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CHARACTERIZATION OF DOMAINS THROUGH
FAMILIES OF MEASURES

Abstract. Let 2 be a plane domain limited by a regular Jordan curve I'. For every
(L) measurable subset E of I' and every point z € €, consider the probability P(E;z)
that a Brownian particle starting its motion at z hits the boundary I' (by the first time)
in a point belonging to E. Now, let C be a constant such that 0 < C < |I'| and consider
the optimization problem

(1) sup{P(E;2) : |E| = C}

(I - | denotes the Lebesgue measure on the boundary I'). What are the domains 2 such
that single arcs of the boundary are optimal subsets for (1) for every z € Q and every
o<ce<r)?

For a plane domain 2 which is starlike with respect to an interior point O, the internal
visual angle ©(0; E) of a measurable subset of the boundary E C 9 is defined to be the
angle under which F is observed from O. Posing the optimization problem

©) sup{©(0; E) : |E| = C},

it is asked for the conver domains  such that single arcs of the boundary are optimal
subsets for (2) for every O € 2 and every 0 < C < |T|.
A suitable response to these questions is given in this paper.

1. Introduction and preliminaries

Let Q2 be a plane domain bounded by a regular curve 4. For every point
z € S, suppose we are given a measure \; defined on the Lebesgue mea-
surable subsets of the boundary 9. Denote by A the whole family of these
measures indexed by z € Q; i.e., A = {); : © € }. To fix ideas, consider
a Brownian particle starting its motion at z € Q. If I is a (measurable)
subset of 91, the particle has a certain probability of hitting the boundary
0N for the first time at a point of I'. As it is well known, this probability
coincides with the harmonic measure w(z; Q,I') of I" at the point z € 2. In
this case, A = {w(z;Q,-) : = € N} and we expect that a number of special
properties to be shared by all the measures in A provided that the geom-
etry of € has a certain “symmetry”. For example, if } = B, is a circle of
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radius r, then we easily see that A is a family of coalescent measures (with
respect to the Lebesgue measure on the boundary) in the sense that, for
every 0 < C < 27r, the optimization problem

(3) max{w(z;T): T C OB,, [I'|=C}

is solved by a single arc I'™* with measure |['| = C. This means, in the
probabilistic interpretation, that a certain single “window” I'* of length
C on the circumference 0B, maximizes the probability that a Brownian
particle starting at any point z € B, hits the boundary 8B, by the first
time at a point of the “windows” I" with “total length” C.

Our present interest will be focalized on a sort of inverse problem: what
can be said on the geometry of Q) when it is known that a particular property
is enjoyed by every member of the family of measures A? Of course, this
question is meaningless when formulated in its full generality (what is seen
by realizing that certain families A of measures are defined disregarding
the geometry of the domain ; v.g., the family of identically zero measures
Az =0, z € Q), but in posing our problem we are implicitly assuming that
the family of measures is somewhat related to the geometry of the domain
Q. Indeed, the above question is directed to deepen in the nature of these
relationships when these ones are known to exist. For instance, we can ask
for the domains Q such that the family {w(z;Q,-) : £ € Q} of harmonic
measures with respect to 2 is a coalescent family. As another significative
example, we consider in this paper the family of internal visual angles.

By assuming that Q2 is starlike with respect to an interior point O, it
makes sense to consider the internal visual angle ©(0O; F) under which an
arc E of v is seen by an observer placed at O (see Figure 1). More generally,
if E is a measurable subset of +; then, the quantity ©(O; E) represents the
total visual angle under which the subset E of the boundary is seen from
O. By representing the boundary curve « in polar coordinates with pole at
O, we have

O(0;E) = {0: (6,0(0,06)) € E} C [0,27],

where p(0;0), 0 < 8 < 2, is the polar equation of . Of course, ©(0; E)
is a measurable set and the same notation will be indistinctly used for its
measure from now on. When a measurable set E C v is varying on ~ so that
its total length |E| is kept equal to a constant 0 < C < |0€2|, we can expect
the visual angle ©(O; E) to attain a maximum value for certain subsets
E*(0) C «; concretely, we are referring to subsets E*(O) of v that solve the
optimization problem

(4) max{©(0; E) : |E| = C}.
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Figure 1

Using the polar representation of the boundary curve v, a more explicit
formulation can be given to this problem. In fact, (4) can be rewritten in
the form

(5) max{0(0;E): | 1/p2(0;6) + [¢/(0;8)]2d8 = C},
©(0;E)

where the classical expression ds = 1/p*(O; 0) + [p'(O; 6)|?df is used for the
differential of arc of a Clcurve v given in polar coordinates by the equation
p = p(0;6). The double meaning of ©(0; E) both as a set and a measure
should not cause confusion in (5).

In many situations it occurs that an optimal set E*(O) for problem (4) is
but a single arc of length C. In the formulation (5), this case corresponds to
optimal angular coordinates of de form ©(0; E*(0)) = [a, a®C], expression
in which 0 < a < 27 and ‘@’ stands for the sum modulus 27. For instance,
if  is a circle of radius 7 and O is its center, then ©(0O; E) = r~! |E| is
constant on the measurable subsets E of 2 with |E| = C; therefore, every
one of these sets, in particular an arc of length C, is optimal for problem (4).
When this property holds for every 0 < C < |09|; i.e., when problem (4) is
solved by an arc of length C whichever be 0 < C < |09, we say that the
internal visual angle ©(0O; -) is coalescent with respect to the length of arc (or
simply coalescent). For a convez plane domain £, the internal visual angle
©(0; ) is naturally defined for every O € €. Then, we can ask whether or
not a convex domain exists such that the visual angle ©(O; ) turns out to
be coalescent for every O € €2 and, in the affirmative case, we can look for
suitable characterization of such domains.

A general attack of questions related to coalescence of measures in ab-
stract measure spaces was made in [2]. As a matter of fact, the optimization
problems (3) and (4) are particular cases of the following more general one:

(6) sup{v(E) : p(E) = C},
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where 1 and v are two o-finite Borel measures on a topological space X.
When v-is absolutely continuous with respect to u, the existence of the
Radon-Nikodym derivative dv/dp is guaranteed and it is in terms of this

derivative that the following analytical equivalent of coalescence was derived
([2], Theorem 12).

THEOREM 1. Suppose that §¢, the distribution function of f = dv/du, is con-
tinuous on its support. Then, problem (6) has a connected optimal solution
(for every C in the range of p) provided that f is a p-connected function.
Conversely, if problem (6) has a connected optimal solution for every C in
the range of p and sup{v(E) : u(E) = C} < 400 (for every 0 < C < u(X)
in the range of p); then f = dv/du is a p-connected function.

The range of a measure p is constituted by the set of the (extended)
real values reached by p or, equivalently, the set u(A) C R, where A is
the underlying o-algebra. A Borel subset B of X is said to be u-connected
when it is “connected in a measure-theoretic sense”; i.e., if there exists a
p-null set N such that BU N is connected. A function f : X — R is named
p-connected when all their level sets are p-connected. For example, the graph
of a continuous L-connected function f : R —R is “unimodal”; i.e., looks like
a “bump”. The intuition behind Theorem 1 is simple: a solution to problem
(6) is basically given by a level set of the Radon-Nikodym derivative dv/dp,
so that these solutions will be all connected if (and only if) the level sets of
dv/du are all connected.

The following results, whose proof is the main concern of this paper,
provide a suitable response to the above posed questions on the harmonic
measure and visual angles.

THEOREM 2. The circle is the unique Dini-smooth domain §) such that the
harmonic measure w(z;<Q,-) is coalescent whichever be the point x € 2.

THEOREM 3. The circle is the unique convex C! domain such that the inter-
nal visual angle ©(0;-) is coalescent whichever be the point O € Q.

The proof we will give in Section 2 for Theorem 2 is based on the Theo-
rem 1 and conformal invariance of the Laplace equation. Beyond a moderate
geometric appeal, the problem of characterization of domains such that the
family of internal visual angles is coalescent can be considered as a slight
variation of the case corresponding to the harmonic measure. After all, when
Q = RZ (the half plane), the harmonic measure coincides, up to a multi-
plicative constant, with the internal visual angle. Nevertheless, conformal
invariance is a powerful tool which is absent for internal visual angles, a fact
that makes the study of visual angles to be considerably more involved than
that one needed for harmonic measures. Consistently, in Section 3 we de-



Characterization of domains 317

velop from scratch a proof for Theorem 3. This proof is organized as follows:
without resorting to Theorem 1, a characterization of optimal sets for prob-
lem (4) is firstly developed in subsection 3.1 (Theorem 4) and it is expressed
in terms of distributions functions of the function

6 /p%(0;6) + [0/ (0; B)I2.

As a consequence of this characterization, an analytic criterion for coales-
cence is obtained (Theorem 5) and applied to prove a part of Theorem 3.
Filling the gap existing between the analytic condition furnished by Theo-
rem 5 and the geometric content of Theorem 3, in subsection 3.2 we prove
a result (Theorem 6) that provides a characterization of the circle using the
set-valued map O — argmin p(O; ). Finally, the remaining part of Theo-
rem 3 is proved in subsection 3.3 by assembling Theorems 5 and 6. The final
Section 4 gathers together some general observations and remarks.

Some special, perhaps infrequent, notations are used along this paper.
For instance, arg min f will denote the set of minimizers of a given function
f and F* F~ will stand for certain distributions functions associated with
f. The very meaning of every particular notation will always be opportunely
declared.

2. Proof of Theorem 2

To prove Theorem 2, it is sufficient to restrict ourselves to consider C-
windows F composed by a finite union of arcs, as we will make from now on.
In this case, it is well known that the harmonic measure w(z; 2, E) coincides
with the solution u(z) to the Dirichlet problem

Au(2)=0,2€Q
(M u(z)=1, z€E
u(z) =0, 2€0Q\E
When (2 is a circle, the Poisson kernel enables us to write the solution to
problem (7) in an explicit way. Namely, if = B;(0), we have
1 1-—1r2
J

(8) (5B = T e ®

E
where z = r¢*® and, without any risk of confusion, the set E C 8B; (0) has
been identified with the set of its angular coordinates.

Now, we are to complete our argument. First suppose that €2 is a circle;
since the Poisson kernel

1 1—r?
2w 1 — 2rcos (¢ — 0) + 2

6 — P(r,¢;0) =
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is connected (when considered as a function on S?, of course), the Poisson
formula (8) and Theorem 1 ensure that

sup{w(z; B1(0), E) : |E} = C} = w(z; B1(0), E"),

where E* is an arc of length C and z € B;(0) is arbitrary. This proves a
part of Theorem 2. In order to prove the converse, choose a Dini-smooth
domain §2 such that, for very z € Q and 0 < C < |I'|, the identity

sup{w(z;Q, E) : |E| =C} = w(z;Q E*)

holds with E* a single arc of length C. Let ® : B;(0) — 2 conformally maps
the unit disk B1(0) on the domain Q. Since the boundary 9 was supposed
to be a sufficiently regular (Dini-smooth; see, for instance, (3], pg. 48) Jordan
curve, the Riemann map ® and its derivative & both extend continuously up
to the boundary 8. Then, the function v(z) = w(®~1(2); B1(0), " 1(E))
is the harmonic measure of the set ®~!(E) C S* and we can write

|E|={ds= | |&'(e¥)ds.
E &-1(E)
In consequence, we have
sup{w(z;Q, E) : |E|=C}

=sup{w(®7(2); B1(0),®7H(E)): | [®(e?)d6=C)
$-1(E)

= sup{w(®~1(2); B1(0), A §|<1>'(ew)|do C},

and then, setting ®1(2) = re®, Theorem 1 (with dv = P(r,¢;8)df and
dp = |9’ (ew)| df) enable us to conclude that

dv 1 1—r? 1

dp 211 —2rcos(¢—8) +r2|®(ef))

is a connected function for every 0 < r < 1, 0 < ¢ < 2. In particular, by
taking r = 0 we see that § — 1/ |<I>’ (eio)l must be a connected function (its

9) 6 +—

graph looks like a single bump when traced on S'). Indeed, since the Poisson
kernel is an approximate identity, it is easily deduced that 6 — 1/ |<I>’ (%)
must be a constant (in other case, the graph of the product given by (9)
would contain a second bump around ¢ = 6); therefore, |®’| is a constant
on S1. Since & does not vanish on B;(0), an application of the Maximum

Modulus Theorem shows that &’ reduces to a constant a; thus, ®(z) = az+b
and 2 = ®(B;(0)) is a circle. This finishes the proof of Theorem 2.
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3. Proof of Theorem 3
3.1. Optimal sets and an analytic condition for coalescence

With the purpose of obtaining a characterization of optimal sets cor-
responding to problem (5), some preliminary concepts are needed. For a
continuous and positive function f : S — R we define

(10) Ft(\)= | f(6)ds, AeR,
{6:£(6)<2}

and

(11) F-W)= | f®)ds, xeRr.
{6:£(8)<A}

Integrals extended to the A-level set {6 : f(8) < A} and to the strict A-level
set {0 : f(6) < A} of function f are respectively involved in the expression
of F+ and F~, so that these functions can be considered as distribution
functions corresponding to the measure du(8) = f(6)d8 on S*. The main
properties of these functions are collected in the following lemma.

LEMMA 1. If f is a positive and continuous function, then functions F* and
F~, respectively defined by (10) and (11), satisfy the following properties:

i) F* and F~ are strictly increasing functions on [min f, max f].
ii) F* and F~ are constant on R\ [min f, max f]. Moreover, F*()\)
> F~(A\), A€R, and
27
Ft(max f)= | f(§)d6, F~(minf)=0.
0
iii) Ft is right-continuous, F~ is left-continuous and

FrOT) =lmFr(p) = F~(\), F-(\)=limFH(u) = Fr).
utA ulr
Proof. For A;, Ag € [min f, max f], A\; < Ag, we have

(12) Fr(Xg) = F*(M) = §{gn,<p8)<ng) F(0) dO

2 §{o:n<f0)<r0) f(0) 6.
Since {6 : A1 < f(8) < A2} is a non-void open set by the continuity of
f and since f is positive, we see that the last integral in (12) is positive.
Then, F*(A3) — F+(\;) > 0 and F* is strictly increasing on [min f, max f].
That so it is F'~ can be shown by means of a similar reasoning. This proves

i). Properties ii) are immediate. As for properties iii), they are an easy
consequence of the following identities

Uncaf0: £(8) < u} = {8 £(8) < A} = Uuca{6: £(6) < i},
Muoaf0: F(6) < p} = {0: £(6) S A} = Nysa{8: £(8) < ),
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and of basic results in Measure Theory (see, for example, [4], Theor. 10.11,
p. 166). m

For a regular domain €2 which is starlike with respect to the point O € Q,
we now consider the functions F*+ and F~ associated with

£(6) = /p2(0;8) + [P/(0;8)]2, 0 < 6 < 2m.

In view of Lemma 1-i), ii), given a C with 0 < C < |89 = {3™ f(6) ¥, one
at least from the following three alternatives hold:

A) There exists a A such that F+(\) = C.
B) There exists a A such that F~(A) = C.
C) There exists a A such that F~()\) < C < F¥()).

Since F* and F~ are strictly increasing functions, one and only one
value of X exists such that A), B) or C) holds. Furthermore, A > 0 by the
positivity of f. Note that A) and B) simultaneously hold when A is a point of
continuity of F*. The nature of optimal solutions to problem (4) depends
on what alternative A), B) or C) do occur. Concretely, we can state the
following:

THEOREM 4. The X-level set

(13) B ={0: £(8) <)}
or the strict A-level set
(14) E*={6:f(0) <A}

are optimal for problem (4) depending on whether alternative A) or B) holds,
respectively. In the case in which alternative C) holds, any measurable subset
E* of v is optimal provided that

(15) {0:£(6) <N} CE* C{6: £(6) < \}

and {g. f(6) d0 = C. All these optimal sets are unique in a measure-theoretic
sense: if A is another optimal set then ©(0; A A E*) = 0.

Proof. Let us prove that the indicated sets are optimal. First suppose that
alternative A) occurs and denote by A any measurable subset of v satisfying
the restriction

{r(e)do=c.

A
By calling E* = {6 : f(6) < A}, ) being the unique solution to F+(\) = C,
we have

| r@do+ § rodo

A\E* ANE* - 51
=C

£(6)df
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=F*())

= | f(6)do
B .

= | f@Odo+ | f(6)ds,
En\A ANE*

whence we obtain
(16) MO(O;A\E*)< | f(6)do= | f(8)d6<XO(O;E"\A),
A\E* E*\A
or, in view of A > 0,
(17) ©(0; A\ E*) < ©(0; E*\ A).
From inequality (17), we easily derive the following ones
©(0; A) =©6(0;A\ E*)+©(0;ANE*)

< O(0O;E*\ A)+ ©(0;ANE")

= 0(0; B"),
which prove the optimality of E* when alternative A) holds. That (14) and

(15) are optimal when, respectively, alternative B) or C) occurs is similarly
proved.

Now we show the uniqueness in the sense of Measure Theory of the
exhibited optimal sets. To this end, suppose that A is an optimal subset
for problem (4) and that alternative A) occurs. If it were ©(O; E* \ A) > 0
then, reasoning as before we would have

(18) XO(0;A\E*) < | f(0)do= | f(6)do < 0(0;E*\ A)
A\E* E"\A

and hence

©(0; A) < ©(0; E*).

This inequality is in contradiction with the supposed optimality of A; there-
fore, it must be ©(0; E* \ A) = 0 and, since f is bounded away from 0, the
middle equality in (18) implies that ©(0; A\ E*) = 0. Thus, ©(0; AAE*) =
©(0;E*\ A) + ©(0; A\ E*) =0, as it was affirmed.

The proof of uniqueness is analogous for alternative B) and we will omit
its details, but further discussion is needed to prove alternative C). If al-
ternative C) holds and inclusions (15) do not hold in the measure-theoretic
sense by a measurable set A satisfying {4 f(6)dd = C, then we obtain as
before that A@(O; A\ E*) < A©(O; E* \ A) and, since A > 0,

(19) ©(0; A) < ©(0; E®).
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By setting E} = {6 : f(§) < A} and E* = {6 : f(0) < A}, we can see that
one of the following inequalities

(20) O(0;E* \A) >0
(;1) ©(0;A\E}) >0

holds. First suppose that inequality (20) holds. Then we obtain strict in-
equality in the last inequality (16) and, taking into account that E* C E*,
we deduce
©(0;A\ E*) < ©(0; E* \ A);

hence strict inequality in (19), a contradiction. Likewise, if (21) occurs, then
the first inequality (16) will be strict and consequently ©(0; A \ E*) <
©(0; E* \ A), leading again to strict inequality in (19), a contradiction to
the optimality of E*. This completes the proof. m

In order to state in a concise way our analytic condition for coalescence
of visual angles, the concept of a connected function defined on S! becomes
useful: we say that a function f : S — R is connected on S* when, for every
A € R, its A-level set is a connected subset of S!. Since the complement
S\ E is connected whenever E it is, a function f : S! — R is connected if
and only if {z € S} : f(z) > A} is connected for every A. Furthermore, a
continuous function f is connected on S! if and only if their strict \-level
sets are connected. In fact, assume f is connected and, for any A, let 6;, 0,
be two distinct points of the strict A-level set {8 : f(6) < A}. Without
loss of generality, we can suppose that f(8;) = A — 61, f(82) = A — 3 with
0 < 81 < 47 and therefore, 81,62 € {6 : f(6) < A—4d1}. By the connectivity of
{8 : £(8) < X\ —6,}, at least one of the supplementary arcs of S'\{e®, ¢?2}
is included in this set, and hence in {0 : f(8) < A}. Therefore {6 : f(6) < A}
is connected. Conversely, if the strict level sets of f are connected and the
A-level set {6 : f(6) < A} was not connected for some A, then {6 : f(8) > A}
would not be connected as well and a contradiction can be reached using a
similar argument.

We are now ready to prove the following:

THEOREM 5. The internal visual angle ©(0,-) is coalescent if and only if
the function f = /p2(0;-) + [¢'(O; )2 is connected on S?.

Proof. First suppose that f is a connected function and choose 0 < C' <
|0S2]. Since f is continuous, the previous discussion shows that the sets
{0 : f(6) < A} and {6 : f(6) < A} are connected for every value of A,
in particular for that value corresponding to any alternative A), B) or C)
of Theorem 4. It is clear, by this reason, that there exists a connected
optimal solution to problem (4) when alternative A) or B) holds. Since
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{0: f(6) <A} C {6: f(8) < A}, we can choose a connected measurable set
E* such that {g. f(6)d8 = C and {6 : f(6) < A} C E* C {0 : f(6) < A}
therefore, problem (4) admits a connected optimal solution also in the
case C).

Conversely, assume that the internal visual angle ©(0, ) is coalescent.
Given a positive A, from Theorem 4 we conclude that every set E* satisfying

(6:£(8) <A} CE* C{8: £(6) <A}

must differ from a connected set in a null set at most. Now, since f is a
continuous function, we see that this can occur if and only if the level sets
{0 : f(6) < A} and {6 : f(0) < A} are connected; i.e., f is a connected
function. m

Take for instance the case Q2 = B,(0), the circle of radius r centered at
the origin. Even if the calculations involved in this case are simple enough,
we think that a thorough discussion may be helpful. To begin with, fix an
interior point O = rge® € B, (see Figure 2); then we have

(22) p2(0;8) = |roe’:¢ - 1'@’1‘9|2 .
= (rpe'® — re?®)(roe ™ —re
=713 — 2rorcos(f — @) + 2, 0 < 6 < 2,

—iO)

and differentiating with respect to 8, we deduce
2p(0;0)p'(0;8) = 2rorsin(d — ¢), 0 < 6 < 2,
or
(23) p(0;0)p'(0;0) = rorsin(6 — ¢), 0 < 6 < 2.
By differentiating once again, it turns out
(24)  p(0;0)p"(0;8) + (6'(0;8))% = rorcos(6 — ¢), 0< 0 < 2.

Et

r

1
e(E*)

Figure 2
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We wish to prove that the function f(8) = /p2(0;8) + (¢'(0;8))? is con-
nected on S1. With this purpose, we note that f(8) > p(O;8) > p(O;¢) =

f(#), 0 < 0 < 27, and therefore f attains its global minimum for 8 = ¢.
Now, we prove that f is strictly increasing on (¢, ¢ + #) and strictly de-
creasing on (¢ — 7, ¢). In fact, it is easy to see from (23) that p'(O;8) > 0,
$p <8< ¢+ and p'(0;0) <0, —m < 0 < ¢, and taking into account
that

(25) f'(6)£(8) = p'(0;6)(p(0;6) + p"(0;6))
it will be enough to show that p(O;-) + p"”(O;-) > 0. From (22) and (23),
we derive
0°(0;6)(p(0;8) + p"(0;6))
= p2(0;6)(p(0;0) - (¢/(0;6))% + ror cos(8 — ¢)
= p1(0;0) — r’rsin®(0 — ¢) + ror cos(8 — ¢)p%(0; 8)
= (r2 — 2rgr cos(8 — ¢) + r2)? — r2rksin?(9 — ¢)
+ ror cos(f — ¢)(rg — 2ror cos(6 — @) + 2)
= 3r2r? cos?(8 — @) — 3ror(r® + r2) cos(6 — @)
+((r? +18)* = r3r?)
= P(cos(6 — 4)),
where P is the quadratic polynomial
P(z) = 3rér 22 — 3ror(r? + rd) z + ((+? + rd)? — r3r?).
The discriminant of this polynomial is given by
= (3ror(r? + r2))? — 4 x 3rdr? x ((r* + rd)? - r3r?)
= —3r3ri(r? — r2)?
<0,
so that P(z) > 0, z € R, and p(O;-)+ p"(0;-) > 0, as we claimed. From the
just established property of f, we see that the equation f(€) = A has two
solutions at most for every A € R, so proving that f is a connected function.
In the light of Theorem 5, this shows that the internal visual angle ©(0O;-)
is coalescent for the circle whatever be the interior point O.
3.2. The map O — argmin p(0; )
In the previous subsection we saw that an analytic criterion to decide
the coalescence of the internal visual angle ©(0O;-) is given by the connect-

edness of the function f = /p?(0;-) + (¢'(O;-))?. In this subsection a tool
is prepared which will serve to link this analytic condition with geometry.
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We write d(P;Q) to denote the Euclidean distance between the points P
and Q. The notation d(O; 89) indicates the distance from a point O to the
boundary of Q and it is defined to be d(O;9§) = minpesn d(O; P). For a
given O € Q, we denote by arg min p(O;-) the set of minimizers {P* € 89 :
d(0;00) = d(O; P*)}; i.e., the set of points in 8N nearest to O. Note that
arg min p(O;-) = {O} for every O € 9. In the proof of our next result, it
will be useful to consider the set-valued map © 3 O — arg min p(0O;-) C 9.
As a matter of fact, this map is upper semicontinuous (see, for instance, [1],
Theor. 6, pg. 53), which means that for every O € Q and for every open set
U containing arg min p(O; -), there exists a neighborhood Up of O such that
argmin p(Uo;-) C U.

THEOREM 6. Let Q C R? a convex domain bounded by a C' curve. Then Q

is a circle if and only if arg min p(O;-) is a connected subset of O for every
Oeq.

Proof. The “only if” part of the theorem is immediate: arg min p(O; -) is the
whole boundary when O is the center of the circle and it reduces to a point
in other case. In order to prove the converse, assume that arg min p(O;-) is
a connected subset of 9 for every O € Q. Since argmin p(0;-) = {O} for
points O belonging to 0f2, we see that the values of the upper semicontin-
uous map I 3 O — argminp(0;-) C 99 are connected subset of 8. If
arg min p(O; -) would reduce to a point for every O € §, then the function

6: Q-0
0 - $(0)
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such that arg min p(O;-) = {¢(O)}, would be a continuous function satisfy-
ing ¢laq = idsq, the identity function on 8. But such a function can not
exist by the Brouwer’s fixed point theorem. In fact, choose a point P € §2
and define a new function ¢ : @ — Q by making ¢(O) to be the point
where the line segment from ¢(O) to P hits Q. It is easy to see that ¢ is
continuous and that it possesses no fixed point, so violating the Brouwer’s
Theorem. Then, we conclude that there exists a point O* €  such that
arg min p(O*;-) is an arc of circle. We will see that a new contradiction is
reached if we suppose that argmin p(O*;-) is not a whole circle. The situ-
ation is illustrated in Figure 3, in which argmin p(O*;-) is the arc PQP’.
By the upper semicontinuity of the map O — argminp(0O;-), if we ex-
clude a small arc RQ'R’ from the boundary 9 as indicated in the figure,
then the sets arg min p(O;-) will be contained in the arc RPQP'R’ pro-
vided that O varies in a small enough ball U centered at O*. Let us pay
attention to the arc AX B of the boundary of a ball contained in U as repre-
sented in Figure 3. The continuous function §(X) = d(X, PR) — d(X, P'R/)
satisfies 6(A) < 0 and §(B) > 0; thus, there exists a point X* in the
arc AXB such that §(X*) = 0; that is, d(X*, PR) = d(X*, P'R’). Since
d(X*, PQP’) > min{d(X*, P);d(X*, P')} > d(X*, PR), we realize that
arg min p(X*;-) can not contain points belonging to the arc PQP’ and
we then conclude that argmin p(X*;-) has two components at least: one
of them on the arc PR and the other on P’R’. This is in contradiction
with the hypotheses of connectedness of argminp(X*;-) so finishing the
proof. m

3.3. Completion of the proof of Theorem 3

The property of the circle of being the unique convex and C! domain
2 such that its internal visual angle ©(O; ) is coalescent for every O € £},
quickly follows from Theorems 5 and 6. In fact, after Theorem 5, the func-
tion f(O;:) = /p*(O;-) + (¢'(O;-))?* is connected for every O € Q. We
will show this implies that p(O;-) is connected too. In fact, if p(O;-) were
not connected, then there would exist a A such that the strict level set
{6 : p(O;0) < A} is not connected. Let (a;, ;) and (az,B2) two com-
ponents of {8 : p(O0;0) < A}. In view of the continuity of p(O;-), the
equalities p(O; a1) = A = p(0;B1) and p(O;a2) = A = p(O;F2) hold and
then, by the Rolle’s Theorem there exist §; € (a1,81) and 62 € (a2, (2)
such that p'(6;) = 0, ¢ = 1,2. Therefore f(0;6;) = p(0;6;), i = 1,2.
Taking into account that {6 : f(O;0) < A} C {8 : p(0;6) < A}, which
is immediate from the inequality p(O;-) < f(O;:), we see that the level
set {6 : f(O;0) < A} would not be connected. This contradiction proves
our claim. Now, if p(O;-) is a connected function for every O € Q, then
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arg min p(0;-) = {(6, p(9)) : p(0;8) < min p(O;-)} is connected (on S*) so
that Theorem 5 applies to conclude that 2 must be a circle. The proof of
Theorem 3 is completed.

4. Final remarks

The attentive reader has surely observed that what is actually needed in
the proof of Theorem 6 is not Brouwer’s theorem, but the following state-
ment (which can be considered to precede Brouwer’s theorem in a logical
sense): S! is not a continuous retract of the disc B;. Indeed, the entire
argument involving Brouwer’s theorem can be replaced by the following el-
ementary one: assume, as in the proof, that arg min p(O;-) is a connected
subset of 92 for every O € Q and consider a point O* € 2 at a maximum
distance from 0; then, the circle centered at O* with radius d(O*,9%Q)
must intersect 92 in two points at least and therefore, arg min p(O*; -) must
be a closed subarc of the circle. On the other side, the author have pre-
ferred to present Theorem 3 in the restricted setting of C! domains which
may, even thinking in the resulting simplifications, be considered irrelevant
in many respects. However, other extensions of Theorem 3 (as well as The-
orem 2) seem to be more appealing than the easy ones related to the regu-
larity of 9Q2. We can ask, for example, for the “size” that a subset 2o C Q2
should have in order that the circle continues to be the unique convex do-
main such that the internal visual angle ©(O;-) is coalescent whichever
be the point O € Qp. An immediate observation in this direction: since
visual angles ©(0;-) continuously depends on O € {2, the coalescence of
the whole family {©(0;:) : O € Q} is implied by that one of the sub-
family {©(0;-) : O € Qo} when Qq is a dense subset of Q. The proof
of higher-dimensional versions of Theorems 2 and 3 seems to be consid-
erably more difficult. Furthermore, it is suspected that coalescence of the
harmonic measure of three-dimensional domains ceases to characterize only
spheres.
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