-,9) = \r0ei*-reie\2 

= (r0e^ - reie)(r0e-^ - re~ie) 

= t-q - 2 r0r cos (9 -<f>)+r2, 0 <9 < 2tt, 

and differentiating with respect to 9, we deduce 

2p(0; 9)p'(0; 9) = 2r0r sin(0 - <j>), 0 <9 < 2tt, 

or 
(23) p(0; 9)p'{0; 9) = r0rsin{9 - 0 ) , 0 < 9 < 2tt. 

By differentiating once again, it turns out 

(24) p(0; 9)p"(0; 9) + (p'(0; 9))2 = rQr cos{9 - <f>), 0 < 9 < 2tt. 

Figure 2 
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We wish to prove that the function f(0) = ^p'2(O;0) + {pf(O\0))2 is con-
nected on S1. With this purpose, we note that f(0) > p(O\0) > p{0\<f>) = 
/(</>), 0 < 0 < 2ir, and therefore / attains its global minimum for 0 = <f>. 
Now, we prove that / is strictly increasing on (</>, <f> + 7r) and strictly de-
creasing on {<f> — 7r, </>). In fact, it is easy to see from (23) that p'(0; 0) > 0, 
<j) < 0 < (j> + ir, and p'(0; 0) < 0, (/> — ir < 0 < </>, and taking into account 
that 
(25) / ' (*)/(*) = p'(O]0)(p(O-,0) + p"(O-0)) 
it will be enough to show that p(0; •) + p"(0] •) > 0. Prom (22) and (23), 
we derive 

p\0-0){p(O-9) + p"(O;0)) 

= p\0-0){p\O; 9) - (p'(0; 0))2 + r0r cos(0 - <f>)) 

= pA(0; 0) - r2rl sin2(0 - <f>) + r0r cos(0 - <f>)p2{0; 0) 

= (7-q - 2r0r cos(0 - <j>) + r2)2 - r2rl sm2(0 - <t>) 

+ ror cos(0 — 4>) (rQ — 2r$r cos{0 — </») + r2) 

= 3rlr2 cos2{0 - <j>) - 3r0r(r2 + cos(0 - <j>) 

+ ((r2 + r 2 ) 2 - r y ) 
= P(cos(0 - <t>)), 

where P is the quadratic polynomial 
P(x) = 3r^r2 x2 - 3r0r(r2 + rg) a; + ((r2 + r^)2 - rlr2). 

The discriminant of this polynomial is given by 
A = (3r0r(r2 + r£))2 - 4 x 3r2

Qr2 x ((r2 + rg)2 - r£r2) 
= -Zr2r\r2 - r2)2 

< 0 , 
so that P(x) > 0 , i g R , and p(0\ •) + p"(0\ •) > 0, as we claimed. From the 
just established property of / , we see that the equation f(0) = A has two 
solutions at most for every A G R, so proving that / is a connected function. 
In the light of Theorem 5, this shows that the internal visual angle 0 ( 0 ; •) 
is coalescent for the circle whatever be the interior point O. 

3.2. The map O argmin/9(0; •) 
In the previous subsection we saw that an analytic criterion to decide 

the coalescence of the internal visual angle ©(O; •) is given by the connect-
edness of the function / = y/p'2(0; •) + (p'(0; •))'2. In this subsection a tool 
is prepared which will serve to link this analytic condition with geometry. 
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We write d(P; Q) to denote the Euclidean distance between the points P 
and Q. The notation d(0; d f l ) indicates the distance from a point O to the 
boundary of fl and it is defined to be d{0\dfl) = minpean d{0\ P). For a 
given O € fl, we denote by arg minp(0; •) the set of minimizers {P* € dfl: 
d(0;dfl) = d(0;P*)}; i.e., the set of points in dfl nearest to O. Note that 
arg min p(0; •) = {O} for every O E dfl. In the proof of our next result, it 
will be useful to consider the set-valued map fl B O h-» arg min p(0; •) C dfl. 
As a matter of fact, this map is upper semicontinuous (see, for instance, [1], 
Theor. 6, pg. 53), which means that for every O € ft and for every open set 
U containing arg min p(0; •), there exists a neighborhood Uo of O such that 
argminp(Wo; •) Q U. 

THEOREM 6. Let fl C R a convex domain bounded by a C1 curve. Then fl 
is a circle if and only ¿/argminp(0; •) is a connected subset of dfl for every 
Oefi. 

Proo f . The "only if" part of the theorem is immediate: arg min p(0; •) is the 
whole boundary when O is the center of the circle and it reduces to a point 
in other case. In order to prove the converse, assume that arg min p(0; •) is 
a connected subset of dfl for every O G fl. Since arg minp(0; •) = {0} for 
points O belonging to dfl, we see that the values of the upper semicontin-
uous map fl 3 O i—• arg min p(0; •) C dfl are connected subset of dfl. If 
arg min p(0; •) would reduce to a point for every O G fl, then the function 

(j) 
O i—• <f>(0) 

Figure 3 
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such that argminp(0; •) = (</>(0)}, would be a continuous function satisfy-
ing (/>\dn = idan, the identity function on dfl. But such a function can not 
exist by the Brouwer's fixed point theorem. In fact, choose a point P € fl 
and define a new function <f> : f2 —> ii by making <f>(0) to be the point 
where the line segment from (f>{O) to P hits dfl. It is easy to see that <fi is 
continuous and that it possesses no fixed point, so violating the Brouwer's 
Theorem. Then, we conclude that there exists a point O* 6 fi such that 
arg min p(0*; •) is an arc of circle. We will see that a new contradiction is 
reached if we suppose that arg min p(0*] •) is not a whole circle. The situ-
ation is illustrated in Figure 3, in which arg min p(0*; •) is the arc PQP'. 
By the upper semicontinuity of the map O i-» arg min p(0; •), if we ex-
clude a small arc RQ'R' from the boundary dfl as indicated in the figure, 
then the sets arg min p(0] •) will be contained in the arc RPQP'R' pro-
vided that O varies in a small enough ball U centered at O*. Let us pay 
attention to the arc AXB of the boundary of a ball contained in U as repre-
sented in Figure 3. The continuous function ¿(X) = d(X, PR) - d(X, P'R') 
satisfies 5(A) < 0 and 6(B) > 0; thus, there exists a point X* in the 
arc AXB such that 6(X*) = 0; that is, d(X*,PR) = d(X*,P'R'). Since 
d(X*, PQP') > m in{d (X* ,P)]d (X* ,P ' ) } > d(X*,PR), we realize that 
arg min X*; •) can not contain points belonging to the arc PQP' and 
we then conclude that argminp(X*; •) has two components at least: one 
of them on the arc PR and the other on P'R'. This is in contradiction 
with the hypotheses of connectedness of argminp(X*; •) so finishing the 
proof. • 

3.3. Completion of the proof of Theorem 3 
The property of the circle of being the unique convex and C1 domain 

fl such that its internal visual angle 0(0; •) is coalescent for every O € fl, 
quickly follows from Theorems 5 and 6. In fact, after Theorem 5, the func-
tion /(O; •) = v V ( 0 ; •) + 0 ' (O; -))'2 is connected for every O € fl. We 
will show this implies that p(0\ •) is connected too. In fact, if p(0] •) were 
not connected, then there would exist a A such that the strict level set 
{9 : p(0;0) < A} is not connected. Let (ai,/3\) and («2,#2) two com-
ponents of {0 : p(0] 8) < A}. In view of the continuity of p(0;-), the 
equalities p(0;a 1) = A = p(0;/3i) and p(0;a2) = A = p(0;/32) hold and 
then, by the Rolle's Theorem there exist 6\ G (ai,/?i) and 62 € («2,#2) 
such that p'(0i) = 0, i = 1,2. Therefore f(0\9i) = p(0\0i), i = 1,2. 
Taking into account that {6 : f(0]6) < A} C {6 : p(0;d) < A}, which 
is immediate from the inequality p(0) •) < /(O; •), we see that the level 
set {0 : f(O;0) < A} would not be connected. This contradiction proves 
our claim. Now, if p(0] •) is a connected function for every O G fl, then 
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argmin/j(0; •) = {(Q,p(.0)) p(0,9) < min/?(0; •)} is connected (on S1) so 
that Theorem 5 applies to conclude that fi must be a circle. The proof of 
Theorem 3 is completed. 

4. Final remarks 
The attentive reader has surely observed that what is actually needed in 

the proof of Theorem 6 is not Brouwer's theorem, but the following state-
ment (which can be considered to precede Brouwer's theorem in a logical 
sense): S1 is not a continuous retract of the disc B\. Indeed, the entire 
argument involving Brouwer's theorem can be replaced by the following el-
ementary one: assume, as in the proof, that arg min p(0; •) is a connected 
subset of dSl for every O E fi and consider a point O* E Si at a maximum 
distance from dSi; then, the circle centered at O* with radius d(0*,dfi) 
must intersect dQ, in two points at least and therefore, arg min p(0*] •) must 
be a closed subarc of the circle. On the other side, the author have pre-
ferred to present Theorem 3 in the restricted setting of C1 domains which 
may, even thinking in the resulting simplifications, be considered irrelevant 
in many respects. However, other extensions of Theorem 3 (as well as The-
orem 2) seem to be more appealing than the easy ones related to the regu-
larity of dSi. We can ask, for example, for the "size" that a subset fio C fi 
should have in order that the circle continues to be the unique convex do-
main such that the internal visual angle ©(O; •) is coalescent whichever 
be the point O E fio- An immediate observation in this direction: since 
visual angles 0(O; •) continuously depends on O E fi, the coalescence of 
the whole family {0(0; •) : O E fi} is implied by that one of the sub-
family {0(0; •) : O E fio} when fio is a dense subset of fi. The proof 
of higher-dimensional versions of Theorems 2 and 3 seems to be consid-
erably more difficult. Furthermore, it is suspected that coalescence of the 
harmonic measure of three-dimensional domains ceases to characterize only 
spheres. 
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